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Introduction
Breast cancer (BC) is the most prevalent cancer among women, 
representing 10.4% of all cancer cases.1 Its incidence and mor-
tality rates are approximately 30% and 15%, respectively, among 
females worldwide.2 Risk factors include lifestyle choices (such 
as smoking and diet), genetics, and certain health conditions. 
Breast cancer often develops due to genetic mutations or DNA 
damage, which can be associated with inherited genetic 
defects.3 Although many causes remain unknown, the risk of 
developing breast cancer increases with age, a family history of 
the disease, a previous diagnosis of breast cancer or benign 

lumps, dense breast tissue, exposure to estrogen, hormone 
replacement therapy, obesity, alcohol consumption, and radia-
tion 4. Early detection is crucial for effective treatment, which 
typically includes surgery, radiation therapy, hormone therapy, 
biological treatments, and chemotherapy. However, despite 
treatment, some cases have poor prognoses due to unknown 
molecular factors, and local, regional, or distant recurrence can 
occur months or even years later as a result of residual cancer 
cells.5 In 2020, approximately 2.3 million women worldwide 
were diagnosed with breast cancer, and by the end of the year, 
7.8 million women were living as breast cancer survivors within 
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ABSTRACT

Backgrounds: Distant metastasis in breast cancer patients contributes to increased breast cancer mortality, highlighting the urgent need 
for effective predictive strategies. Understanding metastasis mechanisms and identifying relevant biomarkers are crucial for improving patient 
outcomes and informing targeted therapies. This study employed a high-dimensional regression model to identify biomarkers linked to distant 
metastasis-free survival in breast cancer patients, with the goal of enhancing prognostic accuracy and guiding clinical decisions.

Methods: We utilized the publicly available breast cancer dataset (GSE2034), which includes gene expression profiles for 22 283 genes across 
286 samples. To identify relevant genes, we applied Cox-Boost regression and a random forest (RF) model. We then explored the association 
between the selected genes and metastasis-free survival outcomes using quantile regression, chosen for its ability to assess the impact of these 
genes across different survival quantiles (P < .05). This approach complements the Cox-Boost model by providing a more detailed understanding 
of gene-survival relationships at various points in the survival distribution, thereby strengthening the robustness of our findings.

Results: We identified 222 significant transcripts using univariate Cox regression models. By applying Cox-Boost, both with and without 
adjustment for ER+/− status, we identified 7 genes associated with time-to-relapse/metastasis in breast cancer patients: SNU13, CLINT1, 
ACBD3, NEK2, COL2A1, WFDC1, and RACGAP1. A similar approach was used for ER-positive patients. Patients were classified as high or 
low risk for metastasis based on the median prognostic index calculated from the identified genes (P < .001). The top-ranked genes associ-
ated with high/low risk groups using RF were RACGAP1, NEK2, CCNA2, DTL, ACBD3, ARL6IP5, WFDC1, and PDCD4.

Conclusions: We identified eleven key genes, including SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1, and RACGAP1, as well as 
CCNA2, DTL, ARL6IP5, and PDCD4, that are related to the risk of distant metastasis and may be used as biomarkers to predict distant 
metastasis of breast cancer.
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the past 5 years.6 Also, a 40% increase from the estimated 1.7 
million cases in 2012.7 The 5-year survival rates for breast can-
cer after diagnosis vary widely: 85% to 90% in high-income 
countries such as the United States and the United Kingdom, 
66% in India, and 40% in South Africa.8 Poorer survival rates 
in developing countries can be attributed to factors such as lim-
ited awareness, lack of early detection programs, and insuffi-
cient diagnosis and treatment facilities.9 Furthermore, a longer 
interval between diagnosis and BC surgery is associated with 
decreased overall and disease-specific survival.10

Altered genes, whether inherited or acquired, are significant 
risk factors for both breast cancer incidence and survival. In 
breast cancer patients, various cellular activities and signaling 
pathways are involved, underscoring the importance of under-
standing the underlying molecular mechanisms. This knowl-
edge could enable the identification of biomarkers that can 
predict clinical outcomes and treatment responses.11 Breast 
cancer is a heterogeneous disease with diverse molecular sub-
types and varying clinical behaviors. Understanding the molec-
ular mechanisms that drive breast cancer progression is essential 
for developing more effective diagnostic, prognostic, and thera-
peutic strategies. By unraveling the complex signaling path-
ways and genetic alterations that regulate tumor initiation, 
growth, and metastasis, researchers can identify novel molecu-
lar targets for personalized treatment approaches.12,13 The most 
well- known genetic risk factors for BC are mutated BRCA1 
and BRCA2 which can result in abnormal cell growth and can-
cer.14 Other genes, such as ATM, PALB2, TP53, CHEK2, 
PTEN, and CDH1 influence BC risk, albeit to a lesser extent.11

Numerous studies have explored prognostic markers, 
including gene expression signatures that differentiate between 
tumor and normal tissues, focusing on survival outcomes.15-17 
However, progress in developing diagnostic tools to detect 
recurrence in breast cancer patients has been limited. Such 
tools are essential for ensuring that high-risk patients receive 
appropriate therapy. Although gene expression profiles have 
been used to classify different breast tumor subtypes, the influ-
ence of genetic alterations on breast cancer progression and 
survival is still not fully understood. Therefore, it is crucial to 
explore the association between a broad set of gene expression 
variables and breast cancer incidence and survival, particularly 
in relation to disease recurrence.

Boosting techniques were originally developed as powerful 
tools for classification, aimed at enhancing the predictive perfor-
mance of weak learners by combining them into a single strong 
learner. This iterative ensemble method works by sequentially 
applying a learning algorithm, re-weighting data points to focus 
on those misclassified in earlier iterations. Over time, boosting 
has expanded beyond classification to address various statistical 
challenges, including survival analysis. One notable adaptation is 
the Cox-Boost method, which combines the principles of boost-
ing with the Cox proportional hazards model. This likelihood-
based approach is particularly effective for analyzing 
high-dimensional data, as it facilitates variable selection and 

promotes sparsity through its iterative process. By identifying 
and prioritizing the most relevant predictors, Cox-Boost enables 
accurate prediction of patient survival probabilities while assess-
ing the influence of multiple covariates.18 This method effi-
ciently handles high-dimensional data analysis by promoting 
sparsity and variable selection through its iterative process, 
allowing for accurate prediction of patient survival probabilities 
and evaluating the impact of multiple predictors.19-22

To address the need for assessing the impact of a large num-
ber of genes on disease recurrence in breast cancer patients, this 
study aims to utilize the Cox-Boost approach to identify genes 
highly associated with this cancer. A comprehensive analysis of 
gene expression was performed to establish a reliable set of 
prognostic markers and offer quantitative predictions on recur-
rence for patients with lymph-node-negative breast cancer.

Methods
Data

A publicly available dataset of BC is available in GEO repos-
itory with the ID: GSE2034, which was generated using the 
Affymetrix Human Genome U133A Array, was used. This 
series represents 180 lymph-node negative relapse free 
patients and 106 lymph-node negative patients that devel-
oped a distant metastasis.23 All cases had sufficient tumor and 
uniform involvement of tumor in 5 µm frozen sections stained 
with hematoxylin and eosin. Immunohistochemistry or ligand 
blinding assay were utilized to measure estrogen receptor 
(ER) and a cut-off value of 10 fmol/mg or 10% positive tumor 
cells was assumed to classify cases in positive or negative 
ER.23 In this study, Cox-Boost analysis was performed to 
assess and determine the most influencing genes on the BC 
relapse free survival.

Statistical analysis

We used Bioconductor packages in the R language for data 
analysis. The raw data was processed using Log2 and normali-
zation. Figure 1 presents the flowchart of the modeling work-
flow. To evaluate the unadjusted association of transcripts with 
survival probability, simple Cox proportional hazards regres-
sion models were applied. Multiple versions of Cox regression 
were conducted using component-wise likelihood-based 
boosting, a method particularly well-suited for handling 
numerous predictors. This approach also allows for the inclu-
sion of mandatory covariates with unpenalized parameter esti-
mates. A Cox proportional hazards model is formulated as 
follows, where t is the n-dimensional vector of the observed 
survival times, X the n×p matrix of the data, β  is the vector 
of coefficients, and δ an n-dimensional vector reporting 
whether the ith observed survival time is censored or not.

� � �t|X t eX� � � 0 ( )

For data filtering, separate Cox regression models were applied 
using each gene expression as the only covariate and those with 
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P-value less than .05 were evaluated in the Cox Boost step of 
data analysis. In boosting procedure, one follows these steps:

1.	 Set the vector of regression coefficients as zero.
2.	 Compute the negative gradient vector in which 

L(y,F(X,β )) is a loss function: u
L y F X

F X
�

� �� �

� �

( , , )
( , )

3.	 Computing the updates:
3.1 � fitting the base learner to the negative gradient 

vector, h u X j
 ( , )

3.2  penalizing it, b vh u X
j j


= ( , )

4.	 Select the best update j* (usually by minimizing the loss 
function).

5.	 Updating the estimations � �
  

j j j* * *b� �  where b


 is 
called a weak estimator.

The above steps between 2 and 5 are repeated multiple 
times. The approach for estimation is based on a likelihood 
function. The loss function, L2 norm penalized partial log-like-
lihood is pl pl Ppen

T� � �� �� � � � � � � �. , where P is a p × p 
matrix usually corresponding to the identity matrix and λ is the 
penalty term. In each iteration of the component-wise boost-
ing, the restricted partial log-likelihoods are “shifted” toward 
β


j , obtaining the restricted penalized partial log-likelihoods. 
More details about this approach is well described by Riccardo 
De Bin.20 The number of boosting steps and shrinkage param-
eter (nu) are hyper-parameters that should be tuned to prevent 
overfitting problem and to find the best performance of the 
model. In this study, the number of steps was considered as 500 
which is assumed as a sufficient number for convergence in 
high-dimensional survival data.24 The shrinkage parameter 

Data preprocessing 

Screening the 22,283 genes: Univariate Cox regression

Variable selec�on using Cox-Boost regression

Compu�ng risk score based on regression coeffieints  for individuals

Grouping pa�ents into survival subgroups using the median of risk scores

labeling pa�ents as high / low risk  groups

Classifica�on: Iden�fca�on of important genes using Random forest

Fi�ng censored quan�le regression to inves�gate the type of their associa�ons

Figure 1.  The flowchart of the modeling workflow.
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was obtained as 0.1, which is a commonly used value that 
ensures a gradual update of the coefficient estimates, prevent-
ing overfitting, and improving the model’s generalization 
ability.

Using the estimated coefficients from the Cox Boost 
approach, prognostic scores were calculated for each case. The 
median score of prognostic was used as a cut-off point to dis-
tinguish the high/low risk individuals. To assess the impor-
tance of each gene on the categorized prognostic scores, 
Random Forest approach was utilized.

Random Forest employs an algorithm for regression, clas-
sification, and building trees.25 For each tree, a bootstrap sam-
ple from the training data is taken, and a random-forest tree for 
each group is grown until reaching the minimum number of 
nodes. The method randomly selects a subset of variables, 
chooses the best variable for splitting, and divides the node into 
2 daughter nodes. Once the important variables are identified 
in the classification, partial dependence and marginal effects 
are used to assess the impact of different variable values on 
classification. This technique also utilizes the average increase 
in the Gini index to measure variable importance. Two indices 
are used to determine the significance of genes: the increase in 
MSE of predictions, assessed via a permutation-based 
approach, and the increase in node purity, which relates to the 
loss function. Genes with higher indices are considered more 
important. Hyperparameter tuning was conducted using cross-
validation and grid search to optimize the number of trees and 
the number of variables considered at each split, ensuring the 
best predictive performance. To do so, a range of hyperparam-
eter values will be defined, including different numbers of trees 
(eg, 100, 200, 500) and the number of variables to be selected at 
each split. The grid search method systematically tests all com-
binations of these hyperparameter values by fitting the model 
with each combination and evaluating its performance using 
cross-validation.

Moreover, we used censored quantile regression to find the 
overall survival of the patients in different quantiles of time.26 
This approach allows us to estimate the pth quantile of survival 
time (Q p ) using the following model in which X’s are the 
covariates and factors, βp  is the coefficient for the pth 
quantile.

Q p X X p( | ) � ��

For example, Q a days�� � ( )  means that a randomly 
selected individual from the sample has a 0.5 probability of 
experiencing the event within “a” given number of days. 
Censored quantile regression was chosen because it offers a 
more detailed perspective on survival outcomes by examining 
different quantiles, which is especially valuable in clinical set-
tings where survival times can vary significantly among 
patients. This method complements the Cox-Boost regression, 
which focuses on the overall hazard function, by allowing us to 
assess the influence of covariates at specific points in 

the survival distribution. Additionally, the model employs a 
bootstrap resampling method to estimate the standard errors of 
the coefficients, thereby increasing the robustness of our 
estimates.

Software.  To analyze the data, we used R software version 
4.1.1 and “CoxBoost,” “survival” and “quantreg” packages.

Enrichment analysis

For further validation the expression levels of the selected 
genes were evaluated through the Human Protein Atlas 
(https://www.proteinatlas.org). Moreover, in this study the 
GEPIA (http://gepia.cancer-pku.cn/) was used for analyzing 
the RNA sequencing expression data of breast cancer tissues 
and normal tissues from the TCGA.

Result
We analyzed gene expression data from 22 283 genes across 
286 samples. Initially, we conducted separate simple Cox 
regression models, which identified 222 significant transcripts 
with P-values less than .05. The results of the CoxBoost analy-
sis are summarized in Table 1, detailing the hazard ratios 
(HRs), 95% confidence intervals, and corresponding P-values 
for each transcript after applying Cox regression.

This analysis was performed on the entire dataset, both with 
and without adjustments for estrogen receptor (ER) status, as 
well as within 2 distinct subsets: ER-positive and ER-negative 
samples. The CoxBoost model was run 100 times, allowing for 
variation in the selection of significant predictors across itera-
tions. The “Frequency” column in Table 1 indicates the number 
of iterations in which a transcript was identified as a significant 
predictor. Only transcripts with a frequency greater than 80% 
are included in Table 1. A similar analysis was conducted for 
the ER-positive dataset; however, no significant transcripts 
were identified in the ER-negative dataset.

The results from both the adjusted and unadjusted analyses 
for estrogen receptor (ER) status indicate a slightly stronger 
association after adjustment in the Cox regression models. In 
the adjusted analysis, the expression of Small Nuclear 
Ribonucleoprotein 13 (SNU13) was associated with a lower 
hazard ratio (HR: 0.646; 95%CI: 0.533-0.784). In contrast, 
several other transcripts, including Clathrin Interactor 1 
(CLINT1), Acyl-CoA Binding Domain Containing 3 
(ACBD3), Never in Mitosis-Related Kinase 2 (NEK2), 
Collagen Type II Alpha-1 (COL2A1), WAP Four-Disulfide 
Core Domain 1 (WFDC1), and Rac GTPase Activating 
Protein 1 (RACGAP1), were associated with higher hazard 
ratios.

For the ER-positive subset, CD44 and SNU13 expression 
were associated with lower hazard ratios, while Actin-Like 
Protein 6A (ACTL6A), Never in Mitosis-Related Kinase 2 
(NEK2), SHC Adaptor Protein 1 (SHC1), Zinc Finger 
CCHC-Type Containing 8 (ZCCHC8), and WAP 

https://www.proteinatlas.org
http://gepia.cancer-pku.cn/
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Four-Disulfide Core Domain 1 (WFDC1) were linked to 
higher hazard ratios. Multiple Cox regression analyses showed 
non-significant hazard ratios for Acyl-CoA Binding Domain 
Containing 3 (ACBD3), NEK2, and Rac GTPase Activating 
Protein 1 (RACGAP1) after adjusting for the effects of the 
identified genes, both with and without adjustment for ER sta-
tus. Additionally, the multiple Cox regression analysis of the 
ER-positive subset indicated that ACTL6A and ZCCHC8 
were not significantly associated with survival probabilities 
after adjusting for the influence of the other genes in the model.

To evaluate the influence of genes on various percentiles of 
survival probabilities, censored quantile regression was applied, 
with results presented in Tables 2 and 3 for the entire dataset 

and the ER-positive subset, respectively. Table 2 indicates that 
the selected genes (identified through CoxBoost analysis) 
demonstrate near-significance across most survival probability 
deciles. The deciles of survival time can be calculated by multi-
plying each gene’s expression by its estimated coefficient. For 
instance, the 10th percentile of survival time for a case with a 
normalized expression of SNU13 of −0.347 is calculated as 
Q(0.10|SNU13) = 20.36 + 6.42 × (−0.347) = 22.58. This means 
that the probability of survival for a case with an SNU13 
expression of −0.347 at 22.58 months is 10%. Similarly, other 
coefficients can be interpreted in the same manner. For exam-
ple, the median survival time for a case with a normalized 
expression of CLINT1 equal to 1.03 is calculated as 

Table 1.  The hazard ratio (95% confidence interval) resulted by the CoxBoost approach using adjusted and unadjusted for ER and in the sub-
population of ER+ for 100 iterations.

Probe-set ID Gene symbol Cox boost 
coefficient

Frequency Simple Cox HR 
(95%CI)

Multiple Cox HR 
(95%CI)

Unadjusted for ER

201076_at SNU13 −0.041 100 0.647(0.533-0.784) 0.664(0.541-0.815)

201769_at CLINT1 0.045 100 1.695(1.365-2.104) 1.685(1.316-2.157)

202324_s_at ACBD3 0.040 100 1.557(1.295-1.872) 1.144(0.926-1.413)

204641_at NEK2 0.043 100 1.621(1.337-1.967) 1.299(0.949-1.777)

217404_s_at COL2A1 0.039 90 1.475(1.219-1.785) 1.473(1.214-1.788)

219478_at WFDC1 0.131 100 1.661(1.362-2.024) 1.832(1.471-2.283)

222077_s_at RACGAP1 0.047 100 1.622(1.337-1.967) 1.214(0.885-1.666)

Adjusted for ER  

201076_at SNU13 −0.041 100 0.646(0.533-0.784) 0.663(0.541-0.815)

201769_at CLINT1 0.045 100 1.696(1.365-2.106) 1.686(1.316-2.159)

202324_s_at ACBD3 0.040 100 1.579(1.31-1.904) 1.135(0.911-1.413)

204641_at NEK2 0.043 100 1.658(1.358-2.023) 1.306(0.951-1.794)

217404_s_at COL2A1 0.039 91 1.481(1.224-1.793) 1.471(1.211-1.786)

219478_at WFDC1 0.130 100 1.673(1.367-2.048) 1.839(1.473-2.295)

222077_s_at RACGAP1 0.047 100 1.662(1.362-2.028) 1.216(0.885-1.672)

ER+ subset

201076_at SNU13 −0.046 100 0.599(0.479-0.751) 0.691(0.545-0.876)

202666_s_at ACTL6A 0.051 100 1.828(1.443-2.316) 1.171(0.877-1.563)

204641_at NEK2 0.099 100 1.875(1.472-2.388) 1.2507(1.135-2.001)

209835_x_at CD44 −0.106 100 0.509(0.397-0.653) 0.686(0.525-0.898)

214853_s_at SHC1 0.042 88 1.647(1.311-2.068) 1.303(1.013-1.676)

218478_s_at ZCCHC8 0.047 100 1.808(1.417-2.308) 1.245(0.948-1.634)

219478_at WFDC1 0.044 98 1.742(1.344-2.258) 1.625(1.248-2.117)

Abbreviations: ER, estrogen receptor; HR (95%CI), hazard ratio (95% confidence interval).
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Q(0.50|CLINT1) = 264.92 − 63.24 × (1.03) = 199.78, indicat-
ing that the probability of survival for a case with a CLINT1 
expression of 1.03 at 199.78 months is 50%.

The relapse score was calculated using the estimated 
coefficients from the final Cox model and was categorized 
into 2 groups based on values below and above the median. 
The mean estimated survival time, standard error, and 
95% confidence interval for both the entire dataset and the 
ER-positive subsets are presented in Table 4. The log-rank 
test indicates a significant difference in the survival distri-
butions between the 2 groups (P < .001). Additionally, the 

Kaplan-Meier survival curves for both datasets are shown in 
Figure 2.

The results of the random forest analysis assessing the 
impact of various genes on the categorized relapse scores are 
presented in Table 5. This table highlights the increase in mean 
squared error of predictions and node purities, which the ran-
dom forest method uses to evaluate the importance of genes in 
relation to the categorized prognostic scores (low/high risk 
patients). The 8 most important genes identified in this analy-
sis are RACGAP1, NEK2, CCNA2, DTL, ACBD3, ARL6IP5, 
WFDC1, and Programed Cell Death 4 (PDCD4).

Table 2.  The results of censored quantile regression in the entire population.

Quantiles SNU13 CLINT1 ACBD3 NEK2 COL2A1 WFDC1 RACGAP1

10  

 Intercept 20.36(1.95) 21.15(1.82) 16.37(0.77) 20.82(0.78) 17.28(0.89) 19.16(1.21) 20.93(0.99)

  β 6.42(1.33)* −2.37(0.55)* −8.81(0.75)* −3.72(0.92)* −6.64(1.24)* −9.42(1.02)* −10.38(2.39)*

20  

 Intercept 38.72(1.99) 46.36(3.45) 37.12(4.17) 41.11(2.16) 35.39(2.54) 38.67(2.32) 39.52(2.45)

  β 16.30(1.59)* −12.40(3.68)* −19.31(2.28)* −12.29(2.05)* −16.32(2.42)* −16.78(2.30)* −29.69(4.11)*

30  

 Intercept 76.74(14.66) 78.92(10.85) 118.53(42.34) 109.23(66.36) 80.73(11.73) 88.38(12.81) 127.38(11.85)

  β 40.77(17.33)* −88.64(17.93)* −67.12(41.64) −41.80(10.89)* −51.42(21.78)* −64.80(27.26)* −55.55(8.29)*

40  

 Intercept 132.01(15.76) 177.32(15.37) 126.43(53.24) 144.44(25.19) 152.91(63.54) 198.70(81.54) 137.38(2.87)

  β 62.74(8.19)* −61.36(11.27)* −78.93(26.95)* −83.89(66.29) −105.07(41.81)* −74.65(18.27)* −151.73(36.13)

50  

 Intercept 230.74(163.07) 264.92(23.16) 140.96(13.23) 167.62(39.35) 157.21(17.82) 192.32(23.01) 172.25(4.91)

  β 73.35(28.07)* −63.24(10.18)* −81.31(22.07)* −63.85(10.11)* −98.98(20.64)* −88.39(49.84) −131.23(52.98)*

60  

 Intercept 227.52(49.73) 223.64(25.17) 152.89(21.52) 179.85(40.53) 174.35(33.36) 189.78(21.57) 170.18(2.71)

  β 86.15(23.34)* −44.33(15.18)* −61.61(20.77)* −69.06(39.93) −69.34(8.66)* −93.57(66.56) −112.40(14.56)*

70  

 Intercept 248.76(61.47) 179.31(44.54) 173.17(23.45) 188.79(58.05) 258.56(18.75) 198.82(13.71) 169.33(2.17)

  β 104.98(7.26)* −30.35(27.29) −10.41(27.38) −58.34(96.41) −43.32(28.01)* −53.57(38.38) −26.70(41.56)

80  

 Intercept ----------------- 167.53(4.04) 186.49(31.33) 166.41(4.02) 241.62(17.39) 166.37(13.29) 163.83(4.03)

  β ----------------- −11.74(19.61) 4.97(6.13) 4.29(4.85) 0.74(4.41) 4.09(5.78) −9.52(11.69)

90  

 Intercept ----------------- 168.86(3.39) 175.82(11.02) 167.59(2.65) 245.81(19.22) 157.35(16.26) 167.62(12.71)

  β
----------------- −6.81(10.55) 7.48(5.04) 4.15(5.13) 0.91(5.04) 6.84(3.77) −11.14(12.83)

*: Significant P-value (P < .05); β : The estimated coefficient of the gene.
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Table 6 presents the expression levels of proteins encoded 
by SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1, 
RACGAP1, CCNA2, DTL, ARL6IP5, and Programed Cell 
Death 4 (PDCD4) in breast tumors. The analysis of RNA 
sequencing expression data from breast cancer tissues and 
normal tissues in The Cancer Genome Atlas (TCGA) is 
illustrated in Figure S1 (Supplemental File), showing a sig-
nificant difference in expression between normal and cancer-
ous tissues. Additionally, the protein-protein interaction 

network involving RACGAP1, NEK2, and CCNA2 in breast 
cancer is displayed in Figure 3.

External validation

The publicly available dataset (GEO repository ID: GSE26971), 
generated using the Affymetrix Human Genome U133A Array, 
was utilized for validation purposes. The results of the concord-
ance index are presented in Figure 4, indicating that the model 
based on the defined genes is significantly predictive.

Table 3.  The results of censored quantile regression on the ER+ subset .

Quantiles SNU13 ACTL6A NEK2 CD44 SHC1 ZCCHC8 WFDC1

10  

 Intercept 24.88(2.39) 24.36(1.16) 23.01(1.22) 26.02(2.26) 19.13(1.81) 26.95(3.74) 20.85(1.57)

  β 9.03(1.82)* −17.05(1.73)* −17.57(2.12)* 8.63(1.94)* −1.25(2.17) −11.04(3.66)* −6.61(1.53)*

20  

 Intercept 45.01(2.41) 41.76(2.45) 44.91(1.78) 44.71(3.15) 45.05(3.77) 47.22(1.63) 40.71(3.43)

  β 19.92(1.95)* −26.16(2.74)* −26.85(3.60)* 14.25(2.02)* −17.14(5.05)* −20.72(1.70)* −16.34(2.97)*

30  

 Intercept 86.09(26.09) 84.27(32.26) 111.06(74.92) 112.32(2.24) 95.92(27.42) 90.86(22.82) 82.61(19.51)

  β 48.78(18.64)* −78.37(66.20) −66.58(28.66)* 70.69(74.85) −51.94(13.49)* −53.26(22.39)* −43.01(9.19)*

40  

 Intercept 124.35(11.22) 121.03(14.09) 158.24(99.42) 155.48(7.18) 126.95(50.77) 119.47(24.18) 166.03(80.23)

  β 64.42(21.96)* −79.91(17.63)* −91.37(62.90) 69.64(22.73)* −60.34(25.62)* −57.09(15.66)* −86.93(21.51)*

50  

 Intercept 182.89(86.51) 164.35(84.91) 157.81(18.46) 186.74(7.68) 147.24(17.44) 164.61(19.94) 186.52(19.66)

  β 82.55(49.06) −73.99(19.91)* −75.48(20.05)* 84.20(45.73)* −79.75(52.10) −73.80(13.65)* −103.91(16.83)*

60  

 Intercept 230.75(12.32) 150.03(12.63) 189.82(52.71) 187.47(2.37) 162.62(9.62) 182.81(27.66) 205.03(34.79)

  β 88.53(62.33) −46.12(8.19)* −48.95(11.81)* 68.51(11.89)* −69.08(14.44)* −64.56(12.39)* −102.21(31.28)*

70  

 Intercept 212.61(25.87) 169.55(13.22) 175.42(34.71) 218.33(3.61) 179.41(13.25) ----------------- 191.41(16.80)

  β 67.33(37.80) −47.755(90)* −47.07(4.70)* 77.77(16.88)* −52.67(18.24)* ----------------- −57.55(44.24)

80  

 Intercept 188.39(33.92) 183.61(20.25) 162.96(3.96) 253.77(5.05) 192.92(18.84) ----------------- 201.53(44.59)

  β 48.27(50.70) −49.20(11.74)* −23.54(28.22) 74.51(30.53)* −43.86(17.30)* ----------------- −3.36(13.52)

90  

 Intercept 173.43(10.33) 179.34(1.74) 164.03(1.62) 248.34(3.59) ----------------- ----------------- 170.01(19.22)

  β −14.83(8.93) −35.15(27.01) −13.63(38.63) 51.85(45.08) ----------------- ----------------- −1.40(9.41)

*: Significant P-value (P < .05); β : The estimated coefficient of the genes.
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Enrichment analysis

The STRING database (https://string-db.org/) serves as a 
valuable resource for investigating potential gene interac-
tions and their relevance to breast cancer. In this study, we 
examined gene interactions focused on a set of eleven genes: 

SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1, 
RACGAP1, CCNA2, DTL, ARL6IP5, and Programed Cell 
Death 4 (PDCD4). By leveraging insights gained from the 
interactions among RACGAP1, NEK2, and CCNA2, we 
can enhance our understanding of their significance in vari-
ous aspects of breast cancer, including time to relapse/

Table 4.  The comparison of survival probability distribution between the 2 levels using log-rank test.

Prognostic 
score levels

Mean Standard 
error

95% Confidence interval Log rank P-value

Lower bound Upper bound

All data 51.021 <.001

 Low risk 138.781 4.067 130.810 146.752  

 High risk 89.760 5.963 78.073 101.447  

ER + 38.599 <.001

 Low risk 138.862 4.641 129.766 147.958  

 High risk 90.086 6.802 76.754 103.418  

Validation data 51.633 <.001

 Low risk 138.938 4.041 131.018 146.858  

 High risk 89.760 5.963 78.073 101.447  

Figure 2.  Kaplan-Meyer survival function (a)comparing the survival probabilities of high (prognostic score> median) and low (prognostic score< median) 

risk groups of patients in the entire population, (b) comparing the survival probabilities of high (prognostic score> median) and low (prognostic score< 

median) risk groups of patients in the ER positive subset, (c) comparing the survival probabilities of high (prognostic score> median) and low (prognostic 

score< median) risk groups of patients in the validation data.

https://string-db.org/
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metastasis, identification of high-risk groups, and the risk of 
distant metastasis.

Discussion
BC is considered as one of the most prevalent life-threatening 
cancers among women worldwide. Although BC without 
metastasis can be controlled using advanced therapies, strate-
gies to prevent the recurrence/metastasis of BC are rare. As the 
whole body can be involved in advanced stages of BC that can 
lead to cancer-related death of the patient, it is of great impor-
tance to identify biomarkers associated with metastasis of 
BC.27 In this study, advanced statistical and machine learning 
methods were employed to achieve more reliable results. Gene 
expression data related to breast cancer (GSE2034) was reana-
lyzed using the component-wise likelihood-based boosting 
method for survival data. A small set of genes, including 
SNU13, CLINT1, ACBD3, NEK2, COL2A1, WFDC1, and 
RACGAP1, were identified as being related to time-to-
relapse/metastasis in breast cancer patients. The relationship 
between these identified genes and metastasis time was further 
examined using a quantile regression model. A relapse index 
was created based on the 7 selected genes to categorize patients 
into low- and high-risk survival groups. Our findings, sup-
ported by the log-rank test, demonstrated the relapse index’s 
strong discrimination ability. A supervised random forest algo-
rithm was then applied to classify the survival groups and rank 
the genes most critical to survival outcomes. The top 8 genes 
associated with the identified survival groups were RACGAP, 
NEK2, CCNA2, DTL, ACBD3, ARL6IP5, WFDC1, and 
PDCD4. Four of these genes overlapped with the Cox-Boost 
results, while the other 4 were newly identified in this step.

In analyzing gene expression profiles and corresponding 
time-to-metastasis of patients with BC, our finding showed 
that CCNA2 is highly expressed in identified high-risk group, 
which agreed with the results of other studies. Cyclin-A2, 
which belongs to the cyclin family, is a protein that is encoded 
by CCNA2 gene. The function of Cyclin-A2 is to regulate the 

Table 5.  The increase in mean squared error of predictions and node 
purities.

Gene Increase in MSE of 
predictions

Increases in 
node purities

RACGAP1 0.024956837 5.456876583

NEK2 0.011841553 3.005430556

CCNA2 0.009121284 2.140263706

DTL 0.008553764 2.058999355

ACBD3 0.007398398 1.721430325

ARL6IP5 0.007345479 2.192671492

WFDC1 0.004281475 1.220224785

PDCD4 0.004089229 1.110835191

PRC1 0.002938767 0.745111081

PRKCH 0.002884251 0.684918325

CENPF 0.002870078 0.686850513

SLC25A28 0.002830814 0.728713811

SMC4 0.001932006 0.488324668

CENPU 0.001322281 0.212405994

UBXN6 0.001120918 0.375613913

PDCD4 0.001014161 0.170623622

ELOC 0.001011655 0.281563336

HLA-DMA 0.000864591 0.124558936

Abbreviation: MSE, mean squared error.

Table 6.  The results of expression level of proteins encoded by the 
selected genes in breast tumors.

Gene 
name

High Medium Low Not 
detected

SNU13 0 0 4 8

CLINT1 1 9 0 0

ACBD3 0 11 0 0

NEK2 0 0 0 10

COL2A1 0 1 0 9

WFDC13  

RACGAP1 0 6 4 0

CCNA2 0 5 5 1

DTL 0 0 1 10

ARL6IP5 2 7 1 0

PDCD4 8 2 1 0

Figure 3.  Protein-Protein Interaction Network Involving RACGAP1, 

NEK2, and CCNA2 Proteins in Breast Cancer.



10	 Cancer Informatics ﻿

cyclin-dependent protein CDK kinases. The findings of the 
present study showed that PDC4 was one of the top rank genes 
associated with identified survival groups. PDC4 has been 
shown to be a tumor suppressor and acts as an inhibitor of 
protein translation by interacting with the eukaryotic transla-
tion initiation factor 4A1 (eIF4A1) through binding to some 
mRNAs.28 Under-expression of PDCD4 is reported to be cor-
related with poor prognosis in BC tumors and correlated with 
over-expression of oncogenic microRNA-21 (miR-21), target-
ing PDCD4 mRNA, which agreed with our study.29

Our finding showed that DTL was over-expressed in the 
high-risk group (patients with a lower survival), which was in 
agreement with other studies.30 Studies have shown that cancer 
patients, including those with breast cancer, who exhibit over-
expression of DTL tend to have lower survival rates. DTL is 
upregulated in cancerous tissues compared to normal tissues 
and is associated with poor outcomes.30 Additionally, it has 
been demonstrated that overexpression of DTL decreases the 
protein levels and accelerates the degradation of programed cell 
death 4 (PDCD4), a potential substrate of DTL. Furthermore, 
DTL enhances the proliferation rate and migration capabilities 
of cancerous cells.

The findings of this study also revealed that ADP ribosyla-
tion factor-like GTPase 6 interacting protein 5 (ARL6IP5) 
was associated with high- and low-risk groups. This gene has 
been shown to be a microtubule-binding protein involved in 
differentiation, apoptosis, and response to stress stimuli. 
ARL6IP5 has been reported to regulate cancer cell migration 
through its involvement in the mitogen-activated protein 
kinase (MAPK) signaling pathway.31 The expression of 
ARL6IP5 has been shown to be mediated by ER and its 
increased level of expression caused by increased H2O2 levels 
indicates its role in oxidative stress.31 Studies have confirmed 
that knocking down the ARL6IP5 in BC enhances invasion 
and migration of MDA-MB-231 cells and decreases inducing 
cell apoptosis.32

SNU13 as a component of U4 snRNP has an essential role 
in mRNA splicing pathways.33,34 Zhang et  al. in their study 
showed that the expression level of SNU13 is increased in 
Her-2 positive breast tumors and has a negative correlation 
with patients prognosis.35 The protein encoded by CLINT1 is 
involved in clathrin-coated vesicle formation and vesicular 
transportation between Golgi and endosomes.36,37 CLINT1, as 
a tumor suppressor gene, associates with distant metastasis-free 
survival for BC patients.38 ACBD3 is a Golgi protein that has 
a role in the maintenance of Golgi apparatus structure. The 
protein encoded by this gene also regulates several biological 
processes such as apoptosis and steroidogenesis.39 The expres-
sion level of this gene is associated with tumorigenesis, metas-
tasis, and poor prognosis of BC.40 NEK2 has a role in the 
regulation of mitosis and centrosome splitting. The protein 
encoded by this gene as a serine/threonine kinase controls the 
correct separation of chromosomes through the cell cycle.41 
Upregulation of NEK2 is associates with tumorigenesis and 
poor prognosis for BC.42 Type II Collagen encoded by 
COL2A1 is one of the major components of the extracellular 
matrix (ECM) and therefore has an essential role in tumor 
progression.43 The expression level of this gene was associated 
with chemoresistance in HER2+ BC patients.44 Moreover, 
miRNA-301 promotes proliferation, invasion, and chemore-
sistance by targeting COL2A1, FOXF2, PTEN, and BBC3.45 
The protein encoded by WFDC1 is a small protein with pro-
tease inhibitor function. Copy number variation and loss of 
heterozygosity for WFDC1 are common in several cancers 
such as BC.46 RACGAP1 has an essential role in controlling 
the growth and differentiation of tumor cells.47 The expression 
level of this gene is associated with poor prognosis in BC 
patients.48 ACTL6A is involved in regulating several cellular 
functions, such as cell cycle histone acetylation and chromatin 
remodeling. Expression level of this gene correlates with poor 
prognosis in triple-negative BC.49 SHC1, as an adaptor pro-
tein, has a role in the activation of several signaling pathways 

Figure 4.  Plotting the concordance index for intercept-only versus full model (7 genes) during the study period in the validation data comparing the 

probability that a randomly selected subject who experienced the outcome will have a higher predicted probability of having the outcome occur than a 

randomly selected subject who did not experience the outcome.
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such as PI3K and RAS/MAPK. In BC patients, upregulation 
of this gene is associated with a worse predicted outcome.50

These results indicated that SNU13, CLINT1, ACBD3, 
NEK2, COL2A1, WFDC1, and RACGAP1 have an essential 
role in several biological processes such as proliferation, apop-
tosis, invasion, stemness, and differentiation, therefore poten-
tially playing a role in regulating the tumor genesis, distant 
metastasis, response to treatment, and prognosis of BC.

Our findings also revealed that there were interactions 
between RACGAP1, NEK2, and CCNA2 proteins in breast 
cancer: a) Interaction between RACGAP1 and NEK2: The 
collaboration observed between RACGAP1, a GTPase-
activating protein, and NEK2, a serine/threonine kinase, sug-
gests their potential involvement in breast cancer progression. 
Dysregulation of both genes has been associated with aggres-
sive tumor behavior and unfavorable clinical outcomes. 
RACGAP1’s role in cell division and cytokinesis, along with 
NEK2's function in mitotic progression and centrosome dupli-
cation, indicates their joint impact on promoting invasive 
behavior and metastasis. Further investigation is necessary to 
unveil the underlying mechanisms governing this interaction. 
B) Interaction between RACGAP1 and CCNA2: The interac-
tion between RACGAP1 and CCNA2 implies their interplay 
in breast cancer development. CCNA2, a critical regulator of 
the cell cycle, has been linked to aggressive tumor behavior and 
poor prognosis. Considering RACGAP1's involvement in cell 
division, its interaction with CCNA2 potentially influences 
cell cycle progression, contributing to tumor growth and 
metastasis. Unraveling the precise mechanisms and functional 
consequences of this interaction holds promise for enhancing 
our understanding of breast cancer pathogenesis. C) Interaction 
between NEK2 and CCNA2: The interaction between NEK2 
and CCNA2 suggests their collaboration in breast cancer 
pathogenesis. Both genes are involved in cell cycle regulation 
and play essential roles in facilitating DNA replication and cell 
division. Dysregulation of NEK2 and CCNA2 has been asso-
ciated with aggressive tumor behavior and adverse clinical out-
comes. This interaction likely affects cell cycle progression and 
may contribute to the development of high-risk groups and an 
elevated risk of distant metastasis in breast cancer patients.

In this study, we utilized the Cox-Boost model due to its 
distinct advantages in handling survival data, particularly in the 
context of heart failure research. The Cox-Boost model extends 
the traditional Cox proportional hazards model by incorporat-
ing boosting techniques to improve predictive accuracy and 
variable selection. One of the key advantages of the Cox-Boost 
model is its ability to handle high-dimensional datasets, which 
is critical in our analysis given the complexity of factors influ-
encing heart failure outcomes. Unlike conventional methods 
that often face challenges with multicollinearity and overfit-
ting, the Cox-Boost model effectively identifies important pre-
dictors while maintaining robustness against data noise.51 
Additionally, this model offers a flexible framework that allows 

for the inclusion of unpenalized mandatory covariates, which 
receive a rapid coefficient build-up during the boosting steps, 
while other optional covariates are subjected to penalization. 
This approach ensures that essential covariates are incorpo-
rated efficiently, while the penalization helps manage the selec-
tion of less critical variables, reducing the risk of overfitting.24 
By leveraging these strengths, the Cox-Boost model provides a 
more nuanced understanding of survival patterns among heart 
failure patients, ultimately supporting more informed clinical 
decision-making and enabling personalized treatment strate-
gies.24 This rationale underscores our choice of the Cox-Boost 
model as a fitting and powerful tool for our studys objectives. 
The references provided in the search results offer valuable 
insights into the Cox-Boost model and its applications in sur-
vival analysis discuss the advantages of the Cox-Boost model in 
handling high-dimensional data and its ability to incorporate 
mandatory covariates. We also utilized censored quantile 
regression to calculate the probability of survival in different 
deciles. Time to event data are commonly skewed and semi-
parametric approaches, such as quantile regression models are 
better choices for model fitting.52 Future experimental valida-
tion studies are recommended.

The present study provides valuable insights for biomarker 
research on breast cancer metastasis-free survival. By utilizing 
component-wise likelihood-based boosting and random forest 
techniques, key metastasis-associated genes were identified and 
validated through Kaplan-Meier plots. From this analysis, 
eleven genes emerged as potential prognostic markers: SNU13, 
CLINT1, ACBD3, NEK2, COL2A1, WFDC1, RACGAP1, 
CCNA2, DTL, ARL6IP5, and PDCD4. These genes warrant 
further investigation to clarify their molecular mechanisms 
before being implemented for evaluating relapse/metastasis-
free survival in breast cancer patients. Among these, RACGAP1, 
NEK2, and CCNA2 are particularly significant. STRING 
database analysis revealed interactions among these genes, 
emphasizing their potential role in breast cancer metastasis and 
patient outcomes. Further investigation into these interactions 
could provide critical insights into the mechanisms driving 
aggressive tumor behavior. However, additional experimental 
and clinical studies are essential to validate these findings. 
Keeping up with the latest scientific developments and foster-
ing collaborations with experts in the field will be key to 
advancing our understanding of the interactions between 
RACGAP1, NEK2, and CCNA2 in breast cancer prognosis 
and metastasis.

Conclusion
Based on the findings of this study, the Cox-Boost model 
effectively identified high-risk and low-risk survival subgroups 
of breast cancer patients. From this analysis, a set of key genes 
emerged as potential prognostic markers for distant metastasis 
in lymph-node-negative breast cancer, including SNU13, 
CLINT1, ACBD3, NEK2, COL2A1, WFDC1, RACGAP1, 
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CCNA2, DTL, ARL6IP5, and PDCD4. It is recommended 
that further molecular studies be conducted to validate the role 
of these genes in tumorigenesis, invasion, metastasis, and epi-
thelial-mesenchymal transition in breast cancer.
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