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ABSTRACT

BACKGROUNDS: Distant metastasis in breast cancer patients contributes to increased breast cancer mortality, highlighting the urgent need
for effective predictive strategies. Understanding metastasis mechanisms and identifying relevant biomarkers are crucial for improving patient
outcomes and informing targeted therapies. This study employed a high-dimensional regression model to identify biomarkers linked to distant
metastasis-free survival in breast cancer patients, with the goal of enhancing prognostic accuracy and guiding clinical decisions.

METHODS: We utilized the publicly available breast cancer dataset (GSE2034), which includes gene expression profiles for 22283 genes across
286 samples. To identify relevant genes, we applied Cox-Boost regression and a random forest (RF) model. We then explored the association
between the selected genes and metastasis-free survival outcomes using quantile regression, chosen for its ability to assess the impact of these
genes across different survival quantiles (P<.05). This approach complements the Cox-Boost model by providing a more detailed understanding
of gene-survival relationships at various points in the survival distribution, thereby strengthening the robustness of our findings.

RESULTS: We identified 222 significant transcripts using univariate Cox regression models. By applying Cox-Boost, both with and without
adjustment for ER+/- status, we identified 7 genes associated with time-to-relapse/metastasis in breast cancer patients: SNU13, CLINT1,
ACBD3, NEK2, COL2A1, WFDC1, and RACGAP1. A similar approach was used for ER-positive patients. Patients were classified as high or
low risk for metastasis based on the median prognostic index calculated from the identified genes (P<.001). The top-ranked genes associ-
ated with high/low risk groups using RF were RACGAP1, NEK2, CCNA2, DTL, ACBD3, ARL6IP5, WFDC1, and PDCD4.

CONCLUSIONS: We identified eleven key genes, including SNU13, CLINT1, ACBDS3, NEK2, COL2A1, WFDC1, and RACGAP1, as well as
CCNAZ2, DTL, ARL6IP5, and PDCD4, that are related to the risk of distant metastasis and may be used as biomarkers to predict distant
metastasis of breast cancer.
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Introduction

Breast cancer (BC) is the most prevalent cancer among women,
representing 10.4% of all cancer cases.! Its incidence and mor-
tality rates are approximately 30% and 15%, respectively, among
females worldwide.? Risk factors include lifestyle choices (such
as smoking and diet), genetics, and certain health conditions.
Breast cancer often develops due to genetic mutations or DNA
damage, which can be associated with inherited genetic
defects.? Although many causes remain unknown, the risk of
developing breast cancer increases with age, a family history of
the disease, a previous diagnosis of breast cancer or benign

lumps, dense breast tissue, exposure to estrogen, hormone
replacement therapy, obesity, alcohol consumption, and radia-
tion . Early detection is crucial for effective treatment, which
typically includes surgery, radiation therapy, hormone therapy,
biological treatments, and chemotherapy. However, despite
treatment, some cases have poor prognoses due to unknown
molecular factors, and local, regional, or distant recurrence can
occur months or even years later as a result of residual cancer
cells.> In 2020, approximately 2.3 million women worldwide
were diagnosed with breast cancer, and by the end of the year,
7.8 million women were living as breast cancer survivors within
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the past Syears.® Also, a 40% increase from the estimated 1.7
million cases in 2012.7 The 5-year survival rates for breast can-
cer after diagnosis vary widely: 85% to 90% in high-income
countries such as the United States and the United Kingdom,
66% in India, and 40% in South Africa.8 Poorer survival rates
in developing countries can be attributed to factors such as lim-
ited awareness, lack of early detection programs, and insuffi-
cient diagnosis and treatment facilities.” Furthermore, a longer
interval between diagnosis and BC surgery is associated with
decreased overall and disease-specific survival.l0

Altered genes, whether inherited or acquired, are significant
risk factors for both breast cancer incidence and survival. In
breast cancer patients, various cellular activities and signaling
pathways are involved, underscoring the importance of under-
standing the underlying molecular mechanisms. This knowl-
edge could enable the identification of biomarkers that can
predict clinical outcomes and treatment responses.!! Breast
cancer is a heterogeneous disease with diverse molecular sub-
types and varying clinical behaviors. Understanding the molec-
ular mechanisms that drive breast cancer progression is essential
for developing more effective diagnostic, prognostic, and thera-
peutic strategies. By unraveling the complex signaling path-
ways and genetic alterations that regulate tumor initiation,
growth, and metastasis, researchers can identify novel molecu-
lar targets for personalized treatment approaches.’>3 The most
well- known genetic risk factors for BC are mutated BRCA1
and BRCA2 which can result in abnormal cell growth and can-
cer.'* Other genes, such as ATM, PALB2, TP53, CHEK2,
PTEN, and CDH1 influence BC risk, albeit to a lesser extent.?

Numerous studies have explored prognostic markers,
including gene expression signatures that differentiate between
tumor and normal tissues, focusing on survival outcomes.!>1
However, progress in developing diagnostic tools to detect
recurrence in breast cancer patients has been limited. Such
tools are essential for ensuring that high-risk patients receive
appropriate therapy. Although gene expression profiles have
been used to classify different breast tumor subtypes, the influ-
ence of genetic alterations on breast cancer progression and
survival is still not fully understood. Therefore, it is crucial to
explore the association between a broad set of gene expression
variables and breast cancer incidence and survival, particularly
in relation to disease recurrence.

Boosting techniques were originally developed as powerful
tools for classification, aimed at enhancing the predictive perfor-
mance of weak learners by combining them into a single strong
learner. This iterative ensemble method works by sequentially
applying a learning algorithm, re-weighting data points to focus
on those misclassified in earlier iterations. Over time, boosting
has expanded beyond classification to address various statistical
challenges, including survival analysis. One notable adaptation is
the Cox-Boost method, which combines the principles of boost-
ing with the Cox proportional hazards model. This likelihood-
based approach is particularly effective for analyzing
high-dimensional data, as it facilitates variable selection and

promotes sparsity through its iterative process. By identifying
and prioritizing the most relevant predictors, Cox-Boost enables
accurate prediction of patient survival probabilities while assess-
ing the influence of multiple covariates.'® This method effi-
ciently handles high-dimensional data analysis by promoting
sparsity and variable selection through its iterative process,
allowing for accurate prediction of patient survival probabilities
and evaluating the impact of multiple predictors.?-22

To address the need for assessing the impact of a large num-
ber of genes on disease recurrence in breast cancer patients, this
study aims to utilize the Cox-Boost approach to identify genes
highly associated with this cancer. A comprehensive analysis of
gene expression was performed to establish a reliable set of
prognostic markers and offer quantitative predictions on recur-
rence for patients with lymph-node-negative breast cancer.

Methods
Data

A publicly available dataset of BC is available in GEO repos-
itory with the ID: GSE2034, which was generated using the
Affymetrix Human Genome U133A Array, was used. This
series represents 180 lymph-node negative relapse free
patients and 106 lymph-node negative patients that devel-
oped a distant metastasis.?3 All cases had sufficient tumor and
uniform involvement of tumor in 5 pm frozen sections stained
with hematoxylin and eosin. Immunohistochemistry or ligand
blinding assay were utilized to measure estrogen receptor
(ER) and a cut-off value of 10 fmol/mg or 10% positive tumor
cells was assumed to classify cases in positive or negative
ER.23 In this study, Cox-Boost analysis was performed to
assess and determine the most influencing genes on the BC
relapse free survival.

Statistical analysis

We used Bioconductor packages in the R language for data
analysis. The raw data was processed using Log2 and normali-
zation. Figure 1 presents the flowchart of the modeling work-
flow. To evaluate the unadjusted association of transcripts with
survival probability, simple Cox proportional hazards regres-
sion models were applied. Multiple versions of Cox regression
were conducted using component-wise likelihood-based
boosting, a method particularly well-suited for handling
numerous predictors. This approach also allows for the inclu-
sion of mandatory covariates with unpenalized parameter esti-
mates. A Cox proportional hazards model is formulated as
follows, where t is the n-dimensional vector of the observed
survival times, X the nXp matrix of the data, B is the vector
of coefficients, and & an n-dimensional vector reporting
whether the ith observed survival time is censored or not.

A(tX) =R ()™

For data filtering, separate Cox regression models were applied
using each gene expression as the only covariate and those with
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Data preprocessing

Screening the 22,283 genes: Univariate Cox regression

Computing risk score based on regression coeffieints for individuals

Grouping patients into survival subgroups using the median of risk scores

labeling patients as high / low risk groups

Classification: Identifcation of important genes using Random forest

Fitting censored quantile regression to investigate the type of their associations

Figure 1. The flowchart of the modeling workflow.

P-value less than .05 were evaluated in the Cox Boost step of
data analysis. In boosting procedure, one follows these steps:

1. Set the vector of regression coefficients as zero.
2. Compute the negative gradient vector in which
SL(y,F(X,B))

Ly, FX, is a loss function: u =
(Y X,B)) u SF(X.P)

3. Computing the updates:

3.1 fitting the base learner to the negative gradient
vector, h(u, Xj)

3.2 penalizing it, bJA_ = Vfl(u,Xj)

4. Select the best update j* (usually by minimizing the loss
function). o R

5. Updating the estimations B; =f;+b; where b is
called a weak estimator.

The above steps between 2 and 5 are repeated multiple
times. The approach for estimation is based on a likelihood
function. The loss function, L, norm penalized partial log-like-
lihood is pl.., (B)=pl(B)—-0.5AB"PB, where P is a pXp
matrix usually corresponding to the identity matrix and A is the
penalty term. In each iteration of the component-wise boost-
ing, the restricted partial log-likelihoods are “shifted” toward

B;, obtaining the restricted penalized partial log-likelihoods.

More details about this approach is well described by Riccardo
De Bin.?0 The number of boosting steps and shrinkage param-
eter (nu) are hyper-parameters that should be tuned to prevent
overfitting problem and to find the best performance of the
model. In this study, the number of steps was considered as 500
which is assumed as a sufficient number for convergence in
high-dimensional survival data.?* The shrinkage parameter
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was obtained as 0.1, which is a commonly used value that
ensures a gradual update of the coefficient estimates, prevent-
ing overfitting, and improving the model’s generalization
ability.

Using the estimated coefficients from the Cox Boost
approach, prognostic scores were calculated for each case. The
median score of prognostic was used as a cut-off point to dis-
tinguish the high/low risk individuals. To assess the impor-
tance of each gene on the categorized prognostic scores,
Random Forest approach was utilized.

Random Forest employs an algorithm for regression, clas-
sification, and building trees.?> For each tree, a bootstrap sam-
ple from the training data is taken, and a random-forest tree for
each group is grown until reaching the minimum number of
nodes. The method randomly selects a subset of variables,
chooses the best variable for splitting, and divides the node into
2 daughter nodes. Once the important variables are identified
in the classification, partial dependence and marginal effects
are used to assess the impact of different variable values on
classification. This technique also utilizes the average increase
in the Gini index to measure variable importance. Two indices
are used to determine the significance of genes: the increase in
MSE of predictions, assessed via a permutation-based
approach, and the increase in node purity, which relates to the
loss function. Genes with higher indices are considered more
important. Hyperparameter tuning was conducted using cross-
validation and grid search to optimize the number of trees and
the number of variables considered at each split, ensuring the
best predictive performance. To do so, a range of hyperparam-
eter values will be defined, including different numbers of trees
(eg, 100,200, 500) and the number of variables to be selected at
each split. The grid search method systematically tests all com-
binations of these hyperparameter values by fitting the model
with each combination and evaluating its performance using
cross-validation.

Moreover, we used censored quantile regression to find the
overall survival of the patients in different quantiles of time.?¢
This approach allows us to estimate the p™ quantile of survival
time (Q,p) using the following model in which X’s are the

covariates and factors, B is the coefficient for the p™

P
quantile.

Qp|X) =X'B,

For example, Q_;, =a(days) means that a randomly
selected individual from the sample has a 0.5 probability of

«_»

experiencing the event within “a” given number of days.
Censored quantile regression was chosen because it offers a
more detailed perspective on survival outcomes by examining
different quantiles, which is especially valuable in clinical set-
tings where survival times can vary significantly among
patients. This method complements the Cox-Boost regression,
which focuses on the overall hazard function, by allowing us to

assess the influence of covariates at specific points in

the survival distribution. Additionally, the model employs a
bootstrap resampling method to estimate the standard errors of
the coefficients, thereby increasing the robustness of our
estimates.

Software. To analyze the data, we used R software version
4.1.1 and “CoxBoost,” “survival” and “quantreg” packages.

Enrichment analysis

For further validation the expression levels of the selected
genes were evaluated through the Human Protein Atlas
(https://www.proteinatlas.org). Moreover, in this study the
GEPIA (http://gepia.cancer-pku.cn/) was used for analyzing
the RNA sequencing expression data of breast cancer tissues
and normal tissues from the TCGA.

Result

We analyzed gene expression data from 22283 genes across
286 samples. Initially, we conducted separate simple Cox
regression models, which identified 222 significant transcripts
with P-values less than .05. The results of the CoxBoost analy-
sis are summarized in Table 1, detailing the hazard ratios
(HRs), 95% confidence intervals, and corresponding P-values
for each transcript after applying Cox regression.

This analysis was performed on the entire dataset, both with
and without adjustments for estrogen receptor (ER) status, as
well as within 2 distinct subsets: ER-positive and ER-negative
samples. The CoxBoost model was run 100 times, allowing for
variation in the selection of significant predictors across itera-
tions. The “Frequency” column in Table 1 indicates the number
of iterations in which a transcript was identified as a significant
predictor. Only transcripts with a frequency greater than 80%
are included in Table 1. A similar analysis was conducted for
the ER-positive dataset; however, no significant transcripts
were identified in the ER-negative dataset.

The results from both the adjusted and unadjusted analyses
for estrogen receptor (ER) status indicate a slightly stronger
association after adjustment in the Cox regression models. In
the adjusted analysis, the expression of Small Nuclear
Ribonucleoprotein 13 (SNU13) was associated with a lower
hazard ratio (HR: 0.646; 95%CI: 0.533-0.784). In contrast,
several other transcripts, including Clathrin Interactor 1
(CLINT1), Acyl-CoA Binding Domain Containing 3
(ACBD3), Never in Mitosis-Related Kinase 2 (NEK2),
Collagen Type II Alpha-1 (COL2A1), WAP Four-Disulfide
Core Domain 1 (WFDC1), and Rac GTPase Activating
Protein 1 (RACGAP1), were associated with higher hazard
ratios.

For the ER-positive subset, CD44 and SNU13 expression
were associated with lower hazard ratios, while Actin-Like
Protein 6A (ACTL6A), Never in Mitosis-Related Kinase 2
(NEK2), SHC Adaptor Protein 1 (SHC1), Zinc Finger

CCHC-Type Containing 8 (ZCCHCS8), and WAP
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Table 1. The hazard ratio (95% confidence interval) resulted by the CoxBoost approach using adjusted and unadjusted for ER and in the sub-
population of ER+ for 100 iterations.

PROBE-SET ID GENE SYMBOL COX BOOST
COEFFICIENT
Unadjusted for ER
201076_at SNU13 -0.041
201769_at CLINTA 0.045
202324 _s_at ACBDS3 0.040
204641_at NEK2 0.043
217404_s_at COL2A1 0.039
219478_at WFDCH 0.131
222077_s_at RACGAP1 0.047
Adjusted for ER
201076_at SNU13 -0.041
201769_at CLINTA 0.045
202324 _s_at ACBD3 0.040
204641_at NEK2 0.043
217404_s_at COL2A1 0.039
219478 _at WFDCH1 0.130
222077_s_at RACGAP1 0.047
ER+ subset
201076_at SNU13 -0.046
202666_s_at ACTL6A 0.051
204641_at NEK2 0.099
209835_x_at CD44 -0.106
214853_s_at SHCA 0.042
218478_s_at ZCCHCS8 0.047
219478 _at WFDCA1 0.044

FREQUENCY SIMPLE COX HR MULTIPLE COX HR
(95%Cl) (95%Cl)
100 0.647(0.533-0.784) 0.664(0.541-0.815)
100 1.695(1.365-2.104) 1.685(1.316-2.157)
100 1.557(1.295-1.872) 1.144(0.926-1.413)
100 1.621(1.337-1.967) 1.299(0.949-1.777)
90 1.475(1.219-1.785) 1.473(1.214-1.788)
100 1.661(1.362-2.024) 1.832(1.471-2.283)
100 1.622(1.337-1.967) 1.214(0.885-1.666)
100 0.646(0.533-0.784) 0.663(0.541-0.815)
100 1.696(1.365-2.106) 1.686(1.316-2.159)
100 1.579(1.31-1.904) 1.135(0.911-1.413)
100 1.658(1.358-2.023) 1.306(0.951-1.794)
91 1.481(1.224-1.793) 1.471(1.211-1.786)
100 1.673(1.367-2.048) 1.839(1.473-2.295)
100 1.662(1.362-2.028) 1.216(0.885-1.672)
100 0.599(0.479-0.751) 0.691(0.545-0.876)
100 1.828(1.443-2.316) 1.171(0.877-1.563)
100 1.875(1.472-2.388) 1.2507(1.135-2.001)
100 0.509(0.397-0.653) 0.686(0.525-0.898)
88 1.647(1.311-2.068) 1.303(1.013-1.676)
100 1.808(1.417-2.308) 1.245(0.948-1.634)
98 1.742(1.344-2.258) 1.625(1.248-2.117)

Abbreviations: ER, estrogen receptor; HR (95%Cl), hazard ratio (95% confidence interval).

Four-Disulfide Core Domain 1 (WFDC1) were linked to
higher hazard ratios. Multiple Cox regression analyses showed
non-significant hazard ratios for Acyl-CoA Binding Domain
Containing 3 (ACBD3), NEK2, and Rac GTPase Activating
Protein 1 (RACGAP1) after adjusting for the effects of the
identified genes, both with and without adjustment for ER sta-
tus. Additionally, the multiple Cox regression analysis of the
ER-positive subset indicated that ACTL6A and ZCCHCS
were not significantly associated with survival probabilities
after adjusting for the influence of the other genes in the model.

To evaluate the influence of genes on various percentiles of
survival probabilities, censored quantile regression was applied,
with results presented in Tables 2 and 3 for the entire dataset

and the ER-positive subset, respectively. Table 2 indicates that
the selected genes (identified through CoxBoost analysis)
demonstrate near-significance across most survival probability
deciles. The deciles of survival time can be calculated by multi-
plying each gene’s expression by its estimated coefficient. For
instance, the 10th percentile of survival time for a case with a
normalized expression of SNU13 of -0.347 is calculated as
Q(0.10|SNU13)=20.36 + 6.42 X (-0.347) =22.58.This means
that the probability of survival for a case with an SNU13
expression of —0.347 at 22.58 months is 10%. Similarly, other
coefficients can be interpreted in the same manner. For exam-
ple, the median survival time for a case with a normalized

expression of CLINT1 equal to 1.03 is calculated as
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Table 2. The results of censored quantile regression in the entire population.

QUANTILES  SNU13 CLINTA COL2A1 RACGAP1
10
Intercept 20.36(1.95) 21.15(1.82) 16.37(0.77) 20.82(0.78) 17.28(0.89) 19.16(1.21) 20.93(0.99)
f; 6.42(1.33) -2.37(0.55)* -8.81(0.75)* -3.72(0.92)* —6.64(1.24)* -9.42(1.02)* -10.38(2.39)*
20
Intercept 38.72(1.99) 46.36(3.45) 37.12(4.17) 41.11(2.16) 35.39(2.54) 38.67(2.32) 39.52(2.45)
é 16.30(1.59)* -12.40(3.68)* -19.31(2.28)* -12.29(2.05)* -16.32(2.42)* -16.78(2.30)* -29.69(4.11)*
30
Intercept 76.74(14.66) 78.92(10.85) 118.53(42.34) 109.23(66.36) 80.73(11.73) 88.38(12.81) 127.38(11.85)
B 40.77(17.33)" -88.64(17.93)" ~67.12(41.64) -41.80(10.89)" -51.42(21.78)* ~64.80(27.26)" -55.55(8.29)"
40
Intercept 132.01(15.76) 177.32(15.37) 126.43(53.24) 144.44(25.19) 152.91(63.54) 198.70(81.54) 137.38(2.87)
B 62.74(8.19)" -61.36(11.27)  -78.93(26.95)°  -83.89(66.29)  -105.07(41.81)" —74.65(18.27)" -151.73(36.13)
50
Intercept 230.74(163.07) 264.92(23.16) 140.96(13.23) 167.62(39.35) 157.21(17.82) 192.32(23.01) 172.25(4.91)
8 73.35(28.07)  -63.24(10.18)°  -81.31(22.07)*  -63.85(10.11)" -98.98(20.64)" -88.39(49.84) -131.23(52.98)*
60
Intercept 227.52(49.73) 223.64(25.17) 152.89(21.52) 179.85(40.53) 174.35(33.36) 189.78(21.57) 170.18(2.71)
B 86.15(23.34)  -44.33(15.18)°  -61.61(20.77)°  —69.06(39.93) ~69.34(8.66)" -93.57(66.56) ~112.40(14.56)*
70
Intercept 248.76(61.47) 179.31(44.54) 173.17(23.45) 188.79(58.05) 258.56(18.75) 198.82(13.71) 169.33(2.17)
[‘5 104.98(7.26)* -30.35(27.29) -10.41(27.38) -58.34(96.41) -43.32(28.01)* -53.57(38.38) -26.70(41.56)
80
1 S— 167.53(4.04) 186.49(31.33) 166.41(4.02) 241.62(17.39) 166.37(13.29) 163.83(4.03)
g ~11.74(19.61) 4.97(6.13) 4.29(4.85) 0.74(4.41) 4.09(5.78) -9.52(11.69)
90
T 1 S— 168.86(3.39) 175.82(11.02) 167.59(2.65) 245.81(19.22) 157.35(16.26) 167.62(12.71)
g T -6.81(10.55) 7.48(5.04) 4.15(5.13) 0.91(5.04) 6.84(3.77) -11.14(12.83)

*: Significant P-value (P <.05); B : The estimated coefficient of the gene.

Q(0.50|CLINT1)=264.92 - 63.24 X (1.03)=199.78, indicat-
ing that the probability of survival for a case with a CLINT1
expression of 1.03 at 199.78 months is 50%.

The relapse score was calculated using the estimated

Kaplan-Meier survival curves for both datasets are shown in
Figure 2.

The results of the random forest analysis assessing the
impact of various genes on the categorized relapse scores are

coefficients from the final Cox model and was categorized
into 2 groups based on values below and above the median.
The mean estimated survival time, standard error, and
95% confidence interval for both the entire dataset and the
ER-positive subsets are presented in Table 4. The log-rank
test indicates a significant difference in the survival distri-

butions between the 2 groups (P<.001). Additionally, the

presented in Table 5. This table highlights the increase in mean
squared error of predictions and node purities, which the ran-
dom forest method uses to evaluate the importance of genes in
relation to the categorized prognostic scores (low/high risk
patients). The 8 most important genes identified in this analy-
sisare RACGAP1,NEK2,CCNA2,DTL,ACBD3,ARL6IPS5,
WEFDC1, and Programed Cell Death 4 (PDCD4).
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Table 3. The results of censored quantile regression on the ER+ subset .

QUANTILES  SNU13 ACTL6A ZCCHC8

10

Intercept 24.88(2.39) 24.36(1.16) 23.01(1.22) 26.02(2.26) 19.13(1.81) 26.95(3.74) 20.85(1.57)
B 9.03(1.82)* -17.05(1.73)* -17.57(2.12)* 8.63(1.94)" -1.25(2.17) -11.04(3.66)" -6.61(1.53)"

20

Intercept 45.01(2.41) 41.76(2.45) 44.91(1.78) 44.71(3.15) 45.05(3.77) 47.22(1.63) 40.71(3.43)
B 19.92(1.95)* -26.16(2.74)* -26.85(3.60)* 14.25(2.02)* ~17.14(5.05)* -20.72(1.70)* -16.34(2.97)*

30

Intercept 86.09(26.09) 84.27(32.26) 111.06(74.92) 112.32(2.24) 95.92(27.42) 90.86(22.82) 82.61(19.51)
B 48.78(18.64)* -78.37(66.20) -66.58(28.66)" 70.69(74.85) -51.94(13.49)* -53.26(22.39)* -43.01(9.19)*

40

Intercept 124.35(11.22) 121.03(14.09) 158.24(99.42) 155.48(7.18) 126.95(50.77) 119.47(24.18) 166.03(80.23)
B 64.42(21.96)" ~79.91(17.63)* -91.37(62.90) 69.64(22.73)" -60.34(25.62)" ~57.09(15.66)* -86.93(21.51)*

50

Intercept 182.89(86.51) 164.35(84.91) 157.81(18.46) 186.74(7.68) 147.24(17.44) 164.61(19.94) 186.52(19.66)
B 82.55(49.06) ~73.99(19.91)* ~75.48(20.05)" 84.20(45.73)* -79.75(52.10) -73.80(13.65) -103.91(16.83)*

60

Intercept 230.75(12.32) 150.03(12.63) 189.82(52.71) 187.47(2.37) 162.62(9.62) 182.81(27.66) 205.03(34.79)
B 88.53(62.33) ~46.12(8.19)* -48.95(11.81)* 68.51(11.89)* -69.08(14.44)* -64.56(12.39)" -102.21(31.28)"

70

Intercept 212.61(25.87) 169.55(13.22) 175.42(34.71) 218.33(3.61) STL YA TQ 1 1)) F——— 191.41(16.80)
B 67.33(37.80) —47.755(90)* —47.07(4.70)* 77.77(16.88)* Y- Y(A L 7)) L — —57.55(44.24)

80

Intercept 188.39(33.92) 183.61(20.25) 162.96(3.96) 253.77(5.05) S[eEX-LICT-X- V) R —— 201.53(44.59)
B 48.27(50.70) -49.20(11.74)* -23.54(28.22) 74.51(30.53)* VT 1-Ta k< 11) R ——— -3.36(13.52)

920

Intercept 173.43(10.33) 179.34(1.74) 164.03(1.62) 248.34(3.59) 170.01(19.22)
B -14.83(8.93) -35.15(27.01) -13.63(38.63) 51.85(45.08) -1.40(9.41)

*: Significant P-value (P <.05); |§ : The estimated coefficient of the genes.

network involving RACGAP1,NEK2, and CCNA2 in breast

cancer is displayed in Figure 3.

Table 6 presents the expression levels of proteins encoded
by SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1,
RACGAP1, CCNA2, DTL, ARL6IPS5, and Programed Cell

Death 4 (PDCD4) in breast tumors. The analysis of RNA External validation

sequencing expression data from breast cancer tissues and
normal tissues in The Cancer Genome Atlas (TCGA) is
illustrated in Figure S1 (Supplemental File), showing a sig-
nificant difference in expression between normal and cancer-
ous tissues. Additionally, the protein-protein interaction

The publicly available dataset (GEO repository ID: GSE26971),
generated using the Affymetrix Human Genome U133A Array,
was utilized for validation purposes. The results of the concord-
ance index are presented in Figure 4, indicating that the model
based on the defined genes is significantly predictive.
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Table 4. The comparison of survival probability distribution between the 2 levels using log-rank test.

LOWER BOUND

95% CONFIDENCE INTERVAL

LOG RANK P-VALUE

UPPER BOUND

PROGNOSTIC STANDARD
SCORE LEVELS ERROR
All data
Low risk 138.781 4.067 130.810
High risk 89.760 5.963 78.073
ER +
Low risk 138.862 4.641 129.766
High risk 90.086 6.802 76.754
Validation data
Low risk 138.938 4.041 131.018
High risk 89.760 5.963 78.073
0 \ Preone
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08 “:
% 06 .4...'
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(3]
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(©)

51.021 <.001
146.752
101.447

38.599 <.001
147.958
103.418

51.633 <.001
146.858
101.447
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(b)

Figure 2. Kaplan-Meyer survival function (a)comparing the survival probabilities of high (prognostic score> median) and low (prognostic score< median)
risk groups of patients in the entire population, (b) comparing the survival probabilities of high (prognostic score> median) and low (prognostic score<
median) risk groups of patients in the ER positive subset, (c) comparing the survival probabilities of high (prognostic score> median) and low (prognostic

score< median) risk groups of patients in the validation data.

Enrichment analysis

The STRING database (https://string-db.org/) serves as a
valuable resource for investigating potential gene interac-
tions and their relevance to breast cancer. In this study, we
examined gene interactions focused on a set of eleven genes:

SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1,
RACGAP1,CCNA2, DTL, ARL6IPS, and Programed Cell
Death 4 (PDCD4). By leveraging insights gained from the
interactions among RACGAP1, NEK2, and CCNA2, we
can enhance our understanding of their significance in vari-
ous aspects of breast cancer, including time to relapse/
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Table 5. The increase in mean squared error of predictions and node NHP2L1 ACBD3 COL2A1
purities. '
2
GENE INCREASE IN MSE OF INCREASES IN 20Ed
PREDICTIONS NODE PURITIES i
DC1
RACGAP1 0.024956837 5.456876583
NEK2 0.011841553 3.005430556 CLINT1
CCNA2 0.009121284 2.140263706 éi
DTL 0.008553764 2.058999355 ARLSIES
ACBD3 0.007398398 1.721430325 @
ARL6IP5 0.007345479 2.192671492 Figure 3. Protein-Protein Interaction Network Involving RACGAP1,
NEK2, and CCNA2 Proteins in Breast Cancer.
WFDC1 0.004281475 1.220224785
PDCD4 0.004089229 1110835191 metastasis, identification of high-risk groups, and the risk of
PRCA1 0.002938767 0.745111081 distant metastasis.
PRKCH 0.002884251 0.684918325 . .
Discussion
CENPF 0.002870078 0.686850513 BC is considered as one of the most prevalent life-threatening
SLC25A28 0.002830814 0.728713811 cancers among women worldwide. Although BC without
metastasis can be controlled using advanced therapies, strate-
SMC4 0.001932006 0.488324668 . .
gies to prevent the recurrence/metastasis of BC are rare. As the
CENPU 0.001322281 0.212405994 whole body can be involved in advanced stages of BC that can
UBXN6 0.001120918 0.375613913 lead to cancer-related death of the patient, it is of great impor-
tance to identify biomarkers associated with metastasis of
PDCD4 0.001014161 0.170623622

BC.?7 In this study, advanced statistical and machine learning
ELOC 0.001011655 0.281563336 methods were employed to achieve more reliable results. Gene
HLA-DMA 0.000864591 0124558936 express1o.n data related to breast.cancler (F}SE2034) was reafla—
lyzed using the component-wise likelihood-based boosting
Abbreviation: MSE, mean squared error. method for survival data. A small set of genes, including

SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1, and
Table 6. The results of expression level of proteins encoded by the RACGAPI, were identified as being related to time-to-
selected genes in breast tumors. relapse/metastasis in breast cancer patients. The relationship

between these identified genes and metastasis time was further

e LG Al LOx ey examined using a quantile regression model. A relapse index
NAME DETECTED . .

was created based on the 7 selected genes to categorize patients
SNU13 0 0 4 8 into low- and high-risk survival groups. Our findings, sup-
CLINT1 1 9 0 0 ported by the log-rank test, demonstrated the relapse index’s

strong discrimination ability. A supervised random forest algo-
ACBD3 0 n 0 0 rithm was then applied to classify the survival groups and rank
NEK2 0 0 0 10 the genes most critical to survival outcomes. The top 8 genes
COL2A1 0 ; 0 9 associated with the identified survival groups were RACGAP,

NEK2, CCNA2, DTL, ACBD3, ARL6IP5, WFDC1, and
WFDC13

PDCDA4. Four of these genes overlapped with the Cox-Boost
RACGAP1 0 6 4 0 results, while the other 4 were newly identified in this step.
In analyzing gene expression profiles and corresponding

CONAZ ° ° ° 1 time-to-metastasis of patients with BC, our finding showed
DTL 0 0 1 10 that CCNA2 is highly expressed in identified high-risk group,
ARLGIP5 > 7 1 0 which agreed with the results of other studies. Cyclin-A2,

which belongs to the cyclin family, is a protein that is encoded
PDCD4 8 2 1 0

by CCNA2 gene. The function of Cyclin-A2 is to regulate the
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Figure 4. Plotting the concordance index for intercept-only versus full model (7 genes) during the study period in the validation data comparing the
probability that a randomly selected subject who experienced the outcome will have a higher predicted probability of having the outcome occur than a

randomly selected subject who did not experience the outcome.

cyclin-dependent protein CDK kinases. The findings of the
present study showed that PDC4 was one of the top rank genes
associated with identified survival groups. PDC4 has been
shown to be a tumor suppressor and acts as an inhibitor of
protein translation by interacting with the eukaryotic transla-
tion initiation factor 4A1 (eIF4A1) through binding to some
mRNAs.28 Under-expression of PDCD4 is reported to be cor-
related with poor prognosis in BC tumors and correlated with
over-expression of oncogenic microRNA-21 (miR-21), target-
ing PDCD4 mRNA, which agreed with our study.?’

Our finding showed that DTL was over-expressed in the
high-risk group (patients with a lower survival), which was in
agreement with other studies.3® Studies have shown that cancer
patients, including those with breast cancer, who exhibit over-
expression of DTL tend to have lower survival rates. DTL is
upregulated in cancerous tissues compared to normal tissues
and is associated with poor outcomes.’® Additionally, it has
been demonstrated that overexpression of DTL decreases the
protein levels and accelerates the degradation of programed cell
death 4 (PDCD4), a potential substrate of DTL. Furthermore,
DTL enhances the proliferation rate and migration capabilities
of cancerous cells.

The findings of this study also revealed that ADP ribosyla-
tion factor-like GTPase 6 interacting protein 5 (ARL6IPS)
was associated with high- and low-risk groups. This gene has
been shown to be a microtubule-binding protein involved in
differentiation, apoptosis, and response to stress stimuli.
ARLG6IP5 has been reported to regulate cancer cell migration
through its involvement in the mitogen-activated protein
kinase (MAPK) signaling pathway3! The expression of
ARLGIPS5 has been shown to be mediated by ER and its
increased level of expression caused by increased H202 levels
indicates its role in oxidative stress.>! Studies have confirmed
that knocking down the ARL6IP5 in BC enhances invasion
and migration of MDA-MB-231 cells and decreases inducing
cell apoptosis.®?

SNU13 as a component of U4 snRNP has an essential role
in mRNA splicing pathways.333* Zhang et al. in their study
showed that the expression level of SNUI3 is increased in
Her-2 positive breast tumors and has a negative correlation
with patients prognosis.® The protein encoded by CLINT1 is
involved in clathrin-coated vesicle formation and vesicular
transportation between Golgi and endosomes.?*3” CLINT1, as
a tumor suppressor gene, associates with distant metastasis-free
survival for BC patients.’® ACBD3 is a Golgi protein that has
a role in the maintenance of Golgi apparatus structure. The
protein encoded by this gene also regulates several biological
processes such as apoptosis and steroidogenesis.?® The expres-
sion level of this gene is associated with tumorigenesis, metas-
tasis, and poor prognosis of BC.#0 NEK2 has a role in the
regulation of mitosis and centrosome splitting. The protein
encoded by this gene as a serine/threonine kinase controls the
correct separation of chromosomes through the cell cycle.*!
Upregulation of NEK2 is associates with tumorigenesis and
poor prognosis for BC.#2 Type II Collagen encoded by
COL2A1 is one of the major components of the extracellular
matrix (ECM) and therefore has an essential role in tumor
progression.® The expression level of this gene was associated
with chemoresistance in HER2+ BC patients.** Moreover,
miRNA-301 promotes proliferation, invasion, and chemore-
sistance by targeting COL2A1, FOXF2, PTEN, and BBC3.4
The protein encoded by WFDC1 is a small protein with pro-
tease inhibitor function. Copy number variation and loss of
heterozygosity for WFDC1 are common in several cancers
such as BC.#¢ RACGAP1 has an essential role in controlling
the growth and differentiation of tumor cells.#’ The expression
level of this gene is associated with poor prognosis in BC
patients.* ACTL6A is involved in regulating several cellular
functions, such as cell cycle histone acetylation and chromatin
remodeling. Expression level of this gene correlates with poor
prognosis in triple-negative BC.# SHC1, as an adaptor pro-
tein, has a role in the activation of several signaling pathways
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such as PI3K and RAS/MAPK. In BC patients, upregulation
of this gene is associated with a worse predicted outcome.*

These results indicated that SNU13, CLINT1, ACBD3,
NEK2, COL2A1, WFDC1, and RACGAP1 have an essential
role in several biological processes such as proliferation, apop-
tosis, invasion, stemness, and differentiation, therefore poten-
tially playing a role in regulating the tumor genesis, distant
metastasis, response to treatment, and prognosis of BC.

Our findings also revealed that there were interactions
between RACGAP1, NEK2, and CCNA2 proteins in breast
cancer: a) Interaction between RACGAP1 and NEK2: The
collaboration observed between RACGAP1, a GTPase-
activating protein, and NEK2, a serine/threonine kinase, sug-
gests their potential involvement in breast cancer progression.
Dysregulation of both genes has been associated with aggres-
sive tumor behavior and unfavorable clinical outcomes.
RACGAPT’s role in cell division and cytokinesis, along with
NEK2's function in mitotic progression and centrosome dupli-
cation, indicates their joint impact on promoting invasive
behavior and metastasis. Further investigation is necessary to
unveil the underlying mechanisms governing this interaction.
B) Interaction between RACGAP1 and CCNA2: The interac-
tion between RACGAP1 and CCNA2 implies their interplay
in breast cancer development. CCNA2, a critical regulator of
the cell cycle, has been linked to aggressive tumor behavior and
poor prognosis. Considering RACGAP1's involvement in cell
division, its interaction with CCNA2 potentially influences
cell cycle progression, contributing to tumor growth and
metastasis. Unraveling the precise mechanisms and functional
consequences of this interaction holds promise for enhancing
our understanding of breast cancer pathogenesis. C) Interaction
between NEK2 and CCNA2: The interaction between NEK2
and CCNA2 suggests their collaboration in breast cancer
pathogenesis. Both genes are involved in cell cycle regulation
and play essential roles in facilitating DNA replication and cell
division. Dysregulation of NEK2 and CCNAZ2 has been asso-
ciated with aggressive tumor behavior and adverse clinical out-
comes. This interaction likely affects cell cycle progression and
may contribute to the development of high-risk groups and an
elevated risk of distant metastasis in breast cancer patients.

In this study, we utilized the Cox-Boost model due to its
distinct advantages in handling survival data, particularly in the
context of heart failure research. The Cox-Boost model extends
the traditional Cox proportional hazards model by incorporat-
ing boosting techniques to improve predictive accuracy and
variable selection. One of the key advantages of the Cox-Boost
model is its ability to handle high-dimensional datasets, which
is critical in our analysis given the complexity of factors influ-
encing heart failure outcomes. Unlike conventional methods
that often face challenges with multicollinearity and overfit-
ting, the Cox-Boost model effectively identifies important pre-
dictors while maintaining robustness against data noise.”!
Additionally, this model offers a flexible framework that allows

for the inclusion of unpenalized mandatory covariates, which
receive a rapid coefficient build-up during the boosting steps,
while other optional covariates are subjected to penalization.
This approach ensures that essential covariates are incorpo-
rated efficiently, while the penalization helps manage the selec-
tion of less critical variables, reducing the risk of overfitting.?
By leveraging these strengths, the Cox-Boost model provides a
more nuanced understanding of survival patterns among heart
failure patients, ultimately supporting more informed clinical
decision-making and enabling personalized treatment strate-
gies.?* This rationale underscores our choice of the Cox-Boost
model as a fitting and powerful tool for our studys objectives.
The references provided in the search results offer valuable
insights into the Cox-Boost model and its applications in sur-
vival analysis discuss the advantages of the Cox-Boost model in
handling high-dimensional data and its ability to incorporate
mandatory covariates. We also utilized censored quantile
regression to calculate the probability of survival in different
deciles. Time to event data are commonly skewed and semi-
parametric approaches, such as quantile regression models are
better choices for model fitting.>? Future experimental valida-
tion studies are recommended.

The present study provides valuable insights for biomarker
research on breast cancer metastasis-free survival. By utilizing
component-wise likelihood-based boosting and random forest
techniques, key metastasis-associated genes were identified and
validated through Kaplan-Meier plots. From this analysis,
eleven genes emerged as potential prognostic markers: SNU13,
CLINT1, ACBD3, NEK2, COL2A1, WFDC1, RACGAP1,
CCNA2, DTL, ARL6IPS5, and PDCD4. These genes warrant
further investigation to clarify their molecular mechanisms
before being implemented for evaluating relapse/metastasis-
free survivalin breast cancer patients. Among these, RACGAP1,
NEK2, and CCNA2 are particularly significant. STRING
database analysis revealed interactions among these genes,
emphasizing their potential role in breast cancer metastasis and
patient outcomes. Further investigation into these interactions
could provide critical insights into the mechanisms driving
aggressive tumor behavior. However, additional experimental
and clinical studies are essential to validate these findings.
Keeping up with the latest scientific developments and foster-
ing collaborations with experts in the field will be key to
advancing our understanding of the interactions between
RACGAP1, NEK2, and CCNA2 in breast cancer prognosis

and metastasis.

Conclusion

Based on the findings of this study, the Cox-Boost model
effectively identified high-risk and low-risk survival subgroups
of breast cancer patients. From this analysis, a set of key genes
emerged as potential prognostic markers for distant metastasis
in lymph-node-negative breast cancer, including SNU13,
CLINT1, ACBD3, NEK2, COL2A1, WFDC1, RACGAP1,
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CCNA2, DTL, ARL6IP5, and PDCDA4. It is recommended
that further molecular studies be conducted to validate the role
of these genes in tumorigenesis, invasion, metastasis, and epi-
thelial-mesenchymal transition in breast cancer.

Abbreviations

BC: Breast Cancer

ER: Estrogen

GEO: Gene expression Omnibus

Acknowledgements

We would like to appreciate the Research and Technology
Deputy of the Hamadan University of Medical Sciences and
the Research and Technology Deputy of the Hamedan
University of Technology for technical support for their
approval and support of this work.

Authors’ Contributions

P.A., O.H. and L. T. made a substantial contribution to the con-
cept or design of the work; or acquisition, analysis or interpretation
of data, P A, O.H.,,and L.T,) Y. Z,,S. A., and 1.D. drafted the
article or revised it critically for important intellectual content.
All authors approved the version to be published.

Data Availability
The data underlying this article are available in https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgiracc=gse2034.

Ethics Approval

This study was approved by the Ethical Committee of
Hamadan University of Medical Sciences (IR.UMSHA.
REC.1402.309).

Consent for Publication

Not applicable.

Consent for Participation in the Study

Not applicable.

ORCID iDs

Payam Amini https://orcid.org/0000-0001-8675-0045
Leili Tapak (12) https://orcid.org/0000-0002-4378-3143
Yasaman Zohrab Beigi https://orcid.org/0000-0003-
3640-9222

Supplemental Material
Supplemental material for this article is available online.

REFERENCES

1. Tacoviello L, Bonaccio M, de Gaetano G, Donati MB. Epidemiology of breast
cancer, a paradigm of the “common soil” hypothesis. Semin Cancer Biol.
2021;72:4-10.

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA4 Cancer J Clin.
2019;69:7-34.

3. Yadav S, Hu C, Hart SN, et al. Evaluation of germline genetic testing criteria in
a hospital-based series of women with breast cancer. World J Clin Oncol.
2020;38:1409-1418.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Feruza X. Current concepts of breast cancer risk factors. Int J Philos Stud Soc Sci.
2021;1:57-66.

McAndrew NP, Bottalico L, Mesaros C, et al. Effects of systemic inflammation
on relapse in early breast cancer. NPJ Breast Cancer. 2021;7:7-10.

Das DK. Insights Into a Phased Approach to Breast Cancer Early Detection Programs.
LWW; 2021.

Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast
cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23.

McCormack V, McKenzie F, Foerster M, et al. Breast cancer survival and sur-
vival gap apportionment in sub-Saharan Africa (ABC-DO): a prospective cohort
study. Lancet Glob Health. 2020;8:¢1203-e1212.

Elobaid YE, Aw TC, Grivna M, Nagelkerke N. Breast cancer screening aware-
ness, knowledge, and practice among Arab women in the United Arab Emirates:
a cross-sectional survey. PLoS One. 2014;9:¢105783.

Bleicher RJ, Ruth K, Sigurdson ER, et al. Time to surgery and breast cancer sur-
vival in the United States. JAMA Oncol. 2016;2:330-339.

Pei ], Wang Y, Li Y. Identification of key genes controlling breast cancer stem cell
characteristics via stemness indices analysis. J Trans/ Med. 2020;18:74-15.
Tungsukruthai S, Petpiroon N, Chanvorachote P. Molecular mechanisms of
breast cancer metastasis and potential anti-metastatic compounds. Anticancer
Res. 2018;38:2607-2618.

Wang L, Zhang S, Wang X. The metabolic mechanisms of breast cancer metas-
tasis. Front Oncol. 2020;10:602416.

De Talhouet S, Peron J, Vuilleumier A, et al. Clinical outcome of breast cancer
in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes.
Sci Rep. 2020;10:7073-7079.

Ren M, Orozco A, Shao K, et al. Germline variants in hereditary breast cancer
genes are associated with early age at diagnosis and family history in Guatemalan
breast cancer. Breast Cancer Res Treat. 2021;189(2):533-539.

Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of
unaffected individuals with non-BRCA hereditary breast cancer. Breast ].
2020;26:1528-1534.

Ursu R, Truica RA, Cojocaru A, et al. Genetic factors involved in breast cancer.
Rom -med J. 2022;69:10-12.

Asghar N, Khalil U, Ahmad B, et al. Improved nonparametric survival predic-
tion using CoxPH, Random Survival Forest & DeepHit Neural Network. BMC
Med Inform Decis Mak. 2024;24:120.

Zemmour C, Bertucci F, Finetti P, et al. Prediction of early breast cancer metas-
tasis from DNA microarray data using high-dimensional cox regression models.
Cancer Inform. 2015;14s2:CIN.S17284.

De Bin R. Boosting in Cox regression: a comparison between the likelihood-
based and the model-based approaches with focus on the R-packages CoxBoost
and mboost. Comput Stat. 2016;31:513-531.

Spooner A, Chen E, Sowmya A, et al. A comparison of machine learning meth-
ods for survival analysis of high-dimensional clinical data for dementia predic-
tion. Sci Rep. 2020;10:20410-10.

Yan D, Shen M, Du Z, et al. Developing ZNF gene signatures predicting radio-
sensitivity of patients with breast cancer. J Oncol. 2021;2021:9255494.

Wang Y, Klijn J, Zhang Y, et al. Gene-expression profiles to predict distant metas-
tasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671-679.
Binder H, Schumacher M. Allowing for mandatory covariates in boosting esti-
mation of sparse high-dimensional survival models. BMC Bioinformatics.
2008;9:10.

Schonlau M. Random forests. In: Hirdle WK (ed.) dpplied Statistical Learning:
With Case Studies in Stata. Springer; 2023;183-204.

Fei Z, Zheng Q, Hong HG, Li Y. Inference for high-dimensional censored
quantile regression. J Am Stat Assoc. 2023;118:898-912.

McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of
miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev.
2015;34:145-155.

Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer.
Annu Rev Med. 2011;62:233-247.

Nagao Y, Hisaoka M, Matsuyama A, et al. Association of microRNA-21 expres-
sion with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma.
Mod Pathol. 2012;25:112-121.

Sanchez-Navarro I, Gimez-Pozo A, Pinto A, et al. An 8-gene QqRT-PCR-based
gene expression score that has prognostic value in early breast cancer. BMC Can-
cer. 2010;10:1-10.

Chen H, Bai ], Ye J, et al. JWA as a functional molecule to regulate cancer cells
migration via MAPK cascades and F-actin cytoskeleton. Cel/ Signal.
2007;19:1315-1327.

Chen X, Feng ], Ge Z, et al. Effects of the JWA gene in the regulation of human
breast cancer cells. Mo/ Med Rep. 2015;11:3848-3853.

Hamma T, Ferré-D’Amaré AR. Structure of protein L7Ae bound to a K-turn
derived from an archacal box H/ACA sRNA at 1.8 p resolution. Structure.
2004;12:893-903.

Rothé B, Back R, Quinternet M, et al. Characterization of the interaction
between protein Snul3p/15.5K and the Rsalp/NUFIP factor and


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034
https://orcid.org/0000-0001-8675-0045
https://orcid.org/0000-0002-4378-3143
https://orcid.org/0000-0003-3640-9222
https://orcid.org/0000-0003-3640-9222

Hamidi et al

13

35.

36.

37.

38.

39.

40.

41.

42.

demonstration of its functional importance for snoRNP assembly. Nucleic
Acids Res. 2014;42:2015-2036.

Zhang H, Han B, Han X, et al. Comprehensive analysis of splicing factor and
alternative splicing event to construct subtype-specific prognosis-predicting
models for breast cancer. Front Genet. 2021;12:736423-736423.

Dodd ME, Hatzold J, Mathias JR, et al. The ENTH domain protein clintl is
required for epidermal homeostasis in zebrafish. Development. 2009;136:
2591-2600.

Leventis PA, Da Sylva TR, Rajwans N, etal. Liquid facets-related (IqfR) is
required for egg chamber morphogenesis during Drosophila oogenesis. PLoS
One. 2011;6:€25466.

Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-
mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells.
J Ginseng Res. 2018;42:455-462.

Fan ], Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain con-
taining 3 (ACBD3; pap7; GCP60): an emerging signaling molecule. Prog Lipid
Res. 2010;49:218-234.

Huang Y, Yang L, Pei YY, et al. Overexpressed ACBD3 has prognostic value in
human breast cancer and promotes the self-renewal potential of breast cancer
cells by activating the Wnt/beta-catenin signaling pathway. Exp Cell Res.
2018;363:39-47.

Xia J, He Y, Meng B, etal. NEK2 induces autophagy-mediated bortezomib
resistance by stabilizing Beclin-1 in multiple myeloma. Mo/ Oncol.
2020;14:763-778.

Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast
tumorigenesis and drug resistance. Front Biosci. 2014;19:352-365.

43.

44,

45.

46.

47.

48.

49.

50.

51.
52.

Nissen NI, Karsdal M, Willumsen N. Collagens and cancer associated fibro-
blasts in the reactive stroma and its relation to cancer biology. J Exp Clin Cancer
Res. 2019;38:115-115.

Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/Integrin sig-
naling promotes resistance to combined inhibition of HER2 and PI3K in
HER2(+) breast cancer. Cancer Res. 2017;77:3280-3292.

Shi W, Gerster K, Alajez NM, et al. MicroRNA-301 mediates proliferation and
invasion in human breast cancer. Cancer Res. 2011;71:2926-2937.

Watson JE, Kamkar S, James K, et al. Molecular analysis of WFDC1/ps20 gene
in prostate cancer. Prostate. 2004;61:192-199.

Yeh CM, Sung WW, Lai HW, et al. Opposing prognostic roles of nuclear and
cytoplasmic RACGAP1 expression in colorectal cancer patients. Hum Pathol.
2016;47:45-51.

Pliarchopoulou K, Kalogeras KT, Kronenwett R, et al. Prognostic signifi-
cance of RACGAP1 mRNA expression in high-risk early breast cancer: a
study in primary tumors of breast cancer patients participating in a random-
ized Hellenic Cooperative Oncology Group trial. Cancer Chemother Pharma-
col. 2013;71:245-255.

JianY, Huang X, Fang L, et al. Actin-like protein 6A/MYC/CDK2 axis confers
high proliferative activity in triple-negative breast cancer. ] Exp Clin Cancer
Res. 2021;40:56-56.

Wright KD, Miller BS, El-Meanawy S, et al. The p52 isoform of SHC1 is a key
driver of breast cancer initiation. Breast Cancer Res. 2019;21:74-74.

Binder H, Binder MH. Package ‘CoxBoost’. Citeseer; 2015.

Portnoy S. Censored regression quantiles. J Am Stat Assoc. 2003;98:
1001-1012.



