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Abstract

The search for new materials for photonic applications continues to expand,

and one promising route is that of van der Waals heterostructures. Assembled

layer by layer from atomically thin materials, there are combinations of materials

with promising emergent properties. TMDs are strong candidates for photovoltaic

and transistor technologies, and the addition of thin films of organic molecules to

MoS2 has been shown to lead to beneficial exciton dynamics. Here we investigate

two-dimensional pentacene/MX2 (M = Mo, W, X = S, Se) heterostructures in a

systematic manner with varying concentration and molecular orientation using ab

initio methods. Using DFT and hybrid methods to establish baseline parameters,

we examine material band structure and resulting heterostructure band alignments.

We analyze the tuning of the electronic structure of our materials due to

heterostructure formation in the various concentrations and molecular orientations,

which results in changes to the heterojunction type from that predicted by

comparison of the materials out of heterostructure.

This research contributes to understanding how organic molecules can modify

the electronic structure of TMDs, offering valuable insights for the development of

high-performance, flexible photonic devices. Our results highlight the importance of

precise control over molecular interactions and band alignment in designing advanced

materials for photovoltaic applications.
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A note on nomenclature and symbols

Throughout this work there are some variables that use the same character representation.

It is always clear from context what is meant in the cases of standard representations e.g.

the imaginary unit, i, where i is also used as a counting index in other parts of the thesis.

In cases where it may not be entirely obvious, variables are clearly defined in the nearby

prose. Also of note is the use of the term ‘Brillouin zone’. Unless otherwise specified, or

clear from context, this refers to the first Brillouin zone. In contexts where a distinction

is required, the term ‘first Brillouin zone’ will be used, with ‘Brillouin zone’ being more

general.

Font changes are used to represent the types of mathematical objects, with scalars in

regular typeset, vectors in bold and matrices or higher rank tensors in sans serif bold. For

the case of operators, some are not uniquely identified as such due to their simplicity or

ubiquity e.g. the one dimensional position operator, x, is trivial and simply represented as

a scalar. For cases where the identification of an object as an operator is more important,

we use calligraphic typeset e.g. H.

So far this overview of nomenclature has all been fairly standard, but there is

nomenclature specific to this work. It is related to the heterostructures themselves,

and how they are to be discussed in text. The abbreviation PEN/TMD refers to the

heterostructures in general, with e.g. PEN/MoS2 referring to only the heterostructures

involving the specified TMD. When discussing pentacene concentrations, they will be

referred to as low or high concentration regimes, or by their corresponding underlying

substrate dimensions i.e. 7 × 4 or 6 × 3. A subscript on PEN, without being followed

by a TMD, denotes the state of its cell considered during calculation, and is without a

substrate e.g. PEN6×3 denotes pentacene in a cell of size defined by the 6 × 3 substrate

lattice, but without the substrate being present. Similarly, there is use of subscripts

denoting the rotation of pentacene upon the substrate, as in PEN60°/WSe2, which refers

to the pentacene-tungsten diselenide heterostructure where pentacene is rotated by 60°

with respect to the underlying substrate. If there is no angle given in subscript, it is

either a general reference or relates to unrotated (0°) systems. Which will be clear from
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context.

Abbreviations, when used, will be defined in text with the first use. Exceptions are

experimental techniques, which are often first specifically introduced in comparison tables

of literature results. There is nothing particularly exotic, with the abbreviations being:

• Adsorption spectra, AS

• Angle-resolved photoemission spectroscopy, ARPES

• Angle-resolved X-ray photoelectron spectroscopy, ARXPS

• Photoluminescence, PL

• Scanning tunnelling spectroscopy, STS

• X-ray diffraction, XRD

• X-ray adsorption spectroscopy, XAS

Chapters are numerically labelled, starting with the introductory chapter as Chapter

1. Appendices follow the main work, and are labelled alphabetically.
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Chapter 1

Introduction

The search for effective materials for the construction of photonic devices is an ongoing

area of intense research, with varied and diverse sub-fields and applications. Monolayer

materials are a promising group of candidates which has a growing dictionary of materials

that can be relatively easily produced and combined into heterostructures. Combinations

of these materials are proving to demonstrate emergent effects, and given that these

layered combinations are bound by the van der Waals (vdW) interaction, layer-by-layer

construction is a relatively simple matter. If a given material can be grown as or exfoliated

to a monolayer with no or few dangling bonds, physically placing the sample over another

is enough for heterostructure formation.

One such group of materials that can be easily exfoliated in such a manner are

the transition metal dichalcogenides (TMDs) [1, 2], which are themselves a diverse

category of often semiconducting crystals. Group VI dichalcogenides in particular exhibit

favorable optical absorption properties [3, 4] that lend themselves to applications such

as photovoltaics [5], light-emitting diodes [6], and transistor technologies [7, 8], with

variation in band gap energy and band gap depth, while being amenable to exfoliation to

monolayer and stable in air [9, 10] and at temperatures appropriate for the applications.

We focus here on the transition metals molybdenum and tungsten, and the chalcogens

sulfur and selenium, giving us four TMDs: MoS2, MoSe2, WS2 and WSe2. These are

probably the most researched TMDs, with MoS2 in particular being a popular target of

investigation due to its favorable properties for photonics.
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Heterostructures comprised of monolayer TMDs are well investigated [11,12], but not

all layers of a heterostructure need be monolayer crystals, much less TMDs specifically.

An important result from Homan et al. [13] was that the deposition of a thin layer of

pentacene, C22H14, a polycyclic aromatic hydrocarbon with five benzene rings, on to

monolayer MoS2 produced a heterostructure that exhibited rapid exciton dissociation

and slow recombination effects. Hole transfer from the TMD layer to the organic film

occurred faster than all hole relaxation mechanisms except for surface defect trapping

(a subpicosecond phenomena), but due to the reduced interlayer coupling compared to

TMD-TMD heterostructures excitons remained dissociated for much longer than in TMD-

TMD structures. This is a favorable property for photovoltaic devices in particular,

in combination with the heterostructure band gap of 1.1 eV, setting a relatively high

theoretical limit on the open-circuit voltage of any resultant device. Other organic

compounds have been investigated in heterostructure with TMDs, showing tuning of the

TMD’s electronic structure, as well as exhibition of potentially complimentary properties

for photonic applications [14,15].

Upon the background of the increasing monolayer and heterostructure research space,

this motivated our research group to investigate the adsorption of organic molecules on

monolayer TMDs. This particular flavor of heterostructure has potential in the realm

of lightweight, flexible photovoltaic devices as both materials having readily controllable

thickness and possess complementary properties to each other for such an application.

In this project we probe the structural and electronic properties of heterostructures of

pentacene adsorbed on to monolayers of MoS2, MoSe2, WS2 and WSe2, as well as the

changes to the same due to variation in molecular concentration and orientation compared

to the TMD substrate. Competing effects that lead to changes in these properties are

also decoupled and considered.
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1.1 The current literature gap

The TMDs investigated in this project are already well known in the literature. They form

hexagonal crystals of MX2 (M = Mo, W and X = S, Se) comprising layers of transition

metal atoms covalently bonded to six chalcogens each in a trigonal prism (see Figure 1.1).

There are two forms in monolayer, 1T and 1H [16]. We consider only the 1H form here,

as the 1T form is metastable and metallic [17–19].

Figure 1.1: The structure of TMD monolayers and their forms. Blue atoms are transition
metals, and red atoms are chalcogens. The 2H form is defined by the stacking relationship
of a TMD bilayer, where each layer is a 1H monolayer with alternating orientation.

All four of the considered monolayer TMDs have band gap energies between 1 and 2

eV, in the near infrared to visible range. They exhibit an indirect Γ-Q band gap in bulk,

which transitions to a direct K-K band gap in monolayer [20]. Experimentally, MoS2 has

been shown to have a monolayer band gap (EG) of between 1.8 and 1.9 eV [21–24], MoSe2

between 1.5 and 1.7 eV [25, 26], WS2 approximately 2 eV [27], and WSe2 approximately

1.7 eV [28].

Carrier mobility is a concern for photonic devices, where in the case of photovoltaics,

a larger carrier mobility allows for greater excitonic spatial dissociation within a given

time, and so provides a lower chance of recombination. Bulk TMDs exhibit good carrier

mobility, but monolayer TMDs have reduced carrier mobility, even when their structure

reflects that of the bulk sample [10]. Nevertheless, carrier mobilities have been measured

as high as µ = 80 cm2V−1s−1 at room temperature in monolayer MoS2 [29], thin MoSe2

at approximately 200 cm2V−1s−1 at room temperature for electrons and 150 cm2V−1s−1
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for holes [30], approximately 50 cm2V−1s−1 at room temperature and as high as 140

cm2V−1s−1 at low (< 100 K) temperatures for monolayer WS2 [31], and a lower 7

cm2V−1s−1 for monolayer WSe2 at room temperature for electrons, although hole mobility

was higher at 90 cm2V−1s−1 [32]. These values are at least an order of magnitude larger

than that for pentacene, our organic molecule of interest. Pentacene’s carrier mobility has

been experimentally determined as 0.26 cm2V−1s−1 [33]. There are large ranges associated

with experimental determination of carrier mobility, as it is highly dependent on sample

quality. However, it is clear that pentacene has a much lower carrier mobility than do

monolayer TMDs; examples of high (relative to other values reported for pentacene)

carrier mobility in thin-film pentacene device are approximately 0.6 cm2V−1s−1 [34] and

0.6 cm2V−1s−1 [35], although measured values less than 10−3 cm2V−1s−1 are not unknown

for similar devices [36].

By combining the organic molecule pentacene with monolayer TMDs into a van

der Waals heterostructure, we hope that advantage can be taken of the good carrier

mobility of TMDs and favorable properties inherent to thin devices (lightweight, flexible

etc), as well as enhance the optical absorption efficiency of the resultant heterostructure

compared to the TMD alone, due to the comparatively higher absorption coefficient of

organic molecules [15]. In order to do so, however, we must first assure ourselves of the

band alignment between materials of any resultant heterostructure. This was one of the

primary goals of this project. It has been shown previously that pentacene forms a Type-

II heterojunction with monolayer MoS2 [13, 37], as does pentacene with WSe2 [38]. WS2

forms a Type-II heterojunction with the similar organic molecule, tetracene [39]. Type-II

band alignment is required for the p-n junction of photovoltaics, although there are other

applications for band alignments other than the staggered gap. A Type-I alignment, which

has been shown for the case of pentacene/MoSe2 has been reported, although not in a

manner particularly similar to the structures we investigated here; there was a third layer

of graphene oxide on the opposite pentacene surface to that in contact with MoSe2 [40].

Despite the TMDs and pentacene being well investigated, the specific heterostructures

that we have targeted are not. There is limited theoretical literature on favorable
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adsorption sites of molecular pentacene on monolayer TMDs, and the effect on molecular

concentration and molecular orientation on the structure and electronic properties of

resultant heterostructures is non-existent. Existing literature focuses on heterostructures

with MoS2, and is primarily concerned with thin films of pentacene, rather than two-

dimensional structures [41, 42]. As such, there is an identified literature gap for a

systematic study of the interaction between molecular pentacene and monolayer TMD

substrates. The band alignment of molecular pentacene with TMDs and its variation

with concentration is an important metric for photonic devices, and the manner in which

pentacene tends to adsorb on to an underlying TMD substrate may be important for

interface engineering concerns. Additionally, how the electronic structure of the materials

and resultant heterostructures is changed by competing effects due to adsorption,

variational concentration, and molecular rotation with respect to the substrate are

potential subjects of interest for device design and tuning.
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1.2 Project overview and objectives

Figure 1.2: Side view of pentacene adsorbed on a 7× 4 supercell of TMD. The molecular
plane and top-most chalcogen plane are marked and labelled. Layer separation is also
labelled, but is defined as the difference in z-coordinate of the center of mass of pentacene
and the average position of chalcogens in the top-most chalcogen plane, not the difference
between the molecular plane and top-most chalcogen plane (although these values will be
very similar).

The aim of this project is to work towards filling the literature gap discussed in Section

1.1 by investigating the preferred adsorption sites of pentacene on to each of the four

TMD monolayers, in the manner of Figure 1.2, and probing the structural and electronic

properties of these heterostructures. We will demonstrate in which manner pentacene

tends to adsorb on to the monolayers and how molecular concentration affects this,

and through what mechanisms. Given the favorably adsorbed heterostructures, we will

show to what degree the electronic properties of the TMDs and pentacene molecules are

modulated by adsorption, examine the mechanisms through which this modulation occurs,

and discuss the overall properties of the resultant heterostructures.

The first stage of the project, found in the first project chapter of the thesis (Chapter

4), was concerned with determining computational parameters that were needed going

forward, baseline properties of the TMD monolayers and pentacene molecules when

isolated from each other, and an analysis of likely band alignments between materials

before their electronic properties are modulated through interacting with each other. This

was performed using ab initio methods within density functional theory (DFT), using

the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional [43] (a generalized
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gradient approximation (GGA) functional), and the projector-augmented wave (PAW)

pseudopotential method [44]. We used Monkhorst-Pack [45] k-point meshes for our

sampling grids. Our calculations were performed using the Quantum ESPRESSO suite

[46,47], a popular open-source plane wave pseudopotential package for electronic structure

calculations.

The computational methods used in this project were selected based on characteristics

of cost and accuracy. We did not wish to use an empirical functional in order to satisfy as

many theoretical exact conditions as possible. Additionally, as we investigated structures

which had yet to be studied to a significant degree, and that are combinations of organic

molecules and TMDs, errors in non-empirical functionals would be likely to be systematic

(e.g. underbinding in the local density approximation, or underestimation of the band

gap with DFT in general), and so somewhat predictable in nature, if not necessarily in

magnitude. Using an empirical functional that was designed for use on organic molecule,

for example, could fail on predictions relating to the TMDs within the structure.

The local density approximation compares unfavorably to GGA functionals for atoms

with highly-localized electrons, such as those found in our transition metal d-orbitals,

as the electronic density is highly non-uniform. Additionally, LDA functionals tend to

underestimate band gaps to a greater degree than do GGA functionals [48]. Therefore, we

chose from GGA functionals; hybrid functionals were deemed to be too computationally

expensive for our large heterostructure systems. Reviews of the performance of various

functionals fairly consistently report that popular GGA functionals are similar in accuracy

to each other, with small advantages in specific systems or for specific parameters [49,50].

One in particular that consistently performs well, and satisfies our previously mentioned

concerns, is the PBE functional [43], which is the functional we proceeded with for the

majority of our calculations.

As we are dealing with vdW heterostructures, it is expected that the vdW interaction

plays a significant role in their structure and binding. The van der Waals correction

method of Grimme’s D3 [51] is a very effective choice for two-dimensional heterostructures,

as well as molecules [52].
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The next stage of the project, described in Chapter 5, was to investigate the preferred

adsorption sites of pentacene on to the TMD monolayers at a fixed concentration. This

concentration was controlled through the number of molecular units of TMD substrate

within a single supercell, containing one pentacene molecule; a larger underlying substrate

sheet results in a lower molecular concentration. We selected a supercell consisting of 7

TMD molecular units by 4 TMD molecular units, referred to as a 7 × 4 cell. We must

of course modulate the length of the sides of this substrate monolayer in integer steps,

and chose the side length ratio based on the shape of pentacene. A larger 8× 5 supercell

would be too computationally expensive, and the 7 × 4 cell provided good separation

between pentacene molecules across periodic boundary conditions already. Using DFT,

we calculated the total energy of heterostructures and compared this to that of isolated

materials to determine the adsorption energy of pentacene in a number of adsorption sites.

This allowed a direct comparison of favorability between adsorption sites, where we then

probed the electronic structure of the favorably adsorbed heterostructures with density

of states calculations. Additionally, differential charge density was calculated.

Following this, we performed the same investigation on higher concentration pentacene

(by using a smaller supercell) and compared the two, allowing discussion of the effect of

concentration on the calculated properties (see Chapter 6). The supercell was defined

by an underlying substrate of dimensions 6 × 3 molecular units, shrinking the distance

in both x- and y-directions between pentacene by one unit each. A greater reduction

would result in almost overlapping pentacene molecules. We also looked at pentacene in

the favorable adsorption sites across both concentrations, but rotated around its centre

of mass within the plane of the underlying substrate. This allowed for a comparative

analysis of the effect of rotation of pentacene.

Finally, we returned to the materials out of heterostructure for a more computationally

intensive, but more accurate, investigation. We did this using a hybrid functional,

which was the Heyd-Scuseria-Ernzerhof (HSE) functional [53]. This choice was due to

its consistently strong performance in predicting structural and electronic properties of

semiconductors [54]. It would not have been computationally feasible to deploy such a
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functional on to the heterostructures, being such large supercells. While we performed

this level of analysis near the end of the project chronologically, it is reported in Chapter

4 as it pertains to the isolated systems and is more useful as a side-by-side comparison at

that point of this work.

The thesis is laid out thusly: an introductory chapter, which is the present chapter,

followed by an overview of the background theory required for performing this research

(Chapters 2 and 3, where there is a somewhat nebulous division between physical and

computational theory), the chapters directly describing the methods and results of the

project (Chapters 4-6), and wrapping up with a summary chapter at the end (Chapter

7). There is additionally an Appendix associated with this work, found at the end of the

thesis.
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Chapter 2

Physical theory and background

To understand the behavior of two-dimensional van der Waals heterostructures and their

constituent materials (here organic molecules and transition metal dichalcogenides) as

photovoltaic and optoelectronic candidates, we must first understand the underlying

theory of solids, primarily semiconductors. This chapter discusses the relevant quantum

theory of solids (Section 2.1), and the band theory of semiconductors and the photovoltaic

effect (Sections 2.2 and 2.3). A description of phenomena that arise in these materials

due to their small size and quantum nature is in section 2.4, followed by a discussion

of the theory of van der Waals forces that are so important for the formation of the

heterostructures in this project (section 2.5). Background information on the properties

of organic molecules and transition metal dichalcogenides, and the way in which their

heterostructures exhibit hybrid or emergent properties are discussed later in Chapter

3, as is the theoretical basis for, and the practical use of, the computational methods

deployed in this work.
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2.1 Quantum treatment of solids

2.1.1 Drude-Sommerfeld (free electron) model

Drude proposed his model of electron behavior in metals in 1900 [55] to explain the

excellent electrical and thermal conductivity of metallic materials. Electrons themselves

had been recently discovered by Thomson in 1897 [56], and so Drude applied kinetic theory

to these new particles, treating them as a gas that moved among heavier and unmoving

particles of opposite charge (metallic ions). In this model, electron gas particles move in

straight paths until perturbed by collisions with the immobile metal ions. Interactions

and collisions with other electrons are ignored, as are non-collisional interactions between

electron and ions (such as interactions with fields). These two assumptions are known as

the independent electron approximation and the free electron approximation, respectively.

The relaxation time of an electron, τ , is assumed to be independent of the electron’s

position and velocity, and is defined by an electron’s probability of undergoing a collision

with an ion in time δt as δt
τ
. These collisions are then modelled as instantaneous, with

immediate effect on the velocity of the electron, and only occur upon collision with ions.

In addition, electron-ion collisions are assumed to be the sole process by which electrons

attain thermal equilibrium with the background structure, and their post-collision velocity

magnitude is determined by the temperature at the position of the collision.

The limitations of the Drude model resulting from classical approximations led

Sommerfeld to update it with the Fermi-Dirac distribution in 1927 [57], resulting in

quantum mechanical descriptions of electronic behavior in metals. The Sommerfeld

theory of metals describes the electrons as a free electron gas, keeping the free electron

approximation and the independent electron approximation of the Drude model. The

major change to the Drude model is the replacement of the distribution function and a

quantum treatment of the free electron gas.

Classical descriptions of electrons in a metal work well enough when the precision

to which an electron’s position must be described is sufficiently low such that its

momentum does not become too imprecise, as described by the Heisenberg indeterminacy
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principle [58], ∆x ∼ ℏ
∆p

, where ℏ is the reduced Planck constant, and ∆x and ∆p

are the uncertainties in position and momentum, respectively. With an uncertainty

in momentum of an electron in a metal small enough, i.e. smaller than the typical

metallic electron momentum of ℏkF , where kF is the Fermi wavevector (defined shortly),

the uncertainty in position approaches that of the radius of a sphere whose volume is

the space taken up by one conduction electron. A classical description of electronic

behavior in metals is sufficient for many cases, so long as field variations occur over

much larger displacements than ∆x of an electron, and mean free paths remain large in

comparison as well. When discussing metals at room temperature, where mean free path

is long enough, or when dealing with lower energy electromagnetic fields than ultraviolet

radiation, classical descriptions of metallic behavior can be sufficient. Notice, however,

that while the overall description of metallic behavior may be satisfactory, the behavior

of a given electron is poorly described classically, as they obey Fermi-Dirac statistics

and not the Maxwell-Boltzmann statistics of classical theory. Considering then the

Sommerfeld theory of metals, using Fermi-Dirac statistics, the non-classical electronic

energy distribution can be applied to Drude’s model. This improves the prediction

of the mean free path and thermal conductivity, although in this case not changing

the value much, as Drude’s classical model had mathematically cancelling inaccuracies.

Hall coefficients, magnetoresistance and electrical conductivity are unchanged by the

Sommerfeld theory compared to the Drude model, as they are independent of energy or

velocity distribution.

Momentum

Consider the system of non-interacting electrons confined to a cubic volume V , with sides

of length L. Evaluating the Schrödinger Equation,

Hψ (r) = ϵψ (r) ,

H = − ℏ2

2m
∇2 + U (r) ,

(2.1)

12



for this system with the travelling plane wave solution, we obtain the energy of a free

electron,

ϵk =
ℏ2

2me

k2. (2.2)

In the ground-state, where energy levels are filled up in ascending order, a system of N

free particles will occupy allowed positions inside of a sphere of volume V within k-space

that has radius kF . The energy at the surface of this sphere (the energy of the highest

occupied orbital in the ground state) is ϵF , the Fermi energy. The Fermi momentum, pF ,

can be calculated using the quantum mechanical momentum operator, p = −iℏ∇, such

that

pF = ℏkF (2.3)

(or more generally, p = ℏk), which relates to the Fermi velocity,

vF =
ℏkF
me

. (2.4)

These properties can also be discussed in terms of their more general values, importantly

the velocity,

v =
ℏk
me

, (2.5)

which is a function of wavevector and independent of temperature, in contrast to classical

models.

As the wavevector components must satisfy

ki = ±2niπ

L
, (2.6)

there exists one allowed combination of the quantum numbers kx, ky and kz within each

volume element of
(
2π
L

)3. For electrons then, with two permitted spin states, there exist
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two allowed states for each allowed combination of ki. As such, the total number of

orbitals in a spherical space is twice the volume of the sphere with radius kF divided

by the volume element of a single permitted ki triplet,
(
2π
L

)3. The Fermi wavevector, in

terms of the electronic density, n = N
V

, V = L3, is then

kF =
(
3π2n

) 1
3 . (2.7)

Density of States

The total internal energy density, u, is the integral over all allowed k within a volume of

k-space of the energy per k value i.e. the integral over k-space of the number of electrons

per level times the energy of that level:

u =

∫
1

4π3
ϵ (k) fFD (ϵ) δk . (2.8)

By using spherical coordinates to remove dependence on the vector form of k we can

express u as an integral over the radial coordinate, k:

u =
1

4π3

∫ 2π

0

δϕ

∫ π

0

sin θδθ

∫ ∞

0

k2ϵfFD (ϵ) dk

=
1

π2

∫ ∞

0

k2ϵfFD (ϵ) dk

(2.9)

Substituting in for k and δk through

δk

δϵ
=

√
meϵ
2ℏ2

, (2.10)

we get

u =

∫ ∞

−∞

√
2m3

eϵ3

π2ℏ4
fFD (ϵ) δϵ (2.11)

where the limits between −∞ and ∞ will give the same result as between 0 and ∞ due

to the physical constraints on the system (ϵ > 0), but are left as they are due to our later

use of the Sommerfeld expansion. Our physical interpretation of u being the internal
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energy density, i.e. the number of single electron states (occupied or unoccupied) in an

energy range δϵ per unit volume, times the probability of these levels having an electron

present, times the energy of such an electron, leads us to the interpretation that the term√
2m3

eϵπ−2ℏ−4δϵ is the number of single electron states in an energy range δϵ per unit

volume. This is the density of states, a concept that is important later in the project

and of physical significance for computational analysis of semiconductors, and we will

represent it as

D (ϵ) =
1

2π2

(
2me

ℏ2

) 3
2

ϵ
1
2 (2.12)

It can be similarly recovered from the relations between the Fermi wavevector and

electronic density, where it is D (ϵ) = 1
V

δN
δϵ .

We can represent u as a function of density of states,

u =

∫ ∞

−∞
ϵD (ϵ) fFD (ϵ) δϵ , (2.13)

where fFD (ϵ) is temperature dependent. The behavior of fFD (ϵ) is such that its form

for temperatures where they remain solid at standard pressure only differs significantly

from that at T = 0 K around ϵ = µ. An example is shown for 1500 K in Figure 2.1,

a fairly typical melting point of pure metals at standard pressure, so when dealing with

low-to-room temperatures u can be well represented by the value of u at 0 K plus the

Taylor expansion of ϵD (ϵ) centered on ϵ = µ. The value of u at 0 K is simply

uT=0 =

∫ ϵF
−∞

ϵD (ϵ) δϵ , (2.14)

as at T = 0 K all states below ϵF have a probability of 1 to be occupied, and all above ϵF a

probability of occupation of 0 (by definition). The expansion is known as the Sommerfeld

expansion:

u =

∫ µ

−∞
ϵD (ϵ) δϵ+

∞∑
n=1

(kBT )
2nAn

δ2n−1

δϵ2n−1
ϵD (ϵ)

∣∣∣∣
ϵ=µ

, (2.15)

where An are dimensionless coefficients.
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Figure 2.1: The Fermi-Dirac distribution for a metal at 1500 K, compared to 0 K and
room temperature. Note the difference in distributions is only marked around µ, and the
range over which this occurs is very small at room temperature.

This expansion is performed (with differences in notation) in Sommerfeld’s 1927 paper

[57].

Terms in the expansion fall off as O
(

kBT
µ

)2
, so we can consider only the first term of

the expansion, and recognize that the integral limits in the uT=0 term can be changed as

negative energy is unphysical, giving us

u =

∫ µ

0

ϵD (ϵ) δϵ+
π2

6
(kBT )

2

(
µ
δD (µ)

δϵ
+D (µ)

)
. (2.16)

Following the above procedure again, we can similarly expand the expression for electronic

density, n, as the integral over k-space of the number of electrons per state (as a probability

per state):

n =

∫
1

4π3
fFD (ϵ) δk =

∫ ∞

−∞
D (ϵ) fFD (ϵ) δϵ

=

∫ µ

0

D (ϵ) δϵ+
π2

6
(kBT )

2 δD (µ)

δϵ

(2.17)

If the difference in µ between its value at 0 K and temperatures of interest is small, we
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can approximate

∫ µ

0

D (ϵ) δϵ =
∫ ϵF
0

D (ϵ) δϵ+ (µ− ϵF )D (ϵF ) (2.18)

and so

n =

∫ µ

0

D (ϵ) δϵ+ (µ− ϵF )D (ϵF ) +
π2

6
(kBT )

2 δD (µ)

δϵ
. (2.19)

However, if we keep volume constant the electronic density must be independent of

temperature, so at constant volume n is equal to its value at 0 K, therefore

(µ− ϵF )D (ϵF ) +
π2

6
(kBT )

2 δD (µ)

δϵ
= 0

∴ µ = ϵF − π2

6
(kBT )

2 1

D (ϵ)
δD (ϵ)
δϵ

= ϵF

(
1− 1

3

(
πkBT

2ϵF

)2
) (2.20)

We see that the variation with temperature of µ is indeed small at low-to-room

temperatures. Figure 2.2 shows this temperature-dependent variation in µ. Even at 1500

K, where we can expect issues with the solid state of the material, the variation in µ is

only around 1%.

2.1.2 Bloch’s theorem

Periodicity and Fourier series expansion

Solid structure generally falls in to one of three categories, being crystalline, poly-

crystalline and amorphous. These categories relate to the order of the material’s

microscopic structure, with crystalline materials, crystals, having periodic structure

throughout their volume. Poly-crystalline materials, crystallites, are composed of

multiple periodic regions arranged in a non-periodic manner, and amorphous solids have

no microscopic periodicity over long range. These categories are represented in Figure

2.3. Crystals are the best understood and simplest materials in the context of solid state
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Figure 2.2: The variation of µ with temperature, as by Equation 2.20. As can be seen by
the scale, even a large increase in temperature results in only a small decrease in µ.

physics, and the materials used in this project are crystalline. We therefore consider in our

discussion a pristine crystalline solid, with ions arranged in a periodic array. This results

in a periodic electronic potential, U(r), throughout the material that is experienced by

our electrons. The periodicity of this potential for a region suitably far from a spatial

boundary (or we can assume an infinite crystal) is determined by the Bravais lattice of

the material. For Bravais lattice vectors R, this periodicity in the potential is described

by U(r + R) = U(r). Continuing to use the independent electron approximation here,

we allow any specifics in the form of the potential due to electron-electron interactions to

be included in U(r), making it an effective potential.

Due to this periodicity, we can establish Fourier components of the potential (as well as

other periodic properties, such as electron density and a spatial description of the lattice

itself). The concept of the reciprocal lattice arises from the Fourier series expansion of

the direct lattice, and is a useful tool for determining crystal properties. The Fourier

series expansion of some function periodic in space over period a, and invariant under

translation T = u1a1+u2a2+u3a3, where ui ∈ Z and ai are the crystal axes can be given
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(a) (b) (c)

Figure 2.3: The three categories of solid structure: (a) crystalline structure (crystals),
with long range order, (b) poly-crystalline structure (crystallites) with regions of order
that are unordered with respect to each other., and (c) amorphous solids, with no long
range order or periodicity.

as

f(r) =
∑
v1

∑
v2

∑
v3

fv1,v2,v3e
i(v1b1·r+v2b2·r+v3b3·r) , (2.21)

or more compactly as

f(r) =
∑
G

fGe
iG·r =

∫
BZ
fGe

iG·rδG , (2.22)

where fG are the Fourier coefficients and the integral is over the Brillouin Zone. The

summation form is more useful for our purposes here, with the integral form seeing use

in Chapter 3. Here G = v1b1 + v2b2 + v3b3, vi ∈ Z, with bi as primitive vectors of

the reciprocal lattice if they are constructed such that they are orthogonal to two crystal

lattice primitive vectors, i.e. bi · aj = 2πδij. δij is the Kronecker delta function. The

constructions that satisfy this requirement are

bi =
2π

V
(ai+1 × ai+2) i ∈ Z+ mod 3, (2.23)

where the volume of the crystal lattice primitive cell is the triple product V = a1 ·

a2 × a3. The 2π term is included in the definition as convenience for later physical

interpretation of angular wavevectors. As such, this Fourier series remains invariant under
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crystal translation with T, as

f(r + T) =
∑
G

fGe
iG·reiG·T, (2.24)

where eiG·T = 1 due to the orthogonality of the vectors and assurance from construction

that the product uivj ∈ Z.

The central equation and Bloch’s theorem

Applying the Born-von Karman periodic boundary condition that a given wavefunction in

our crystal must be periodic on the lattice, ψ(r+Niai) = ψ(r), Ni ∈ Z where N =
∏3

i=1Ni

is the total number of primitive cells in the crystal, we can consider the Fourier series

expansion of a wavefunction in the crystal,

ψ(r) =
∑
k

Cke
ik·r, (2.25)

where k is a wavevector belonging to those plane waves in a set satisfying our boundary

condition. Our boundary condition imposes that

eik·(r+a) = eik·r = eik·reik·a , (2.26)

eik·a = 1 , (2.27)

and therefore

k · a = 2πn , n ∈ Z , (2.28)

i.e. k is quantized. As the set Ni is orthogonal, so is our set of plane waves, eik·r. Our

periodic effective potential U(r) can of course similarly be transformed as

U(r) =
∑
G

UGe
iG·r. (2.29)
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As the crystal lattice vector a must be real, and eik·a = 1, we see then that the Born-

von Karman periodic boundary condition additionally requires that wavevector k be real.

Changing the potential by an additive constant does not affect the periodicity, so we

can do so to set the average over a primitive cell of the potential to zero, i.e. U0 = 0.

Substituting our Fourier series expansions of ψ(r) and U(r) in to the time-independent

Schrödinger equation (Equation 2.1) gives the central equation,

(λk − E)Ck +
∑
G

UGCk−G = 0 , (2.30)

the derivation of which is in Appendix A, and where the wavelength is given by

λk =
ℏ2k2

2m
. (2.31)

The central equation is a restatement of the time-independent Schrödinger equation in

k-space. Due to the form of the Ck−G coefficients, and as G are reciprocal lattice vectors,

we see that for each allowed value of k in the first Brillouin zone there is an independent

problem with solutions containing only the original wavevector and wavevectors differing

by a reciprocal lattice vector. We can take advantage of this fact; as a given wavevector

k only takes values k − G (allowing G = 0), we see our wavefunction is of the form

ψ(r) =
∑
G

Ck−Ge
i(k−G)·r = eik·r

(∑
G

Ck−Ge
−iG·r

)
. (2.32)

This wavefunction has infinite solutions; one for each allowed k in the Brillouin zone.

The physical interpretation of these eigenstates leads us to the band index, n: the index

given to the discrete energy levels, or electronic energy bands. The energy, ϵn (k), varies

continuously with k, but k takes discrete values. Changing the subscript to agree with

this convention in notation gives us Equation 2.33, Bloch’s theorem.

ψnk(r) = eik·runk(r) (2.33)

Bloch’s theorem, developed by Felix Bloch and published in 1928 [59], shows that the
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eigenstates of the single-electron Hamiltonian H (Equation 2.1) in a Bravais lattice with

a periodic potential can be expressed as plane waves modulated by a function with the

periodicity of the Bravais lattice. Electrons described in this manner are Bloch electrons.

In the free electron case (subsection 2.1.1), the wavevector k is proportional to momentum,

k =
p
ℏ
. (2.34)

Drude electrons, however, do not in general have a wavefunction that is a momentum

eigenstate; k is not proportional to p. By applying the momentum operator to the

wavefunction of a Drude electron, we get

−iℏ∇ψnk = −iℏ∇
(
eik·runk (r)

)
= ℏkψnk − iℏeik·r∇unk ,

(2.35)

which is a non-proportional relation. Due to the similarity to the free electron case, ℏk is

referred to as the crystal momentum, but is not a true momentum itself. The velocity of

a Bloch electron can be shown to be

vn (k) =
1

ℏ
δϵn (k)
δk

, (2.36)

a non-vanishing mean velocity (derived in Appendix B): the ionic lattice does not degrade

its velocity, which is a stationary state for a given band index.

Improvements over the free electron model

By introducing periodicity conditions of the lattice to electronic potential, wavevectors k

are required to take discrete values. This leads to the emergence of discrete energy levels,

or bands, previously not described by the free electron model. This has pronounced

effects on the behavior of solids, and will be expanded upon in following subsections.

As the materials of interest for this project have periodic crystal structure, a description

of electronic behavior under a periodic potential is necessary, and the Bloch theorem

provides the framework for the next update to modelling electronic behavior in solids; the
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semiclassical model.

2.1.3 Semiclassical model

Equations of motion

The force acting on electrons experiencing a field (an electric field, E, or a magnetic field,

H) is classically the Lorentz force, and using the Sommerfeld description of momentum

(p = ℏk, see subsection 2.1.1), where it can be described classically so long as we do not

need to describe its position on the scale of interelectronic distances, we have

δr
δt

=
ℏk
me

, (2.37)

and

ℏ
δk
δt

= −eE − ev
c

× H. (2.38)

This behavior is for particulate electrons, so is of little use with an entirely wave-like

description. However, by modelling this particle as a wave packet of free electron levels,

we can update the classical model with a method to describe quantum systems, providing

the semiclassical model. The wavefunction of such a free electron wave packet is

ψ (r, t) =
∑
k’

gk (k’) ei(k’·r−ϵk’t) , (2.39)

with the interpretations that r and k are the mean position and momentum of the wave

packet, respectively, and where the coefficient gk (k’) is a very small bin or discretization

interval, |k’ − k| > ∆k, and we let ∆k be much smaller than the size of the Brillouin

zone, maintaining a well described momentum. Using the relations that follow from the

Sommerfeld model (subsection 2.1.1), the semiclassical electronic equations of motion are
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ṙn (k) =
1

ℏ
δϵn (k)
δk

ℏk̇ = −e
[
E (r, t) +

1

c
ṙn (k)× H (r, t)

] (2.40)

where dot notation represents a time derivative, and are discussed further in Appendix

C.

The electrical conductivity of a perfect periodic crystal is infinite, as the mean

electronic velocity in a Bloch level may only vanish if the term

δϵn (k)
δk

(2.41)

vanishes, although real crystals are imperfect over long range and there are thermal

vibrations of the ions (producing phonons) thus far unaccounted for that perturb the

periodicity. Interactions between Bloch electrons and lattice ions are taken into account

already if the Schrödinger equation has solutions of a Bloch form. The periodicity, if

perfect, permits wave propagation across infinite distance due to coherent scattering of

electron waves without energy loss. In the semiclassical treatment of Bloch electrons, we

accept some form of scattering mechanism, but it need not be due electron-ion collision.

The wavefunction of a Bloch electron wave packet is

ψn (r, t) =
∑
k’

gk (k’)ψnk’e
− i

ℏϵn(k’)t , (2.42)

and as ∆k is small compared to the size of the Brillouin zone, the change in ϵn (k) within

the wave packet is also small. As ∆k ≪ 2π
a

, the uncertainty principle leads us to the fact

that a wave packet well defined in momentum space on the scale of the Brillouin zone

is poorly defined in real space on the scale of a primitive cell; ∆x ≫ a
2π

. As such, the

semiclassical model can be used in the limit that applied fields can be treated classically

(they do not vary over the dimensions of the wave packet) and the periodic field has a

period smaller than the dimensions of the wave packet.
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Limitations and holes

The periodic lattice potential experienced by a Bloch electron cannot play a role in its true

momentum (within the model); this would require localization of position on scales within

a primitive cell (over which the periodic potential varies), which is inconsistent with our

wave packets being spread over many primitive cells, ∆x ≫ a
2π

. The semiclassical rate

of change of crystal momentum, ℏk̇ (Equation 2.40), only considers external fields acting

on the electron, which must vary over longer length scales for the semiclassical model to

hold validity. Additionally, band transitions are forbidden within the semiclassical model

as the band index is a constant. As electrons tend towards free electrons (as periodic

potential U (r) → 0) and experience only a uniform electric field, they may increase their

kinetic energy ceaselessly (within a relativistic limit). As the model requires that the

electrons remain energetically circumscribed within the band’s energy limits, there exists a

minimum periodic potential experienced by the electrons to maintain the appropriateness

of the semiclassical model.

Despite its limitations, the semiclassical model is an improvement over the free electron

theory of the Drude and Drude-Sommerfeld models (subsection 2.1.1) in the matters of

electron transport and dynamics. Importantly, it provides an explanation for the existence

of non-metallic materials, and for the variation in the sign of a metal’s Hall coefficient.

Consider an electronic band in a crystal where each permitted state has energy below

the Fermi energy, ϵF . With two spin states per energy level, and a k-space volume of

(2π)3, the contribution of electrons in this band with wavevectors within a volume δk to

total electronic density is δk
4π3 . Within six-dimensional rk-space (phase space), the density

of electrons of a filled semiclassical band is 1
4π3 , as the number of electrons within the

k-space volume δk in a given real space volume δr is δr δk
4π3 .

Liouville’s theorem [60,61] asserts that the volume of a system in phase space remains

constant in time. The phase space electronic density is therefore constant, as semiclassical

electrons cannot undergo interband transitions (so neither the volume nor the number

of electrons may vary). The general solution to the semiclassical equation of motion
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(Equation 2.40) is

k (t) = k (0)− eEt
ℏ

, (2.43)

which shows that over time interval t every wavevector undergoes the same shift, i.e.

the electrons move through phase space together, further demonstrating the constancy of

electronic density in phase space. Electrons within a volume element δk about the point

k have velocity

vn (k) =
1

ℏ
δϵn
δk

, (2.44)

and so the contribution of this filled band to the electric current density is

j = −e
∫

BZ

1

4π3ℏ
δϵ (k)
δk

δk , (2.45)

where integration is over all k in the Brillouin zone and considers only a single band, so

the band index dependence has been dropped. The contribution to the energy current

density is similarly just

jϵ =
∫

BZ

1

4π3ℏ
ϵ (k)

δϵ (k)
δk

δk . (2.46)

Note that ϵ (k) is a function periodic over the Brillouin zone (the volume over which we are

integrating), and so the contribution to the electric current density of a filled band is equal

to zero. This is also true for the energy current density, and is shown in Appendix D. Due

to the electronic passivity of filled bands, only those bands which are partially filled with

electrons need be considered, providing an explanation for why the Drude’s model use

of atomic valence to determine an atom’s contribution to conduction electrons was fairly

rewarding; often an atom’s valence electrons are the only ones occupying partially filled

bands. The number of energy levels in each band is related to the number of primitive

cells in the crystal; for crystals with a single atom in a primitive cell, there are two allowed

energy levels in each band per primitive cell. Such solids with an odd number of electrons
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per primitive cell must have partially filled bands, and is an electrical conductor (and

has a high electronic contribution to its thermal conductivity as well). Solids with an

even number of electrons per primitive cell may have only full and empty bands, causing

a band gap and exhibiting insulating or semiconducting properties. They may still be

conductors, however, as while they have the correct number of electrons to precisely fill

a number of bands without remainder, they do not necessarily do so in cases where band

energies overlap.

Considering now a band that is not necessarily filled, the contribution of electrons in

the band to the current density is

j = − e

4π3

∫
occupied

v (k) δ (k) , (2.47)

and as a filled band is inert we deduce that

(
− e

4π3

)∫
occupied

v (k) δ (k) +
(
− e

4π3

)∫
unoccupied

v (k) δ (k) = 0 (2.48)

and consequently we see that

j =
e

4π3

∫
unoccupied

v (k) δ (k) (2.49)

is an alternate way of representing the current density of a partially filled band, where the

integrals are over permitted wavevectors that either do (occupied) or do not (unoccupied)

have wave packets present with that wavevector. This shows the equivalence between

treatments of a band partially filled with electrons, and the same band with those

previously filled levels being unoccupied and the previously unoccupied levels being

now occupied with particles of opposite electronic charge. This is perhaps the greatest

revelation to come from the semiclassical model: a description of holes. Holes are the

absence of an electron, but one may consider them to be the charge carriers, and consider

electrons to be the absence of holes. As electrons have their wavevector and position

uniquely determined by the semiclassical equations of motion at any time given these
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variables at some other time, positions in phase-time space that lack electrons are also

uniquely determined i.e. the paths taken through phase-time space of two electrons

share no overlap. For a band with unoccupied states there will, therefore, be paths (or

orbits) in phase-time space that have no electron in them, and these orbits will remain

unoccupied with the evolution of time. The topography of these paths depends on the

semiclassical equations of motion through their respective wavevector, and they remain

the same regardless of whether they are actually occupied or not; these unoccupied paths

can be considered to be the paths on which holes travel in phase space with the evolution

of time. This concept is illustrated in Figure 2.4.

Figure 2.4: A schematic representation of phase space, as the position-wavevector plane
(rk plane), against time. The movement of charge carriers is displayed with solid blue lines
for electrons, and dashed green lines for holes; the volume in rk-t that these move through
represent occupied and unoccupied bands, respectively. The phase space density remains
constant with time, with the same number of electrons occupying the same amount of
space throughout.
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2.1.4 Self-consistent field methods

Initial guess
for Ue− (r)

Solve
HHψi

for energy eigenvalues

Evaluate the new
Ue− (r)

Potentials
converged?No

Yes

Output parameters

Figure 2.5: The process map for the Hartree self consistent field equations (Equation
2.53). Convergence in the potential is to a desired precision.

So far we have ignored electron-electron interactions. For a large system ofN electrons,

each single electron is affected by the N − 1 other electrons. As such, attempting for an

exact solution to the Schrödinger equation for such a system is simply quixotic, especially

if considering the practicalities of computational resource allocation. Instead it is more

practical to choose a form of U (r) that is physical but computationally feasible. The

method used in this project is just such a computationally manageable one, and uses self-

consistent field calculations. These do not belong to a category of new ideas, although

the specifics have evolved over time. We discuss in this subsection early self-consistent

field theory as an attempt to lift the independent electron approximation, holding the

discussion of the modern form for its own section (Section 3.1).
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We can consider the wavefunction of a single electron in a periodic solid that undergoes

electron-electron interactions, but we do not consider each other electron individually. We

first say that our single electron of interest here interacts with N , and not N − 1, other

electrons. If N is large, we can ignore the difference of a single additional charge. We then

treat the N electrons as a smooth background of negative charge, that effects a potential

on our single electron of

Ue− (r) = −e
∫

ρ (r’)
|r − r’|

δr’ (2.50)

The electron also interacts with positively charged ions at positions R belonging to

the Bravais lattice. The potential felt by such an electron due to the ions is Coulombic,

of form

U⊙ (r) = −e2
∑
R

ZR

|r − R|
(2.51)

where ZR, the atomic number of the atom at position R, is constant and outside the

summation for a monatomic material. If the other electrons with wavefunctions ψj (r’) do

not interact with each other for the purposes of determining the density of the background

negative charge (an acceptable compromise, considering we have already modelled the

other electrons as a distribution of charge instead of distinct entities), and contribute to

the charge density independently, the total electronic charge density is

ρ (r) = −e
∑
j

ψ∗
j (r)ψj (r) . (2.52)

Our single-electron Schrödinger equation is then one of a set of equations for single electron

wavefunctions, ψi, that are to be solved iteratively, the Hartree equations:

− ℏ2

2m
∇2ψi (r)− e2

∑
R

ZR

|r − R|
ψi (r) + e2

∑
j

∫
|ψj (r’) |2

|r − r’|
δr’ψi (r) = ϵiψi (r)

HH = − ℏ2

2m
∇2 + U⊙ (r) + Ue− (r)

(2.53)
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These equations also define what we will call the Hartree Hamiltonian operator, HH .

The iterative method to solve such equations is given in Figure 2.5, and goes as follows:

A starting potential for electron-electron interaction, determined through guesswork,

previous iterations or empiricism, is used to solve the Hartree equations (Equation 2.53.

This produces a solved set for the form of ψi, which is used to produce an updated Ue− .

This potential is then substituted back in to the Hartree equations to solve for a new set

of ψi, and so on. This continues until a result of Ue− is no different than the previous

iteration to within the desired precision.

Hartree-Fock exchange

An N -electron wavefunction that satisfies the Hartree equations is a product of single

electron levels,

Ψ(r1s1, . . . , rNsN) = ψ1 (r1s1) . . . ψN (rNsN) , (2.54)

which in order to obey the Pauli exclusion principle must under particle exchange behave

as

Ψ(r1s1, . . . , risi, . . . , rjsj, . . . , rNsN) = −Ψ(r1s1, . . . , rjsj, . . . , risi, . . . , rNsN) . (2.55)

The only way in which the product of single-electron wavefunctions form of Ψ can satisfy

this antisymmetry requirement is if Ψ vanishes at all points in its domain i.e. the initial

configuration and the exchanged configuration of electrons cannot exist in superposition;

the single-electron product form of Ψ is not appropriate and the Hartree equations are

inadequate. A solution to this is to modify the form of the wavefunction to be a linear

combination of the product of single-electron wavefunctions with the products of the same

single-electron wavefunctions with all combinations of particle exchange, with summation

weights of positive or negative unity depending on the term’s symmetry requirements.
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This is a Slater determinant, and can be displayed as an N ×N matrix

Ψ(r1s1, . . . , rNsN) = ψ1 (r1s1) . . . ψN (rNsN)− ψ1 (r2s2)ψ2 (r1s1) . . . ψN (rNsN) + . . .

(2.56)

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 (r1s1) ψ1 (r2s2) . . . ψ1 (rNsN)

ψ2 (r1s1) ψ2 (r2s2) . . . ψ2 (rNsN)
...

... . . . ...

ψN (r1s1) ψN (r2s2) . . . ψN (rNsN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.57)

=
1√
N !
det (ψi (rjsj)) , (2.58)

where the 1√
N !

is a normalization term. Evaluating the expectation value of the Hartree

Hamiltonian of the N -electron system represented by the Slater determinant results in

⟨HH⟩Ψ =
∑
i

∫
ψ∗
i (r)

(
− ℏ2

2m
∇2 + U⊙ (r)

)
ψi (r) δr

+
1

2

∑
i,j

∫
e2

|r − r’|
ψ∗
i (r)ψi (r)ψ∗

j (r’)ψj (r’) δ (r) δ (r’)

−1

2

∑
i,j

e2

|r − r’|
δsisjψ

∗
i (r)ψi (r’)ψ∗

j (r’)ψj (r) δrδr’

(2.59)

where the Kronecker delta δsisj enforces spin orthogonality. Minimizing this expectation

value with respect to ψ∗
j leads to the Hartree-Fock equation:

HHψi (r)−
∑
j

∫
e2

|r − r’|
ψ∗
j (r’)ψi (r’)ψj (r) δsisjδr

′ = ϵiψi (r) . (2.60)

The Hartree-Fock Hamiltonian operator, HHF is the Hartree Hamiltonian operator,HH ,

plus the Hartree-Fock exchange term, VX :

HHF = HH + VX . (2.61)

This term is an integral operator, where the operand is integrated as part of the operation.

Examining the second term on the left hand side of Equation 2.60 we see that for an
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operand f (r,i) = ψi (r) the term takes on the form of

VXf (r, i) =
∑
j

∫
f (t)K (t, j) δt (2.62)

and so is a sum-integral operator with t = r’ and a kernel

K (t, j) = − e2

|r − r’|
ψ∗
j (r’)ψj (r) δsisj . (2.63)

The Hartree-Fock equations are, in general, not exactly solvable (the special case exception

is the free electron gas), and so approximations are used for the exchange term and any

other perturbations not so far considered. The approximate terms are used to solve for

updated potentials in the same iterative manner as the Hartree equations.

Correlation

The Hartree equations do not take into account electron correlation: how much the motion

of an electron is affected by the motion of the other N − 1 electrons. The updated

Hartree-Fock equations do not attempt to take it into account, either. This is due to the

modelling of other electrons as the smooth background charge of density ρ (r), which both

sets of equations use. So, we can update Equation 2.60 with an additional correlation

term, C, that for now shall remain defined by all unaccounted for perturbations to the

Hartree-Fock equations. This term, as well as computationally tractable approximations

to the exchange term, can be considered together as the exchange-correlation term. This

is discussed further in Section 3.1, and holds significant relevance to density functional

theory as the choice of this term determines the accuracy of any calculations.

Thomas-Fermi screening

Consider a free electron gas in a periodic lattice of positive ions. The positive ions attract

electrons to them, and so an electron will feel the charge of these ions reduced by any

negative charge between itself and the ion i.e. our ion is screened by other electrons

relative to our target electron. These electrons may be core electrons, which are not
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a part of the electron gas beyond their role of screening the full ionic charge of Z, or

they may be free electrons that have been attracted closer to the ions than has our target

electron. The electrostatic potential of the ion, ϕ⊙, leads to the spatial charge distribution

of

∇ · E⊙ (r) = −∇2ϕ⊙ (r) = 4πρ⊙ (r) . (2.64)

An electron will not feel the entire potential due to screening from other electrons between

itself and the ion, but instead will experience

∇ · E = −∇2ϕ (r) = 4πρ (r) , (2.65)

where values without subscript denote the screened values i.e. those physically felt by an

electron at position r. We can consider the screened charge density to be a sum of the

ion’s charge density and the charge density of the perturbed electron gas around the ion,

ρ∼. We note that ϕ⊙ has its source arising from charges outside of the medium of the

electron gas (although intrinsic to the lattice) and ϕ is the total effect experienced by our

target electron. This is the same relationship as between the electric displacement field

and the electric field in dielectric media, so we assume it follows the same relation,

ϕ⊙ (r) =
∫
ε (r − r’)ϕ (r) δr’ , (2.66)

where here ε represents the relative permittivity of the metal. If we take the convolution

of ε (r) and ϕ (r) using a spatial dummy vector, τ , we get

ϕ (r) ∗ ε (r) =
∫
ϕ (τ ) ε (r − τ ) δτ , (2.67)

which if we let τ = r’ (which we are free to do) leads us to recognize that

ϕ⊙ (r) = ϕ (r) ∗ ε (r) . (2.68)
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Through the convolution theorem, then we have that

ϕ⊙ (q) = ϕ (q) ε (q) , (2.69)

where ϕ (q) and ε (q) are the Fourier transforms of our functions and q is the wavevector

associated with the spatial variation of ϕ and ε.

Similarly taking the Fourier transform of our Poisson relationships for ρ, and using

the property of Fourier transforms that

F{δf (x)
δx

} (k) = −ikF{f (x)} (k) , (2.70)

we get

F{−∇2ϕ⊙ (r)} (q) = q2ϕ⊙ (q) = 4πρ⊙ (q) , (2.71)

and the equivalent expression for ρ. If we assume that ρ∼ has a linear response with

perturbation in ϕ, valid for small perturbations and weak potentials, we see that through

analogy with the above convolution of ϕ and ε, and the introduction of a linear response

function related to ε (r) that we will remove later, χ (r),

ρ∼ (q) = χ (q)ϕ (q) . (2.72)

Physical interpretation of χ (q) is that it is the linear susceptibility in Fourier space and

requires the linearity condition we are working under, but is of yet undetermined form.

Using the Fourier transforms of the Poisson equations above, we see that

ϕ (q)− ϕ⊙ (q) =
4π

q2
(ρ (q)− ρ⊙ (q)) =

4π

q2
ρ∼ (q) , (2.73)

giving the relationship between ϕ and ρ∼ i.e. ϕ depends on the charge density that ϕ

itself has induced. We can use the above relationships to express ε in terms of χ, which
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will be used later:

ε (q) =
ϕ⊙ (q)
ϕ (q)

= 1− 4πρ∼ (q)
q2ϕ (q)

= 1− 4π

q2
χ (q) (2.74)

This gives rise to a self-consistent single-electron Schrödinger equation with energy

Hamiltonian

H = − ℏ2

2m
∇2 − eϕ (r) . (2.75)

Again assuming linear relationships from small perturbations in potential and the

restrictions from the semiclassical model (see subsection 2.1.3), from this Hamiltonian

we get the energy of an electron in a self-consistent field to simply be the energy of a

free electron plus an energy perturbation resulting from the local potential, −eϕ (r). The

induced charge density is similarly

ρ∼ = −en (r) + en0 , (2.76)

where n is the electron number density from subsection 2.1.1 modified with the new

perturbed potential, and n0 is this in the limit that the electrostatic potential from the

ions ϕ⊙ = 0,

n (r) =
∫

1

4π3

δk

e
ϵ−µ−eϕ(r)

kBT
+1

, (2.77)

where ϵ is the classical energy, ℏ2k2
2me

. We note that n0 may be expressed as a function

of µ, n0 (µ), where then n (r) = n0 (µ
′) if µ′ = µ + eϕ (r) i.e. n (r) = n0 (µ+ eϕ (r)).

This results in a self-consistent relationship between induced electronic charge density

and local electron number density,

ρ∼ (r) = −e [n0 (µ+ eϕ (r))− n0 (µ)] . (2.78)
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Expanding this around ϕ = 0 gives

ρ∼ (r) = ρ∼ (r)
∣∣∣∣
ϕ=0

+
δρ∼ (r)
δϕ

∣∣∣∣
ϕ=0

ϕ+Oϕ2 + . . .

= −e [n0 (µ)− n0 (µ)]− e
δn0

δ (µ+ eϕ)

δ

δϕ
(µ+ eϕ)

∣∣∣∣
ϕ=0

ϕ+Oϕ2 + . . .

= −e2 δn0

δµ
ϕ

(2.79)

by the chain rule and dropping terms of order ϕ2 and above. From the linearity of Fourier

transforms, and since ρ∼ (q) = χ (q)ϕ (q), we see that

χ (q) = −e2 δn0

δµ
(2.80)

and so

ε (q) = 1 +
k2s
q2

, (2.81)

where the Thomas-Fermi wavevector, ks, is

ks =

√
4πe2

δn0

δµ
. (2.82)

Considering our ion has positive charge Z concentrated within a small region of nuclear

radius, we can treat this as a point charge for all displacements outside the nucleus (a

perfectly reasonable physical restriction for electrons). The electrostatic potential due to

this ion in Fourier space is simply ϕ⊙ (q) = 4πZ
q2

, as for a point charge

ρ⊙ (r) = ZδD (r) , (2.83)

where δD (r) is the Dirac delta function. The Fourier transform of this charge density is

then

ρ⊙ (q) =
∫
ρ⊙ (r) e−iq·rδr = Z

∫
δD (r) e−iq·rδr , (2.84)
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which is non-zero only at r = 0, giving

ρ⊙ (q) = Z

∫
δD (r) δr , (2.85)

which is just the Dirac delta function normalized over all space (1 by definition), times

the ionic charge, Z. So, the total electrostatic potential is then ϕ⊙ (q) divided by ϵ (q) as

ϕ (q) =
4πZ

q2 + k2s
. (2.86)

Inverting this transform to regain dependence on spatial coordinates, we have

ϕ (r) =
Z

r
e−ksr . (2.87)

In Thomas-Fermi screening, therefore, there is a damping term to reduce the Coulombic

electrostatic potential rapidly with increasing displacement from ions of scale 1
ks

. The

value of ks can be estimated by recognizing that for a free electron gas far below the

Fermi temperature, δn0

δµ
is the density of states at the Fermi energy, as µ ≈ ϵF , i.e.

δn0

δµ
= D (ϵF ) =

mekF
ℏ2π2

, (2.88)

and therefore

ks =

√
4kFmee2

πℏ2
=

√
4kF
πaB

, (2.89)

where aB is the Bohr radius,

aB =
ℏ2

mee2
, (2.90)

with the permittivity of free space being set to ε0 = 1 for natural units. This is the form

used by Perdew, Burke and Ernzerhof [43] for their PBE functional, used in this project.

It will be discussed in more detail later in Chapter 3.
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2.2 Energy bands and band structure

In this section we will be returning to some previous assumptions and approximations in

order to discuss instructive and simple cases of how band structure arises e.g. the free

and independent electron approximations. Considering the free electron case, where an

electron has energy

ϵ (k) =
ℏ2k2

2me

, (2.91)

we notice from the discussions in subsection 2.1.2 that in a periodic lattice our wavevectors

are such that

k’ = k + G , (2.92)

where k is a wavevector in the first Brillouin zone (FBZ) and G represents the reciprocal

lattice vectors. This is the origin of the computational parameter of energy cut-off,

discussed more in Chapter 3; the plane wave basis set used in our calculations can be

expanded or contracted by changing the highest energy (largest G) plane wave considered

in the set. We simplify for the purposes of explanation to a one-dimensional ‘empty’ lattice

in the spatial x-dimension, with lattice point spacing of a and where the Bravais lattice

vectors are then simply

R = nax̂ , n ∈ Z . (2.93)

The empty lattice approximation is one where we keep the periodicity of a lattice, but

each lattice point is empty; there are no ions acting as sources of collisions or potentials.

As such, our reciprocal lattice vectors are

G = n
2π

a
k̂x . (2.94)
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Due to the periodicity condition that ψ (r) = ψ (r + R), we can state the energy

equivalently as

ϵ (k) =
ℏ2

2me

(k + G)2 =
ℏ2

2me

(kx +Gxn)
2 =

ℏ2

2me

(
kx + n

2π

a

)2

. (2.95)

The FBZ has width in kx of 2π
a

, and so when centred on 0 runs from −π
a

to π
a
. kx itself

runs between −∞ and ∞, but values outside of the FBZ can be represented by kx values

within the FBZ plus a reciprocal lattice vector, with both representations being exactly

equivalent. We can use this property to represent energy states within the FBZ in the

reduced zone scheme by modulating the kx values by a reciprocal lattice vector of the

appropriate index, n. We do not change kx values between −π
a

and π
a
, we modulate those

outside that range but up to ±2π
a

by Gx2 , and so on.

We can also consider the simple cubic three-dimensional case with side of length a,

where now

ϵ (k) =
ℏ2

2me

(k + v1b1 + v2b2 + v3b3)
2 =

ℏ2

2me

(
k + v1

2π

a
k̂x + v2

2π

a
k̂y + v3

2π

a
k̂z

)2

.

(2.96)

In the three-dimensional case we will represent reciprocal lattice vectors in terms of their

component coefficients v1, v2 and v3 i.e., the reciprocal lattice vector of the band for which

v = v1, v2, v3 = 1,0,0 is G = 2π
a
k̂x. Due to the directional dependence of energy, if we

wish to display the band structure in a two-dimensional plot, we must define a direction

along which to define the energy. Here we will use [100], the x-direction. The lowest lying

band is where G = 0, and so the band energy is k2x (in units such that ℏ2
2me

= 1). Beyond

the FBZ this band can be equivalently represented within the FBZ by other values of G,

as discussed in the one-dimensional case. Bands arising from reciprocal lattice vectors

that are not parallel to the direction of plotting give a more complex picture than in the

one-dimensional case. In this instance, where we are considering the [100] direction, this

lowest energy band is represented within the FBZ by shifting those values outside the

FBZ by the appropriate choice of G, which gives values equivalent to those from the band

40



represented by v = 1,0,0 for −π
a
≤ kx ≤ π

2
. Consider the band for which v = 0,1,0. The

energy of such a band is

(k + G)2 =

(
kx + v1

2π

a

)2

+

(
ky + v2

2π

a

)2

+

(
kz + v3

2π

a

)2

= (kx + 0)2 +

(
ky +

2π

a

)2

+ (kz + 0)2 .

(2.97)

Along the [100] direction ky = kz = 0, so

(k + G)2
∣∣∣∣
v=010

= (kx)
2 +

(
2π

a

)2

. (2.98)

At kx = 0, this energy is the same as for the band represented by 1,0,0, i.e. ϵ (0) =
(
2π
a

)2.
However, at a non-zero value of kx within the FBZ the energy differs between these two

bands, where the band for which v = 1,0,0 has energy ϵ (kx) =
(
kx ± 2π

a

)2. This more

complex band structure arising from increasing dimensionality is displayed in Figure 2.6.

Figure 2.6: A plot of energy in the [100] direction (in units such that ℏ2
2me

= 1) against
kx for a three-dimensional empty lattice with free electron energy, in the reduced zone
scheme. The solid blue line is for energy corresponding to the k-point within the FBZ
(i.e. v = 0 , 0 , 0 ), and the dashed red line is that for v = 0 , 1 , 0 . The FBZ is delineated
with solid vertical bars.
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A more complex system than a simple cubic cell will produce a more complex band

structure, but the procedure is the same. Consider a face-centered cubic cell in the same

approximations as above. The primitive lattice vectors are a1 = a
2
ŷ + a

2
ẑ, a2 = a

2
x̂ + a

2
ẑ

and a3 =
a
2
x̂+ a

2
ŷ where a is the side length of the conventional unit cell. The reciprocal

lattice vectors are therefore b1 = 2π
a

(
k̂y + k̂z − k̂x

)
, b2 = 2π

a

(
k̂x + k̂z − k̂y

)
and b3 =

2π
a

(
k̂x + k̂y − k̂z

)
, which is a body-centered cubic cell with conventional cell side of length

4π
a

.

The first Brillouin zone of such a system is displayed in Figure 2.7a, along with the

positions of some critical points. It is typical to plot band structure between these critical

points, and we can see that the Γ point is at the reciprocal cell origin and the X point is

at 2π
a
k̂y. This is equivalent to points at ±2π

a
in any cardinal direction. Plotting the energy

between Γ and X leads us to define k’ = α 2π
a
x̂, where 0 ≤ α ≤ 1. α = 0 represents the Γ

point and α = 1 represents the X point. As k = k’ + G, we notice that

k = α
2π

a
x̂+ v1b1 + v2b2 + v3b3 . (2.99)

We can use this to plot energy along the Γ → X direction, with different reciprocal lattice

vectors G (differing in their v1, v2 and v3 values) to keep our wavevector within the FBZ.

In units where ℏ2
2me

= 1, the energy of an electron is

ϵ = k2 =
4π2

a2

[
(α− v1 + v2 + v3) k̂x + (v1 − v2 + v3) k̂y + (v1 + v2 − v3) k̂z

]2
. (2.100)

We let v1, v2 and v3 run through −1 ≤ v ≤ 1, v ∈ Z and plot the energy against kx

between Γ and X, shown in Figure 2.7b.

2.2.1 The nearly-free electron model

An improvement can be made to the above discussion of band structure, by maintaining

the independent electron approximation, but dropping the empty lattice approximation

i.e. we introduce a weak periodic potential as in subsection 2.1.2. This is the ‘nearly

free electron’ model, and it works well to describe some metals where the contribution of
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(a) (b)

Figure 2.7: (a) The first Brillouin zone of a face-centered cubic lattice, where the planes
delineating the FBZ are perpendicular planar bisectors of vectors between the lattice point
at the centre of the conventional reciprocal cell and its nearest lattice points, such that
any point in the space enclose by the polyhedron is closer to the lattice point at the origin
than any other. (b) A plot of energy between Γ and X in the FBZ of a face-centered
cubic lattice against kx in the empty lattice approximation with free electron energy, in
the reduced zone scheme.
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electron-electron and electron-ion interactions to the total potential felt by a conduction

electron are significantly damped by the behavior of core electrons. The Pauli exclusion

principle ensures that conduction electrons maintain a notable displacement from ions,

not being able to get past the core electrons, and screening effects reduce the potential

felt at larger displacements.

We can use the equivalent variation of the central equation (Equation 2.30) that

is given in Appendix A, with solutions of the Bloch wavefunction form ψk (r) =∑
GCk−Ge

i(k−G)·r to show that in the case of a free electron (UG = 0), we have

(
ℏ2

2me

(k − G)2 − ϵ

)
Ck−G = 0 . (2.101)

Non-trivial solutions require then that ℏ2
2me

(k − G)2 = ϵ, which in the case of a non-

degenerate system of electrons, may only occur for a single G, which we shall denote

G1.

The non-degenerate case

Considering the non-degenerate case where there is only one reciprocal lattice vector, G1,

for which the equality ℏ2
2me

(k − G)2 = ϵ is true (in the free electron case). We introduce

such a system to a periodic lattice, and treat the kinetic energy term as that of a free

electron. As there is only one electron energy level satisfying this case, ℏ2
2me

(k − G1)
2 ̸=

ℏ2
2me

(k − Gn)
2, n ̸= 1, n ∈ Z, and the difference between this energy level and any other

is much larger than U . For all G ̸= G1 and fixed k we therefore have Ck−G = 0. Our

central equation is now in the form

(ϵ− ϵk−G1)Ck−G1 =
∑
G

UG−G1Ck−G , (2.102)

where for the purposes of reducing clutter we have made the notational substitution for

an energy level corresponding to wavevector k of

ϵk ≡ ℏ2

2m
k2 . (2.103)
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Expressing our central equation in terms of Ck−G, and separating the case of G = G1

explicitly out of the the summation because of the requirement that it is much larger than

for other G (as a part of our initial premise), we have

Ck−G =
∑
G’

UG’−GCk−G’

ϵ− ϵk−G

=
UG1−GCk−G1

ϵ− ϵk−G
+
∑

G’ ̸=G1

UG’−GCk−G’

ϵ− ϵk−G

=
UG1−GCk−G1

ϵ− ϵk−G
+O

(
U2
)
,

(2.104)

where the last term is of order U2 because Ck−G’ vanishes in the limit of vanishing U for

G’ ̸= G1 i.e. it follows the order of U , where in the G1 case it does not.

Substituting this expression of Ck−G in to Equation 2.102, we find that

ϵ = ϵk−G1 +
∑
G

|UG−G1|2

ϵk−G1 − ϵk−G
+O

(
U3
)
, (2.105)

where we can see that energy levels, ϵk−G, above that of ϵk−G1 decrease ϵ by an amount

of order O (U2), and energy levels below increase ϵ by the same order. That is to say that

in the case of non-degeneracy, the value of ϵ for free electrons is of second order in U .

The near-degenerate case

We now consider the near-degenerate case, where we choose a value of k such that there

are a number, n, of G values producing energy levels ϵk−Gn all close in energy to each

other on the scale of U , but differing from any other energy levels not in this set of

n, ϵk−G, by an amount much greater than U . Our central equation is then a set of n

equations, where we again separate the terms from the sum that do not have vanishing

coefficients with vanishing U . The coefficients for a given energy level in near-degeneracy,

Ck−Gi
, 1 ≤ i ≤ n, i ∈ Z, where the energy levels that it is nearly degenerate with are

Ck−Gj
, i ̸= j, 1 ≤ j ≤ n, j ∈ Z, and where the other energy levels that do not share
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near-degeneracy have coefficients Ck−G are then

Ck−Gi
=

1

ϵ− ϵk−G

[
n∑

j=1

UGj−GCk−Gj
+
∑

G’ ̸=Gi

UG’−GCk−G’

]

=
1

ϵ− ϵk−G

n∑
j=1

UGj−GCk−Gj
+O

(
U2
)
,

Gi = G1, . . . ,Gn ,

(2.106)

which is in analogy with the above non-degenerate case. Evaluating the set of central

equations with these coefficients gives

(ϵ− ϵk−Gi
)Ck−Gi

=
n∑

j=1

UGj−Gi
Ck−Gj

+
n∑

j=1

[ ∑
G’ ̸=Gi

UG−Gi
UGj−G

ϵ− ϵk−G

]
Ck−Gj

+O
(
U3
)
,

Gi = G1, . . . ,Gn .

(2.107)

This leads to a larger change in the energy level value due to band repulsion when

compared with the non-degenerate case (of order U compared to U2), so we will consider

the simplified case of two electrons in near-degeneracy for further discussion of how the

nearly free electron model treats band repulsion and predicts the band gap.

Band gaps from the nearly free electron model

Consider now two electron levels in near degeneracy with each other, but energetically

dissimilar from all other levels. The central equation for these levels becomes

(ϵ− ϵq)Cq = UGCq−G

(ϵ− ϵq−G)Cq−G = U−GCq = U∗
GCq ,

(2.108)

where U (r) is real and q = k − G1, G = G2 − G1 have been substituted to avoid

notational clutter. If these levels were truly degenerate then their energies are equivalent,

ϵq = ϵq−G, and their wavevectors will meet in k-space at the same point and have the

same magnitude. As their vector origins differ by a reciprocal lattice vector that point will
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be on a Bragg plane. As the energy levels are nearly degenerate with each other but far in

energy value from all other levels, this condition is only met for wavevectors differing by

the specific G = G2−G1 from our notation; importantly, not those levels ϵq−G’, G’ ̸= G.

This means that the point at which the degenerate level’s wavevectors meet must only lie

on the Bragg plane of G, and not other G’ i.e. in the case of near-degeneracy, q must be

close to a Bragg plane, but cannot be near a point where multiple Bragg planes intersect.

Our central equations for the two nearly degenerate energy levels are coupled equations

that can be represented as

ϵ− ϵq −UG

−U∗
G ϵ− ϵq−G


 Cq

Cq−G

 =

0
0

 . (2.109)

This has non-trivial solutions when the leading matrix is singular i.e.

∣∣∣∣∣∣∣
ϵ− ϵq −UG

−U∗
G ϵ− ϵq−G

∣∣∣∣∣∣∣ = 0 (2.110)

∴ (ϵ− ϵq) (ϵ− ϵq−G)− |UG|2 = 0 , (2.111)

which can be rearranged for

ϵ =
ϵq + ϵq−G

2
±

√(
ϵq + ϵq−G

2

)2

+ |UG|2 . (2.112)

This has the effect of perturbing bands near Brillouin zone boundaries, such that when

q = G
2
, the energy is reduced by |UG| from its free electron energy; this produces a band

gap of 2|UG|, as the equivalent band approaching the Bragg plane from the other direction

in k-space (due to periodicity of the lattice) is increased by |UG|. This is displayed in

Figure 2.8 and is responsible for the formation of band gaps, the structure of which need

not be as simple as displayed.

A categorical distinction can be made between band gaps of two natures: direct and

indirect. A direct band gap occurs when the valence band maximum and conduction band

47



minimum both occur at the same point in k-space, as in Figure 2.8. An indirect band gap

occurs when these energies occur at different points in k-space. This has consequences

for electron energy transitions, discussed in subsection 2.3.3.

(a) (b) (c)

Figure 2.8: (a) Band repulsion in the simple one-dimensional case for two near-degenerate
electrons (solid lines) compared to the free electron case (dashed lines). The difference
between the two at a Bragg plane (here the positive q boundary of the FBZ, q = G

2
), is

|2UG|. The boundary of the FBZ is demarcated by solid vertical lines. (b) Band repulsion
of the system shown in the extended zone scheme across additional Bragg planes. The
boundary of the second Brillouin zone is additionally demarcated by dashed vertical lines.
(c) The same system displayed in the reduced zone scheme. The y-axis scale is twice that
in (b) and (c) as that in (a).

2.2.2 Wannier functions

A given band can be described by Bloch functions as a function of atomic wavefunctions.

These wavefunctions for a crystalline system are Wannier functions, ϕR, and describe

localized molecular orbitals. Our chosen band has a Fourier expansion of its Bloch states

in the direct lattice, i.e.

ψk (r) =
∑
R

ϕR (r) eiR·k . (2.113)
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The Fourier coefficients are the Wannier functions, which form an orthonormal set with

dependence in R:

ϕR =
1

V

∫
FBZ

e−iR·kψk (r) δk . (2.114)

The integration is over the FBZ, and V is the volume of the FBZ in k-space. Wannier

functions provide a real-space representation of electrons in a crystal, and so are a useful

tool for describing phenomena local to an atomic site i.e. molecular bonding. By applying

the correct choice of phase change to the Bloch states, which always results in valid

Bloch states, one can localize the system’s Wannier functions around lattice sites, where

they will then vanish rapidly with increasing displacement from R, greatly simplifying

any problem. This process of transforming the Bloch states, which describe electron

wavefunctions in reciprocal space, into localized Wannier functions in real-space is known

as Wannierization. The process of Wannier interpolation is deployed in this project for

extracting the band structure of hybrid functional calculations, the reasons for using and

description of this method are given in subsection 3.3.1.

2.2.3 Spin-orbit coupling

An electron moving in an electric field (such as the periodic ion field in a crystal)

experience a magnetic field in its frame of reference. This field interacts with the electron’s

magnetic moment, perturbing the Hamiltonian. As the magnetic moment originates from

the particle’s spin, this interaction is known as spin-orbit coupling, or the spin-orbit

interaction. The interaction produces degeneracy splitting within energy levels due to

opposing electronic spin states. In the non-relativistic limit, γ ≈ 1, the magnetic field

experienced by an electron around a hydrogenic atom in its own reference frame is

B =
1

rmeec2
δU (r)
δr

L , (2.115)

(see Appendix E) where L is the angular momentum of the electron, U is the potential

energy of the electron, and r here is the displacement from the ion. The perturbation to
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the Hamiltonian by the spin-orbit interaction is

HSO = HL +HT = µB
gs − 1

rℏmeec2
δU (r)
δr

L · S (2.116)

where µB is the Bohr magneton, gs is a proportionality constant, and the L and T

subscripts denote Hamiltonian corrections due to the Larmor and Thomas interaction

energies, respectively (see Appendix E), and S is the spin angular momentum vector.

The dot product L · S is a function of the electron’s total angular momentum, j, orbital

angular momentum, l, and spin, s, quantum numbers:

L · S =
ℏ2

2
(j (j + 1)− l (l + 1)− s (s+ 1)) . (2.117)

Spin-orbit coupling can be an important phenomenon when discussing the band

structure and energies of materials, as it lifts energy level degeneracy. This can alter

the band gap of semi-conducting systems when compared to modelling without the

spin-orbit interaction. The energy shift due to spin-orbit coupling depends on Z through

r, so heavier elements suffer a greater effect. Beyond this, the spin-orbit interaction

can induce magnetic anisotropy [62, 63] where the magnetic properties depend on the

orientation of the magnetic field with respect to the underlying crystal lattice, and

influences spin-dependent phenomena studied in the field of spintronics [64].
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2.3 Semiconductors

Insulators and semiconductors are materials with only fully filled bands at 0 K and

a band gap between the highest occupied band and the lowest unoccupied band, a

range of energies for which there exists no permitted states i.e. the density of states

is 0. If the band gap is large, few electrons will gain enough energy to move into the

unoccupied band, and so no current will flow. This is an insulator. Semiconductors,

however, have band gaps small enough that enough electrons can gain energy and jump

to the lowest unoccupied level that charge can flow in an appreciable amount. The line

between insulator and semiconductor is not well defined, and a poor insulator may well

be considered a semiconductor.

A way in which electrons in the highest occupied band can gain enough energy to

jump the band gap is through thermal excitation; the higher the temperature, the more

electrons can transition to the next band (the lowest unoccupied band at 0 K). These

bands are no longer fully occupied or unoccupied, and so will be called the valence band

and the conduction band, respectively (collectively referred to as the frontier bands in

reference to frontier orbitals, a subtly different concept). Now the conduction band is

only mostly, but not completely, empty. This allows the electrons in the band to flow

through unoccupied spaces and carry current. The valence band is similarly only mostly

full, and the holes left by the transitioned electrons can also carry current. As such, the

number of charge carriers is a function of temperature, increasing with temperature as

e−
1
T . For metals, charge carrier density is independent of temperature, and so conductivity

is reduced with increasing temperatures due to increased electron-phonon scattering. A

pure material that displays semiconducting properties in the described manner is an

intrinsic semiconductor. Semiconducting properties of an impure material can arise via

the introduction of charge carriers through the impurities. This material would be an

extrinsic semiconductor (which may also have intrinsic semiconducting qualities).

The number of charge carriers in the conduction band per unit volume of a

semiconductor is the integral over the appropriate energy range of the density of

states times the probability of any given electron being found within that energy range
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with respect to energy. We denote this as nc (T ) to demonstrate the temperature

dependence, and similarly subscript the density of states of the conduction band as

Dc (ϵ). So we have

nc (T ) =

∫ ∞

ϵc
Dc (ϵ)

1

e
ϵ−µ
kBT + 1

δϵ (2.118)

and similarly the number of charge carriers in the valence band,

pv (T ) =

∫ ϵv
−∞

Dv (ϵ)

(
1− 1

e
ϵ−µ
kBT + 1

)
δϵ =

∫ ϵv
−∞

Dv (ϵ)
1

e
µ−ϵ
kBT + 1

δϵ , (2.119)

where we have used pv (T ) to represent the number density of valence band charge

carriers as these charge carriers will be holes with positive charge, and ϵc and ϵv are the

energies at the bottom of the conduction band and top of the valence band, respectively.

We assume that the impurity levels are not so high that the material becomes a

degenerate semiconductor: a semiconductor with such a contribution to charge carriers

from impurities that its behavior approaches that of a metal and no longer increases

conductivity with temperature. In this case, ϵc − µ ≫ kBT for ϵ above the conduction

band minimum, and µ− ϵv ≫ kBT for ϵ below the valence band maximum. We can test

the validity of these assumptions in a self-consistent manner given specific information

about impurity levels and the chemical potential of a real sample. So in the case of a

non-degenerate semiconductor we have

nc (T ) ≈
∫ ∞

ϵc
Dc (ϵ) e

−ϵ−µ
kBT δϵ (2.120)

and

pv (T ) ≈
∫ ϵv
−∞

Dv (ϵ) e
−µ−ϵ

kBT δϵ . (2.121)

We can define temperature functions that vary slowly compared to the exponential terms

52



required in nc (T ) and pv (T ) such that

nc (T ) = Nc (T ) e
−ϵc−µ

kBT (2.122)

and

pv (T ) = Pv (T ) e
−µ−ϵv

kBT . (2.123)

These functions are then

Nc (T ) =

∫ ∞

ϵc
Dc (ϵ) e

−ϵ−ϵc
kBT δϵ (2.124)

and

Pv (T ) =

∫ ϵv
−∞

Dv (ϵ) e
−ϵv−ϵ

kBT δϵ . (2.125)

The charge carriers in frontier bands will tend to be close in energy to the band

extrema, ϵc and ϵv, as the excited electrons must first cross the semiconductor band gap,

ϵg = ϵc−ϵv. As excitation energy increases, the likelihood of carriers transitioning far from

these extrema decreases due to the higher energy barrier. As such, the energy-wavevector

relation of charge carriers in such a semiconductor can be approximated as the local band

structure close to the band extrema:

ϵ (k) = ϵc +
ℏ2k2

2m∗
e

= ϵc + ℏ2
∑
ab

ka
(
M−1

e

)
ab
kb (2.126)

for electrons in the conduction band, and similarly

ϵ (k) = ϵv −
ℏ2k2

2m∗
h

= ϵv − ℏ2
∑
ab

ka
(
M−1

h

)
ab
kb (2.127)

for holes, where m∗ and M are the effective particle mass and the effective mass tensor.

Due to this approximation, and by using Equation 2.12, we can say that the density of
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states function for the frontier bands can be approximated as

Dc,v (ϵ) =
√

2|ϵ− ϵc,v|
m

3
2
c,v

ℏ3π2
, (2.128)

where m
3
2
c,v is the determinant of the effective mass tensor for electrons in the conduction

band i.e. the product of its principle values, or equivalent for holes in the valence band.

Substituting this in to our slow varying temperature functions, we get

Nc (T ) =
1

4

(
2mckBT

πℏ2

) 3
2

(2.129)

and

Pv (T ) =
1

4

(
2mvkBT

πℏ2

) 3
2

(2.130)

We can remove the dependence on µ from the carrier densities nc and pv by taking their

product, resulting in the law of mass action,

ncpv = NcPve
− ϵG

kBT . (2.131)

As this is independent of µ, if the concentration of one type of carrier is known, so is

the other. This is regardless of the levels of impurity in a sample, although if impurities

contribute significantly to the semiconductor’s behavior the treatment of this equation

becomes more complicated through µ: both intrinsic and extrinsic semiconductors obey

this law so long as they maintain their non-degeneracy.

In an intrinsic semiconductor where the impact of impurities on carrier density is

insignificant,

nc (T ) = pv (T ) (2.132)

where we can commonly represent these parameters as the intrinsic number density, ni.
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As such,

ni (T ) = [Nc (T )Pv (T )]
1
2 e

− ϵG
2kBT . (2.133)

Assessing our above expressions for ni (T ) and pv (T ) as an equality, we find that

ni (T ) = pv (T ) (2.134)

and

[Nc (T )Pv (T )]
1
2 e

− ϵG
2kBT = Pv (T ) e

−µ−ϵv
kBT (2.135)

which is true in that µ is the intrinsic chemical potential, µi,

µ = µi = ϵv +
1

2
ϵG +

3kBT

4
ln
mv

mc

. (2.136)

We can see that as T → 0, µi → ϵv + 1
2
ϵG i.e. at absolute zero the intrinsic chemical

potential lies in the middle of the band gap. As the effective masses of holes and electrons

are similar, the temperature dependent term will not exceed order kBT , and so the intrinsic

chemical potential will not vary from the centre of the band gap by more than order kBT .

At low enough temperatures that the band gap is large compared to kBT , then, the

intrinsic chemical potential will not approach the edges of the band gap, ϵc or ϵv. Our

original assumption to treat our semiconductor as non-degenerate holds in the intrinsic

case so long as the band gap is large compared to kBT , a condition that is true at room

temperature for almost all pure semiconductors.

2.3.1 Doping

While high levels of impurities can cause degeneracy, in the case of a non-degenerate

extrinsic semiconductor where impurities are an important contributor to carrier

concentration but the law of mass action (Equation 2.131) still holds, the additional
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carriers from the impurities can be treated in a term for carrier density deviation from

the intrinsic case, ∆n = nc − pv. Considering deviation from the intrinsic case,

nc − pv = ∆n , (2.137)

where we make a substitution in terms of the intrinsic number density for

nc −
n2
i

nc

−∆n = 0 , (2.138)

and therefore

nc = −
−∆n±

√
(−∆n)2 − 4 (−n2

i )

2
. (2.139)

The two alternate solutions here physically represent the carrier concentration of electrons

or holes, and which one is represented by the plus or minus is dependent on the particular

impurity. So, in terms of intrinsic behavior, the extrinsic carrier concentrations are

nc =
1

2

(
∆n2 + 4n2

i

) 1
2 +

∆n

2
(2.140)

and

pv =
1

2

(
∆n2 + 4n2

i

) 1
2 − ∆n

2
, (2.141)

where we allow the sign of the value of ∆n to hold the information specific to the particular

source of impurity. In the extrinsic case, then, we can see that either electrons or holes will

be the dominant carrier type; for positive ∆n (where impurities contribute extra electrons)

and as ni

∆n
→ 0, nc → ∆n and pv → 0. The opposite is true for negative ∆n, the case

where impurities contribute holes instead. This results in extrinsic semiconductors with

primarily electrons as charge carriers, referred to as a negative-type semiconductor (n-

type), or primarily holes as charge carriers, referred to as a positive-type semiconductor

(p-type). For the purposes of device engineering, it can be beneficial to intentionally
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add impurities to an intrinsic semiconductor in a process known a doping. The dopant

can be either a donor or acceptor, referring to whether the introduced impurity donates

an electron to the conduction band (to create an n-type semiconductor) or accepts an

electron to create a hole in the valence band (to create a p-type semiconductor).

In the case of a substitutional defect, an impurity in which an atom of the pristine

crystal is replaced by another, we can model a donor impurity as a perturbation of the

crystal equivalent to adding a positive point charge at a lattice site and additional valence

electrons. For a simple case where the added point charge is of magnitude e and only

one additional electron in added, we can consider a silicon lattice with a phosphorus

substitutional defect. The point charge can bind this additional electron, but as it occurs

in the medium of the existing semiconductor, the binding energy is reduced by the static

relative permittivity of the silicon lattice. As the electron is moving in the crystal medium,

it is described by the semiclassical energy

ϵ (k) = ϵc +
ℏ2k2

2m∗
e

. (2.142)

The additional electron has energy states of the conduction band, perturbed by the

impurity point charge, +e i.e. the second energy term can be modelled as a hydrogenic

problem with electronic effective massm∗ around a charge +e/ε. This gives a ground-state

binding energy of

ϵb =
e4m∗

ℏ2ε2
, (2.143)

resulting in a very small binding energy compared to the case of the atom in free space.

Since semiconductors by their nature have an electronic structure that permits charge

carrier transition, they have high relative permittivity. This fact, in addition to the

low effective masses of such impurity electrons, results in the binding energy of our

donor impurity and an electron being significantly less than the band gap observed in

semiconductors. This binding energy has the effect of pulling the electronic energy level

down from where the electron would otherwise be (the bottom of the conduction band),
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introducing a permitted donor energy state, ϵD = ϵc − ϵb. As ϵb is much smaller than ϵG,

this new state arising from the introduced impurity sits near the top of the band gap.

The analogue to this is the expected outcome for an acceptor impurity e.g. boron in a

silicon lattice, where the new permitted acceptor energy state is ϵA = ϵv + ϵb.

2.3.2 Inhomogeneous semiconductors

Inhomogeneous semiconductors are characterized by spatial variations in their composition

or structure, leading to non-uniform electronic properties across different regions or

interfaces within the material. This phenomenon is best illustrated in the case of an

impurity gradient across a short distance and centred on a simple spatial plane in a single

crystal, resulting in distinct n-type behavior on one side of the sharply gradated region

and p-type behavior on the other. Such a region is known as a p-n junction. We will here

consider an abrupt junction at x = 0, where the donor impurity density is zero at x < 0

and the acceptor impurity density is zero at x > 0, and are both otherwise positive and

constant.

The diffusion of majority carriers across the p-n junction leaves behind charged

impurity ions that cannot diffuse, resulting in an electrostatic potential, ϕ (x). This

potential will balance thermal migration, as the resultant electric field reduces diffusion

and reaches an equilibrium state.

The semiclassical energy of an electron in band n in a potential ϕ is ϵn − eϕ, and so

our carrier densities from the previously discussed homogeneous case are now

nc (x) = Nc (T ) e
−ϵc−eϕ(x)−µ

kBT (2.144)

and

pv (x) = Pv (T ) e
−µ−ϵv+eϕ(x)

kBT (2.145)

in the inhomogeneous case. These densities can be determined self-consistently. Far from

the p-n junction, we have potentials of ϕ (x) = ϕ (∞) where the concentration of donor
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atoms is ND = nc (∞), and ϕ (x) = ϕ (−∞) where the concentration of acceptor atoms

is NA = pv (−∞). The potential drop across the junction between the n-side and p-side,

∆ϕ0 = ϕ (∞)− ϕ (−∞), for the case of thermal equilibrium (where µ is constant) is

∆ϕ0 =
1

e

(
ϵG + kBT ln

[
NDNA

NcPv

])
. (2.146)

The subscript denotes that this is the potential drop across the junction in the case of

zero applied voltage.

We define frontier energies and local impurity energies as functions of position and use

these alongside a constant µ to represent band energies across the p-n junction, i.e.

ϵc (x) = ϵc − eϕ (x) (2.147)

ϵv (x) = ϵv − eϕ (x) (2.148)

ϵD (x) = ϵD − eϕ (x) (2.149)

ϵA (x) = ϵA − eϕ (x) . (2.150)

A plot of these energies considered in this manner is given in Figure 2.9. The effect of

perturbation of energy levels near the p-n junction with respect to a constant µ is called

band bending.

The overall charge density due to carriers and impurities is

ρ (x) = e (ND (x)−NA (x) + pv (x)− nc (x)) . (2.151)

If we assume that ϕ varies only over a small region around x = 0 between the boundaries

of a depletion layer at positions −dp and dn, then outside of this region ϕ approaches

its value at ϕ (±∞), depending on which side of the p-n junction is considered. At

values of x > dn, the donor atoms are too far from the p-n junction for their donated

electrons to migrate across the junction, and so nc = ND, and in our simple case we also

have NA = pv = 0 at these positions. For values of x < dp, the equivalent is true for

acceptors and holes; pv = NA and ND = nc = 0. Therefore, outside of the depletion
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Figure 2.9: Energy against x position of an inhomogeneous semiconductor with an abrupt
p-n junction in the plane x = 0. With µ set as a constant between the p- and n-side, ϵc
and ϵv are functions of position, as are the impurity levels ϵD and ϵA. The effect of the
internal potential ψ is to produce band bending near the p-n junction.

layer, ρ (x) = 0. Within the depletion layer far from the boundaries the charge carriers

do migrate across the p-n junction, and so nc << ND and pv << NA, resulting in a

charge density ρ (x) = e (ND (x)−NA (x)). If the depletion layer is large on the scale

of interatomic distance, we can consider Poisson’s equation of electrostatics to relate the

charge density to the potential, and so at values not near the boundaries of the depletion

layer,

∇2ϕ (x) =



0 , x < −dp

4πeNA

ε
, −dp < x < 0

−4πeND

ε
, dn > x > 0

0 , x > dn .

(2.152)

We note that ϕ outside of the depletion layer is ϕ (±∞) by construction, so we can apply

the condition that this and its first derivative is continuous across the boundaries x = dn

and x = −dp, and thus integrate the above terms to recover ϕ (x) within the depletion
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layer:

∇ϕ (x) =



0 , x < −dp

4πeNA

ε
(x+ dp) , −dp < x < 0

−4πeND

ε
(x− dn) , dn > x > 0

0 , x > dn ,

(2.153)

ϕ (x) =



ϕ (−∞) , x < −dp

ϕ (−∞) + 2πeNA

ε
(x+ dp)

2 , −dp < x < 0

ϕ (∞)− 2πeND

ε
(x− dn)

2 , dn > x > 0

ϕ (∞) , x > dA .

(2.154)

If we insist that excess charge on either side of the p-n junction is equivalent to the other

i.e. ϕ and its first derivative are continuous at x = 0, then

4πeNA

ε
(x+ dp)

∣∣∣∣
x=0

= −4πeND

ε
(x− dn)

∣∣∣∣
x=0

, (2.155)

and therefore

NAdp = NDdn , (2.156)

and

ϕ (−∞) +
2πeNA

ε
(x+ dp)

2

∣∣∣∣
x=0

= ϕ (∞)− 2πeND

ε
(x− dn)

2

∣∣∣∣
x=0

, (2.157)

and therefore

∆ϕ0 =
2πe

ε

(
NAd

2
p +NDd

2
n

)
. (2.158)
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We can use these expressions to determine the size of the depletion layer:

∆ϕ0 =
2πe

ε

(
NA

(
NDdn
NA

)2

+NDd
2
n

)
=

2πe

ε
d2n

(
N2

D +NDNA

NA

)
(2.159)

∴ dn =

(
ε∆ϕ0

2πe

NA

ND (NA +ND)

) 1
2

(2.160)

and similarly

dp =

(
ε∆ϕ0

2πe

ND

NA (NA +ND)

) 1
2

. (2.161)

These can be combined in the form

dn,p =

(
ε∆ϕ0

2πe

1

(NA +ND)

) 1
2
(
NA

ND

)± 1
2

dt =

(
ε∆ϕ0

2πe (NA +ND)

) 1
2

(√
NA

ND

+

√
ND

NA

)
,

(2.162)

where the positive index is for dn and the negative for dp, and the total size of the depletion

layer is dt = dn + dp.

Carrier dynamics under applied bias

So far we have considered the simple case of an abrupt p-n junction with constant impurity

concentrations on each respective side of the junction, in the absence of external fields. We

now consider the same junction with an applied voltage, V . We assume that the potential

only varies around the depletion layer, warranted by the reduced charge carrier density in

the depletion region increasing resistance significantly above that found at positions far

from x = 0. The potential drop across the junction between the n-side and the p-side is

then

∆ϕ = ∆ϕ0 − V , (2.163)
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(a) (b) (c)

Figure 2.10: A comparison of carrier density n (x), charge density ρ (x), and potential
ϕ (x), near a p-n junction at x = 0, under the conditions of (a) an unbiased junction
(V = 0), (b) a forward biased junction, (c) a reverse biased junction. The edges of the
depletion layer, −dp and dn, are shown at their unbiased values for comparison.

which has V defined in the opposite direction to ϕ: a positive V increases the p-side

potential with respect to the n-side. In the case of an inhomogeneous semiconductor

device with applied voltage defined in this way, forward bias is a positive V and reverse

bias is negative. We can replace the ∆ϕ0 variable in Equation 2.162 with ∆ϕ for an

applied voltage-dependant expression of the size of the depletion layer,

dn,p (V ) = dn,p (0)

(
1− V

∆ϕ0

) 1
2

. (2.164)

Examining our expressions for the spatial extent of the depletion layer and change in

potential in response to applied bias leads us to say that a forward bias shrinks the

depletion layer and the change in potential and a reverse bias does the opposite, with

respect to the unbiased case. A comparison of bias cases is displayed in Figure 2.10.

Consider electrons in the p-type material, outside of the depletion layer (x < −dp),

where they are minority carriers. Some will be thermally excited out of the valence band

and diffuse across the x = −dp boundary, where the induced electric field of the depletion

layer will drive them to the n-side of the p-n junction. Such a flow of electrons is the
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electron number generation current density, Jgen
e . The current is not dependant on the

(non-zero) magnitude of the potential drop across the junction, only its direction and rate

of diffusion: all electrons diffusing into the depletion layer from the p-side will be driven to

the n-side by the induced electric field, and the field strength does not impact the number

of electrons thus diffusing. There is an opposing current whereby electrons in the n-

type material that possess sufficient thermal energy to overcome the induced electric field

can flow across the p-n junction. Any carriers that undergo this process become excess

minority carriers, and inevitably recombine with one of their opposite, more abundant,

counterparts. As such, this current is that with electron number recombination current

density, J rec
e . The contrary currents for holes, Jgen

h and J rec
h , operate in the same manner.

In equilibrium with no applied voltage, the carrier recombination and generation currents

must be equivalent, as there is no net current across the p-n junction. In either case, the

number of electrons that can contribute to the recombination current is determined by

their energy distribution. The concentration of carriers in non-degenerate semiconducting

systems is low, so we can ignore electron-electron interactions and treat them as moving

independently and following Maxwell-Boltzmann statistics. We then have

J rec
e = Jgen

e , V = 0 (2.165)

where

J rec
e ∝ e

−e
∆ϕ0−V
kBT , (2.166)

therefore

∴ J rec
e = Jgen

e e
eV

kBT , (2.167)

and so

Je = J rec
e − Jgen

e = Jgen
e

(
e

eV
kBT − 1

)
. (2.168)
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The net electrical current density is then

j = jh − je = eJh − (−e) Je = e (Jgen
e + Jgen

h )
(
e

eV
kBT − 1

)
(2.169)

This is an asymmetric function in V , leading to diode-like behavior. At V = 0, the net

current density is 0. At positive V , the function increases exponentially, but at negative V

the exponential term goes to 0 and the function quickly approaches an asymptotic value

of

jsat = −e (Jgen
e + Jgen

h ) . (2.170)

This is the saturation current density, providing the highest magnitude current possible

under reverse bias. As the magnitude of the generation currents are small, this value of

jsat is small, giving the result that forward bias is the bias direction of good current flow,

and reverse bias is the direction of greatly reduced flow.

The saturation current

To find the value of jsat, we must determine a form for the generation current densities.

Consider the drift current, that which is due to the electric field, and the diffusion current,

that which is due to a carrier density gradient. The carrier number densities can be

represented as a sum of these two currents modified by some constants:

Je = −µnncE −Dn
δnc

δx
(2.171)

Jh = µppvE −Dp
δpv
δx

. (2.172)

The first term of each is the carrier drift current with positive proportionality constants

µ. If there exists no electron density gradient in a system where we consider electrons to
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be the sole charge carriers by construction, then

Je = −µnncE (2.173)

j = −eJe = σE , (2.174)

where σ is the conductivity. The condutivity can be experimentally measured, and is

given by the Drude model as

σ =
ne2τ

me

, (2.175)

, which leads to

µn =
eτn
m∗

n

. (2.176)

For a physical interpretation, we consider the electronic acceleration

an =
F

m∗
n

= − eE

m∗
n

, (2.177)

and velocity

vn = anτn = −eτn
m∗

n

E , (2.178)

which leads to

vn = −µnE , (2.179)

i.e. µn is the electron mobility. Similarly, the hole mobility is

µp =
eτp
m∗

p

. (2.180)

The second term in our expressions for the carrier number densities is the diffusion current.

In the case of thermal equilibrium, there must be no net current and so the drift current
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must cancel out the diffusion current. Considering again an electron-only system, we have

0 = Jdrift + Jdiffusion = −µnncE −Dn
δnc

δx
. (2.181)

For non-interacting particles like our low-concentration electrons or holes behaving

according to Maxwell-Boltzmann statistics, the local potential energy, U , uniquely

defines the particle density, n. For particles of charge q in one dimension, and dropping

explicit terms for treating holes and electrons separately, we have then

δn

δx
=
δn

δU

δU

δx
=
δn

δU
qE , (2.182)

therefore

−µnE −D
δn

δU
qE = 0 , (2.183)

where

D = −µn
q

(
δn

δU

)−1

. (2.184)

For Maxwellian particles where A is a constant related to total particle number,

n = Ae
− U

kBT (2.185)

and

δn

δU
= − 1

kBT
Ae

− U
kBT = − 1

kBT
n . (2.186)

We can then determine a relationship between the mobility constants and the diffusion

constants;

D =
µkBT

q
. (2.187)

67



The rate of change of carrier density is determined by the rate of charge carrier flow across

a region of interest, modified by the rate of generation and recombination of carriers, i.e.

(
δn

δt

)
total

=

(
δn

δt

)
gr
− δJ

δx
, (2.188)

where the subscript gr represents the rate of change of density due to generation and

recombination. This rate of change in density depends on the equilibrium values of carrier

densities, where the balance of generation against recombination will shift in order to move

the system towards equilibrium; higher carrier densities result in more recombination and

oppose generation. The rate of change of carrier density is then proportional to the

difference between its current value and its expected value as determined by the law of

mass action (Equation 2.131), the intrinsic number density, ni, given the density of the

other carrier. For electrons,

(
δnc

δt

)
gr
∝ nc −

n2
i

pv
, (2.189)

and for holes

(
δpv
δt

)
gr
∝ pv −

n2
i

nc

. (2.190)

The proportionality constant relates to the expected lifetime of a carrier between

generation and recombination, τr, known as the recombination time:

(
δnc

δt

)
gr
= − 1

τr,n

(
nc −

n2
i

pv

)
, (2.191)

and similarly for holes. The term

− nc

τr,n
(2.192)
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represents the number of electrons lost to recombination, and the term

+
n2
i

pvτr,n
(2.193)

represents those generated. If carrier densities are constant in time, such as with a static

applied bias, we have the steady-state equilibrium conditions of

δJe
δx

+
1

τr,n

(
nc −

n2
i

pv

)
= 0 (2.194)

δJh
δx

+
1

τr,p

(
pv −

n2
i

nc

)
= 0 . (2.195)

In the case of a small electric field and constant majority carrier density, the minority

carrier drift current is very small compared to the minority carrier diffusion current and

can be ignored. Considering electrons, we have then

lim
E→0

Je = −Dn
δnc

δx
, (2.196)

δJn
δx

= −Dn
δ2nc

δx2
, (2.197)

so therefore

Dn
δ2nc

δx2
=

1

τr,n

(
nc −

n2
i

pv

)
, (2.198)

and

Dp
δ2pv
δx2

=
1

τr,p

(
pv −

n2
i

nc

)
(2.199)

for holes.

Consider a position, x0 > 0 in the n-type material (where the p-n junction is at x = 0)

far enough away from the junction such that the density towards which the law of mass

action tends towards (n
2
i

nc
) is the minority carrier density of the n-type semiconductor at

very large displacements, p (∞), but not so far from the depletion layer that the minority
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charge carrier density has reached this equilibrium value. We can introduce a trial solution

for the behavior of the minority charge carrier density, in this case pv (x), of

pv (x) = pv (∞) + e
−x−x0

Lp [pv (x0)− pv (∞)] , (2.200)

where Lp =
√
τr,pDp. We test this trial solution in our above relations:

δ2pv (x)

δx2
=

1

L2
p

e
−x−x0

Lp [pv (x0)− pv (∞)]

=
1

L2
p

[pv (x)− pv (∞)] ,

(2.201)

therefore

Dp

L2
p

[pv (x)− pv (∞)] =
1

τr,p

(
pv −

n2
i

nc

)
, (2.202)

which for the stated Lp and above conditions on the equilibrium density, pv (∞), is true,

validating out trial solution. Examination of the above trial solution provides a physical

interpretation of Lp: as Lp becomes large, the exponential term goes to 0. In this case,

the hole density approaches its equilibrium density i.e. Lp is the distance scale over which

the hole density returns to pv (∞), the distance a hole is expected to travel before it

is lost to recombination, the hole diffusion length. The electron case is the same, with

Ln =
√
τr,nDn.

Finally, we see that an electron will have a reasonable chance of diffusion into the

depletion layer if it is generated within Ln of the depletion layer boundary, and generation

occurs at a rate of

n2
i

pvτr,n
≈ n2

i

NDτr,n
(2.203)

outside of the depletion layer. As such, the rate of flow across the depletion layer boundary

into the depletion layer from the n-side, which is just the electron generation current
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density, is

Jgen
e =

Lnn
2
i

NDτr,n
, (2.204)

and the hole generation current density is

Jgen
h =

Lpn
2
i

NAτr,p
, (2.205)

providing the terms of the saturation current density.

2.3.3 Photovoltaics

The properties arising from the p-n junction between inhomogeneous semiconductors can

be utilized for a number of applications. The directional asymmetry in response to applied

bias results in diode applications, charge carrier depletion results in transistor behavior,

and the induced electric field can drive a current, resulting in photovoltaic devices.

Introducing a load between the p- and n-sides of the junction causes a potential

difference to develop, effectively producing a small bias. This is the simplest classical

photovoltaic device. The resultant current is known as the dark current. Incident photons

on the device may excite electrons from the valence band into the conduction band, as

long as the photon energy is equal or greater than the band gap energy, ϵG. The excited

electrons readily diffuse with some entering the depletion zone, then being accelerated

in the direction of the n-side, driving a current that can be extracted to perform work.

The excitation of electrons from incident photons resulting in a forward voltage is the

photovoltaic effect, and the resultant current the photocurrent. The voltage developed

between isolated terminals in a device constructed around this junction, i.e. when no load

is applied, is known as the open-circuit voltage.

The excitation of electrons between bands is complicated in the case of an indirect

band gap. Incident photons can provide the required energy to raise the electron to

the conduction band minimum, but cannot convey the required crystal momentum ℏk

to move the electron from its point in k-space at the valence band maximum to that
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Figure 2.11: Band structure of a material exhibiting a direct band gap and a smaller
indirect band gap. A direct transition requires the absorption of a photon of energy ϵG1,
while an indirect transition requires both the absorption of a photon of energy ϵG2−ℏω (q)
(ϵG1 > ϵG2), and transfer of crystal momentum from a phonon of wavevector q. In such a
material, transitions of both natures can be expected, with the relative rates dependent
on the spectra of incident light.

of the conduction band minimum. The crystal momentum must come from a phonon

of wavevector q, which also carries a small amount of its own energy, ℏω (q), negligibly

reducing the energy requirement of the incident photon. This is known as an indirect

transition, and they occur over longer timescales than direct transitions of the same

magnitude under the same conditions as they require the additional phonon interaction.

Materials may have active direct and indirect band gaps simultaneously. These cases are

displayed in Figure 2.11.

Excitons

The excitation of an electron to the conduction band leaves behind a hole in the valence

band. In materials with significant screening effects, these charge carriers may be treated

as separate, free entities with a binding energy much lower than kBT . However, in cases

with poor screening, such as low-dimensional systems or those with low electron density,

interaction between the excited electron and resultant hole are important. We treat such

bound electron-hole pairs as a neutrally charged quasiparticle: an exciton. The incident
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photon energy need not exceed ϵG, and must only exceed the energy required to generate

an exciton, the optical adsorption gap, ϵopt, in order to precipitate the photovoltaic effect.

The difference between the conveyed energy to the exciton and the band gap is the binding

energy of the exciton, ϵB. In order to act as charge carriers, the electron and hole must

be separated.

This binding energy is Coulombic in nature and a function of separation of components:

the excitonic radius. The radius, r, is that where the Coulomb attractive force between

electron and hole balance the centrifugal force of their orbit, in analogy to the hydrogen

atom. Ignoring the permittivity of the material and using the effective mass, µ,

Fcent = FCoul (2.206)

−µv
2

r
= −e

2

r2
(2.207)

r =
µ (vr)2

e2
=

(µvr)2

µe2
, (2.208)

where v is the velocity of the electron and hole. The circumference of the orbital path

traced by the exciton as a quasiparticle is an integer multiple of its wavelength, λ = h
µv

,

2πr = n
h

µv
, (2.209)

and therefore

µvr = nℏ . (2.210)

Substituting for µvr, we get

r =
n2ℏ2

µe2
=
n2me

µ

ℏ2

mee2
=
n2me

µ
aB (2.211)

where aB is the Bohr radius. With aX as the radius of an exciton for the sake of consistent
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(a) (b) (c)

Figure 2.12: A schematic representation of band alignments between heterogeneous
semiconductors at their junctions: (a) Type-I, or straddling gap, (b) Type-II, or
staggered gap, and (c) Type-III, or broken gap. In the context of photovoltaic junctions,
the semiconductor with higher conduction and valence band energies is the donor
semiconductor, and the other is the acceptor semiconductors.

nomenclature, we arrive at Equation 2.212.

aX =
n2me

µ
aB (2.212)

Consider a heterojunction between semiconductors, where each semiconductor has

an approximately similar band gap, but different chemical potentials. The conduction

and valence band energies of the total system will suffer a sharp discontinuity across the

junction, such that the band energies in the semiconductors are offset from each other;

this is a staggered (or type-II) band alignment, and is the desired band alignment for

this project. The semiconductor with the higher band energies is the known as the donor

semiconductor, with the other being the acceptor semiconductor, for reasons outlined

shortly. Band alignments are represented schematically in Figure 2.12. In the staggered

gap alignment, an exciton generated from the valence band of the donor semiconductor

may dissociate across the heterojunction if its energy exceeds that of the acceptor’s

conduction band, and it reaches the donor-acceptor interface before recombination. The

hole remains in the donor’s valence band, and the electron may act in the acceptor’s

conduction band. As such, what we called the donor semiconductor has donated an

electron to the acceptor semiconductor. The immediate state where the electron in the

acceptor and the hole in the donor are still bound through the Coulomb force is known
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as a charge-transfer exciton. The charge-transfer exciton fully dissociates into free charge

carriers due to further spatial separation driven by the electric field or via thermally

assisted dissociation.

75



2.4 Nanoscale phenomena

In contrast to crystals extending infinitely in all directions, finite crystals introduce

additional phenomena. Notably, edge effects emerge, while confinement effects arise due

to the reduced dimensionality specific to this project.

2.4.1 Edge effects

Work function

The work function of a material is the thermodynamic work required to move an electron

from the interior of the material to a point ‘just outside’ the surface: a macroscopically

small, but atomically large, displacement. This is an important property for photovoltaic

applications, as it affects energy requirements of charge carrier injection and collection.

Considering an infinite cubic crystal with inversion symmetry. The periodic potential

energy is a sum of contributions from each repeating unit, i.e. each primitive Wigner-Seitz

cell about their respective lattice points:

U∞ (r) =
∑
R

v (r − R) . (2.213)

where v (r − R) is the potential energy of an electron at point r due to the cell centered

at R. Treating a finite crystal as occupying a finite space, Ω, of an infinite crystal, but

with the same configuration,

U��∞ (r) =
∑
R∈Ω

v (r − R) . (2.214)

We are primarily interested with how rapidly this decays with increasing displacement,

and so we examine the form of v (r), the potential energy of an electron at point r due to

some charge distribution ρ (r). Considering a single Wigner-Seitz cell,

v (r) = −e
∫

cell
ρ (r’)

1

|r − r’|
δr’ . (2.215)
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We can manipulate the term

|r − r’| =
√

|r2 − 2r · r’ + r′2| = r

√√√√∣∣∣∣∣1− 2
r̂ · r’
r

+

(
r′

r

)2
∣∣∣∣∣ , (2.216)

leading to

1

|r − r’|
=

1

r
(1 + λ)

1
2 , (2.217)

where

λ = −2
r̂ · r’
r

+

(
r′

r

)2

. (2.218)

Applying the binomial expansion to Equation 2.217 gives

1

|r − r’|
≈ 1

r

(
1− 1

2
λ+

3

8
λ2 − 5

16
λ3 + ...

)
=

1

r
+

r̂ · r’
r2

+
3 (r̂ · r’)2 − r′2

r3
+

1

r
O
(
r′

r

)3

,

(2.219)

with terms collected by power of r. Then the potential energy becomes

v (r) = −e
r

∫
cell
ρ (r’) δr’ − e

r2
r̂ ·
(∫

cell
r’ρ (r’) δr’

)
+O

(
1

r3

)
= −eQ

r
− e

p · r̂
r2

+
e

r3

∫
cell
ρ (r’)

[
3 (r’ · r̂)2 − r′2

]
δr’ +O

(
1

r4

)
,

(2.220)

where Q is the total charge of the cell and p is the total cellular dipole moment. The

crystal is overall neutral, and periodic across cells, so each cell must be electrically neutral,

Q = 0. In our crystal, p = 0 also, as it exhibits inversion symmetry; the contribution of

a cell to the dipole moment must be zero. This is also true for the octupole moment, the

term of order r−4 (not shown above). Considering the r−3 term,

(r’ · r̂)2 = (r′i cos θ)
(
r′j cos θ

)
= r′ir

′
j cos

2 θ . (2.221)
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When i ̸= j this evaluates to zero, and when i = j, r′ir′j = r′2. We then have

(r’ · r̂)2 = r′2⟨cos2 θ⟩ = r′2

3

∴
e

r3

∫
cell
ρ (r’)

[
3 (r’ · r̂)2 − r′2

]
δr’ =

e

r3

∫
cell
ρ (r’)

[
3

(
r′2

3

)
− r′2

]
δr’ = 0 ,

(2.222)

i.e. the quadropole term also vanishes in this specific case of cubic symmetry. As such, the

contribution of any given Wigner-Seitz cell to the potential energy of an electron decreases

as r−5 or faster. So, with the highest occupied state inside the crystal having energy of

ϵF , and the potential outside the crystal very rapidly decaying to the vacuum level, the

work required to move an electron from inside to a position external of the crystal where

the contribution to the potential energy from nearby cells is negligible (‘just outside’),

with zero kinetic energy and in the absence of external fields, is

W = 0− ϵF = −ϵF . (2.223)

However, a finite crystal does not, in practice, maintain the same configuration as an

infinite crystal; surface ions typically do not keep their ideal positions in the would-be

lattice, and they need not exhibit the symmetry previously used to eliminate terms in

the potential energy contribution. As such, local surface multipole moments need not be

vanishing, the net electric field near the surface may be non-zero, and the work function

must be modified with an additional term, WS, the work required to carry an electron

through the electric field near the surface:

W = WS − ϵF . (2.224)

The form of WS is dependent on the material and the quality and orientation of the

surface. The potential energy of an electron outside the crystal returns to its zero value

at large displacements, U = 0 in a vacuum. An example of a resultant potential energy

function is shown in Figure 2.13.
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Figure 2.13: The potential energy of an electron, U , as a function of position in a
finite crystal. The crystal-vacuum interface is at x = 0, and ionic spatial positions
are represented by solid dots. The form of the perturbed potential near the boundary
depends on the surface properties. The work required to move an electron to just outside
the surface, W , is the sum of that required to overcome the infinite lattice potential,
−ϵF , and that required to overcome the surface electric field, WS. The potential outside
the infinite crystal would asymptote to the potential energy at vary large displacements
outside the crystal: U = 0 in vacuum.

Dangling bonds and surface states

As crystals have a periodic structure, a break in this periodicity at a specimen edge can

result in unsatisfied valences of the surface atoms. Where these atoms do not have enough

suitable bonding partners, a dangling bond is found: valence electrons not engaged in a

chemical bond, but that otherwise would be chemically active given a suitable nearby

species. These may occur anywhere in a defective crystal, such as adjacent to a vacancy

point defect, but will be plentiful along a surface of a crystal that has a geometry that

properly satisfies each atom’s valence only when the crystal continues in all directions e.g.

diamond-structure silicon.

Surface dangling bonds are highly reactive, and can be optically active: their electrons

adding an additional energy level between the conduction band and valence band, allowing

for adsorption or emission of lower energy photons. Additionally, they may contribute to

surface states, whereby the abrupt termination of crystal periodicity lifts the Born-von

Karman boundary condition, in turn the requirement that the wavevector k be real is
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likewise lifted. Consider then the Bloch form with complex wavevector k = κ+ iκκκ, where

Re{k} = κ and Im{k} = κκκ:

ψ (r) = u (r) eik·r = u (r) eiκ·re−κκκ·r . (2.225)

This additional term for the imaginary component of k results in a wavefunction that

grows in the opposite direction to κκκ. Far from a surface, the Born-von Karmann

condition holds locally, and this term has no physical relevance. Near a surface the

periodic boundary conditions are lifted, and for a surface perpendicular to κκκ there are

solutions to ψ (r) that grow on approach to the surface, and then decay outside it (as

the potential at infinite displacement outside the crystal must be determined only by

external conditions, and the wavefuntion must be continuous across the boundary).

These described solutions are possible for a discrete set of κκκ, and are surface states.

Precise microscopic calculations of the surface must take them into account by treating

Bloch states without the requirement that k be real near a surface.

2.4.2 Confinement

When the motion of charge carriers in a material is restricted to a small region on the

scale of interatomic distance, altered band structure and electronic properties can emerge.

This is clearly demonstrated by the permitted energy states emerging from the infinite

potential well problem, where electrons are bound in a region of space along one axis by

infinite potential barriers, separated by a displacement, d. The potential within these

barriers is zero. If we say that the infinite potential barriers are plane perpendicular to

the x-axis, the wavefunction solutions are then those of the well known one-dimensional

well problem,

ψn (x) =

√
2

d
sin

nπx

d
. (2.226)
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Substituting this in to the time independent Schrödinger equation (Equation 2.1), we get

discrete energy eigenstates of

ϵn =
1

2m∗
e

(
ℏnπ
d

)2

, (2.227)

which depend on the size of the confined region as d−2. As such, increasing spatial

confinement results in increase the energies of permitted states by widening any gap

between them. This affects the band structure of any material when confinement effects

are pronounced, such as the edge of a specimen. Notably for this work, monolayer systems

obviously only contain regions that are near an edge, and so these effects are pronounced

throughout the crystal in the few-layer regime. A system that is spatially confined in this

way, with one spatial dimension restricted and the other two free, is a quantum well. Also

of note for this work are quantum dots, with spatial confinement in all three dimensions.

With very large values of d, like in a bulk crystal, energy bands can appear continuous

at low resolution: while levels within bands are still quantized, the differences between

levels within the same band are very small. Increasingly smaller values of d result in the

quantization becoming more obvious, and a splitting of energy levels occurs.

These changes to band structure have the typical effect of widening band gaps, but

can sometimes be profound enough to change the nature of the band gap from direct to

indirect, or vice-versa.

Another consequence of confinement is the emergence of the confinement energy of

excitons. The components of an exciton are attractive, resulting in a binding energy that

must be overcome to separate an exciton into constituent charge carriers. An exciton can

be treated as being confined by its own radius, aX (Equation 2.212). If the spatial region

within which an exciton is confined due to the nature of the crystal media decreases below

aX , the binding energy can be treated as having another term for the added energy as a

consequence of decreased radius, the confinement energy. This has the effect of enhancing

the binding energy: excitons are easier to produce via photovoltaic effects, and harder to

separate into constituent charge carriers.
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2.5 Van der Waals (vdW) forces

Van der Waals (vdW) forces, named after Johannes Diderik van der Waals, are

displacement-dependent forces between stable chemical species. They give rise to both

overall repulsive and attractive effects, depending on the separation of the interacting

species. The separation between particles within which the forces become repulsive

while decreasing separation (due to overlapping electron clouds) is the van der Waals

contact distance. At separations larger than this, the forces are weakly attractive due

to interactions between induced and permanent fluctuating dipoles in the species (see

Figure 2.14).

Figure 2.14: The London dispersion force (green, dashed) and Pauli repulsion (blue,
dotted) as a function of separation between interacting species. The net interaction energy
from these forces is in solid red, and where this crosses the y-axis is the van der Waals
contact distance: below this separation, Pauli repulsion dominates and the net force is
repulsive, and vice-versa for above.

These forces are potentially comprised of four components: the Keesom force, the

Debye force, Pauli repulsion and London dispersion forces. Which of the four are included

in the bracket ‘van der Waals forces’ is dependent on the context and the source of

information. Here, we will concern ourselves only with London dispersion forces, and the

discussions of vdW forces will relate only to the London dispersion force unless otherwise

stated. This is because the computational method for handling vdW forces used in this
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Figure 2.15: The deflection of an orbiting electron, in red, around a Bohr nucleus, in blue.
The dotted ellipse is the orbit without an external field, E, the solid ellipse is the deflected
orbit. s is the spatial separation between the original and deflected orbits, resulting in
the electron-nucleus displacement of r′ at angle θ. This separation of charges results in
the induced dipole moment uind.

project (Grimme’s DFT-D3 [65]) only considers the London dispersion force, but this is

not because the London dispersion force is stronger than the others. Conversely, they

are the weakest of the four aforementioned forces. However, Pauli repulsion is handled

implicitly in the exchange-correlation terms, and both Keesom and Debye interactions

require permanent dipoles within a polar molecule. As we are considering only crystals

and the organic molecule pentacene (a non-polar molecule), we need not use a vdW

correction in our calculations that considers the Keesom or Debye forces.

The London dispersion force

The London dispersion force is named for Fritz London, who proposed it as a form of

intermolecular force in 1930 [66], and further described the general case of the interaction

energy in 1937 [67].

Consider a Bohr atom of a nucleus and an orbiting electron, of charge +e and −e,

respectively. The displacement of the electron cloud relative to the nucleus due to an
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external electric field, E, causes polarization such that the induced dipole moment is

uind = es , (2.228)

where s is the displacement of the electron from its unperturbed state. At equilibrium

the force on the electron from the electric field, FE, must be balanced by the restoring

force, FR, which is the Coulombic attraction between the electron and nucleus as

FE = FR , (2.229)

which is

−eE =
−e2

4πεr′2
sin θ =

−e2

4πεr′2
s

r′
=

−euind

4πεr′3
, (2.230)

where ε is the permittivity, and θ is the angle between the unperturbed orbital radius

vector and the perturbed displacement vector, r’, at equilibrium under the effect of the

field E (see Figure 2.15). We then have

uind = 4πεr′3E , (2.231)

which can be expressed in terms of the electronic polarizability of our Bohr atom, α,

uind = αE , (2.232)

where

α = 4πεr′3 . (2.233)

In general, the induced dipole moment and so the polarizability are dependent on the

frequency of the field. We will exclude this treatment for now, but it is considered in the

Grimme’s DFT-D3 [65] treatment of vdW corrections that we use in this project, and
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Figure 2.16: The probability distribution of a quantum harmonic oscillator’s position.
This is representative of the principle of transient dipole moments around an atom or
molecule. The probability distribution is time dependent, and the transition between
states t and t′ results in a transition dipole moment.

discuss in subsection 3.1.3. In that subsection, a proper treatment serves to introduce an

integral over all frequencies, which can be ignored for now.

Without the presence of an external field, neutral atoms and non-polar molecules have

a time-averaged dipole moment of zero. However, the local charge density distribution

around an atom or molecule is variable in time, with transient states of high charge density

and low charge density in any particular part of local space, as represented in Figure 2.16.

If the charge density is high in a region of local space, it will be low elsewhere, and vice-

versa. At any given instant, there then exists a non-zero dipole moment. This transient,

instantaneous dipole moment produces an electric field that polarizes nearby species, as

described above, which generates its own electric field and results in the London dispersion

force between the two.

Consider a point in space, A, separated from a Bohr atom with instantaneous dipole

moment u by displacement r. Let the angle between r and s be θ, and the angle between

the vectors d+ and d− be ϕ. d+ and d− are the vectors between A and the Bohr nucleus

and the Bohr electron, respectively. The geometry of such a system is displayed in Figure
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Figure 2.17: The geometry of the instantaneous dipole of a Bohr atom resulting in an
electric field as considered in this section. We assume that the considered point in space,
A, is far from the Bohr atom on the scale of its electron-nucleus separation.

2.17. If r ≫ s, the magnitudes of d+ and d− can be approximated by

d− ≈ r − s

2
cos θ , (2.234)

and

d+ ≈ r +
s

2
cos θ (2.235)

The electric field felt at point A due to the Bohr electron is

E− =
e

4πεd2−
=

e

4πεr2
(
1− s

2r
cos θ

)2
≈ e

4πεr2
(
1− s

r
cos θ

) . (2.236)

Similarly, the electric field felt at point A due to the Bohr nucleus is

E+ ≈ e

4πεr2
(
1 + s

r
cos θ

) . (2.237)
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The parallel component of the total field from both contributions at A is

E∥ = (E− − E+) cos
ϕ

2

=
e

4πεr2

(
1

1− s
r
cos θ

− 1

1− s
r
cos θ

)
=

e

4πεr2

(
2s
r
cos θ

1−
(
s
r
cos θ

)2
)

≈ e

4πεr2
2s

r
cos θ ,

(2.238)

as if ϕ is small, cos ϕ
2
≈ 1. Similarly, sin ϕ

2
≈ tan ϕ

2
= s

2r
sin θ, and so the perpendicular

component of the total field from both contributions at A is

E⊥ ≈ e

4πεr2
s

r
sin θ . (2.239)

Therefore, the magnitude of the total E-field at point A due to the instantaneous dipole

of a Bohr atom with separation r is

Eu =
√
E2

∥ + E2
⊥ =

es

4πεr3
(
4 cos2 θ + sin2 θ

) 1
2 , (2.240)

which can be displayed more concisely as

Eu =
u (1 + 3 cos2 θ)

1
2

4πεr3
(2.241)

If there is a point charge of +e at point A, producing a field EA such that

EA =
e

4πεr2
, (2.242)

the Bohr atom’s induced dipole moment uind will be aligned with EA and produces the

anti-aligned reaction field

Eu =
−uind (1 + cos2 0)

1
2

4πεr3
=

−2αEA

4πεr3

=
−2α

4πεr3
e

4πεr2
=

−2αe

(4πε)2 r5
.

(2.243)
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The attractive force between the charge at A and the Bohr atom is then

F (r) = eEu (2.244)

and the potential energy of this interaction, the interaction energy, w (r), is

w (r) = −
∫ r

∞
F (r) δr = − αe2

2 (4πε)2 r4
= −1

2
αE2

A . (2.245)

Instead of a point charge, if there is another Bohr atom at point A then the interaction

energy is angle-averaged as

w (r) = −1

2
αE2

A = −1

2
αu2ind

(1 + 3⟨cos2 θ⟩)
(4πε)2 r6

= − αu2ind

(4πε)2 r6
. (2.246)

For Bohr electrons at the first Bohr radius, aB, their electrostatic potential energy is the

Coulombic interaction with their nucleus. For a central potential, the Virial theorem states

that the time-averaged kinetic, T , and potential, U , energies are related as ⟨T ⟩ = −1
2
⟨U⟩.

As such, the sum of these energies gives the total energy, which is 1
2
U . The ionization

energy required to free the electron from its bound state in the Bohr atom, I, is therefore

half that of the potential energy from the Coulomb interaction:

e2

4πϵaB
= 2I (2.247)

and so

aB =
e2

8πϵI
. (2.248)

As the induced dipole moments involved here are uind = es = eaB, the interaction energy

is then

w (r) = −α e2a2B
(4πε)2 r6

,= −
(
4πεa3B

) e2a2B
(4πε)2 r6

, (2.249)
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and so substituting in our expressions for aB and α, we find to order unity that

w (r) ≈ − α2I

(4πε)2 r6
. (2.250)

This is the London dispersion interaction energy, differing from the original derivation

found in London’s 1930 paper [66] by only a coefficient of order unity (but derived and

presented in a different manner), which can be generalised for two non-identical particles

[67] as

wL (r) = −3

2

α1α2

(4πε)2 r6
I1I2
I1 + I2

. (2.251)
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Chapter 3

Computational theory

In this chapter we will discuss how the physical theory of Chapter 2 is applied to

computation and electronic structure calculations. The chapter starts with an overview

of the primary theory used in the project, density functional theory (DFT), and how

functionals are used to make otherwise intractable problems computationally feasible.

This is within Section 3.1, which includes the implementation of the important van

der Waals correction. Pseudopotentials, approximations of real potentials, are used

in electronic structure calculations to reduce computational cost, and their theory is

discussed in Section 3.2, following which is background on some important numerical

algorithms used within Quantum ESPRESSO, as well as an overview of Quantum

ESPRESSO parameters in Section 3.3.
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3.1 Density functional theory

The theory used in this project to calculate properties of our materials is density functional

theory. It is a modelling method to extract the ground state electronic structure from

a system based on its electronic density. A functional is a mapping from some space

into the field of real or complex numbers. More loosely, in the context of a field of

functions, it returns a scalar. An example is the area, A, between two functions, f (x)

and g (x), denoted as A [g, f ]. In the case of DFT, the functionals are of the ground state

electronic density, n0 (r). Modern DFT arose from Hohenberg and Kohn’s 1964 paper on

the matter [68], proving that a functional of the density exists that describes the ground

state energy of the system under a general external potential, which is unique to the form

of the density. Minimizing this functional then gives the ground state energy.

To show that n0 (r) is unique to the potential, we can follow the proof by contradiction

provided by Hohenberg and Kohn. Consider two external potentials, V1 (r) and V2 (r),

that produce the same ground state density. There are associated Hamiltonians, H1,2,

and wavefunctions, ψ1,2, derived from these differing potentials, and so differing ground

state energies, ϵ1 and ϵ2. If the wavefunction ψ2 is a solution to H1, it is not the ground

state solution, which can be shown simply:

ϵ1 = ⟨ψ1|H1|ψ1⟩ < ⟨ψ2|H1|ψ2⟩ = ⟨ψ2|H2|ψ2⟩+ ⟨ψ2| (H1 −H2) |ψ2⟩ , (3.1)

and therefore

ϵ1 < ϵ2 +
∫

[V1 (r)− V2 (r)]n0 (r) δr (3.2)

The wavefunction ψ1 is not the ground state of H2, so we also get

ϵ2 < ϵ1 +
∫

[V2 (r)− V1 (r)]n0 (r) δr . (3.3)
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Adding these expressions together, we get

ϵ1 + ϵ2 < ϵ1 + ϵ2 , (3.4)

and therefore conclude that two differing potentials cannot produce the same ground state

electronic density i.e. the Hamiltonian is fully determined by n0 (r); all properties can,

in principle, be represented by functionals of the ground state density alone. We use

the universal Hohenberg-Kohn functional, FHK [n], so-called as it is independent of the

external potential, and so is identical for all electron systems,

FHK [n] = T [n] + Eint [n] , (3.5)

where Eint [n] is the internal energy functional of an interacting electron system i.e.

electron-electron interaction energy, and T [n] is the kinetic energy term. The total energy

functional is then

EHK [n] = FHK [n] +

∫
Vext (r)n (r) δr + EI , (3.6)

where EI is the interaction term of the nuclei of a given system, and includes any nuclear

terms that do not involve the electrons but do affect the system energy e.g. nucleus-

nucleus interactions. We have then for the ground state density n1 (r)

ϵ1 = EHK [n1] = ⟨ψ1|H|ψ1⟩ , (3.7)

and for some other density n2 (r)

ϵ2 = EHK [n2] = ⟨ψ2|H|ψ2⟩ . (3.8)

Clearly ϵ1 < ϵ2, as n2 (r) is not the ground state density i.e. minimization of EHK [n]

with respect to n (r) gives the ground state energy and density. This is the variational

principle, where any approximated wavefunction solution results in a higher energy than
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the true wavefunction. Local minima in the form of EHK [n] do not necessarily represent

excited states, however.

Hohenberg-Kohn DFT does not itself describe how to model a many-body system in

terms of density functionals; it is not simple to extract desired parameters from a known

form of the density, and the formulation does not attempt to provide a method for doing

so. It is, however, exact in principle.

3.1.1 Kohn-Sham DFT

In 1965, Kohn and Sham provided the method still used today for tractable DFT

calculations [69], where an auxiliary system of independent electron approximation is

created, and solutions found. Kohn-Sham DFT is not itself an independent electron

approximation, but the constructed auxiliary system of independent particles gives the

same density and total energy as the real, many-body system, so Kohn-Sham DFT still

uses independent particle methods. This auxiliary system treats the effects of the real

many-body terms in a functional, the exchange-correlation functional, EXC [n]. This

functional in Kohn-Sham theory is exact, but any practical implementation requires that

it is approximated. This leads to the discrepancies between the results from a Kohn-Sham

method of calculation and the true values, but the method in general provides perhaps

the best trade-off between accuracy and computational resources for a large number of

applications. A notable drawback is the underestimation of band gap energies, which

results from the derivative discontinuity of energy with respect to number of electrons.

This is explored in Appendix G.

In the Kohn-Sham DFT method (in this project the Kohn-Sham DFT method is used,

so any mention of the DFT process in following sections and chapters refers to the Kohn-

Sham variation, unless otherwise specified), calculations are performed on the auxiliary

system using the Hamiltonian

HKS = −1

2
∇2 + Veff (r) , (3.9)
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with Veff (r) being the effective potential acting on an electron at position r, and is of local

form. Potential terms are in principle spin dependent, but we will here consider the spin

symmetric case only as asymmetric spin is not featured in the project. The electronic

density of the system is given by the sum of the square magnitude of the N wavefunctions,

ψi, for each occupied orbital,

n (r) =
N∑
i=1

|ψi (r) |2 , (3.10)

and the Kohn-Sham kinetic energy is the sum of that of independent particles,

TS = −1

2

N∑
i=1

⟨ψi|∇2|ψi⟩ , (3.11)

where the subscript denotes a single-electron treatment i.e. the non-interacting kinetic

energy. The Kohn-Sham energy functional, EKS [n], is similar to the Hohenberg-Kohn

expression except that the internal energy is considered in two parts, with the Coulombic

interaction energy, EH [n], treated explicitly and the exchange-correlation functional,

EXC [n], taking up the rest:

EKS [n] = TS [n] +

∫
Vext (r)n (r) δr + EH [n] + EXC [n] + EI , (3.12)

where Vext (r) is the external potential, and the Coulombic interaction energy of a system

of electrons of density profile n (r) with itself is called the Hartree energy, due to its role

in the Hartree equations in analogous form (Equation 2.53). As a functional of density,

the Hartree energy is

EH [n] =
1

2

∫ ∫
n (r)n (r′)
|r − r′|

δrδr′ . (3.13)

The new exchange-correlation energy term groups the many-body effects from the true

system, and noting that the total energy and the density of the auxiliary system matches

those of the true system i.e. EKS [n] = EHK [n], we compare the two energy relationships
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to find

FKS [n] + EI +

∫
Vext (r)n (r) δr = TS [n] +

∫
Vext (r)n (r) δr + EH [n] + EXC [n] + EI ,

(3.14)

which leads to

FKS [n] = TS [n] + EH [n] + EXC [n] . (3.15)

Recognizing that the true kinetic energy functional can be expressed as the expectation

value of the kinetic energy operator, and similarly for the internal energy functional,

Eint [n] = ⟨Vint⟩, we can express the exchange-correlation energy functional explicitly

as the difference between the kinetic and internal energies of the true system and the

independent-particle auxiliary system,

EXC [n] = ⟨T ⟩+ ⟨Vint⟩ − (TS [n] + EH [n]) . (3.16)

This demonstrates that if the exchange-correlation functional was known, the more

computationally tractable independent-particle auxiliary system can be used to find the

exact ground state energy and density of the true many-body system. As such, finding

solutions to the Kohn-Sham system can provide an approximation of the ground state

energy to the degree of accuracy that the approximation of EXC itself carries.

Varying the orbitals in the Kohn-Sham energy functional gives us the variational

equation,
δEKS

δψ∗
i

=
δTS
δψ∗

i

+
δn

δψ∗
i

Veff (r) , (3.17)

where we have reduced clutter by taking advantage of the chain rule of differentiation and

introduced the effective potential, Veff,

Veff (r) ≡
δEext

δn
+
δEH

δn
+
δEXC

δn
, (3.18)
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where Eext is the energy due to the external potential,

Eext =

∫
Vext (r)n (r) δr . (3.19)

We see from expressions above that

δTS
δψ∗

i

= −1

2
∇2ψi (r) (3.20)

and

δn

δψ∗
i

= ψi (r) . (3.21)

In order to minimize EKS within the constraints of orthonormality,

⟨ψi|ψj⟩ = δij , (3.22)

we use the method of Lagrange multipliers, where λij are the multipliers, to get

(
−1

2
∇2 + Veff (r)

)
ψi (r) =

∑
j

λijψj (r)

λij = δijϵj .

(3.23)

This is outlined in Appendix H, and when i = j, we are left with the Schrödinger-like

Kohn-Sham equations,

(HKS − ϵi)ψi (r) = 0 (3.24)

These are independent-particle equations, and are solved self-consistently between the

potential and the density. Note that there is no dependence on the specific form of EXC :

if it were to be exactly known, these equations would model the true many-body system

and provide the exact ground state energy.
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Self-consistent solutions

The coupled Kohn-Sham equations, Equation 3.24 (one for each electronic state, ψi), can

be solved iteratively, with an initial guess for Veff (subject to the given approximation of

EXC) to solve for the electronic density, with this result feeding back in a new solution

for Veff, until convergence is achieved. This is the same general process as outlined in

subsection 2.1.4, with the Kohn-Sham process displayed in Figure 3.1. Finding the

solution to the Kohn-Sham equations is the computationally expensive process within

electronic structure calculations, scaling with the number of electrons within a system,

N , as O (N3), as diagonalization of an M ×M Hamiltonian matrix scales as M3, and

M ∝ N ; solving the Hamiltonian for N electrons is done by constructing the Hamiltonian

matrix, H,

H ≡



H11 H12 . . . H1m

H21 H22 . . . H2m

...
... . . . ...

Hl1 Hl2 . . . Hlm


, (3.25)

where l and m are matrix component indices related to the set of basis functions, such

that

H



c1n

c2n
...

cmn


= En



c1n

c2n
...

cln


, (3.26)

for n eigenstates. We can construct an orthogonal matrix of eigenvectors,

C =



c11 c12 . . . c1m

c21 c22 . . . c2m
...

... . . . ...

cl1 cl2
... clm


, (3.27)
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and use this to diagonalize the Hamiltonian matrix to recover eigenstates:

CTHC =


E1 0 . . .

0 E2 . . .

...
... . . .

 . (3.28)

It is this process that leads to the scaling as O (N3), as the matrix elements are related

to the basis functions used, themselves being of a number proportional to N .

Total energies are in general calculated during the output stage, but some modern

codes, including the Quantum ESPRESSO packages used in this project, use the energy

functional as a self-consistency check and so calculate them at that stage instead.

Formally, the Kohn-Sham energy is a functional of the electronic density, but it may

be practically considered to be a functional of the potential that is input to the Kohn-

Sham equations during a self-consistent calculation. This is a method utilised by the

PWscf package in the Quantum ESPRESSO suite used in this project [46]. This package

calculates the Kohn-Sham energy as a functional of the input effective potential, Vin, as

EKS [Vin], and also, separately, as an explicit functional of the input density; the Harris-

Weinert-Foulkes functional form, EHWF . The Harris-Weinert-Foulkes [70–72] functional

is one where the total energy is given as an explicit functional of the input density whereas

the Kohn-Sham functional is in terms of the output density:

EHWF [nin] =
∑
i

∫
ψ∗
i (r)

(
−1

2
∇2 + Vext (r) + Vin (r)

)
ψiδr− (3.29)∫

nin (r)Vin (r) δr + EHXC [nin] . (3.30)

The Kohn-Sham energy functional (Equation 3.12) can be alternately expressed as

EKS [nout] =
∑
i

∫
ψ∗
i (r)

(
−1

2
∇2 + Vext (r)

)
ψiδr + EH [nout] + EXC [nout] + EI

=
∑
i

∫
ψ∗
i (r)

(
−1

2
∇2 + Vext (r)

)
ψiδr + EHXC [nout] ,

(3.31)

where EHXC is the sum of the Hartree, exchange-correlation and atomic interaction term.
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Initial guess
for nin (r)

Calculate effective potential
Vext (r) + Vh [n] + VXC [n]

Find wavefunction solutions
for Kohn-Sham equations
(HKS − ϵi)ψi (r) = 0

Calculate electronic density
nout (r) =

∑
i fi|ψi (r) |2

Self-consistency
achieved?

Set new density input
nin (r) = M (nout)

No

Yes

Output parameters

Figure 3.1: The process map for the Kohn-Sham DFT self-consistent loop. fi is a
weighting function to maintain the total electron number and M (nout) is a mixing
function, the nature of which is described later in this subsection.
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For a given input density then the difference between these energies is only dependent on

the difference between potential terms using input and output densities as

EKS − EHWF = EHXC [nout]− EHXC [nin] , (3.32)

where the Hartree term is dominant, and so

EKS − EHWF ≈ EH [nout]− E [nin]

≈ 1

2

∫ ∫
[nout (r)− nin (r)] [n (r′)out − nin (r′)]

|r − r′|
δrδr′

=
1

2

∫ ∫
∆n∆n′

|r − r′|
δrδr′ ,

(3.33)

where ∆n = nout (r)− nin (r) and is small. This is the way in which the PWscf package

determines the degree of self-consistency during an iterative step [46] as at the self-

consistent Kohn-Sham energy EKS = EHWF and ∆n = 0.

Mixing

At the end of the ith iteration, if self-consistency has yet to be reached, a choice must

be made for n
(i+1)
in . The simplest option is just to set it to n

(i)
out, but this typically

results in large step sizes and, near the self-consistent solution, an n
(i)
out = n

(i+1)
in that

has stepped across the ground state density from n
(i)
in . This can occur for some number

of iterations, with only very small improvements in ∆n per iteration i.e. n
(i)
in ≈ n

(i+2)
in ,

and similarly for nout. The worst case scenario is that new iterates become restricted to

a subspace of previous iterates, and the process will run indefinitely without convergence

(or divergence). A simple solution to this is linear mixing, where n(i)
in is modified by some

fraction of ∆n to give n(i+1)
in , as in Equation 3.34a below (with the more general form in

Equation 3.34b, where fi is the residual, or error vector, between iterative steps), where

this fraction is α:

|n(i+1)
in ⟩ = |n(i)

in ⟩+ α
(
|n(i)

out⟩ − |n(i)
in ⟩
)

(3.34a)
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xi+1 = xi + αfi (3.34b)

In this way the mixing parameter α ∈ 0, 1 determines the degree of influence that

previous iterations have on the current iterate. A larger α will more closely replicate the

case where n(i+1)
in = n

(i)
out, and a smaller α may take a long time to converge due to very

small step sizes. The specific choice of this parameter, and analogous parameters for the

more complex mixing methods below, depends on the system and specific form of the

space of density functions. Practically, it is chosen empirically.

Figure 3.2: A schematic representation of the root-finding algorithm, the Newton-Raphson
method. An iterative estimate xi, is updated by the intercept of the derivative of the slope
at xi.

The basis for the Broyden method [73] of mixing is the well-known Newton-Raphson

method, which is as follows: a set of m nonlinear equations

fj (x1, x2, . . . , xm) = 0 (3.35)

for j ∈ Z, 1 ≤ j ≤ m, can be expressed as the function application of the function operator
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column vector f to the column vector of independent variables x, such that

f (x) =



f1 (x1, x2, . . . , xm)

f2 (x1, x2, . . . , xm)

...

fm (x1, x2, . . . , xm)


= 0 . (3.36)

Considering a plot of f (x) against x in some abstracted vector space (or simply the two-

dimensional scalar analogue), the Newton-Raphson method takes a tangent along f (x) at

xi, and evaluates its horizontal axis intercept. As long as xi is not separated from the

horizontal axis intercept of fi (x) by a local minima (i.e. xi is close to the true root), then

the intercept of the tangent will be closer to the root than is the value of xi, and so is

taken as xi+1. This is visualized in Figure 3.2. The slope-intercept form of such a tangent

can be seen to be

f (x) = Ji (x − xi) + fi , (3.37)

where term fi is shorthand for f (xi). When this equation is evaluated at the root (f (x) =

0), at which point x = xi+1, results in

xi+1 = xi − J−1
i fi , (3.38)

where the Jacobian matrix of f (x) within any given iteration is

J =
δf (x)
δx

=



δf1(x)
δx1

δf1(x)
δx2

. . . δf1(x)
δxm

δf2(x)
δx1

δf2(x)
δx2

. . . δf2(x)
δxm

...
... . . . ...

δfm(x)
δx1

δfm(x)
δx2

. . . δfm(x)
δxm


. (3.39)

This method can be very computationally expensive, with m2 evaluations of δfj(x)
δxm

per

iteration if solved analytically, and numerical solutions are still excessive for systems of
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interest to this project (and modern electronic structure applications in general); m here

is proportional to the number of electrons in the system. Additionally, if the initial guess

of x is not sufficiently close to the root, there may be a failure of convergence altogether

(as alluded to above in the requirement that xi be not separated from the root by a local

minima).

In the context of Kohn-Sham DFT, we are trying to minimize ∆n i.e. the output

density of iteration i should equal the initial input density of iteration i after it is fed

through the Kohn-Sham equations via the effective potential. The iterative method is used

after the determination of nout via the potential; we will discuss here only the selection of

a new density where nout is ni and the subsequent new nin is then ni+1. The above f (x)

is therefore specifically ∆n, and the variables x are the density n.

A method that reduces the large computational costs of the Newton-Raphson method

is that of Broyden’s second method, where we consider an approximation to the Jacobian

matrix J, calculate it once and then update it every iteration with a matrix that is more

tractable. In the following, we use the notation H and C due to their use in the surrounding

literature, but they no longer represent the Hamiltonian and eigenvector matrices that

they did above. The approximate Jacobian matrix is denoted B, and we additionally

define

pi = −B−1
i fi , (3.40)

and the above Newton-Raphson relationship becomes

xi+1 = xi + tipi , (3.41)

where ti is a scalar coefficient that we will for now treat as arbitrary, but is chosen to

prevent divergence (although it does not guarantee convergence). As such, our solution

such that f (x) = 0 is

x = xi + tpi . (3.42)
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For each of the nonlinear equations we have

δfj
δt

=
m∑
k

δfj
δxk

δxk
δt

, (3.43)

which implies that

δf
δt

= Jpi (3.44)

where the left hand side is the vector consisting of derivatives of fj with respect to t. If

we could solve this analytically without unreasonable computational resources, we would

not need this method in the first place. So, we look for approximations to the Jacobian

matrix at the point xi. We can expand about ti the term

f (ti − s) ≈ fi+1 − s
δf
δt

(3.45)

where si is chosen to be small and is the coefficient of the ratio between the Jacobian

matrix and its estimate, B (a ratio that should be approximately one for a good solution),

used as a difference between consecutive steps of f (ti). We have also excluded higher order

terms in our Taylor expansion on the premise that s is small. When, therefore, fi+1 and

f (ti − si) are known, an approximation of δf
δt

and so the Jacobian matrix need not be

computed directly. We can represent the above expansion as

fi+1 − f (ti − s) ≈ siJpi , (3.46)

and as we are aiming to improve the agreement between J and B with each step, we are

trying to choose a Bi+1 that satisfies

fi+1 − f (ti − s) = siBi+1pi . (3.47)

In order to find the root of the initial problem, x such that f (x) = 0, one needs to solve m

equations of p = −B−1
i fi. This can, however, be reduced to matrix-vector multiplication,
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saving resources. For the purposes of reducing clutter we define

Hi = −B−1
i (3.48)

and

yi = fi+1 − f (ti − si) (3.49)

such that we have now

pi = Hifi (3.50)

and

Hi+1yi = −sipi = −siHifi . (3.51)

This equation describes the change in the value of the our function, f (x), between an

evaluation at xi+1 and xi + (ti − si)pi. It does so through the gradient of the function

in the direction of pi (through the estimate of our Jacobian matrix). If we consider this

for some arbitrary vector, vi, we have two limit cases whereby if vT
i yi = 0 i.e. vi and yi

are orthogonal to each other, and the case where vi = yi. In these two cases, then, the

difference change in our matrix from an iterative step in the direction vi is

Hi+1vi −Hivi =


0 if vT

i yi = 0

−sipi −Hiyi if vi = yi

. (3.52)

The first case is justified by the fact that there is no information about the rate of change

in directions other than yi. We chose then an updated matrix Hi+1 such that the change

in our function f (x) in a direction orthogonal to yi is unaffected by iterative improvement

of our matrix. We are in this manner directed towards finding a more satisfying expression
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that obeys the above conditional equality, which is simply

vi (Hi+1 −Hi) = (−sipi −Hivi)
vT
i yi

yT
i yi

. (3.53)

Evaluating this where vi = yi, which is the original direction we are interested in anyway,

we find through rearranging that

Hi+1 = Hi −
(sipi +Hiyi)yT

i

yT
i yi

. (3.54)

Using this relation, the Jacobian matrix can be updated by a rank-one matrix, without

having to solve for the Jacobian during every iteration. This is Broyden’s second method,

and in this project we use a modified version of this method by Johnson [74] to handle the

choice of the next iteration’s input density. Broyden’s first method requires the storage

of N ×N matrices (which can be really quite large for systems of interest), whereas the

second method does not; by using the inverse of the Jacobian matrix, it devolves to a

problem of i vectors of length N . Johnson’s modification builds additionally on a former

modification by Vanderbilt and Louie [75], where information from historic iterations

(and not just the single most recent) is used in order to improve the next guess of the

Jacobian matrix. Doing so acts to improve the rate of convergence as it provides an

additional check on overstepping the root, similar to the implementation of α in simple

linear mixing. Johnson’s work removed the storage requirement of N × N matrices by

applying the same principle by Vanderbilt and Louie to Broyden’s second method, with

the inverse Jacobian matrix.

The following exposition is based on work by Johnson [74], with some changes in

nomenclature to agree with our previous notation. First, a function is constructed that

describes the weighted error in the current inverse Jacobian, and the weighted error in

all previous inverse Jacobian matrices from iteration j if they were determined by the
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current iteration’s vector solutions. This function is

E = w2
0|Hi+1 −Hi|2 +

i∑
j=1

w2
j |∆xj +Hi+1∆fj|2 , (3.55)

where w0 and wj are the weights of the errors and ∆xj and ∆fj are the differences from

iterations j+1 and j of xj and fj, scaled by |fj+1− fj|, respectively. As such, ∆fTj ∆fj = 1.

Minimizing this function gives

δE

δHi+1

= 0 = w2
0|Hi+1 −Hi|+

i∑
j=1

wj|∆xj +Hi+1∆fj||∆fj| , (3.56)

and so

Hi+1 = Hi −
i∑

j=1

w2
j

w2
0

∆xj∆fTj −
i∑

j=1

w2
j

w2
0

Hi+1∆fj∆fTj , (3.57)

which can be rearranged and displayed as

Hi+1 = γi+1β
−1
i+1 (3.58)

where

γi+1 = w2
0Hi −

i∑
j=1

w2
j∆xj∆fTj (3.59)

and

βi+1 = w2
0I+

i∑
j=1

w2
j∆fj∆fTj , (3.60)

with I as the identity matrix. To find the inverse of βi+1, an infinite Neumann series

expansion of (I− X)−1 =
∑k

0 X
k was performed, where here

X = (−1) ∆̃fj∆̃f
T

j ,

∆̃fj ≡
wj

w0

∆fj .
(3.61)
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As such, using Einstein notation to handle the notationally unwieldy summations, the

infinite expansion is

β−1
i+1 = w−2

0 (I− X)−1

= w−2
0

[
I− ∆̃fj∆̃f

T

j +
(
∆̃fj∆̃f

T

j

)2
−
(
∆̃fj∆̃f

T

j

)3
+ . . .

]
= w−2

0

[
I− ∆̃fj∆̃f

T

k

(
δjk − Ãkj + ÃkiÃij − ÃkiÃinÃnj + . . .

)]
,

(3.62)

where an extra summation index is included with each increasing power of the infinite

series (k and n so far), and A is defined as

Aij = wiwj∆fi∆fTj ,

Ãij ≡
wj

w0

Aij .
(3.63)

It is at this point that Johnson modifies the method that so far has been the same as

that from Vanderbilt and Louie [75]; recognizing that the infinite series term is itself a

Neumann series, it can be contracted, returned to the usual summation notation, and the

weighting terms taken back out explicitly:

β−1
i+1 = w−2

0

[
I−

∑
j,k=1

wjwk∆fj∆fTk
(
w2

0I+ A
)−1

kj

]
= w−2

0

(
I−

i∑
j,k=1

wjwkCkj∆fj∆fTk

)
,

(3.64)

where

Ckj ≡
(
w2

0I+ A
)−1

kj
. (3.65)

Johnson then substitutes this inverted term, β−1
i+1, into Equation 3.58 and factorises

to get

Hi+1 = Hi −
∑
j,k=1

Ckj (Hi∆fj +∆xj)∆fTk . (3.66)

To put this in terms of H1, Johnson uses a process of induction to produce the
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relationship

Hi+1 = H1 −
i∑

k=1

Z(k)
i ∆fTk , (3.67)

where

Z(k)
i =

i∑
k=1

Ckjuj + w2
0

i−1∑
j=1

CkjZ
(j)
i−1 , (3.68)

and

uj = H1∆fj +∆xj . (3.69)

The matrices here are small i × i matrices, instead of the large N × N that would have

to be dealt with using Vanderbilt and Louie’s modification starting with the Jacobian, B.

Now, for small w0, the above expression can be recast as

Hi+1 = H1 −
i∑

j,k=1

Ckjuj∆fTk +O
(
w2

0

)
. (3.70)

In this limit Hi can be expressed in terms of H1 and a sum over i−1 to update the general

form of Equation 3.34 through α, given the final modified Broyden expression:

xi+1 = xi +H1fi −
i−1∑
j,k=1

wjwk∆fTk fiCkjuj . (3.71)

By examination of Equation 3.71 we see that in order to update our value for n each

iteration, we must keep in memory the current vectors x and f, all previous iterations of the

vectors u and ∆fT , and the matrix A. This leads to the fairly modest storage requirement

of an i × i matrix and i vectors of length N . The value of H1 is chosen empirically, and

in the primary computational suite used in this project, Quantum ESPRESSO, it is

αI, 0 < α < 1. With this definition, Equation 3.71 reduces to linear mixing with some

correction, although subsequent iterations of H cannot be represented by a scalar multiple

of the identity matrix. Within Quantum ESPRESSO’s PWscf package, the parameter
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that controls H1 through α is the mixing_beta (despite the name, we have represented

it here as α in keeping with the relevant literature surrounding the Broyden class of

methods).

3.1.2 Exchange-correlation functionals

The Kohn-Sham DFT formulation is, in principle, an exact theory. The component

that prevents practical attempts to wield the theory from being exact is the exchange-

correlation functional. A good approximation to this component results in good

approximations in output parameters, with a number of levels of theory existing as

options. The simplest is the local density approximation (LDA), which is then built upon

in subsequent improvements. The concept of the electron hole reappears here, but in a

slightly different context; instead of being a region of relative positive charge due to a

missing electron, it is the region surrounding an electron that has a decreased probability

of containing a second electron due to the exchange (Pauli repulsion) and correlation

(Coulomb repulsion) interactions.

We can express the exchange-correlation energy of Equation 3.12 in terms of each

individual interacting electron as

EXC [n] =

∫
n (r) ϵXC ([n] , r) δr , (3.72)

where ϵXC ([n] , r) is the exchange-correlation interaction energy of a single electron at

point r as a functional of the density within a neighbourhood around r. The energy of an

electron interacting with its own hole is

ϵXC =
1

2

∫
nXC (r, r′)
|r − r′|

δr , (3.73)

where nXC (r, r′) is the hole around an electron at r caused by exchange-correlation. We

do not necessarily know the shape of this hole, but we do know that the electron density

must integrate over all space to give the total number of electrons. So, as the exchange-

correlation density reduces the electronic density around the reference point r due to the
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Pauli exclusion principle, in order to maintain the correct total electron count, N , we

have that

∫
nXC (r, r′) δr′ = −1 , (3.74)

known as the sum rule.

The local density approximation

The local density approximation (LDA) is the approximation that the exchange-

correlation energy at each point r is the same as that in a homogeneous electron gas

with the same density as our system at that point r (the density is local to the position

r). In the homogeneous case, the electron hole will be spherical in shape, and the

exchange-correlation energy functional is

E
(LDA)
XC [n] =

∫
ϵ(hom)
XC (n (r)) δr

=

∫
ϵ(hom)
X (n (r)) δr +

∫
ϵ(hom)
C (n (r)) δr .

(3.75)

The exchange functional for a single electron, ϵ(single)
X (n (r)), is given in Equation 2.60

as the exchange term, i.e.

ϵ(single)
X (n (r)) = −

∑
j

∫
e2

|r − r’|
ψ∗
j (r’)ψi (r’)ψj (r) δr′ , (3.76)

for unpolarized spin cases. For wavefunctions of the plane wave form

ψ (r) = eik·r (3.77)

and making use of the Fourier transform of the Coulomb term,

q2

|r − r′|
= 4πq2

∫
1

(2π)3
1

k

2

eik·(r−r′)δk , (3.78)
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when q = e, via Equation 3.76 we reach the expression

ϵ(single)
X (n (r)) = −

∑
j

∫ [
4πq2

∫
1

(2π)3
1

k

2

eik·(r−r′)
]
ψ∗
j (r’)ψi (r’)ψj (r) δr′ . (3.79)

Letting e = 1 for natural units, this has the analytical solution

ϵ(single)
X (n (r)) = −kF

π
F (x) , (3.80)

where

F (x) = 1 +
1− x2

2x
ln

1 + x

1− x
, (3.81)

x =
k

kF
. (3.82)

The exchange energy per electron of a homogeneous electron gas, then, is this exchange

energy of a single electron divided by two (to avoid double counting), with F (x) evaluated

as its average value of 3
2
:

ϵ(hom)
X (n (r)) =

EX

N
= − 3

4π
kF = −3

4

(
3n(hom)

π

) 1
3

. (3.83)

The correlation energy of an electron is the interaction energy of that with all other

electrons. The holes produced by the other electrons act to screen these interactions,

such that the long-range Coulomb interaction can be treated as exponentially decaying.

The screening models used are saved for discussion later in the specific context of the

exchange-correlation functional used during this project, but the correlation energy in

general cannot be found analytically. Even in the simple system of a homogeneous electron

gas, one must use interacting many-body methods, the gold standard of which is currently

quantum Monte Carlo calculations.
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The generalized gradient approximation

The LDA is based on the premise that our system of interest behaves similarly to a uniform

electron gas with respect to exchange and correlation interactions. However, in the case

of non-homogeneous systems (molecules, heterostructures, systems with defects, crystal

that are not monatomic), there is a non-constant density, even over short range. In order

to capture this variation in density, one might expect a more reasonable approximation

for the exchange-correlation functional to include a term corresponding to the change in

density with respect to position i.e. the gradient of the density.

A method for doing this is to expand the local density approximation as a series, and

drop higher order terms, which is schematically

f = fLDA (1 + µ1s
2
1 + µ2s

2
2 . . .

)
, (3.84)

where often only the first term in s is included, for an s of form

sm =
|∇mn|
n1+m

3

. (3.85)

The denominator in sm is to normalize to a dimensionless quantity (in natural units,

e = 1), such that s is the reduced gradient. The specific form of s varies between

functionals, but is modified to be a measure of how fast the density changes over particular

scales. For our purposes here, we will drop all terms other than s1, simply referred to

as s. µ is determined by the particulars of the functional: either empirically to result

in good agreement with some previously determined reference results, or to meet some

conditions of the formulation (as it is in the functional we use in this project, discussed

shortly). The dependence of the exchange-correlation functional on both the density and

the gradient of the density leads to the name of the class of functional, generalized gradient

approximation (GGA) functionals.
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The Perdew-Burke-Ernzerhof functional

The exchange-correlation functional that we use is the Perdew-Burke-Ernzerhof [43] GGA,

which begins with the correlation functional as

E
(PBE)
C =

∫
n
(
ϵ(hom)
C (rs) +H (rs, t)

)
δr , (3.86)

where both ϵ(hom)
C and H depend also on relative spin polarization, but we consider here

only the unpolarized case. rs is the local Seitz radius, the radius of a sphere with volume

equal to that taken up by a single free electron,

rs =

(
3

4πn

) 1
3

, (3.87)

and t is the reduced gradient on the scale of Thomas-Fermi screening effects (see Section

2.1.4),

t =
|∇n|
2kSn

, (3.88)

where ks is the Thomas-Fermi wavevector (see Equation 2.82). The specific form of H is

determined by constraining it to certain conditions:

• it recovers the second-order gradient expansion above (H → βt2) in the limit that

the gradient of density varies slowly, with the coefficient β determined numerically

[76] ,

• it cancels the correlation term of the homogeneous electron gas in the limit of rapidly

varying density (t→ ∞) such that correlation interaction energies vanish, and

• it scales uniformly between these two limits.

The final condition is so that it cancels the logarithmic divergence of the LDA correlation

found by a perturbation expansion in powers of rs [77] in the high density limit.

There are conditions placed on the formulation of the exchange energy as well. In the

high density limit (the low reduced gradient limit), the functional must recover the LDA
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value, and so is of form

E
(PBE)
X =

∫
nϵ(hom)

X FX (s) δr , (3.89)

where FX (0) = 1 and in this specific functional the reduced gradient is

s =
|∇n|
2kFn

, (3.90)

in order to normalize the gradient over the scale of the Fermi wavevector, kF , introduced

in Section 2.1. We also want the functional to be similar to the LDA for small density

variations, as it is a good approximation [78], so we use a form of FX such that as s→ 0,

FX (s) → 1 + µs2 . (3.91)

In order to also satisfy the Lieb-Oxford bound [79], the lower limit on the ‘indirect’ part

of the Coulombic interaction energy (that part which arises from the quantum effects of

exchange and correlation), such that

EX ≥ EXC ≥ −Ce2
∫
n

4
3 δr , (3.92)

where C has been improved upon over the years [79–82] but is stated as 1.679 in the

original PBE formulation. In order to satisfy the Lieb-Oxford inequality and still recover

the form above for small density variations, we recast our function as

FX (s) = 1 + κ− κ

(
1 +

µs2

κ

)−1

, (3.93)

where in the case of C = 1.679, κ = 0.804.

3.1.3 Van der Waals corrections

A van der Waals correction can be included in the determination of the energy of a system,

and so far the dispersion force has not yet been considered. The correction used in this
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project is that of Grimme’s DFT-D3 [65], which is calculated and subtracted from the

Kohn-Sham energy determined from a particular exchange-correlation functional. This

specific correction has been chosen for its good results [52], low computational burden,

and strong compatibility with our chosen exchange-correlation functional, PBE. Indeed,

one of the goals of the correction’s development was compatibility with PBE (and other

common functionals).

The dispersion correction is as follows:

EDFT-D3 = EKS − Edisp , (3.94)

where Edisp is the sum of the two- and three-body terms, respectively:

Edisp = E(2) + E(3) . (3.95)

The two-body term is more important, and is a form of our previously determined

Equation 2.251, but with a more proper treatment of the frequency-dependence of the

polarizability, α. The two-body term for a system of interacting species, where AB is a

pair of any particular species, is

E(2) =
∑
AB

∑
n=6,8,10,...

sn
Cn,AB

rnAB

fd , (3.96)

where s is a scale factor that depends on which exchange-correlation functional the

correction is being used with (as some hybrid functionals account for long-range dispersion

already), fd is a damping function to avoid near-singularity behavior at small radii rAB,

chosen to be numerically stable, and CAB are the dispersion coefficients of the atomic pair

AB,

C6,AB =
3

π

∫ ∞

0

αA (iω)αB (iω) δω , (3.97)

C8,AB = 3C6,AB

√
(ZAZB)

1
2
⟨r4AB⟩
⟨r2AB⟩

, (3.98)
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where ω is the frequency of the field inducing the dipole moment, Z is the nuclear charge,

and our terms in r−8 and beyond come from a multipole expansion. There are higher

order terms in the two-body dispersion energy, but they are here ignored; while discussed

in Grimme’s paper [65], they are excluded from the correction as they make calculations

of complicated systems unstable, and do not improve those of simpler systems by any

significant degree. The damping term, fd, is one introduced by Chai and Head-Gordon

[83], originally to fix divergence of the dispersion correction within their functional at

short nuclear distances,

fd =

[
1 + 6

(
rAB

sr,nR0,AB

)−an
]−1

, (3.99)

where sr,n is again a scaling factor, R0 is the interatomic distance region within which the

dispersion energy is decreasing in magnitude (determined as part of the correction), and

an is a steepness parameter, determined manually.

The three-body term contributes much less to the total dispersion correction than the

two-body term (approximately 5− 10%), and the leading term is given by [84]

EABC =
CABC (3 cos θa cos θb cos θc + 1)

(rABrBCrCA)
3 , (3.100)

where θ are the internal angles of the triangle formed by r, and

CABC =
3

π

∫ ∞

0

αA (iω)αB (iω)αC (iω) δω . (3.101)

Non-leading terms are excluded due to their negligible contribution, resulting in a three-

body term of

E(3) =
∑
ABC

fd,3EABC , (3.102)

where the damping term is determined using the geometrically averaged r.
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3.1.4 Hybrid functionals

Hybrid functionals are typically an improvement over DFT-only methods, where by

combining the exchange-correlation functionals from DFT (that are density dependent)

with Hartree-Fock-like functionals (that are orbital dependent), results closer to those of

experiment can be obtained compared to those from either isolated method. The ratio of

combination is usually selected empirically, with justification for hybridization from the

underestimation of energies from DFT and the overestimation of Hartree-Fock methods,

both of which lead to poor experimental agreement of band gaps in solids. The mixing

parameter, α, is the fractional contribution of the Hartree-Fock-like functionals, so in

general we have

E
(hybrid)
XC = E

(DFT)
XC + α

(
E

(DFT)
X − E

(HF )
X

)
, (3.103)

where the correlation component is not considered in hybrid due to being a small

comparative contribution to the final result. Some hybrid formulations use multiple

mixing fractions and multiple exchange functionals e.g. B3LYP, which uses Lee-Yang-

Parr (LYP) correlation [85] and Becke (B88) exchange [86], each with different mixing

fractions, but the principle remains the same. This project uses only one hybrid

functional, which does not do this: the Heyd-Scuseria-Ernzerhof (HSE) functional [53].

The HSE functional is based off of the PBE DFT functional that we use in this project,

and has been demonstrated to provide consistently strong performance for analysis of

semiconductors’ structural and electronic properties [54].

The Heyd-Scuseria-Ernzerhof functional

Long-range Hartree-Fock-like Coulomb interactions are difficult to calculate efficiently due

to the non-local nature of the problem. So, the HSE approach is to split the exchange

interaction into a long- and short-range interaction, and hybridizes only the short-range
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component:

E
(HSE)
XC = αE

(HF,SR)
X (ω) + (1− α)E

(PBE,SR)
X (ω) + E

(PBE,LR)
X (ω) + E

(PBE)
C , (3.104)

where the LR and SR superscripts denote long- and short-range components respectively.

The dependence on the adjustable screening parameter ω provides the division of the

Coulomb term into long- and short-range components, which is determined by substituting

in the following:

1

r
=

erfc (ωr)
r

+
erf (ωr)

r
, (3.105)

where the first term on the right hand side is the short-range term, and the second

the long-range term. erf (ωr) is the error function, a sigmoid function that is normally

distributed and runs between −1 and 1, and erfc (ωr) = 1 − erf (ωr). The choice of this

specific function is partially arbitrary, with the authors giving the justification for its use

as it being analytically integrable [53]. ω dictates the rate of decay of the error function,

and so determines the relative contribution from long- and short-range functions at a

particular distance i.e. it is a screening parameter.

The use of HSE, then, hybridizes the PBE DFT functional in a manner which avoids

added computational resources for solving the long-range Coulomb contribution and the

correlation interaction, while improving the prediction of the exchange interaction over

short range (with careful, empirical, choice of ω). Due to the use of Hartree-Fock exchange

there is still an increase in computational resources, but this increased cost goes towards

the most impactful components of the functional.
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3.2 Pseudopotentials

Figure 3.3: A comparison of the all-electron (solid, blue) and the pseudopotential
approximation (dashed, red) of a wavefunction, ψ. The point beyond which the
pseudopotential function matches the all-electron function is the cut-off radius, rcut.

Pseudopotentials are replacements for real potentials that aim to reduce computational

cost when determining properties that depend on that potential. As core electrons are

chemically inert and do not contribute to bonding, for electronic structure calculations

pseudopotentials replace the real electron density of electrons in the core with smoother

approximations that give the same results within a desired precision of important

properties. This is seen where the resultant potentials are the same for the exact and

pseudopotential systems beyond a given atomic radial cut-off, rcut. They result in much

simpler electron wavefunctions, as in Figure 3.3. A pseudopotential as used in this

project refers to that which describes the core electron density of a specific species,

with particular considerations. These considerations are the type of exchange-correlation

functional that is to be used, whether spin-orbit coupling needs considered, and the

character of the pseudopotential (i.e. hardness and norm-conservation). To create a

pseudopotential, atomic orbitals are calculated using DFT by solving self-consistent

Kohn-Sham equations (Section 3.1) for one-electron states, for all electrons, including

those in the core, typically in a simple system like a single spherical atom (due to
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the cost of all-electron calculations; transferability to other systems is discussed in

subsection 3.2.2). Smoother pseudo-orbitals are then mapped on to the ‘exact’ (within

the limitations of the DFT exchange-correlation approximation) all-electron orbitals,

and a pseudopotential function can be extracted that matches the all-electron potential

beyond a desired rcut, chosen such that the chemically active (valence) electrons are

beyond this distance (Figure 3.4); repulsion from core electrons tends to maintain

separation, and any the part of the valence orbitals that does potentially extend in to

the core region is less important (otherwise core electrons would be more chemically

active than they are). The pseudopotential does not match the all-electron potential at

radial positions below rcut, and instead is smoother and less computationally demanding

to use in subsequent calculations. The pseudopotential is then validated by comparing

electronic structure calculations using the pseudopotential and the all-electron potential.

Future calculations using the pseudopotential assumes that the core electrons cannot

change state, and keep their smoothed density defined by the pseudopotential; this is

the frozen core approximation. The smoother pseudopotential has fewer Fourier modes,

and so fewer plane waves must be considered to achieve an accurate result, i.e. the high

energy plane waves that cause rapid oscillations in potential near the core can be ignored.

This results in the concept of energy cut-off, the energy beyond which a calculation stops

including plane waves. A smoother pseudopotential allows for lower energy cut-offs,

saving computational resources.

3.2.1 Orthogonalized plane waves

The precursor to the modern pseudopotential method is the orthogonalized plane wave

(OPW) method, developed by Conyers Herring in 1940 [87]. We will discuss this

method here to provide some structural background for more modern pseudopotential

formulations. The aim is effectively the same as the pseudopotential method; produce

pseudowavefunctions for core electrons that are computationally less intensive to find

solutions for than the true wavefunctions. The OPW method does this by defining a

plane wave basis set for valence states which the pseudowavefunctions then follow from,
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Figure 3.4: A general representation of the radial orbitals, Rnl (r), of an atom, showing the
probability density of radial position for some electrons. There is clear spatial separation
between core states, valence states and unoccupied higher-energy states, allowing for
selection of good rcut values.

in contrast to pseudopotential methods that replace the atomic core potential.

To define the valence electron plane wave basis set, we subtract a correction term from

the permitted plane wave set for all electrons. The correction term is the weighted overlap

between permitted wavevectors and atomic core functions, uj (r), that are localized around

the nucleus, representing core states. The plane wave basis functions are then

χOPW
q (r) =

1

Ω

[
eiq·r −

∑
j

⟨uj|q⟩uj (r)

]
, (3.106)

where Ω is the volume of the crystal and q is the wavevector associated with the plane

wave. We can choose uj (r) such that the resultant wavefunction is separated into a

smooth part of the function, approximating the core behavior, and an outer part that

is equivalent to the true wavefunction. ψv
l (r), the wavefunction of a valence electron of

angular momentum l, is then represented by its Fourier expansion as

ψv
l (r) =

∫
Cl (q)χOPW

q (r) δq =

∫
Cl (q)

1

Ω

[
eiq·r −

∑
j

⟨uj|q⟩uj (r)

]
δq , (3.107)
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where Cl are the Fourier coefficients (see subsection 2.1.2). This is a superposition of the

smoothed core function, ψ̃v
l , and the term accounting for the part outside the core, as

ψv
l (r) = ψ̃v

l (r)−
∑
j

Bl,jul,j (r) , (3.108)

whose components have Fourier expansions

ψ̃v
l (r) =

∫
Cl (q) eiq·rδr , (3.109)

Bl,j =

∫
Cl (q) ⟨uj|q⟩δr . (3.110)

The wavefunctions resulting from the OPW basis functions have reduced amplitude

and smoother structure near the nucleus compared to the true wavefunctions, but are not

orthonormal.

3.2.2 Norm-conserving pseudopotentials

Consider the pseudopotential for a particular atomic species. We want it to be valid

and computationally tractable when used in systems other than that within which it was

created i.e. we want it to be transferable. As such, it should retain its validity when

the atom is placed in a bound state within a molecule or crystal. When placed in a

poly-atomic system, the valence orbitals experience a perturbation from other atomic

cores, resulting in a shift in their energies (see section 2.2). In 1979, norm-conserving

pseudopotentials (NCPPs) were developed by Hamann, Schlüter and Chiang from Bell

Laboratories as an ab initio method of producing transferable pseudopotentials [88].

Applying our first constraint on the pseudo-wavefunction, the norm-conserving

condition between the all-electron (ψAE) and pseudo-wavefunctions (ψPP ),

|⟨ψAE|ψAE⟩|2 = |⟨ψPP |ψPP ⟩|2 , (3.111)

the integrated charge within rcut must then agree between all-electron and pseudo-
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Figure 3.5: A schematic representation of a smooth function (dotted, red) in one
dimension that matches a valence wavefunction (solid, blue) beyond the cut-off radius,
rcut. This is compared to a norm-conserving function (dashed, green) that also matches
the wavefunction beyond rcut.

wavefunctions, as the integrated charge therein is

Ql =

∫ rcut

0

r2|ψl (r) |2δr =
∫ rcut

0

ϕl (r)
2 δr . (3.112)

where ϕl (r) ≡ rψl (r) in spherical coordinates, which will be used later in place of the

radial wavefunction to simplify some problems, and the fundamental unit of charge is

being taken as 1. A comparison between norm-conserving and general smooth functions

that match a wavefunction beyond some cut-off radius is given in Figure 3.5.

We apply a second constraint that the shift in energy resulting from being in a poly-

atomic system must be consistent between the all-electron wavefunction and the pseudo-

wavefunction to a linear order beyond rcut:

ψAE (r > rcut) = ψPP (r > rcut) , (3.113)
δ

δr
ψAE (r > rcut) =

δ

δr
ψPP (r > rcut) . (3.114)
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We divide these two equivalencies to get

ψ′
AE (r > rcut)

ψAE (r > rcut)
=
ψ′
PP (r > rcut)

ψPP (r > rcut)
, (3.115)

and therefore

δ

δr
lnψAE (r > rcut) =

δ

δr
lnψPP (r > rcut) . (3.116)

We will define the logarithmic derivative,

Dl (ϵ, r) ≡ r
δ

δr
lnψl (ϵ, r) , (3.117)

where the ϵ dependence is shown explicitly due to later use.

Using ϕn,l (r), the radial Schrödinger equation can be recast as

−1

2

δ2

δr2
ϕn,l (r) +

[
l (l + 1)

2r2
+ V (r)− ϵn,l

]
ϕn,l (r) = 0 . (3.118)

If we define a variable, ζl, as a modified logarithmic derivative, Dl (ϵ, r) as

ζl (ϵ, r) =
1

r
[Dl (ϵ, r) + 1] =

δ

δr
lnϕl (r) , (3.119)

we can re-arrange the above radial equation as

1

ϕl (r)

δ2

δr2
ϕl (r) =

l (l + 1)

r2
+ 2 [V (r)− ϵ] , (3.120)

and as

ζl (ϵ, r) =
δ

δϕ
lnϕl (r)

δϕ

δr
=

1

ϕl (r)

δϕ

δr
(3.121)
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and

δζl
δr

=
δϕ

δr
· δ
δr

1

ϕl (r)
+

1

ϕl (r)
· δ

2ϕ

δr2
=
δϕ

δr
·
[
δ

δϕ

(
1

ϕl (r)

)
· δϕ
δr

]
+

1

ϕl (r)
· δ

2ϕ

δr2

= − 1

ϕl (r)
2

(
δϕ

δr

)2

+
1

ϕl (r)

δ2ϕ

δr2
,

(3.122)

we can represent the radial equation as a nonlinear differential equation, as in Equation

3.123.
δζ

δr
+ ζ (ϵ, r)2 =

l (l + 1)

r2
+ 2 [V (r)− ϵ] (3.123)

We now differentiate this with respect to energy, where a prime notation indicates

differentiation with respect to r,

δ

δϵ
ζ ′l (ϵ, r) + 2ζl (ϵ, r)

δ

δϵ
ζl (ϵ, r) = −1 . (3.124)

Consider the expression

1

ϕl (r)
2

δ

δr

[
ϕl (r)

2 δζ

δϵ

]
, (3.125)

and differentiate explicitly as

1

ϕl (r)
2

δ

δr

[
ϕl (r)

2 δζ

δϵ

]
=

1

ϕl (r)
2

[
ϕl (r)

2 d2ζ

δrδϵ
+
δζ

δϵ
δ

δr
ϕl (r)

2

]
=

d2ζ

δrδϵ
+ 2

δζ

δϵ
ϕ′
l (r)

ϕl (r)
=

d2ζ

δrδϵ
+ 2

δζ

δϵ
ζl (ϵ, r) .

(3.126)

This is the same expression as the left hand side of Equation 3.123 when differentiated

with respect to ϵ, and so we rewrite this as

1

ϕl (r)
2

δ

δr

[
ϕl (r)

2 δζ

δϵ

]
= −1 . (3.127)

We then rearrange and integrate with respect to r between radii of 0 and the cut-off
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radius, rcut,

ϕl (rcut)
2 δζ

δϵ
= −

∫ rcut

0

ϕl (r)
2 δr , (3.128)

to find that at the cut-off radius

δζ

δϵ
= − 1

ϕl (rcut)
2Ql . (3.129)

We can conclude from this that if the pseudopotential wavefunction, ϕPP , has the same

magnitude at the cut-off radius as ϕAE (which it does by construction), as long as it

is also norm-conserving i.e. the integrated charge within rcut agrees between the two

wavefunctions, then the first energy derivative of the logarithmic derivative ζl is the

same between pseudo- and all-electron wavefunctions. In terms of our previously defined

logarithmic derivative, Dl (ϵ, rcut), this is expressed as

δ

δϵ
Dl (ϵ, rcut) = − rcut

ϕl (rcut)
2Ql (3.130)

In this case, for a self-consistent potential, the scattering phase shifts, ηl (ϵ), which

depend on Dl (see Appendix F) and therefore the energy shifts are the same i.e. our

second constraint (energy shifts from being in a poly-atomic system are consistent between

pseudo- and all-electron wavefunctions) is implied by the first (norm conservation). As

such, NCPPs are transferable from the simple environment they are generated into more

complex, poly-atomic systems.

3.2.3 Projector augmented wave method

The projector augmented wave (PAW) method is that used in this project. In this

approach developed by Blöchl in 1994 [44], wavefunctions are evaluated as integrals

of smooth functions plus contributions localized around atomic sites, which are radial

integrations i.e. the wavefunctions are represented as spherical harmonics near nuclei,

and smoother pseudo-wavefunctions elsewhere. These radial integrations are over what are
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commonly called ‘muffin tin spheres’, where space is divided into two distinct categories:

spheres surrounding nuclei, and the interstitial space in between these regions (the name

coming from the appearance of this division in a two-dimensional plane being reminiscent

of a muffin tin). Within the spheres, the effective potential is approximated as spherically

symmetric, and constant outside of the spheres.

Using the frozen core approximation, we consider a smooth part of a valence

wavefunction (like those in subsection 3.2.1), ψ̃ (r), where we have dropped the super-

and subscript as we are only dealing with valence wavefunctions here. To obtain the

smoothed wavefunction, we apply a linear transformation, T , such that

ψ = T ψ̃ , (3.131)

and assume that the transform is unity outside of the nuclear muffin tin sphere:

T = 1 +
∑
R

TR , (3.132)

where 1 is the identity transform, and R denotes the spherical dependence of the partial

wave solutions localized to each sphere. The smooth wavefunction can be treated as a

sum of m partial waves within each sphere (expanded into plane waves), and so we have

|ψ̃⟩ =
∑
m

Cm|ψ̃m⟩ , (3.133)

and

|ψ⟩ = T |ψ̃⟩ =
∑
m

Cm|ψm⟩ . (3.134)

We can represent the all-electron wavefunction as the following, by both adding the

pseudo-wavefunction and then subtracting it in its partial wave form:

|ψ⟩ = |ψ̃⟩+
∑
Rm

CRm

[
|ψRm⟩ − |ψ̃Rm⟩

]
. (3.135)
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As the transformation T is linear, we have for the coefficients Cm a projection in each

sphere, with projection operator p̃Rm, on to the pseudo-wavefunction

CRm = ⟨p̃Rm|ψ̃⟩ , (3.136)

⟨p̃Rm|ψ̃Rm′⟩ = δmm′ , (3.137)

such that we ensure

|ψ̃⟩ =
∑
Rm

|ψ̃Rm⟩⟨p̃Rm|ψ̃⟩ , (3.138)

as required. So, we can see form examination of the above that the transformation, T , is

T = 1 +
∑
Rm

[
|ψRm⟩ − |ψ̃Rm⟩

]
⟨p̃Rm| . (3.139)

Some operator, A, will have the same expectation value as its transformed operator, Ã,

when applied to the appropriate wavefunctions, i.e.

∑
i

fi⟨ψi|A|ψi⟩ =
∑
i

fi⟨ψ̃i|Ã|ψ̃i⟩ , (3.140)

where the sum is over states, i, fi is the occupation of the state, and the transformed

operator is given by

Ã = T †AT = A+
∑
mm′

|p̃m⟩
[
⟨ψm|A|ψm′⟩ − ⟨ψ̃m|A|ψ̃m′⟩

]
⟨p̃m′| . (3.141)

Using this operator relationship above, we consider the case where A = |r⟩⟨r|, i.e. the

real-space projection operator, which has expectation value n (r). We see that this is

equivalent to the expectation value of the transformed operator acting on the transformed
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wavefunction:

n (r) =
∑
i

fi⟨ψ̃i|

[
|r⟩⟨r|+

∑
mm′

|p̃m⟩
(
⟨ψm|r⟩⟨r|ψm′⟩ − ⟨ψ̃m|r⟩⟨r|ψ̃m′⟩

)
⟨p̃m′|

]
|ψ̃i⟩

=
∑
i

fi

[
⟨ψ̃i|r⟩⟨r|ψ̃i⟩+

∑
mm′

⟨ψ̃i|p̃m⟩⟨ψm|r⟩⟨r|ψm′⟩⟨p̃m′|ψ̃i⟩−

∑
mm′

⟨ψ̃i|p̃m⟩⟨ψ̃m|r⟩⟨r|ψ̃m′⟩⟨p̃m′|ψ̃i⟩
]

≡ ñ (r) + n(1) (r)− ñ(1) (r) ,

(3.142)

where ñ (r), n(1) (r) and ñ(1) (r) are the terms in their respective order, with the superscript

(1) terms being the localized densities about each atom i.e. the muffin tins. The electronic

density is equivalent to a smooth density function, ñ (r), extending through all space

except regions localized about nuclei (hence the subtraction of ñ(1) (r)), plus the rapidly

varying density localized about nuclei, n(1) (r). These integrals can be performed in

spherical coordinates, and do not suffer problematic variations near the nucleus.

By (in principle) capturing core electron interactions accurately through n(1) and

ñ(1) (and the equivalents for other observables), but allowing the interstitial region

between muffin tin spheres to be augmented by the projector function and so allowing

the plane wave expansion, the PAW method provides a computationally efficient, but

accurate, modification of the pseudopotential method. The core states are, in practice,

not represented by individually constructed pseudopotentials, but instead the total core

density is used. The expansion of pseudo-wavefunctions into plane waves is truncated by

an energy cut-off.
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3.3 Numerical algorithms and calculation overview

This section is dedicated to the specifics of the calculations performed in this project

that have not yet been discussed in the relevant theory sections. This includes important

numerical algorithms deployed by the programs used, as well as a brief overview of the

different types of calculations performed and their significant parameters.

3.3.1 Numerical algorithms and computational techniques

k-point grids

Performing electronic structure calculations frequently requires integrations over the

Brillouin Zone. These can be difficult or intractable to perform analytically, so numerical

methods are used. In a multidimensional analogy to integration by the trapezoid rule,

we can define a grid of discrete points in k-space, and sum their contributions to provide

a numerical solution to the integral problem. This grid must be carefully selected,

both for its concentration of points and the position of those points; there is a greater

concentration requirement in areas where the integrand varies rapidly. The specific

positions of these points can be selected such that symmetry can be taken advantage of,

and integration must only be carried out over an irreducible Brillouin Zone (IBZ), as

displayed in Figure 3.6.

By shifting the mesh such that there are no points at k = 0, the number of inequivalent

points in the IBZ can be reduced, which reduced the computational load of calculating the

integral. One method for determining these points is the Monkhorst-Pack method [45].

This is one of the most popular methods for handling the mesh for numerical integration,

and the primary method used in this project. The Monkhorst-Pack mesh points are

positioned at

kn1,n2,n3 =
3∑
i

2ni −Ni − 1

2Ni

Gi , (3.143)

where 1 ≤ ni ≤ Ni, ni ∈ Z+ and Gi are reciprocal lattice vectors. If the integrand is

a periodic function whose Fourier components extend only to NiTi, with Ti being the
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Figure 3.6: Grid points (red points) within the first Brillouin zone (delimited by the
blue dashed squares) between reciprocal lattice points (gray points). Dashed black lines
delimit the IBZ, shaded in green. With a grid centred on k = 0 (left), the IBZ contains
six inequivalent points over which integration must be carried out. By shifting the mesh
off-center (right), the number of inequivalent points can be reduced, in this case to only
three.

translation vectors of the crystal, then the sum over the uniform set of Monkhorst-Pack

points gives the exact integration. This method provides then integrations as exact as

permitted by the choice of energy cut-offs.

Fast Fourier transform

The fast Fourier transform (FFT) is an algorithm used to compute discrete Fourier

transforms in a way that scales computational complexity much more favorably than

decomposing a large number of components directly. Direct calculation has a complexity

of O (n2), as there are n outputs Xk, each requiring a sum over n terms:

Xk =
n−1∑
m=0

xme
−i 2πk

n
m , 0 ≤ k ≤ n− 1 , k ∈ Z+ . (3.144)

The complexity of FFTs is much lower, O (n log2 n). Quantum ESPRESSO uses the

FFTW subroutine library [89], which deploys specific FFT algorithms depending on

the machine and data set. The most widely used FFT algorithm is the Cooley-Tukey
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Figure 3.7: A simple block diagram of the Cooley-Tukey FFT method (broadly
representative of most FFT methods) for n = 8. Arrows indicate a multiplication by
the annotated value, with a multiplication of 1 for no annotation. Eight inputs, xn, are
split in a ‘divide-and-conquer’ technique and so resolving the discrete Fourier transform
problem of length n into two of length n

2
. They are thus solved with a lower complexity

than the initial problem (and can be further split to smaller Fourier processes as described
in the main text) for even- or odd-indexed outputs, X(even, odd)

k . These are then fed in to
Equation 3.153, and solved for the final outputs, Xk.
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algorithm [90], which exploits symmetries in the exponential term above. Let this term

be defined as Wn,

Wn = e−i 2π
n , (3.145)

which has properties of complex conjugate symmetry, and is periodic in m and k:

W k(n−m)
n = W−km

n =
(
W km

n

)∗
, (3.146)

W km
n = W k(n+m)

n = W (k+n)m
n , (3.147)

as

W kn
n = e−i2πk = 1 . (3.148)

The algorithm separates xn into even- and odd-indexed subsequences, where here we

assume that n is a power of two. This is not a requirement, but would otherwise complicate

the following without adding instructiveness to the description of the core algorithm.

These subsequences can be represented as

Xk =
n−1∑
m=1

xmW
km
n =

∑
m even

xmW
kr
n +

∑
m odd

xmW
kr
n . (3.149)

For even indices, we have that m = 2r, and for odd indices m = 2r + 1, with 0 ≤ r ≤
n
2
− 1. This allows zero-indexing for computational deployment, and we can substitute

and factorize:

Xk =

n
2
−1∑

r=0

x2rW
k2r
n +

n
2
−1∑

r=0

x(2r+1)W
(2r+1)k
n

=

n
2
−1∑

r=0

x2r
(
W 2

n

)kr
+W k

n

n
2
−1∑

r=0

x(2r+1)

(
W 2

n

)kr
.

(3.150)
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We recognize that

W 2
n = e−2i 2π

n = e
−i 2π

(n2 ) = Wn
2
, (3.151)

and so

Xk =

n
2
−1∑

r=0

x2rW
kr
n
2
+W k

n

n
2
−1∑

r=0

x2r+1W
kr
n
2
. (3.152)

The first summation is an n
2

point discrete Fourier transform associated with the even

samples, which we will denote X(even)
k , and the second is associated with the odd samples,

X
(odd)
k . The full discrete Fourier transform can then be denoted as

Xk = X
(even)
k +W k

nX
(odd)
k . (3.153)

This representation illuminates the simplification introduced by the algorithm so far,

where the signal is split into two half-sized signals to be solved separately, giving solutions

to be summed as increasing powers of Wn, up to Wm
n . This is displayed for the m = 8

case in Figure 3.7.

We can see from examination of Figure 3.7 that the algorithm so far requires 2
(
n
2

)2
processes (solving both of the n

2
transforms), and then an additional n processes to produce

the outputs, Wm
n . This splitting can be applied recursively, replacing the two n

2
transforms

by four n
4

transforms and so on, ultimately resulting in n
2p

transforms where they cannot

be split any further. The limit to p is where n
2p

= 1, i.e. no more splitting can occur, so in

this limit p = log2n. In this case, the complexity of the transforms is n2

n
= n, and np for

the multiplication processes to produce the outputs Wk, which for large n approximates

to O (n log2 n), which scales very favorably compared to the direct calculation of O (n2).

Wannier interpolation

When performing calculations with hybrid functionals such as HSE, only self-consistent

calculations are supported by Quantum ESPRESSO. These calculations use a relatively
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coarse grid of k-points for sampling, and so are not particularly useful for the direct

representation of detailed electronic structure (such as a band structure diagram)

without further refinement. As such, non-self consistent field calculations are performed

afterwards, using a single step on a much finer sampling grid with the output from

preceding self-consistent field calculations as starting data. In order to produce something

like band structure with a hybrid functional, then, as one cannot simply deploy a non-self

consistent calculation, we must either perform a self-consistent calculation with a fine

grid (which is expensive) and a hybrid functional (which is very expensive), or use an

interpolation method. Here we use the Wannier interpolation method: using Wannier

functions to interpolate existing data of the Hamiltonian on to a finer grid of k-points, in

order to mimic the use of an appropriately fine grid. To do this, we use the wannier90

tool [91].

The Wannier interpolation method starts from previously determined energies (from

scf calculations), Enq and wavefunctions, ψnq (r) = unq (r) eiq·r (see Equation 2.33). We

use here wavevectors q to represent those from previous calculation, and k for those from

the interpolation grid. In our case, the energies and wavefunctions have been determined

in a self-consistent calculation using a relatively coarse grid of k-points that has Nq =

N
(1)
q N

(2)
q N

(3)
q wavevectors within the reciprocal unit cell. We use an equivalent form of

Equation 2.114 with our notation here to define a set of J Wannier functions:

|ϕRn⟩ =
1

Nq

∑
q

e−iq·R
Jq∑

m=1

|ψmq⟩Vmn (q) , (3.154)

where the matrices Vmn are unitary and so preserve orthonormality, and contain the

required information to ensure that the resulting Wannier functions are maximally

localized i.e. the quadratic spread within the ‘home’ unit cell (R = 0), Ω, of the Wannier

functions is minimized with respect to unq (r),

Ω =
∑
n

⟨ϕ0n|r2|ϕ0n⟩ − ⟨ϕ0n|r|ϕ0n⟩2 . (3.155)

Maximal localization ensures that the Wannier functions are a unique set of functions,
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reducing redundancy and providing a physically meaningful description: localized

molecular orbitals. The Bloch wavefunctions in this maximally localized Wannier gauge,

then are

|ψ(W )
nk ⟩ ≡ eik·r|u(W )

nk ⟩ ≡
∑
R

eik·R|ϕRn⟩ . (3.156)

The elements of the Hamiltonian (energy) matrix, Hij = ⟨i|H|j⟩, for states |i⟩, |j⟩ in

terms of the wavefunctions in the Wannier gauge, is then

Hmn (R) ≡ 1

Nq

∑
q

e−iq·R⟨ψ(W )
mq |H|ψ(W )

nq ⟩ , (3.157)

which is also representable in terms of the energies from previous self-consistent

calculations,

Hmn (R) ≡ 1

Nq

∑
q

e−iq·R
∑
l

V ∗
lm (q)ElqVln (q) . (3.158)

In order to extract energies at an arbitrary k-point, i.e. to interpolate to a finer grid, we

just need to construct the Wannier Hamiltonian matrix, with elements

H(W )
mn (k) =

∑
R

Hmn (R) eik·R , (3.159)

and evaluate at our desired k. By doing so for k-points in between those already calculated

in our self-consistent calculation, and along paths of interest (such as in Section 2.2), we

can populate a finer grid for analysis of properties such as band structure.

3.3.2 Details of calculations

This subsection provides an overview of the calculations performed during the project,

from the perspective of their practical use within the Quantum ESPRESSO suite.

The primary code that is used is pw.x from the PWscf package. This deploys most

of the calculations used. Post-processing is performed within the same package, but
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uses different codes (one of which is bands.x, unfortunately the same name as one of

the processing calculations in pw.x; it should be obvious from context which is being

discussed). Here we consider data manipulation and reformatting (for plotting, analysis

etc) that lacks calculation of physical parameters to be post-processing. Descriptions of

calculations used in this project are provided in Table 3.1.

Table 3.1: A descriptive overview of the calculations used during this project, including
post-processing codes. They are all within the Quantum ESPRESSO suite.

Calculation Description
scf This stands for ‘self-consistent field’, and is the main calculation of

DFT where the Kohn-Sham equations are solved iteratively. Total
energy, forces, and stresses are calculated as described in Section
3.1.

relax,
vc-relax

These are calculations for geometric optimization i.e. finding the
atomic positions that minimise the energy of the structure. The
relax calculation allows atoms to move within a cell of fixed
dimensions, whereas vc-relax allows the unit cell dimensions to
vary as well (standing for ‘variable cell’). Series of self-consistent
field calculations are performed at different atomic positions, and
compared iteratively to find energy minima with respect to the
underlying structure.

nscf This stands for ‘non-self consistent field’, and performs only one
step of the typical scf process with a fixed electron density.
However, it also considers unoccupied electron states and should be
performed with a denser k-point grid. Both of these factors make it
more expensive than the scf calculation per step. However, it can
accept as a starting point previous scf calculation outputs. For
cases where fine grids are required, it is overall more economical to
perform an scf calculation on a coarse grid, and then an nscf on a
finer grid as compared to just the scf calculation on the fine grid.

bands (pw.x) This is similar to the nscf calculation, but only computes the Kohn-
Sham states for specified k-points. This is useful for band structure
diagrams, where the energies at points along a particular path in
k-space are needed.

DOS, pDOS These are the ‘density of states’ and ‘projected density of states’
post-processing calculations, respectively. They are post-processing
codes, and simply extract information from previous calculations’
output files to be represented in a useful way.

pp.x A post-processing code for extracting information from pw.x
calculations in a format suitable for plotting or analyzing.

bands.x Another post-processing code to reformat output data from the
pw.x bands calculation for plotting.
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3.3.3 Workflow

The standard workflow for DFT calculations depends on what data is available for the

particular system of interest, with early calculations being skipped if the data they provide

is already available. For a completely novel system where we are using a DFT-only (not

hybrid) functional, the workflow is displayed in Figure 3.8.

It begins with scf calculations using a sensible guess for atomic positions and cell

parameters (e.g. from existing literature). Convergence testing is performed, where

repeat scf calculations are done on these test systems with increasingly more fine k-point

meshes and increasing values of energy cut-offs. The results of these scf calculations are

compared to determine the most coarse grid and lowest cut-offs that can be used while

still providing the same results within some desired precision. Using these converged

parameters, a vc-relax calculation, or just relax if the cell parameters are known from

similar cases (e.g. the same substrate but different molecular binding site will not affect

the cell parameters), is performed to optimize the system’s geometry.

The main scf calculation is then performed with the new geometry and converged

parameters to produce data on the occupied Kohn-Sham states. The energy output from

this and the previous vc-relax or relax calculations should be very similar, differences

arising from the fact that the plane wave basis set is determined by the input geometry.

In order to produce density of states information, an nscf calculation on a finer grid

than that of the preceding scf calculation is performed, followed by post-processing DOS

and pDOS steps. Similarly, to produce the band structure, a bands calculation is performed

with the desired k-point path and sampling concentration, followed by some simple post-

processing.

The workflow of a hybrid calculation differs, with the initial convergence testing and

geometry optimization stages being the same (and still using the DFT-only functional).

After geometry optimization a further convergence test is performed, this time with the

hybrid functional, but only for the parameters specific to the use of hybrid functionals

i.e. the Fock mesh, another k-point mesh for the Hartree-Fock-like calculations. During

this convergence testing, an scf calculation with the correct parameters will necessarily
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Initial scf convergence
calculations

Geometry optimization
with vc-relax or relax

Main scf calculation

pp.x post-processing
for charge density

nscf calculation with
a finer k-point grid

bands (pw.x) calculation with
desired (fine) k-point path

DOS and pDOS
post-processing

bands.x post-
processing

Figure 3.8: The normal workflow of a DFT calculation, indicating the prerequisites of
each calculation.

have been performed. As discussed previously in subsection 3.3.1, non-self consistent

calculations for hybrid functionals are not supported within Quantum ESPRESSO, and so

band structure cannot be determined without the use of another technique. This technique

is Wannier interpolation (also discussed in subsection 3.3.1), where the wannier90 code is

deployed to interpolate self-consistent field data to arbitrary k-points and fill out a finer

grid. This workflow is represented in Figure 3.9.
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Initial scf convergence
calculations (DFT functional)

Geometry optimization
with vc-relax or

relax (DFT functional)

Successive scf calculations
with varying hybrid parameters,

until convergence is achieved

Wannier interpolation
with wannier90

Figure 3.9: The normal workflow of a hybrid calculation, indicating the prerequisites of
each calculation.

3.3.4 Quantum ESPRESSO parameters

This subsection provides an overview of the more important parameters available during

normal workflow, with explanations of their purpose and justifications for their values. A

lot of parameters were kept the same for all calculations that they applied to, some of

which were the default values of the computational suite. In these cases, the parameters’

default values have often been selected empirically, and there is no compelling reason to

change them.

Convergence thresholds

These parameters dictate when an iterate is close enough to the previous value to be

considered converged. This is convergence within a self-consistent calculation, not between

scf calculations for convergence testing of other parameters.

ecut_conv_thr and forc_conv_thr: The convergence threshold on the total energy of

the system and all components of all forces within the system, respectively. The difference

between successive steps’ energies and forces must both be below their respective values

for convergence to be achieved.

conv_thr: Another total energy convergence threshold, but for the total calculation, not
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successive iterative steps.

Energy cut-off

ecutwfc: The kinetic energy cut-off for electronic wavefunctions, which defines the size of

the plane wave basis set to be used. A higher ecutwfc produces a larger, more accurate,

more expensive plane wave basis set.

ecutrho: The kinetic energy cut-off for charge density. It plays the same role as ecutwfc

for charge density.

ecutfock: This is the analogous term to ecutrho for Hartree-Fock-like functionals.

Occupations

In this project, we have used two arguments for this parameter, ‘smearing’ and

‘tetrahedra’. Due to the discrete nature of truncating the plane wave expansion with

ecutwfc, the number of plane waves is a both discontinuous function of the energy

cut-off, but also of the lattice parameters at a fixed energy cut-off (changing the spatial

scope of the lattice may discretely introduce or remove lattice vectors to or from the

energy range). So, the system energy as a function of the lattice parameters will suffer

discontinuities, corresponding to a change in the number of plane waves.

occupations = ‘smearing’: Smearing methods broaden the occupation function to

reduce the magnitude of the discontinuities, thus reducing numerical noise.

occupations = ‘tetrahedra’: Alternatively, Blöchl’s tetrahedral method [92] discretizes

the Brillouin zone into tetrahedral cells with vertices at the sampled k-points, and

computes the occupation of electronic states within each cell by interpolating between

the sampled points. This is typically more accurate than smearing methods, but can

be more expensive. We use this option, then, for nscf calculations, and the smearing

method for scf.
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Mixing

mixing_beta: We always use Broyden mixing [73], with this parameter being the mixing

parameter α from subsection 3.1.1.

k-points

The k-points over which the Brillouin zone is to be sampled can be determined in a

number of ways using different arguments, followed by coordinates in the relevant format.

automatic: We typically use this option, where a uniform Monkhorst-Pack mesh [45] is

generated with provided dimensions.

gamma: Alternatively, we can sample only the Γ point at k = 0, suitable for large systems

in real space where we accept rough results.

crystal_b: Instead of a mesh, we can define a k-point path over which to sample Kohn-

Sham states, as well as the concentration of sampling along the path. This is appropriate

for bands structure plots, and is used in bands calculations.

Fock mesh

nqx1, nqx2, nqx3: These are the dimensions of the Fock mesh, the Hartree-Fock-like

equivalent of the k-point mesh. They cannot be larger than their respective k-point

mesh.

Spin-orbit coupling

noncolin: A boolean parameter that allows or disallows non-collinear spin i.e. electronic

spin axes do not have to be aligned. This is set to .true. for calculations that consider

spin-orbit coupling.

lspinorb: Another boolean parameter, which if .true., allows the code to use a

pseudopotential with spin-orbit coupling.
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Hybrid functionals

input_DFT: This dictates the exchange-correlation functional to use. By default it is read

from pseudopotential files, but in the case of our HSE hybrid calculations it is set to

input_DFT = ‘HSE’.

exx_fraction: This is the fraction of Hartree-Fock-like functional to use for the hybrid

calculation, α in subsection 3.1.4. The DFT functional to be used in combination is then

read from pseudopotential files.

screening_parameter: For HSE and similar functionals, this parameter dictates the

value of ω from subsection 3.1.4. This has been left as the default value, as tested and

implemented by the original authors. Originally, it was stated by them to have been

ω = 0.15a−1
0 in their testing [53], but this was later corrected in an erratum [93] to have

been ω = 0.15√
2
a−1
0 ≈ 0.106a−1

0 all along (the discrepancy not affecting the validity of

their work). Sometimes literature will refer to the functional using the earlier, incorrect,

implementation as HSE03, and the corrected implementation as HSE06. This project

used HSE06, but will refer to it simply as HSE.
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Chapter 4

Determining properties before

heterostructure formation

The first step of this project was to classify the geometry of the materials that were to be

investigated, as well as confirm their independent electronic structure. This initial analysis

culminates in the comparison of pentacene’s frontier orbital energies with those of each

TMD, for a number of different computational frameworks. The frontier orbital energies

were then compared between TMDs and pentacene, which gave us a coarse prediction of

the type of heterojunction to expect later. The type of heterojunction is important in

heterostructure semiconductor devices as it determines use cases of the device, so this is

among the first things to be checked when considering combinations of materials in this

context.

The TMDs investigated, MoS2, MoSe2, WS2 and WSe2, are found in two phases when

in monolayer: 1T and 1H [16]. The 1H monolayer is identical to any single layer in the

2H and 3R phases, with distinctions arising only with the addition of stacking layers and

their orientation to each other. These schemes are displayed in the Introduction chapter,

in Figure 1.1. As the 1T form is metastable and metallic [17–19], we did not investigate

it. The computational frameworks used were DFT, using the PBE exchange-correlation

functional (subsection 3.1.2), where we either did or did not include consideration of spin-

orbit coupling, and hybrid calculations using the HSE functional (subsection 3.1.4), with
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consideration of spin-orbit coupling. These frameworks will be referred to as PBE-nSOC,

PBE-SOC and HSE, respectively.

As van der Waals forces are considered using Grimme’s D3 method, a perturbation

to the energy functional, we have not directly consider van der Waals interactions when

calculating the electronic structure; the effect on electronic structure is indirect, arising

from changes in the optimized geometry due to the perturbation. This introduces an

error as an incorrect treatment of these forces, but there do exist functionals that include

van der Waals interactions within DFT, notably the family of non-local van der Waals

Density Functionals (vdW-DF) [94]. By considering long-range correlation effects through

inclusion of a non-local component of the correlation functional that captures dispersion

forces, vdW-DF methods provide a more intrinsic treatment of electronic structure. These

effects can directly affect the electronic structure instead of effects arising solely from

changes in geometry as in the methods used in this project. This results in a self-consistent

description of dispersion effects. Computational cost is greatly increased over local and

semi-local GGA only functionals, however, and so we did not proceed with the use of

these functionals.

The inclusion of spin-orbit coupling is a more physically accurate framework,

predicting spin splitting of energy bands which leads to a more correct treatment of

frontier orbital energies, but it comes at an increased computational cost. Therefore, we

included it at this early stage while using small unit cells, and did not include it later

when using the much larger supercell approach for analysis of the heterostructures (seen

later in Chapters 5 and 6). This allowed us to quantify the degree to which the inclusion

of spin-orbit coupling affects the resulting energies, and establishes any change in pattern

amongst the different TMDs.

We performed our HSE calculations without spin-orbit coupling on only monolayer

MoS2 and compared the computational cost to the same, but with inclusion of spin-

orbit coupling, and found that the increase in cost was perfectly manageable for the

small systems, especially in the context of naturally expensive HSE calculations. As

HSE calculations are expensive without spin-orbit coupling anyway, we only performed
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the HSE calculations on the other TMDs with spin-orbit coupling, avoiding performing

two sets of expensive calculations on each TMD. This is also true for pentacene; we did

not perform HSE calculations without spin-orbit coupling. As such, any time our HSE

calculations are discussed, they include spin-orbit coupling unless otherwise specified.

With these considerations, we first performed convergence testing for computational

parameters, followed by geometry optimization with these converged parameters, and then

the electronic structure calculations required to describe the band structure and density

of states of the systems.
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4.1 Computational details

Some of the computational parameters for the project were determined following

convergence testing, which follows in Section 4.2. Other details were determined due

to decisions outlined previously in the introductory chapter (Chapter 1) or established

default values within our plane-wave basis computational suite, Quantum ESPRESSO.

These include the use of the generalized gradient approximation PBE [43] functional for

DFT calculations and the hybrid HSE [93] functional (HSE06, where ω = 0.106a−1
0 ),

Grimme’s DFT-D3 [65] van der Waals force corrections, the projector-augmented

wave [44] method using norm-conserving pseudopotentials, and a Monkhorst-Pack grid

sampling method. The k-point (and q-point for hybrid calculations) grid dimensions

required convergence testing, as did cut-off energies; both are discussed in the following

section. The self consistent field convergence thresholds for total energy, force and

individual electron energy were etot_conv_thr = 10−4a.u., forc_conv_thr = 10−3a.u.

and conv_thr = 10−8a.u., respectively. These values are used throughout the project. In

Chapters 5 and 6 we use the supercell approach to construct our heterostructures, which

use different computational parameters as a necessity of the size of the systems. These

are discussed at the beginning of the relevant chapters.
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4.2 Convergence testing

The parameters for DFT calculations that needed converging were the size of the k-point

mesh, represented by the dimensionality of the Monkhorst-Pack grid, and the plane wave

kinetic energy cut-off for the electronic wavefunctions, ecutwfc.

The aim is to perform increasingly more expensive (and more accurate) calculations

by varying the parameter to be converged, compare the output energies, and choose the

parameter value of the cheapest calculation that produces the same output as the value

to which increased parameter cost will converge to, within some predefined convergence

threshold. This threshold is chosen based on the desired final precision.

Using initial guessed at geometry (from known experimental data for the lattice

parameter of the crystal, and a hexagonal Bravais lattice) and a high-dimension k-point

mesh of 24× 24× 1, successive scf calculations were performed with increasing ecutwfc

and ecutrho. The frontier orbital energies following completion of the iterative self-

consistent process were compared between calculations with different values of energy

cut-offs. A threshold for frontier orbital convergence of 0.005 eV was chosen, where the

cheapest calculation that gives frontier orbital energies equivalent, within this threshold,

to that of subsequently more expensive (and more accurate) calculations provides the

parameter value that we move forward with. Caveats are that the parameter must

be flattening out with respect to increasing calculation cost, and that each subsequent

calculation is also within the convergence threshold. We proceeded with early calculations

on pentacene out of heterostructure using a slightly higher cut-off energy than was strictly

required, due to previous work within the research group. This will not affect results,

as shown by convergence testing. A similar process was then performed with varying

densities of k-point mesh, using the converged value of ecutwfc and ecutrho. Here

we assess the Fermi energy, as we are ultimately interested in the band structure, for

which the Fermi energy is a good proxy for convergence testing: we do not use the actual

frontier orbital energies as before. This is because with changing Monkhorst-Pack grids

the positions sampled from the Brillouin zone change, which may miss the position of the

VBM and CBM for some choices of grid i.e. by changing the grid density, changes in the
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frontier orbital energies reported are not necessarily improvements towards a converged

value, but are simply sampling a different region farther from the actual frontier orbital

position. A threshold for Fermi energy convergence of 0.02 eV was selected, although for

cheap calculations performed earlier in the project, denser k-point grids were occasionally

selected than required for this particular threshold. As we were also interested in geometry

and, later in the project, binding energies of heterostructures, we also converged the total

system energy. In all cases, this converged much faster, and to within a much smaller

range (less than 10−5 eV), than the Fermi or frontier orbital energies, and so did not affect

any decisions.

As HSE calculations use DFT-optimized geometry as inputs, and only the self-

consistent steps are performed with the hybrid functional, the parameters used in an

HSE calculation that must also be converged in order to perform the previous DFT

calculations are already decided upon, as discussed in subsection 3.3.3. We therefore used

the same ecutwfc and ecutrho as we did for DFT calculations, only increasing them if

required due to a restriction of the software implementation. This was the case for both

sulfur systems, discussed in their relevant subsections below.

However, due to the computational cost of HSE calculations, a dense k -point grid was

not a feasible choice. Additionally, there is a q-point mesh (or Fock mesh) that must be

used alongside the usual k-point mesh. This is for the exact (Hartree-Fock-like) part of the

hybrid calculation, as discussed in subsection 3.1.4. The Fock mesh must match with the

k-point mesh, being divisible into it. Convergence testing operates slightly differently for

our HSE calculations, as we already have geometry from DFT and cannot perform non-

self consistent field calculations: we perform convergence testing on the scf calculation,

which is the only calculation performed with HSE anyway, before moving on to Wannier

interpolation to fill out a denser grid. As such, we perform calculations with successively

more dense Fock meshes until convergence is reached in the Fermi energy to a slightly

higher threshold of 0.05 eV. Once we do reach convergence, we will have already performed

the calculation needed during this process. This means that we end up using the results

from the most expensive (and accurate) calculation we performed despite knowing, albeit
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retroactively, that the second-most accurate would have been sufficient.

We performed HSE calculations on MoS2 without spin-orbit coupling initially, but

found that hybrid calculations both with and without spin-orbit coupling were similar to

each other in cost. As such, we abandoned further HSE calculations without spin-orbit

coupling, and we shall only discuss HSE results with the inclusion of the proper spin-orbit

coupling treatment.

4.2.1 MoS2

DFT

The results of convergence testing for energy cut-off are shown in the left panel of Figure

4.1, where the VBM and CBM values are within the colored bars that represent the

threshold of 0.005 eV around the result form the most accurate calculation from the very

first calculation. As such, we simply use the lowest energy cut-offs of ecutwfc = 80 Ry

and ecutrho/ecutwfc = 4.

Using the converged value of ecutwfc, k-point mesh convergence was carried out with

increasingly dense grids. The x- and y-dimensions were kept equivalent to reflect the

shape of the unit cell, and the z-dimension was held at 1, as there is a large vacuum

region in this direction of approximately 50 Å to maintain integrity of the monolayer.

The results of this convergence test are displayed in Figure 4.1, where a 12 × 12 × 1

grid provides convergence of the Fermi energy within 0.02 eV. The total system energy

had converged long before this point, as can be seen in Figure 4.1. While convergence of

the Fermi energy to within a threshold of 0.02 eV was reached with a grid of 12× 12× 1,

the computational cost was low for this set of calculations. As such, we proceeded here

with a denser k-point mesh of 20× 20× 1 to keep in line with the other TMDs discussed

shortly, although this was not strictly necessary to do so.
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Figure 4.1: The results of ecutwfc (left) and k-point (right) convergence testing for MoS2.
VBM energy (left) and Fermi energy (right) are represented by blue dotted lines, and CBM
energy (left) and total energy (right) are represented by red dashed lines. Convergence was
achieved with ecutwfc = 80 Ry, ecutrho/ecutwfc = 4, and a k-point mesh of 12×12×1.
The VBM and CBM values (left) are scaled the same, but represented within different
energy ranges. The cyan and magenta bars (left) represent the convergence thresholds for
VBM and CBM values, respectively, and the cyan bar (right) represents the convergence
threshold for the Fermi energy, all centred on the value from the most expensive and
accurate calculation. In the left image these bars overlap significantly, resulting in the
single purple bar. Also note that the bars are of height twice the convergence threshold
i.e. extend from the most accurate value by the threshold in both positive and negative
directions.

HSE

Using geometry from previous DFT calculations (with converged parameters), and an

ecutwfc previously determined, HSE scf calculations were carried out with successively

denser Fock meshes. The results of this are displayed in Figure 4.2. Convergence was

demonstrated following the results from using a 6 × 6 × 1 Fock mesh. Due to the cost

associated with hybrid calculations, we did not investigate finer k-point grids, and simply

used a 6 × 6 × 1 k-point mesh, with the intention to increase it in line with the q-point

mesh if needed.

Notably for MoS2, there was a requirement to increase ecutfock beyond the typical

value of ecutfock = ecutrho = 4 × ecutwfc due to numerical instability that can
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arise from exact calculations on the particular software used here. The solution was to

increase ecutfock from 320 Ry to 400 Ry, and so we increased the other energy cut-offs

proportionally (ecutwfc = 100 Ry, ecutrho = 400 Ry).

Figure 4.2: Convergence testing results for MoS2, using the HSE functional. Convergence
was achieved with a q-point mesh of 3 × 3 × 1, but a calculation with 6 × 6 × 1 had
to be performed to demonstrate this. As such, the results from the more accurate mesh
of 6 × 6 × 1 were used. The convergence threshold is again represented by a cyan bar,
centered on the most expensive and accurate result.

4.2.2 MoSe2

DFT

The same procedure as for MoS2 was performed, with resulting parameters of ecutwfc =

100 Ry, and ecutrho/ecutwfc = 4. Using these energy cut-off values, the k-point mesh

was converged to a grid of 20 × 20 × 1. This is the reason (along with WS2) that MoS2

and WSe2 use denser grids than otherwise necessary. The results of the test are displayed

in Figure 4.3. Again, the total system energy is shown for completeness, but converged

long before the Fermi energy.
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Figure 4.3: The results of ecutwfc and ecutrho convergence testing (left) and k-point
mesh (right) for MoSe2. VBM and CBM energies are shown with a blue dotted line and
a red dashed line, respectively (left), and Fermi energy and total energy similarly (right).
VBM and CBM energy thresholds are marked by a cyan and magenta bar, respectively
(left), and the Fermi energy threshold likewise in cyan (right).

HSE

Convergence testing of the Fock mesh followed the same procedure as for MoS2, but a

q-point mesh of 2× 2× 1 would have been appropriate (and so the next mesh of 3× 3× 1

would have been used). However, (incorrectly) anticipating the need for a more dense

mesh, a further calculation with a 6×6×1 mesh was performed as part of the calculation

batch. As such, we used the results form this more accurate calculation. This is shown

in Figure 4.4.
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Figure 4.4: Convergence testing results for MoSe2, using the HSE functional. Convergence
was achieved with a q-point mesh of 2× 2× 1 as shown by the threshold (cyan bar), but
a calculation with 3 × 3 × 1 had to be performed to demonstrate this, and the batch
included a mesh of 6× 6× 1; we use the denser mesh going forward.

4.2.3 WS2

DFT

Convergence testing in the established manner for WS2 resulted in ecutwfc = 80 Ry,

ecutrho/ecutwfc = 4, and a k-point mesh of 20× 20× 1. The results of the convergence

test for DFT are displayed in Figure 4.5.
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Figure 4.5: The results of energy cut-off (left) and k-point mesh (right) convergence
testing for WS2. VBM and CBM values (left) are represented by blue dotted and red
dashed lines, with their thresholds represented by cyan and magenta bars, respectively.
Fermi energy and total energy (right) are represented by blue dotted and red dashed lines,
respectively, and the Fermi energy threshold is the cyan bar.

HSE

The q-point mesh convergence test results are displayed in Figure 4.6. Similarly to MoSe2,

a mesh of 2×2×1 would have sufficed, but a more accurate mesh of 6×6×1 was performed

as part of the calculation batch anyway. As such, we elected to use the denser mesh going

forward.

In the same manner as for MoS2, there was a requirement to increase ecutfock beyond

the typical value of ecutfock = ecutrho = 4 × ecutwfc. We again increased ecutfock

from 320 Ry to 400 Ry, and increased the other energy cut-offs proportionally (ecutwfc =

100 Ry, ecutrho = 400 Ry).
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Figure 4.6: Convergence testing results for WS2, using the HSE functional. Convergence
was achieved with a q-point mesh of 2× 2× 1, as shown by the threshold (cyan bar), but
a calculation with 3 × 3 × 1 had to be performed to demonstrate this. As a 6 × 6 × 1
mesh was investigated as a part of the calculation batch anyway, the results from this
were used.

4.2.4 WSe2

DFT

Convergence testing of WSe2 parameters demonstrated a need for ecutwfc = 120 Ry,

ecutwfc/ecutrho = 4, and a k-point mesh of 16 × 16 × 1. In keeping with the other

TMDs above, a mesh of 20× 20× 1 was instead selected. The results of the convergence

test are displayed in Figure 4.7.
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Figure 4.7: The results of convergence testing for WSe2. The left panel displays the
results of the energy cut-off convergence test, with the VBM energies as the blue dotted
line and their threshold the cyan bar, and CBM energies the red dashed line with their
threshold as the magenta bar. The right panel displays the results of the k-point mesh
convergence test, with the Fermi energy and its threshold represented by the blue dotted
line and cyan bar, respectively, and the total energy represented by the red dashed line.

HSE

Convergence testing results for the q-point mesh is shown in Figure 4.8, and again required

only a 2× 2× 1 mesh, but a calculation using a 6× 6× 1 mesh was performed as a part

of the batch. We used this more accurate mesh for our analysis.
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Figure 4.8: Convergence testing results for WSe2, using the HSE functional. As before,
convergence was achieved with a q-point mesh of 2 × 2 × 1, as shown by the threshold
(cyan bar), but a calculation with 3× 3× 1 had to be performed to demonstrate this.

4.2.5 Pentacene

We did not perform convergence testing for the k-point mesh for pentacene, as it is

molecular and in a large cell. As such, we used Γ-point calculations throughout (a k-

point mesh of 1× 1× 1). This is also true for the Fock mesh.

Convergence testing for the energy cut-off parameters is shown in Figure 4.9, where the

parameters converged immediately. We were able to proceeded with ecutwfc = 80 Ry,

and ecutrho/ecutwfc = 4, but for early testing had already used ecutwfc/ecutrho =

5. This small discrepancy will not affect final computational output, as shown by the

convergence test. For heterostructure calculations later in the project, the energy cut-

offs used are those determined by the TMD, as those values will always suffice for the

pentacene molecule.
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Figure 4.9: The results of ecutwfc convergence testing for pentacene, with the VBM
energies as the blue dotted line and their threshold the cyan bar, and CBM energies the
red dashed line with their threshold as the magenta bar. These threshold bars again
overlap, resulting in the appearance of a single purple bar.
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4.3 Geometry

Using the newly converged parameters, geometry optimization was carried out. First, a

vc-relax calculation was performed with a hexagonal primitive crystal system (except

for pentacene which, as the project’s adsorbate, has cell parameters dependent on its

underlying substrate). This calculation allows for a relaxation of the cell parameter a,

with b = a, and c determined by the introduced vacuum region and fixed. The vectors of

the cell parameters in Cartesian coordinates, then, are v1 = a (1, 0, 0), v2 = a
(
−1

2
,
√
3
2
, 0
)
,

and v3 = a
(
0, 0, c

a

)
. The self-consistent DFT calculation minimizes the total energy and

forces with respect to the atomic positions and cell parameters. Following convergence

between self-consistent steps, the atomic position and cell parameter outputs are fed in

to a relax calculation that re-minimizes the energy with respect to the atomic positions,

but now with fixed cell parameters. The reason for this additional step is that the plane

wave basis set is generated at the beginning of a calculation, and depends on the cell

parameters. As the cell parameters change over the course of the vc-relax calculation,

and the plane wave basis set is not updated, the atomic positions are determined by a

plane wave basis set that is appropriate for the starting cell parameters, not the output

cell parameters. By fixing the cell parameters during the relax calculation, the plane

wave basis set is appropriate for the unit cell throughout, and this provides a slightly

improved output of atomic positions within the cell.
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Table 4.1: A comparison of geometry from the existing literature. XRD and ARXPS are
experimental measurements, the others are theoretical results.

TMD a/Å dTM−Ch/Å ΘCh−TM−Ch dCh−Ch/Å Data
MoS2

3.18 2.42 82.30° 3.13 PBE [95]
3.19 2.41 80.73° 3.13 PBE [96]
3.20 2.42 80.69° 3.13 PW91 [97]

2.41 82.31° 3.13 PW91 [98]
3.16 XRD† [99]
3.16 ARXPS [100]
3.22 2.406 XRD, XAS [101]
3.160 2.41 82.50° 3.19 XRD† [102]

MoSe2
3.319 2.524 3.288 PBE [103]
3.32 2.54 82.11° 3.34 PBE [104]
3.32 PBE [105]
3.288 2.49 80.82° 3.23 XRD† [102]
3.28 XRD† [106]
3.27 2.528 XRD, XAS [101]

WS2

3.18 2.42 81.01° 3.14 PBE [104]
3.185 PBE [107]
3.185‡ 2.41 80.8° 3.13 PBE [108]
3.154 XRD† [102]
3.154 XRD† [109]
3.23 2.417 XRD, XAS [101]

WSe2
3.32 2.55 82.43° 3.35 PBE [104]
3.316 PBE [110]
3.324 PBE [107]
3.323 PW91 [110]
3.286 XRD† [102]
3.280 XRD† [111]
3.287 2.532∗ XRD† [112]
3.290 XRD† [113]

† Data are from bulk or thin film samples.
‡ A supercell approach was used, so the reported values here are adjusted to be the equivalent of a
single unit cell.
∗ Multiple bond lengths at varying temperatures are given; the reported value above is that at 300K.
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Table 4.2: A comparison of our calculated geometry results for monolayer TMD crystals,
from DFT using the PBE functional, with (SOC) and without (nSOC) spin-orbit coupling,
as well as the difference between the two (∆).

TMD a/Å dTM−Ch/Å ΘCh−TM−Ch dCh−Ch/Å
MoS2

nSOC 3.1675 2.4083 81.139° 3.1314
SOC 3.1665 2.4069 81.147° 3.1310
∆ 0.0010 0.0014 0.008 0.0004
MoSe2
nSOC 3.2979 2.5353 82.645° 3.3481
SOC 3.2975 2.5356 82.676° 3.3496
∆ 0.0004 0.0003 0.031° 0.0015
WS2

nSOC 3.1721 2.4135 81.283° 3.1440
SOC 3.1721 2.4139 81.304° 3.1452
∆ 0.0000 0.0004 0.021° 0.0012
WSe2
nSOC 3.2926 2.5398 83.082° 3.3685
SOC 3.2926 2.5398 83.082° 3.3685
∆ 0.0000 0.0000 0.000 0.0000

A number of existing experimental literature values we have provided in Table 4.1

are from bulk or thin film samples. For further comparison, we performed geometry

optimization on bulk (2H, see Figure 1.1) TMDs, although these systems were not

considered further in the project. Our computational details were the same as for

monolayer systems, except for the k-point mesh (using a 20 × 20 × 5 mesh to account

for the new cell parameter, c) and the updated structure to include repeating bilayers

without a vacuum layer. The results of these calculations are displayed in Table 4.3,

which are in keeping with the experimental values for cell parameters a (c) for bulk TMDs

of 3.16 Å (12.32 Å), 3.28 Å (12.90 Å), 3.15 Å (12.36 Å), and 3.28 Å (12.95 Å) for MoS2,

MoSe2, WS2 and WSe2, respectively [99,102,106,109,111]. The cell parameters a for our

bulk calculations are all similar to those determined from our monolayer calculations.
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Table 4.3: Calculated geometry results for bulk 2H TMD crystals, from DFT using the
PBE functional, without (nSOC) spin-orbit coupling. The given c parameter is for one
bilayer i.e. the cell maintaining the 2H relationship.

TMD a/Å c/Å
MoS2 3.1686 12.4913
MoSe2 3.2978 13.1608
WS2 3.1717 12.5601
WSe2 3.2918 13.1594

4.3.1 MoS2

The structural parameters of monolayer MoS2, without considering spin-orbit coupling,

are displayed in Figure 4.10. Our lattice parameter result of a = 3.1675 Å is similar to

previous theoretical results that also use the PBE functional and monolayer structure,

as are the Mo-S bond lengths, dMo−S, of 2.4083 Å the S-Mo-S bond angle, ΘS−Mo−S,

of 81.139°, and layer thickness (S-S distance), dS−S, of 3.1314 Å. Comparisons can

be made with the results from the literature in Table 4.1. Our results are also very

close to experimental values for the lattice parameter, a, measured to be 3.16 by both

X-ray powder diffraction (XRD) and angle-resolved X-ray photoemission spectroscopy

(ARXPS).

If we consider spin-orbit coupling, the parameters are instead a = 3.1665 Å, dMo−S =

2.4069 Å, ΘS−Mo−S = 81.147°, and dS−S = 3.1310 Å, which are similar to those without

spin-orbit coupling. A comparison of geometry results can be seen in Table 4.2. The

geometry results from vc-relax and relax calculations that consider spin-orbit coupling

are used for electronic structure calculations that also consider spin-orbit coupling. Later

calculations (Chapters 5 and 6) that involve the supercell approach did not consider spin-

orbit coupling (due to computational cost), and so use the previous geometry results

without spin-orbit coupling to produce the supercell.
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Figure 4.10: MoS2 molecule following variable cell relaxation without spin-orbit coupling.
Bond lengths, bond angle, atomic positions and the lattice parameter a are displayed. 1H
monolayer TMDs are within the rhombohedral lattice system (trigonal crystal system),
where the cell parameter a = b, and in principle c is also required to define the system,
but here we set c to be large in order to create a vacuum region and ensure no interaction
between layers.

4.3.2 MoSe2

The MoSe2 monolayer, without spin-orbit coupling, was found to have a lattice parameter

of a = 3.2979 Å, an Se-Mo-Se bond angle of ΘSe−Mo−Se = 82.645°, an Mo-Se bond

length of dMo−Se = 2.5353 Å, and a layer thickness of dSe−Se = 3.3481 Å. These can

be compared to the literature values in Table 4.1, showing that our results are close to

experimental results, and broadly agree with previous theoretical calculations. Our results

are demonstrated in Figure 4.11.

Considering spin-orbit coupling, there are again small changes in geometry. The lattice

parameter becomes a = 3.2975 Å, the Mo-Se bond length dMo−Se = 2.5356 Å, the Se-Mo-

Se bond angle ΘSe−Mo−Se = 82.676°, and the layer thickness dSe−Se = 3.3496 Å, again

displayed in Figure 4.2.
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Figure 4.11: MoSe2 molecule following variable cell relaxation without spin-orbit coupling.
Bond lengths, bond angle, atomic positions and the lattice parameter a are displayed. 1H
monolayer TMDs are within the rhombohedral lattice system (trigonal crystal system),
where the cell parameter a = b, and in principle c is also required to define the system,
but here we set c to be large in order to create a vacuum region and ensure no interaction
between layers.

4.3.3 WS2

The WS2 monolayer, without spin-orbit coupling, was found to have a lattice parameter of

a = 3.1721 Å, a W-S bond length of dW−S = 2.4135 Å, an S-W-S bond angle of ΘS−Mo−S =

81.283°, and a layer thickness of dS−S = 3.1440 Å. These can be compared to the literature

values in Table 4.1, showing that our results are again similar to experimental results,

and agree closely with previous theoretical calculations. Our results are demonstrated in

Figure 4.12.

When considering spin-orbit coupling, small changes in geometry are again observed,

but unlike for the molybdenum crystals, the lattice parameter is unchanged. The W-

S bond length becomes dW−S = 2.5356 Å, the S-W-S bond angle becomes ΘS−Mo−S =

82.676°, and the layer thickness becomes dS−S = 3.3496 Å. A comparison is made in Table

4.2.
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Figure 4.12: WS2 molecule following variable cell relaxation without spin-orbit coupling.
Bond lengths, bond angle, atomic positions and the lattice parameter a are displayed. 1H
monolayer TMDs are within the rhombohedral lattice system (trigonal crystal system),
where the cell parameter a = b, and in principle c is also required to define the system,
but here we set c to be large in order to create a vacuum region and ensure no interaction
between layers.

4.3.4 WSe2

The WSe2 monolayer, without spin-orbit coupling, was found to have a lattice parameter

of a = 3.2926 Å, an Se-W-Se bond angle of ΘS−Mo−S = 83.082°, an W-Se bond length of

dW−Se = 2.5398 Å, and a layer thickness of dSe−Se = 3.3685 Å. These can be compared to

the literature values in Table 4.1. Our results are close to experimental results, and agree

with previous theoretical calculations, although in this case there is lacking information

on the details of the structure, with existing literature mostly reporting just the lattice

parameter. Our results are demonstrated in Figure 4.13.
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Figure 4.13: WSe2 molecule following variable cell relaxation without spin-orbit coupling.
Bond lengths, bond angle, atomic positions and the lattice parameter a are displayed. 1H
monolayer TMDs are within the rhombohedral lattice system (trigonal crystal system),
where the cell parameter a = b, and in principle c is also required to define the system,
but here we set c to be large in order to create a vacuum region and ensure no interaction
between layers.

In the case of WSe2, performing geometry optimization while considering spin-orbit

coupling results in no change compared to that without.

4.3.5 Pentacene

Being molecular, pentacene’s geometry optimization is treated differently. We construct

a cell with lattice parameters that ensures each molecule is isolated from its neighbours,

and do not allow this cell to change (i.e. we do not perform the vc-relax calculation, only

relax). Experimental work will often include lattice parameters as they must examine

crystals of pentacene, but we do not. Our lattice parameters were chosen, not determined,

such that molecular separation was over 30 Å in all directions in order to ensure there

was no interaction between molecules. This was achieved with a cubic supercell of side

length 48 Å. Performing geometry optimization with spin-orbit coupling considered did

not change the molecular structure compared to excluding it, as may be expected of a

molecule comprised of small atoms. Due to hardware limitations causing difficulty with

HSE calculations with such large vacuum regions, we also considered a smaller cubic
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supercell of side length 32 Å; this was confirmed to be large enough to maintain isolation

between molecules (discussed in subsection 4.4.6), but this was only introduced later on

when the need became apparent.

We also considered low concentration pentacene, where the molecules are considered in

a repeating cell defined by the size of a 7×4 molecule sheet of underlying TMD substrate:

a = 22.19 Å and b = 12.68 Å. The cell parameters are thus chosen as this is the size of

the heterostructure supercells used later in the project. Similarly, we also considered a

cell defined by the size of a 6 × 3 molecule sheet of underlying TMD substrate, with

parameters a = 19.02 Å and b = 9.51 Å. This is for the high concentration pentacene

heterostructures. We independently optimized the geometry of the molecule, but here

report only the results of well-isolated pentacene, that being the system of interest at this

stage; the investigation of pentacene in smaller cells is in order to decouple the effects of

the substrate on the molecule from effects between molecules when in heterostructures,

and will be discussed in later chapters (Chapters 5 and 6). We did, however, use the

corresponding geometry of pentacene for the calculation of electronic structure within

smaller cells.

These different concentrations of pentacene may be referred to as PENiso for the 48

Å cubic supercell, PENsmall-iso for the 32 Å cubic supercell, PEN7×4 for the supercell

defined by a 7 × 4 TMD substrate layer (low concentration pentacene), and PEN6×3 for

the supercell defined by a 6× 3 TMD substrate layer (high concentration pentacene).

Both experimental values and our own calculation show that the molecule’s C-C bond

lengths vary, and are symmetric across the length and width of the molecule. As such, we

display the bond lengths on one side of Figure 4.14a, and bond angles on the other. Our

calculations agree with previous experimental measurements via X-ray diffraction [114].

The experimental values are shown in in Figure 4.14b for comparison.
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(a)

(b)

Figure 4.14: (a) Our calculated values for C-C bond lengths and C-C-C bond angles
in the isolated pentacene molecule. Hydrogen atoms are not shown. The molecule is
symmetric across the middle of its length and width for both bond lengths and angles.
(b) Experimental values from XRD [114] for average C-C bond lengths and C-C-C bond
angles of pentacene molecules in thin crystals. Hydrogen atoms are not shown. The
molecule is symmetric across the middle of its length and width for both bond lengths
and angles.

We found the total molecule dimensions in the x-y plane to be 14.1443 Å×5.0028 Å,

compared to 14.21 Å×5.04 Å, from existing PBE DFT calculations in the literature [115].

That work used a similarly isolating cell, with dimensions of 50 Å, and additionally found

the C-H bond lengths to be uniform at 1.10 Å, whereas we found them to be non-uniform,

slightly longer towards the middle of the molecule’s length: the middle carbon ring’s C-H

bonds were 1.0925 Å, whereas the rings at the end of the molecule’s length had C-H bond

lengths of 1.0903 Å. These values are all very close, and in agreement with each other.

Our calculations resulted in a mean deviation of the atomic positions from the

molecular plane of 0.49 mÅ, with the largest deviation being 1.02 mÅ. This is comparable

to the literature value for maximum deviation of 0.67 mÅ [115], agreeing with the finding

that the molecule is essentially planar.
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4.4 Electronic structure

Figure 4.15: The first Brillouin zone of a hexagonal lattice, with the sampling path
between high-symmetry points used for the band structure of our TMDs marked in red.

With the structure of the systems determined, the next stage of obtaining the electronic

structure using DFT was to perform scf calculations. These provide information on

electronic energies, with the theory behind the calculation being discussed in Section

3.1. This is enough to get information on total system energy and Fermi energy, where

the vacuum energy is set to 0 (as it will be throughout). The frontier orbital energies

can also be extracted, but with limited information on the underlying band structure.

Following this, nscf calculations were performed on finer k-point grids to improve

accuracy. The bands calculation can then be performed with a defined path through

k-space over which to assess band energy, which gives us the full band structure following

some post-processing with bands.x. The path through k-space that we chose captures

important critical points in the hexagonal Brillouin zone (Γ-M-K-Γ), and is displayed in

Figure 4.15. This choice of path also naturally passes through the Q critical point. To

calculate the density of states, we then run the post-processing codes dos.x and can also

subsequently run projwfc.x for projection of the density of states on to orthogonalized

atomic wavefunctions. This process is laid out in Figure 3.8.

For the electronic structure using the HSE functional, however, the workflow is slightly

different (see Figure 3.9). The scf calculation is still performed, using hybrid-specific

parameters such as the Fock mesh. This is enough to obtain total system energy. For

pentacene, being molecular and assessed using only Γ-point calculations, the Fermi
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energy and frontier orbital energies can additionally be extracted. To continue to the full

band structure (and frontier orbital energies for the TMDs), however, we used Wannier

interpolation to populate the required fine grid, the theory of which is discussed in

subsection 3.3.1. This is because non-self consistent field calculations (notably nscf

and bands) within the PWscf package are not compatible with hybrid functionals.

Additionally, density of states is not implemented for hybrid functionals, and so we only

produced the band structures with HSE. Table 4.4 is a summary of our results for the

band gaps of the investigated systems, and Table 4.5 provides an overview of band gap

values from the theoretical and experimental literature.

Table 4.4: The band gaps of the monolayer TMDs and pentacene in different
concentrations for different levels of theory. PBE-nSOC and PBE-SOC are the PBE
functional without and with consideration of spin-orbit coupling, respectively, and HSE
calculations are always performed with consideration of spin-orbit coupling.

EG / eV

System EG(PBE-nSOC) EG(PBE-SOC) EG(HSE)
PENiso 1.142 1.139
PENsmall-iso 1.139 1.139 1.616
PEN7×4 1.139 1.139 1.596
PEN6×3 1.140 1.142 1.581
MoS2 1.733 1.660 2.089
MoSe2 1.513 1.407 1.792
WS2 1.859 1.606 2.080
WSe2 1.645 1.291 1.801
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Table 4.5: A comparison of experimental and theoretical band gap energies for our
materials. If the peaks from PL measurements are wide, we have given a range.

TMD EG / eV Data
MoS2 1.79‡ PW91 [116]

1.67 PBE [96]
2.13 HSE06 [96]
1.9 PL [23]
1.9 PL [22]
1.85 PL [24]
1.82 PL [21]

MoSe2 1.444 PBE [104]
1.47 PBE [117]
1.95 HSE06 [118]
2.33‡ G0W0 [119]
1.53 PL [25]
1.625 PL [26]
2.18 STS [120]

WS2 1.6 LDA [121]
1.424 optB86b-vdW [122]
1.819 PBE [104]
1.9 PBE [117]

1.94-1.99 PL [27]
2.01† PL [123]

WSe2 1.27‡ LDA [124]
1.548 PBE [104]
1.7 PBE [117]
1.65 PL [28]

Pentacene 1.1 PBE [115]
1.1 PBE [125]

1.97† AS [126]
1.97† AS [127]
1.85† AS [128]

† Few-layer TMD or thin film pentacene.
‡ Theoretical work that considered spin-orbit coupling.

Previous theoretical work with the PBE functional demonstrates that all the TMDs

used in this project have Γ-Q band gaps when in bulk, which transition to direct at K

when in monolayer. All but MoS2 maintain their indirect Γ-Q gaps all the way to bilayer,

only changing in character at monolayer. MoS2 is still a direct gap semiconductor only

in monolayer, but the bilayer gap is Γ-K instead [20].
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4.4.1 MoS2

DFT

The density of states, alongside the band structure for monolayer MoS2, using DFT

without spin-orbit coupling, is presented in Figure 4.16. The greatest contribution to the

conduction bands are molybdenum d-orbitals, as may be expected. Their contribution is

also the most significant one at the highest energy valence bands, with sulfur s-orbitals

contributing more as energy decreases. The frontier orbitals were found to be at −4.20 eV

for the conduction band minimum (CBM) and −5.94 eV for the valence band maximum

(VBM), resulting in a band gap of 1.73 eV. This is a direct band gap at the high-

symmetry (critical) point K: both the CBM and VBM occur at K. Our result is similar

to other generalized gradient approximation (GGA) calculations (see Table 4.5), but is

an underestimation of the experimental band gap. The direct character, however, agrees

with experiment [21–24].

We can see that the indirect band gap is between the K and Q critical points for

the VBM and CBM, respectively (and is larger than the direct band gap, with lowest

conduction band energy at the Q point being −3.99 eV). Bulk MoS2 has a smaller indirect

band gap than its direct band gap, between Γ (VBM) and Q (CBM) critical points

[116, 129], with the CBM reducing in energy around the Q point with the increase in

interlayer interaction [130] found in bulk and many-layer systems. Similarly, the top-

most valence band decreases in energy at the Γ point with decreasing layers, whereas the

direct gap at K changes little [24].
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Figure 4.16: The projected density of states and band structure of monolayer MoS2,
without considering spin-orbit coupling, using DFT. The Fermi energy is represented by
a black dashed line. There are very minor contributions to the density of states from
lower energy orbitals within the displayed energy range (not shown).

When considering spin-orbit coupling, we see frontier orbital energies of −5.83 eV

for the VBM and −4.17 eV for the CBM, resulting in a band gap of 1.66 eV. These

values represent a small increase of 0.03 eV in the CBM, and an increase in the VBM

of 0.10 eV, for a decrease in EG of 0.07 eV. This is expected from spin-orbit coupling

induced band splitting, much more notable in the valence bands: the top-most valence

band is split by 147 meV at K, and the lowest conduction band is only split by 3

meV. This pattern is noted in the literature [116], and is similar to reported values

for bulk MoS2 both using PBE functionals and experimental measurement using angle-

resolved photoemission spectroscopy (ARPES) [131], as well as monolayer values from

photoluminescence measurements [24]. The band structure and pDOS of monolayer MoS2

with consideration of spin-orbit coupling is displayed in Figure 4.17. Band splitting is

clearly visible in the top-most valence band around the K critical point. The changes in

the density of states from consideration of spin-orbit coupling are minor, and arise from

the described changes in energies above.
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Figure 4.17: The projected density of states and band structure of monolayer MoS2,
considering spin-orbit coupling, using DFT. The Fermi energy is represented by a black
dashed line. There are very minor contributions to the density of states from lower energy
orbitals within the displayed energy range (not shown).

HSE

Using the hybrid HSE functional, we performed an scf calculation followed by Wannier

interpolation on to a finer grid, and then extracted the band structure using post-

processing from the wannier90 tool. HSE calculations were with spin-obit coupling

considered. This is displayed in Figure 4.18, with a direct comparison to the DFT-only

results in Figure 4.19. For all bands, the effect of HSE is to move them energetically

further from the Fermi energy, with the exception of the lowest conduction band around

the K critical point, where HSE predicts a slightly lower energy. The VBM decreases

by 0.45 eV to −6.28 eV compared to DFT only with spin-orbit coupling. The CBM

is calculated as −4.42 eV, and so also decreases, but only by 0.02 eV. This results in

a calculated band gap of 2.09 eV, which is much closer to experimental values for the

system (see Table 4.5) than our DFT results, and comfortably in line with previous HSE

calculations. Band splitting of 189 meV and 19 meV occurs around the VBM and CBM,

respectively. The basic structure remains unchanged, with a maintained direct band gap

at the K critical point and an indirect band gap at K − Q, which is greater than the
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direct band gap.

Figure 4.18: The band structure of MoS2, calculated using the HSE hybrid functional,
with spin-orbit coupling. The Fermi energy is denoted by the dashed black line.

Figure 4.19: A comparison between DFT and HSE band structures of MoS2: DFT without
considering spin-orbit coupling (left), DFT considering spin-orbit coupling (middle), and
HSE considering spin-orbit coupling (right).The Fermi energies are plotted as the dashed
black lines, and the vacuum energy is set to 0.
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4.4.2 MoSe2

DFT

The density of states and bands structure of MoSe2, without considering spin-orbit

coupling, is displayed in Figure 4.20. As was the case for MoS2, the largest contribution

to the conduction bands are Mo d-orbitals, which are also the most important contribution

to the top-most valence band, with selenium s-orbitals contributing more with decreasing

energy. Selenium d-orbitals do not play an electronic role near the Fermi energy, being

lower in energy than their respective shell’s p-orbitals, as expected. The VBM was at

−5.29 eV and the CBM at −3.78 eV, resulting in a band gap of 1.51 eV. This is broadly

in line with experiment (see Table 4.5), although still represents an underestimation of

the band gap. The band structure is reminiscent of MoS2, with a direct band gap at K,

and a slightly larger indirect band gap to Q in the conduction band.

Figure 4.20: The projected density of states and band structure of monolayer MoSe2,
without considering spin-orbit coupling, using DFT. The Fermi energy is represented by
a black dashed line. There are very minor contributions to the density of states from
lower energy orbitals within the displayed energy range (not shown).

When considering spin-orbit coupling, the frontier orbital energies were −5.19 eV and

−3.78 eV (VBM and CBM, respectively), resulting in a band gap of 1.41 eV, which was
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still found to be direct at K. These results represent an increase in the the VBM of 0.10

eV, a negligible decrease in the CBM, and a decrease in the band gap of 0.11 eV. The

valence band experiences splitting of 185 meV at the K point, and the conduction band

was split by 21 meV. The valence band splitting is consistent with previously reported

splitting of 180 meV from ARPES results [132], as well as with 183 meV from theoretical

results [133]. The band structure for MoSe2, along with density of states, from DFT with

spin-orbit coupling is displayed in Figure 4.21. The density of states is very similar to

that without spin-orbit coupling.

Figure 4.21: The projected density of states and band structure of monolayer MoSe2,
considering spin-orbit coupling, using DFT. The Fermi energy is represented by a black
dashed line. There are very minor contributions to the density of states from lower energy
orbitals within the displayed energy range (not shown).

HSE

Our HSE calculations for monolayer MoSe2 yield a VBM of −5.71 eV at the K point and a

CBM of −3.92 eV at the K point, for a correction to the frontier orbital energies of 0.52 eV

and 0.14 eV (VBM and CBM, respectively), and a direct K-K band gap of 1.79 eV. The

HSE band structure is displayed in Figure 4.22. Hybridising DFT calculations with exact

exchange has the effect of decreasing the band energies across the whole Brillouin zone,
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with more of an effect on valence bands. These results are close to previous theoretical

predictions using HSE (see Table 4.5), but the band gap value is further from experimental

results than is our results from DFT only. Band gap character is unchanged, VBM

splitting is much larger than the DFT value at 258 meV at the K point, and CBM

splitting is also increased, at 48 meV.

Figure 4.22: The band structure of MoSe2, calculated using the HSE hybrid functional,
with spin-orbit coupling. The Fermi energy is denoted by the dashed black line.
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Figure 4.23: A comparison between DFT and HSE band structures of MoSe2: DFT
without considering spin-orbit coupling (left), DFT considering spin-orbit coupling
(middle), and HSE considering spin-orbit coupling (right). The Fermi energies are plotted
as the dashed black lines, and the vacuum energy is set to 0.

4.4.3 WS2

DFT

WS2 again follows suit, with the transition metal d-orbitals, now tungsten’s, playing

a major role around the Fermi energy, with the chalcogen p-orbitals becoming more

important in the valence bands with decreasing energy. We see another direct band

gap of 1.86 eV at the K critical point, between the VBM of −5.70 eV and the CBM

of −3.84 eV. The band gap is similar to previous theoretical work (see Table 4.5), and

is an underestimation of experimental results. There is again a Q-valley in the lowest

conduction band, in keeping with the indirect (Γ-Q) to direct band gap transition found

between bulk and monolayer WS2. The band structure and density of states without

spin-orbit coupling is displayed in Figure 4.24.
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Figure 4.24: The projected density of states and band structure of monolayer WS2,
without considering spin-orbit coupling, using DFT. The Fermi energy is represented
by a black dashed line. There are very minor contributions to the density of states from
lower energy orbitals within the displayed energy range (not shown).

Our DFT calculations that consider spin-orbit coupling gave a band gap of 1.61 eV,

a VBM at the K critical point of −5.51 eV and a CBM at the same point of −3.90 eV:

a decrease of 0.25 eV, increase of 0.20 eV, and a small decrease of 0.06 eV, respectively,

compared to DFT without spin-orbit coupling. Notably, the lowest conduction band at

the Q point has an energy of −3.88 eV, resulting in an indirect band gap of −1.63 eV,

only 23 meV larger than the direct band gap. This comes about from the large spin

splitting experienced by the conduction bands around the Q point, a feature that was of

much lesser magnitude in the molybdenum systems. The spin splitting at the VBM was

large, at 426 meV, explaining the magnitude of the decrease in the band gap between

DFT results without and with spin-orbit coupling, and a much more modest 32 meV

at the CBM, more in keeping with what was seen with the molybdenum systems. The

conduction band at the Q point, however, experienced splitting of 274 meV, which is an

order of magnitude higher than that at the K point. The VBM splitting is in keeping

with previous DFT literature [133,134], with the small splitting of the CBM and the large

splitting of the lowest conduction band at the Q point also agreeing with existing DFT
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results [134], the latter of which was reported as 0.33 eV. The density of states is, again,

not appreciably different from the case without spin-orbit coupling. The density of states

and band structure for DFT with spin-orbit coupling of WS2 is displayed in Figure 4.25.

Figure 4.25: The projected density of states and band structure of monolayer WS2,
considering spin-orbit coupling, using DFT. The Fermi energy is represented by a black
dashed line. There are very minor contributions to the density of states from lower energy
orbitals within the displayed energy range (not shown).

HSE

The band structure calculations using HSE for WS2, shown in Figure 4.26, report a VBM

of −5.85 eV, a CBM of −3.77 eV (both at the K point), and so a direct band gap of 2.08 eV.

This is in exceptional agreement with photoluminescence investigations (see Table 4.5).

The changes in these energies between DFT and HSE (both with spin-orbit coupling) are

an increase in the band gap of 0.47 eV, a decrease in the VBM of 0.34 eV, and an increase

in the CBM of 0.13 eV: both frontier bands move away from the Fermi energy, opening

up the band gap. The lowest conduction band has energy at the Q point of −3.65 eV.

The spin splitting in the VBM was 496 meV and in the CBM it was only 2 meV. At the Q

point, however, the splitting in the lowest conduction band was 287 meV, all fairly similar

to the values obtained from DFT.
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Figure 4.26: The band structure of WS2, calculated using the HSE hybrid functional,
with spin-orbit coupling. The Fermi energy is denoted by the dashed black line.

Figure 4.27: A comparison between DFT and HSE band structures of WS2: DFT without
considering spin-orbit coupling (left), DFT considering spin-orbit coupling (middle), and
HSE considering spin-orbit coupling (right).The Fermi energies are plotted as the dashed
black lines, and the vacuum energy is set to 0.
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4.4.4 WSe2

DFT

The VBM was found to be −5.06 eV for WSe2 using DFT without considering spin-orbit

coupling, with a CBM of −3.42 eV and a direct band gap at the K point of 1.65 eV. This

is very similar to photoluminescence results (see Table 4.5), as well as existing theoretical

literature. There is a Q valley almost as deep as that at K in the lowest conduction

band, with minimum energy −3.41 eV, only 5 meV higher than that at the K point. The

proximity in energy of the local minima in the lowest conduction band around the K and

Q points is documented in existing literature [135–137], with at least one experimental

investigation using STS implying band gap near-degeneracy [138], and an indirect band

gap in monolayer WSe2, with the K-Q gap being 2.12 ± 0.06 eV and the direct gap at

K being 2.20 ± 0.10 eV, as well as findings of an indirect K-Q band gap in monolayer

WSe2 [136,137].

The density of states (shown in Figure 4.28 alongside the bands structure, without

spin-orbit coupling) once again demonstrates the major contribution to the bands nearest

the Fermi energy is from the transition metal’s d-orbitals, with increasing contributions

from selenium p-orbitals with decreasing energy in the valence bands. As in MoSe2, the

selenium d-orbitals play an insignificant role near the band gap.
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Figure 4.28: The projected density of states and band structure of monolayer WSe2,
without considering spin-orbit coupling, using DFT. The Fermi energy is represented by
a black dashed line. There are very minor contributions to the density of states from
lower energy orbitals within the displayed energy range (not shown).

Performing DFT calculations with spin-orbit coupling resulted in a VBM at the K

critical point of −4.82 eV, and a CBM of −3.53 eV, but at the Q point: an indirect band

gap in monolayer WSe2. The energy of the lowest conduction band at the K point is

−3.46 eV, and so the difference in local minima in the lowest conduction band at the

Q and K points is only 66 meV. By considering spin-orbit coupling, the VBM increases

by 0.25 eV, and the lowest conduction band energy at the K point (the CBM without

spin-orbit coupling) increases by 0.04 eV. The band gap differs by 0.35 eV between the

two calculations (with and without spin-orbit coupling). The spin splitting in the lowest

conduction band at the Q point has been reported to be approximately 0.2 eV (via

scanning tunnelling spectroscopy) [139], with our result here being in agreement at a CBM

splitting of 226 meV. The splitting of the lowest conduction band at the K point is only 43

meV and splitting of the VBM is 457 meV, both similar to our DFT results for WS2, and

in keeping with previous PBE results [136]. The density of states is inappreciably different

from that without spin-orbit coupling, and is displayed alongside the band structure in

Figure 4.29.
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Figure 4.29: The projected density of states and band structure of monolayer WSe2,
considering spin-orbit coupling, using DFT. The Fermi energy is represented by a black
dashed line. There are very minor contributions to the density of states from lower energy
orbitals within the displayed energy range (not shown).

HSE

HSE calculations provide the band structure displayed in Figure 4.30, where the VBM

was −5.29 eV at the K critical point, the CBM was −3.49 eV also at K, and so the band

gap is direct at 1.80 eV. The lowest conduction band Q valley is close to that at K, with

an energy of −3.48 eV: a difference of only 17 meV and behavior observed previously [139].

Band splitting is again small in the lowest conduction band at the K point (the CBM

by HSE), at 4 meV, and large at the Q point, 225 meV. The VBM splitting was found

to be 567 meV, in keeping with previously reported valence band maxima splitting using

the HSE functional (586 meV) [136]. The band structure as compared to that from DFT

is displayed in Figure 4.31, where the correction from hybridisation to that of PBE with

spin-orbit coupling is to decrease the VBM by 0.48 eV, increase the CBM by 0.04 eV and

move it to the the K critical point, recovering the direct band gap gap, for a total effect

on the band gap of increasing it by 0.51 eV.
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Figure 4.30: The band structure of WSe2, calculated using the HSE hybrid functional,
with spin-orbit coupling. The Fermi energy is denoted by the dashed black line.

Figure 4.31: A comparison between DFT and HSE band structures of WSe2: DFT without
considering spin-orbit coupling (left), DFT considering spin-orbit coupling (middle), and
HSE considering spin-orbit coupling (right).The Fermi energies are plotted as the dashed
black lines, and the vacuum energy is set to 0.
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4.4.5 Pentacene

Being molecular, pentacene does not inherently have a true band structure: periodicity is

required for this. This is the reason for the use of the terms highest occupied molecular

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), in lieu of the similar

VBM and CBM that are discussed in the context of the periodic TMDs. We have

constructed a repeating system in order to perform our calculations, but intentionally

introduced vacuum into the cell in order to maintain isolation. As a result, we do not

present the band structure of pentacene: only the frontier orbitals and density of states.

This is also the case for pentacene in concentrations consistent with our later supercell

approach.

DFT

We performed three sets of calculations for pentacene, each with different cell parameters.

We considered isolated pentacene, with a large vacuum region in all directions to prevent

interaction between molecules, low concentration pentacene in a cell defined by an

underlying TMD substrate mesh of 7 × 4 molecules, and high concentration pentacene,

in a cell defined by a 6 × 3 molecule substrate. These choices are in keeping with

the concentrations considered later in the project, using a supercell approach for the

pentacene-TMD heterostructures.

For isolated pentacene, without spin-orbit coupling, we found the HOMO energy to be

−4.45 eV and a LUMO of −3.31 eV. This gives a band gap of 1.14 eV. The density of states

is displayed in the left panel of Figure 4.32, and we can see that the contributions closest

to the Fermi energy are from carbon p-orbitals. Hydrogen s-orbitals have contribution

further from the band gap, with more significant contributions at lower energies (not

shown). However, there are some permitted hydrogen s-orbital states above the band

gap, amongst the highest energy bound states.

Considering spin-orbit coupling results in no change to the frontier orbital energies; a

HOMO energy of −4.45 eV and LUMO of −3.31 eV. These values are in agreement with

previous theoretical work (see Table 4.5), and are unchanged by the effect of spin-orbit
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coupling, resulting in the same band gap of 1.14 eV: spin-orbit coupling has a smaller

effect on smaller atoms. The density of states is displayed in the right panel of Figure

4.32, where there is no change from spin-orbit coupling. Our DFT calculations have,

however, greatly underestimated the band gap compared to that found from absorption

spectra, which predicts a band gap closer to 2 eV (see Table 4.5).

Figure 4.32: The pDOS of isolated pentacene without (left) and with (right) consideration
of spin-orbit coupling. There is no significant distinction between the two cases, as
expected of small atom systems.

For low concentration (7× 4) pentacene, without spin-orbit coupling, the HOMO was

−4.55 eV, and the was LUMO −3.41 eV, giving a band gap of 1.14 eV. The density of

states shows a significant broadening of the permitted hydrogen-s orbital energies above

the band gap, as well as showing the tuning evident from the reported values of the

HOMO and LUMO when compared to the isolated system: the positions of both the

HOMO and LUMO have decreased by 105 meV. This broadening is expected to result

from the Gaussian smearing used in our calculations, rather than true band dispersion

arising from molecule-molecule interaction. The effect is observable in the isolated case

also, and is the cause for the peaks having appreciable, non-infintesimal width in the first

place. The density of states is displayed in the left panel of Figure 4.33.

Considering spin-orbit coupling for low concentration pentacene, we see frontier

orbitals of −4.55 eV and −3.41 eV (HOMO and LUMO, respectively): a negligible change

from the case without spin-orbit coupling, for the same band gap of 1.14 eV. Likewise,
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the density of states is unchanged (right panel of Figure 4.33.

Figure 4.33: The pDOS of low concentration pentacene (one molecule in a 7 × 4 cell)
without (left) and with (right) consideration of spin-orbit coupling. There is no significant
distinction between the two cases, as expected of small atom systems.

Finally, we investigated high concentration (6× 3) pentacene, and the results without

considering spin-orbit coupling are a HOMO energy of −4.68 eV, and a LUMO energy

of −3.54 eV, giving a band gap of 1.14 eV. With spin-orbit coupling, these values

are instead −4.66 eV and −3.52 eV (HOMO energy and LUMO energy, respectively).

These give a band gap of 1.14 eV. The frontier orbital energies have again shifted

energetically down by 130 meV and 129 meV (HOMO and LUMO respectively) with

further increasing concentration in the case of no spin-orbit coupling, and so the band

gap remains approximately the same width. When considering spin-orbit coupling,

the shifts in frontier orbital energies are 110 meV and 107 meV (HOMO and LUMO,

respectively) instead, for a similarly negligible change in band gap width. The density

of states is displayed in Figure 4.34, and reveals no significant difference from that of

the low concentration pentacene case, excepting the slight change in energies and further

broadening of hydrogen-s orbitals.
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Figure 4.34: The pDOS of high concentration pentacene (one molecule in a 6 × 3 cell)
without (left) and with (right) consideration of spin-orbit coupling. There is no significant
distinction between the two cases, as expected of small atom systems.

Table 4.6: The Fermi energy and energy of the HOMO and LUMO for pentacene in
different cells.

System Fermi energy/eV HOMO/eV LUMO/eV EG/eV
Isolated pentacene
nSOC -3.88 -4.46 -3.32 1.14
SOC -3.88 -4.45 -3.31 1.14
HSE† -3.88 -4.70 -3.09 1.62
Low concentration (7× 4 cell) pentacene
nSOC -3.98 -4.55 -3.41 1.14
SOC -3.98 -4.55 -3.41 1.14
HSE -3.98 -4.80 -3.20 1.60
High concentration (6× 3 cell) pentacene
nSOC -4.11 -4.68 -3.54 1.14
SOC -4.09 -4.66 -3.52 1.14
HSE -4.12 -4.93 -3.35 1.58

† Isolated pentacene results for the HSE functional are from the smaller 32 Å cubic cell.

Comparing low concentration pentacene to well-isolated pentacene, we see that

there is no change in the band gap, but it is tuned to a lower energy with increasing

concentration. This is demonstrated again by comparing high concentration pentacene to

the low concentration results. Going forward with our investigation into heterostructures,

this change in energetic position may have effects on the band alignment between layers,

as the heterostructures necessarily do not have isolated pentacene. This band gap
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modification can be easily appreciated in Table 4.6.

HSE

Due to hardware limitations, we were unable to successfully complete HSE calculations

on the isolated pentacene within the cubic supercell of side 48 Å. By reducing the size of

the vacuum region by using a cubic supercell of side 32 Å, we were then able to perform

the HSE calculation. We also performed DFT calculations with and without spin-orbit

coupling to confirm that this smaller cell maintained molecular isolation. As there was

only a change in frontier orbital energies of 9 meV between the two (see Figure 2.12

and Table 4.7), we conclude that the smaller cell is sufficient for isolation. For isolated

pentacene then, in the smaller 32 Å cubic supercell, the HOMO energy was calculated to

be −4.70 eV and the LUMO energy −3.09 eV. This gives a band gap of 1.62 eV. This value

is now much improved compared to our DFT results, more closely reflecting experiment

(but still an underestimate, see Table 4.5).

For low concentration (7×4 cell) pentacene, the HOMO energy calculated by our HSE

calculation was −4.80 eV, and a LUMO of −3.20 eV, for a band gap of 1.60 eV. Compared

with the isolated pentacene HSE results, this represents a band gap tuning of 20 meV due

to a reduction in HOMO and LUMO energies of 0.09 eV and 0.11 eV, respectively.

For high concentration (6× 3 cell) pentacene, the HOMO energy was −4.93 eV and a

LUMO of −3.35 eV. This results in a band gap of 1.58 eV. The band gap tuning between

the two concentrations of interacting pentacene i.e. pentacene in 6× 3 and 7× 4 cells was

15 meV.

We again see that the effect of increasing concentration is a decrease in the energetic

position of the band gap i.e. reduction in the frontier orbital energies. We saw a larger

shift in frontier orbital position between low and high concentration regimes with the

HSE functional than we did DFT only: a shift of approximately 0.15 eV in frontier

orbital energies between pentacene in the 7 × 4 and 6 × 3 cells with HSE, but a smaller

shift going from isolated to 7×4 pentacene. The total shift from isolated to 6×3 regimes

is very similar, at approximately 0.22 eV for the HOMO energies, 0.26 eV for the LUMO
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energy with HSE, and 0.21 eV (with spin-orbit coupling) or 0.23 eV (without spin-orbit

coupling) for the LUMO energies with DFT. Overall, both frontier orbitals are decreased

in energy with increasing concentration, the HOMO dropping from −4.70 eV to −4.93

eV between isolated and high concentration regimes, and the LUMO likewise drops from

−3.09 eV to −3.35 eV, as displayed in Table 4.6. This changes the energetic position of

the band gap relative to the TMD band gaps, potentially changing the band alignment

between the two, and the band gap structure of any resulting heterostructures. This is

discussed in the following subsection.
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4.4.6 Band alignment

Figure 4.35: Band alignment between the three concentrations of pentacene (well isolated,
pentacene in a 7×4 supercell, and pentacene in a 6×3 supercell; there are two results for
well isolated pentacene due to the cost of hybrid calculations, as discussed in subsection
4.4.5) and the four considered monolayer TMDs. The vertical dashed red line separates
the pentacene results from those of the TMDs. Displayed values are from calculations
involving pentacene or the TMD only, not heterostructures.

The preferred band alignment of materials in heterostructure for photovoltaics,

photodetectors and field effect transistors is Type II (see Section 2.3), as this alignment

prevents immediate exciton recombination by allowing for confinement in different

materials. Type I heterostructures may find use in devices that desire fast recombination

times, such as LEDs, and Type III may find use in devices that operate on tunnelling
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effects.

Table 4.7: A summary of frontier orbital energies (HOMOs and LUMOs, or VBMs
and CBMs) as calculated with the three levels of theory for the monolayer TMDs and
pentacene across different concentrations: isolated, isolated in a smaller cubic cell of side
length 32 Å, low concentration and high concentration (PENiso, PENsmall-iso, PEN7×4 and
PEN6×3, respectively). The three levels of theory are DFT (PBE) without and with
spin-orbit coupling (nSOC and SOC, respectively), and HSE.)

VBM or HOMO/eV CBM or LUMO/eV
PBE-nSOC
PENiso -4.45 -3.31
PENsmall-iso -4.46 -3.32
PEN7×4 -4.55 -3.41
PEN6×3 -4.68 -3.54
MoS2 -5.94 -4.20
MoSe2 -5.29 -3.78
WS2 -5.70 -3.84
WSe2 -5.06 -3.42
PBE-SOC
PENiso -4.45 -3.31
PENsmall-iso -4.46 -3.32
PEN7×4 -4.55 -3.41
PEN6×3 -4.66 -3.52
MoS2 -5.83 -4.17
MoSe2 -5.19 -3.78
WS2 -5.51 -3.90
WSe2 -4.82 -3.53
HSE
PENsmall-iso -4.70 -3.09
PEN7×4 -4.80 -3.20
PEN6×3 -4.93 -3.35
MoS2 -6.28 -4.19
MoSe2 -5.71 -3.92
WS2 -5.85 -3.77
WSe2 -5.29 -3.49

Figure 4.35 displays the band alignment between different concentrations of pentacene

and monolayer TMDs, and Table 4.7 contains the relevant frontier orbital energies. We

found that pentacene’s band gap only changes slightly with changing concentration, but

its frontier orbitals decrease in energy. Isolated pentacene forms a Type II band gap

with all four TMDs, regardless of which level of theory we used. This was maintained as

we increased pentacene concentration, with the exception of non-isolated pentacene and

WSe2 when we used DFT without spin-orbit coupling. In this case, the CBM of WSe2 was
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−3.42 eV and the LUMO of pentacene in the 6× 3 cell was −3.52 eV: a difference of 98

meV, where WSe2’s CBM was the higher of the two, resulting in a Type I band alignment

i.e. the band gap of WSe2 totally encompasses that of high concentration pentacene. This

effect was almost apparent with pentacene in the 7 × 4 cell, where pentacene’s LUMO

in this case was −3.41 eV: a difference of only 6 meV. This is, however, not the case for

our DFT calculations with spin-orbit coupling or HSE calculations, which both predict

a Type II heterojunction for both concentrations. There may be some band gap tuning

from molecule-substrate interactions that are as of yet unaccounted for, as thus far the

comparison is between independent systems, not the systems in heterostructure.
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Chapter 5

Low concentration pentacene

heterostructures

Publication relating to this chapter [140]:

E. Black, P. Kratzer, and J. M. Morbec, "Interaction between pentacene molecules

and monolayer transition metal dichalcogenides," Physical Chemistry Chemical Physics,

vol. 25, no. 43, pp. 29444-29450, 2023.

With information on the electronic structure of the TMDs and pentacene in

the concentrations it will experience in heterostructure, we proceeded to construct

heterostructures from the materials (see Figure 1.2). In this chapter, we only looked at

the low concentration pentacene regime; high concentration pentacene was investigated

and compared later. Additionally, we did not perform calculations with spin-orbit

coupling, nor did we perform any hybrid calculations. The latter would be far too

expensive, and was only performed on the smaller systems of the preceding chapter. We

showed previously that spin-orbit coupling splits the VBM in TMDs, and has little effect

on the CBM or pentacene. We discuss the consequences of only performing calculations

without spin-orbit coupling in Section 5.2, but in summary we would only expect an
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important effect in the PEN/WSe2 heterostructure. Using optimized geometry, we

extended the TMD cells into supercells that were 7 TMD molecular units by 4 TMD

molecular units, remaining monolayer. To each of these supercells we then added a

single flat-lying molecule of pentacene, with geometry defined by the isolated pentacene’s

optimization, orientated length-ways with the long axis of the underlying TMD substrate,

a layer separation of approximately d = 3 Å, and the middle ring of pentacene located

over one of five adsorption sites (see Figure 5.1). Pentacene concentrations resulting

from this made up the low concentration regime, with one pentacene molecule per 244

Å2 for PEN/MoS2 and PEN/WS2, 264 Å2 for PEN/MoSe2, and 263 Å2 for PEN/WSe2.

The supercells were put through relax calculations, allowing the pentacene to find its

heterostructure geometry, as well as increase or decrease its separation from the TMD

layers, move along the surface of the TMD substrate layers, and rotate. Each TMD,

therefore, had five heterostructures constructed with flat-lying pentacene: one for each

adsorption site. Initially, we considered additional heterostructures where pentacene lay

vertically on the substrate (Figure 5.2) when performing preliminary calculations on

6 × 3 TMD supercells. We found that these were highly energetically unfavorable, in

keeping with findings from existing experimental [141] and theoretical [142] literature,

where pentacene molecules are flat-lying on monolayer MoS2, and so vertically adsorbed

pentacene was not investigated in the low concentration pentacene (7×4 TMD supercell)

regime.

Each adsorption site is defined by the position of the central ring of pentacene relative

to the underlying substrate. The adsorption sites are displayed in Figure 5.1, and are as

follows:

• Bridge-A: the central ring of pentacene lies over a transition metal-chalcogen bond

that is perpendicular to the long axis of the substrate plane, Figure 5.1a

• Bridge-B: the central ring of pentacene lies over a transition metal-chalcogen bond

that is not perpendicular to the long axis of the substrate plane, Figure 5.1b

• Hollow: the central ring of pentacene is over the gap created by the hexagonal
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structure of the monolayer, Figure 5.1c

• Top-TM: the central ring of pentacene lies over a transition metal atom, Figure 5.1d

• Top-Ch: the central ring of pentacene lies over a chalcogen atom, Figure 5.1e

Figure 5.1: Top-down views of the heterostructure supercells, showing pentacene’s
adsorption sites on a 7× 4 TMD substrate. (a) the Bridge-A site, (b) the Bridge-B site,
(c) the Hollow site, (d) the Top-TM site, and (e) the Top-Ch site. Pentacene’s carbon
atoms and hydrogen atoms are black and white, respectively, with transition metals in
blue and chalcogens in red.

The computational details of heterostructure calculations differ from those of the

materials out of heterostructure. We use the energy cut-offs determined by the respective

TMD, as these values were larger for the TMDs than for pentacene in the previous chapter.

The k-point mesh used for the single molecular unit cells would result in significant

computational cost if applied to the much larger heterostructures, and so a mesh of

3 × 6 × 1 was employed in cases of PEN/TMD heterostructures. This approximately

maintains the density of sampling of the supercell between x- and y-directions. Other

considerations, such as the functional and pseudopotentials were the same. For the high
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Figure 5.2: Side views of pentacene adsorbed vertically on to a TMD substrate. These
adsorption schemes were investigated in preliminary calculations using a 6 × 3 TMD
supercell, and were highly energetically unfavorable, and so were not included in our
analysis of low concentration pentacene adsorption.

molecular concentration and rotated molecule heterostructures in the following chapter,

we use the same parameters as here.
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5.1 The heterostructures

Starting with structural information from previously optimized geometry for the materials,

we created our heterostructures and performed relax calculations in order to find the

optimized heterostructure geometry. Following this, the minimum molecule-molecule

distance for pentacene molecules across periodic boundary conditions was approximately

6.2 Å for both sulfur systems (pentacene-MoS2 and pentacene-WS2 heterostructures),

and approximately 6.5 Å for selenium systems (pentacene-MoSe2 and pentacene-WSe2

heterostructures). From these relax calculations, we were able to compare the total

system energies of different binding sites of the same substrate. The binding site with

the lowest total energy was the most favorable one, and had its electronic properties

investigated further. The comparison of total energy of different binding sites is equivalent

to a comparison of adsorption energy between heterostructures with the same TMD, as

the materials are the same between compared systems. We found that for all TMDs the

most favorable pentacene binding site was Top-Ch i.e. where the middle ring of pentacene

lies over a sulfur atom or a selenium atom, depending on the TMD. The difference in total

energy of each adsorption site from the total energy of the most favorable adsorption site

for that TMD substrate is given in Table 5.1.

Table 5.1: The difference in total energy, in eV, between adsorption sites of pentacene-
TMD heterostructures with low concentration pentacene and their most favorable
adsorption site.

Heterostructure Bridge-A Bridge-B Hollow Top-TM Top-Ch
PEN/MoS2 0.079 0.003 0.049 0.046 0.000
PEN/MoSe2 0.072 0.002 0.038 0.035 0.000
PEN/WS2 0.083 0.002 0.053 0.055 0.000
PEN/WSe2 0.075 0.006 0.024 0.056 0.000

For all substrates, the second most favorable site was Bridge-B, with a difference of

only 2 to 6 meV. This implies significant mobility between Top-Ch and Bridge-B sites,

with the least favorable site of Bridge-A still only being 72 to 83 meV less favorable

than Top-Ch; this indicated high molecular mobility in all heterostructures, which has

been demonstrated experimentally in MoS2 [141]. The more favorable adsorption sites
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of Top-Ch and Bridge-B have a large number of pentacene’s carbon atoms located over

hollow sites, instead of over the top of chalcogen atoms as is more frequently the case

for the other sites. This reduces steric repulsion between carbons and TMD chalcogens,

increasing energetic favorability, as we found.

Layer separation, that between the center of mass of pentacene and the average z-

position of the top-most plane of chalcogen atoms, was found to be the smallest for the

most favorable TOP-Ch adsorption site, for all TMDs. This was 3.309 Å for MoS2,

3.400 Å for MoSe2, 3.297 Å for WS2, and 3.378 Å for WSe2. We saw that the selenium

systems have their pentacene bind at a larger distance than for sulfur systems, explained

by the larger van der Waals radius of the selenium atom (1.90 Å [143]) compared to a

sulfur atom (1.73 Å [143]), a result observed in TMD heterostructures with other organic

molecules [144]. Differences in layer separation between different adsorption sites for the

same TMD substrate can again be explained by steric repulsion between carbons and

chalcogens. The layer separations for each heterostructure are displayed in Table 5.2.

Table 5.2: Layer separation, d, in Å, of 7 × 4 PEN/TMD heterostructures, defined as
the distance between the center of mass of pentacene and the average z-coordinate of the
top-most chalcogens of the underlying TMD substrate.

Heterostructure Bridge-A Bridge-B Hollow Top-TM Top-Ch
PEN/MoS2 3.397 3.334 3.395 3.392 3.309
PEN/MoSe2 3.475 3.415 3.463 3.459 3.400
PEN/WS2 3.389 3.328 3.374 3.375 3.297
PEN/WSe2 3.468 3.410 3.447 3.480 3.378

The pentacene molecule remains flat-lying for all systems, with no significant twisting

and very minor deformation. With the exception of layer separation, pentacene remained

at approximately the same position as it began before the relax calculations i.e. the

initial atomic positions used for adsorption sites were all stable positions.

Further investigation was performed on only the most favorable binding sites, which

is Top-Ch for all TMD substrates. From this point forward, remaining reference and

discussion about the heterostructures within this chapter are understood to be those

heterostructures with the Top-Ch adsorption site, unless otherwise explicitly outlined.

Comparing the geometry of the relaxed heterostructures to that of the relaxed
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materials out of heterostructure, we observed some small deformation in the pentacene

molecule. There was a mean atomic deviation from the molecular plane of isolated

pentacene’s atoms of 0.49 mÅ, with the largest atomic deviation being 1.02 mÅ (see

Section 4.3). For pentacene within the PEN/MoS2 heterostructure, we observed a mean

atomic deviation of 40 mÅ, with a maximum atomic deviation of 111 mÅ, occurring

at the middle of the molecule. Pentacene within PEN/MoSe2 had a mean atomic

deviation of 33 mÅ with a maximum of 89 mÅ, also at the middle of the molecule.

For the PEN/WS2 heterostructure, we observed a very similar change in structure,

with a mean atomic deviation from the molecular plane of 42 mÅ, and a maximum

atomic deviation of 122 mÅ, again at the middle of the molecule. The PEN/WSe2

heterostructure did not behave differently, with a mean atomic deviation of 33 mÅ and a

maximum of 92 mÅ, again occurring at the middle of the pentacene molecule. Carbon-

carbon bond lengths in pentacene changed by approximately 0.1% with the formation of

heterostructure, regardless of the substrate, and the substrate itself experienced similar

bond length changes of less than 0.1% as a result of the addition of pentacene. The

bond lengths between transition metal atoms and adjacent chalcogen atoms become

position-dependent with the addition of pentacene, with those bonds directly below the

pentacene molecule undergoing the largest contraction (3.7 mÅ, 4.5 mÅ, 4.3 mÅ, and

6.4 mÅ for heterostructures with MoS2, MoSe2, WS2 and WSe2, respectively) and the

bonds nearby these shortened bonds (but no longer directly underneath the pentacene

molecule) undergoing some lengthening in order to maintain a fixed supercell volume:

the largest bond lengthening observed was 4.7 mÅ, 3.3 mÅ, 4.1 mÅ, and 1.6 mÅ for

heterostructures with MoS2, MoSe2, WS2 and WSe2, respectively.

We additionally examined the contribution to the adsorption energy (Eads), by

comparing Eads of the pentacene-TMD heterostructure calculated with the PBE functional

and Grimme’s DFT-D3 van der Waals correction to Eads of the same heterostructure

calculated with only the PBE functional (i.e. without contributions from van der Waals

forces). Eads is defined as the difference between the total energy of the heterostructure

(EPEN/TMD) and the combined total energies of the relaxed geometries of isolated
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pentacene (Eiso-relax
PEN ) and the 7× 4 substrate layer without pentacene (Erelax

TMD):

Eads = EPEN/TMD − Erelax
TMD − Eiso-relax

PEN . (5.1)

The adsorption energies of the favorable adsorption sites for each TMD heterostructure

(all Top-Ch) are displayed in Table 5.3, alongside the layer separation. We can see that

the overwhelming contribution to the adsorption energies is vdW interaction: Eads are

reduced by an order of magnitude with the absence of van der Waals contribution, as

well as observe a greater layer separation, measured in the usual way, without van der

Waals forces. The effect of van der Waals interactions on layer separation is to decrease

it by approximately 0.65 Å for molybdenum systems, and by approximately 0.75 Å for

tungsten systems.

Table 5.3: Eads and layer separation, d, of the 7 × 4 heterostructures with pentacene in
the Top-Ch adsorption site calculated with and without consideration of van der Waals
interactions.

PBE + vdW PBE only

Heterostructure Eads/eV d/Å Eads/eV d/Å
PEN/MoS2 -1.389 3.309 -0.100 3.988
PEN/MoSe2 -1.424 3.400 -0.101 4.020
PEN/WS2 -1.434 3.297 -0.097 4.049
PEN/WSe2 -1.458 3.378 -0.099 4.147

In a similar manner, we also investigated the contributions to the adsorption energy

from molecule-molecule (Eint
PEN) and molecule-substrate (ETMD

PEN ) interactions, and molecule

and substrate deformation effects (Edef
PEN and Edef

TMD, respectively). These contributions

were calculated by considering pentacene and the TMD substrate in an environment that

eliminates other contributions, and comparing the resultant total energies to those from

environments that include only the particular contribution of interest.

Molecule-molecule interactions are those between a pentacene molecule and other

pentacene molecules from supercells across the periodic boundary, and so was calculated

as the difference between the total energy of pentacene in its adsorbed geometry (that

from relax calculations of the heterostructure), but isolated from the substrate and
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other pentacene molecules by placing it in a large cubic cell of lateral dimensions

48 Å, Eiso-adsgeom
PEN , and the total energy of pentacene in its adsorbed geometry in the

heterostructure supercell, but without the substrate, Escell-adsgeom
PEN :

Eint
PEN = Escell-adsgeom

PEN − Eiso-adsgeom
PEN . (5.2)

Molecule-substrate interactions are those between a pentacene molecule and the

underlying substrate, calculated as the difference between the total energy of the whole

heterostructure, EPEN/TMD, and the combined total energies of the TMD and pentacene,

both in their adsorbed geometry and heterostructure supercell, but each without the

other material (Eadsgeom
TMD and the same Escell-adsgeom

PEN as above, respectively):

ETMD
PEN = EPEN/TMD − Eadsgeom

TMD − Escell-adsgeom
PEN . (5.3)

Deformation effects are those caused by changes in geometry from formation of the

heterostructure, and so for pentacene this is the difference in total energy of isolated

pentacene in its relaxed geometry, Eiso-relax
PEN , and isolated pentacene in its adsorbed

geometry from the heterostructure. For the TMDs, the deformation energy is the

difference in total energies between the TMD in its adsorbed geometry, but without

pentacene, and the TMD in its geometry without pentacene (Erelax
TMD):

Edef
PEN = Eiso-adsgeom

PEN − Eiso-relax
PEN (5.4)

Edef
TMD = Eadsgeom

TMD − Erelax
TMD . (5.5)

The results of these calculations are given in Table 5.4, where we can see that the

overwhelming majority of contribution comes from molecule-substrate interaction, which

is to be expected as this is the contribution that is defined by the van der Waals interaction

between the materials. Molecule-substrate interaction is of the order of 1 meV, and

deformation energies are also small, in keeping with our observation that there was only

a small change between adsorbed and isolated geometries.
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Table 5.4: Contributions to the adsorption energy of 7 × 4 heterostructures in
their favorable adsorption site from molecule-molecule, molecule-substrate, molecule
deformation and substrate deformation effects, in eV. Molecule-substrate interaction is
consistently the largest contribution across all systems.

PEN/MoS2 PEN/MoSe2 PEN/WS2 PEN/WSe2
molecule-molecule interaction -0.004 -0.003 -0.004 -0.003
molecule-substrate interaction -1.402 -1.423 -1.340 -1.452
molecule deformation 0.005 -0.007 -0.003 -0.007
substrate deformation 0.012 0.008 -0.088 0.004
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5.2 Electronic properties

5.2.1 Density of states

We also investigated the electronic properties of our heterostructures with pentacene in

the Top-Ch adsorption site. We calculated the density of states of the heterostructures,

the results of which are displayed in Figure 5.3. We found that in all cases the HOMO

of pentacene is located within the band gap of the TMD substrate, and is closer to the

TMD’s VBM in the selenide systems. Using the density of states calculation results,

the differences between pentacene’s HOMO and the TMD’s VBM were calculated to be

1.10 eV for PEN/MoS2, 0.55 eV for PEN/MoSe2, 0.95 eV for PEN/WS2 and 0.30 eV for

PEN/WSe2. As the frontier orbital energies were taken from density of states calculations

instead of bands calculations, which were performed with an energy bin of 0.05 eV, there

is a loss of precision compared to previous discussions of frontier orbitals.

Figure 5.3: The density of states of 7 × 4 PEN/TMD heterostructures, with the Fermi
energy given by the vertical back dashed line.

We notice also that pentacene’s LUMO is close to the TMD’s CBM in all cases

except PEN/MoS2, where there is a difference of 0.4 eV, providing a robust type-II band
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alignment. Also forming a type-II heterojunction are PEN/MoSe2 and PEN/WS2, with

differences between the CBM and LUMO of 0.05 eV and 0.10 eV, respectively. The

PEN/WSe2 heterostructure, however, possesses a type-I heterojunction, with the TMD’s

band gap straddling the pentacene’s. The frontier orbital energies and their comparisons

are displayed in Table 5.5, where it can be seen that the LUMO-CBM value for PEN/WSe2

is negative (at −0.25 eV) i.e. the LUMO is lower than the CBM, and the band alignment

is of straddling type.

Table 5.5: Frontier orbital energies and their difference, in eV, of 7 × 4 PEN/TMD
heterostructures. All heterostructures except PEN/WSe2 form type-II heterojunctions.
The values presented here are from density of states calculations, and so have a precision
only of 0.05 eV. Previous frontier orbital energies have been from materials not in
heterostructure, and so bands calculations were performed for this purpose.

PEN TMD ∆

Heterostructure HOMO LUMO VBM CBM HOMO-VBM LUMO-CBM
PEN/MoS2 -4.70 -3.80 -5.80 -4.20 1.10 0.40
PEN/MoSe2 -4.65 -3.75 -5.20 -3.80 0.55 0.05
PEN/WS2 -4.65 -3.75 -5.60 -3.85 0.95 0.10
PEN/WSe2 -4.65 -3.70 -4.95 -3.45 0.30 -0.25

Previously, we determined that the band alignment between pentacene and WSe2

outside of heterostructure is of type-II. As such, we investigated the effect on the density

of states of molecule-molecule and molecule-substrate interactions for PEN/WSe2. We

did so by calculating the density of states of pentacene within a cell of size defined by the

PEN/WSe2 heterostructure (which would suffer from molecule-molecule interactions but

not molecule-substrate interactions), and comparing the results to the density of states of

the pentacene in the heterostructure (which undergoes molecule-molecule and molecule-

substrate interactions) and also well-isolated pentacene (which undergoes the effects of

neither interaction). The extracted frontier orbitals from scf calculations are given in

Table 5.6, and a comparison of the density of states is displayed in Figure 5.4. Importantly,

we are only able to use the scf results for the frontier orbitals of pentacene within the

PEN/WSe2 heterostructure because it forms a type-I heterojunction: we can only extract

the whole system’s frontier orbitals. With the other heterostructures we would instead be

extracting the TMD’s CBM, not pentacene’s LUMO, which would give different values
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(although we expect the same pattern, as seen in the accompanying Figure 5.4).

Table 5.6: HOMO and LUMO positions of pentacene in a well-isolated environment
(PENiso), in a 7 × 4 supercell without a substrate (PEN7×4), and in the PEN/WSe2
heterostructure (PENPEN/WSe2). Values are in eV, and are extracted from scf calculations
as in Chapter 4, resulting in higher precision.

System HOMO LUMO
PENiso -4.446 -3.307
PEN7×4 -4.551 -3.412
PENPEN/WSe2 -4.752 -3.662

Figure 5.4: The total density of states of pentacene in three different environments with
their HOMO and LUMO energies labelled and marked on all three subplots with solid
and dashed colored lines, respectively: (a) well-isolated pentacene in green, (b) pentacene
in a cell defined by the 7× 4 PEN/WSe2 heterostructure, but without the TMD, in blue,
and (c) pentacene in the PEN/WSe2 heterostructure in red. It is clear that the frontier
orbitals decrease in energy with both an increase in concentration and adsorption.

We can see from Table 5.6 that there is decrease in both the HOMO and LUMO

energies of 105 meV from bringing the pentacene molecules closer together, but without

the substrate; this is therefore the effect of molecule-molecule interaction. Comparing to

values from pentacene in the PEN/WSe2 heterostructure, we see a further decrease in the

HOMO and LUMO energies of 201 eV and 250 meV, respectively; this is the contribution
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of molecule-substrate interactions. The contribution from molecule-molecule interaction

is almost enough to result in a change from type-II to type-I band alignment, resulting in

only a 6 meV difference between pentacene’s LUMO and the TMD’s CBM, with molecule-

substrate interactions enhancing this effect and comfortably shifting the band alignment

to type-I. It is important to note, however, that there exist small differences in calculated

frontier orbital energies between scf and density of states calculations, in part because

of the energy step size for density of states calculations being larger, as well as smearing

effects to form a continuum. As such, we additionally compared the frontier orbital

energies of pentacene as determined by density of states calculations, and see the same

broad pattern: both molecule-molecule and molecule-substrate interactions act to decrease

the HOMO and LUMO energies, by approximately 0.10 eV and then 0.20 eV each in

combination. These values are displayed in Table 5.7.

Table 5.7: HOMO and LUMO positions of pentacene in a well-isolated environment
(PENiso), in a 7 × 4 supercell without a substrate (PEN7×4), and in the PEN/WSe2
heterostructure (PENPEN/WSe2). Values are in eV, and are extracted from density of
states calculations.

System HOMO LUMO
PENiso -4.35 -3.40
PEN7×4 -4.45 -3.50
PENPEN/WSe2 -4.65 -3.70

Band alignment was determined in Chapter 4 by frontier orbital energies from scf

and bands calculations, but the density of states calculation results can differ slightly

from these, so we present in Figure 5.5a the density of states of well-isolated pentacene

superimposed on that of monolayer WSe2 out of heterostructure; we see clearly that

pentacene’s HOMO sits in the WSe2 band gap, while pentacene’s LUMO is above the

TMD’s CBM, showing a type-II band alignment for the materials out of heterostructure.

Figure 5.5b displays the density of states of pentacene in a 7× 4 supercell, superimposed

on the same WSe2 density of states. We can see there that pentacene’s LUMO appears

to be almost degenerate with the TMD’s CBM: indeed the CBM of WSe2 out of

heterostructure was calculated as −3.45 eV from these density of states calculations,

while the previously discussed LUMO was −3.50 eV. As mentioned above, the more
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precise scf results predicted a Type-II band alignment between pentacene in the 7 × 4

supercell and WSe2, but only by 6 meV.

(a) (b)

Figure 5.5: (a) The density of states of well-isolated pentacene (blue) and that of WSe2
(green), presented to demonstrate type-II band alignment of the materials outside of
heterostructure when using frontier orbital energies from density of states calculations,
for comparison with those from the heterostructure. Pentacene’s HOMO and LUMO, as
well as the TMD’s VBM and CBM, are labelled. (b) The density of states of pentacene
in a 7× 4 supercell (blue) and that of WSe2, demonstrating that pentacene’s LUMO and
the TMD’s CBM are effectively overlapping. The Fermi energy of the TMD is shown as
dashed black lines.

In the other three heterostructures, similar shifts were observed in pentacene’s HOMO

and LUMO. We cannot provide the comparison from scf calculations due to the issue

mentioned above: extracting pentacene’s LUMO is not feasible, as the frontier orbital

above the band gap of the heterostructure is the TMD’s CBM. Therefore, we can only

make the comparison from density of states data. Such a comparison can be made between

the HOMO and LUMO values for well-isolated pentacene and pentacene in the 7 × 4

supercell without a substrate from Table 5.7, and those for pentacene in heterostructure

from Table 5.5. We see that forming a heterostructure with MoS2 decreases pentacene’s

HOMO by 0.25 eV and the LUMO by 0.30 eV. For MoSe2 and WS2, these effects are

slightly smaller, both decreasing by 0.20 eV and 0.25 eV for the HOMO and LUMO

energies, respectively. This is the same decrease in HOMO as with WSe2, but a slightly
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large decrease in LUMO than for WSe2. With the smallest effect occurring in the

PEN/WSe2 heterostructure, it is only because of how close the band alignment was

between isolated systems that we see the type-I band alignment in this heterostructure.

We did not perform these calculations with spin-orbit coupling, the justification being

that pentacene is broadly unaffected by spin-orbit coupling, and the effect on the TMDs

was already described. In the case of molybdenum systems, spin-orbit coupling increases

the VBM by approximately 0.1 eV, while pentacene’s HOMO is more than 0.5 eV above the

VBM, so we expect no effect on band alignment here. The CBM of MoS2 is similarly safely

removed from pentacene’s LUMO. While the CBM of MoSe2 is fairly close to pentacene’s

LUMO in heterostructure, the effect of spin-orbit coupling on the CBM of MoSe2 is only

4 meV, and so there is no expected effect on band alignment for PEN/MoSe2 either. The

tungsten systems are more affected by spin-orbit coupling, however. WS2 has a VBM that

is increase by 0.195 eV by spin-orbit coupling, but has almost a 1 eV difference between

the TMD’s VBM and pentacene’s HOMO in heterostructure, so the effect is not felt by

the band alignment. Similarly, the CBM and LUMO are separated by a large enough

energy that spin-orbit coupling is not expected to change the type of heterojunction. The

PEN/WSe2 heterostructure, however, may be affected by spin-orbit coupling. The VBM

is increased by 0.245 eV, almost enough to bring the VBM past pentacene’s HOMO. The

CBM is increased by 0.044 eV, worsening the effect from molecule-molecule and molecule-

substrate interactions, to further push pentacene’s LUMO below the CBM of WSe2. In

this case, the effect of spin-orbit may be to recover the type-II band alignment, but with

a reversed direction i.e. it is pentacene’s LUMO, and not HOMO, that could sit in the

TMD band gap.

5.2.2 Charge transfer and work function

We then examined the charge transfer of the heterostructures by calculating the charge

density (scf calculations do this, and we used a post-processing script, pp.x, to extract

plottable data) of pentacene in the 7 × 4 supercell and the TMD without pentacene,

then subtracting these from the charge density of the complete heterostructure. This
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Figure 5.6: The difference in charge density between the 7×4 PEN/TMD heterostructures
and the materials in a heterostructure cell without their counterpart, plotted on a plane
perpendicular to the plane of pentacene and that of the TMD monolayer, aligned along
the long axis of pentacene. Regions of charge accumulation and depletion are displayed
in red and blue, respectively.

is displayed in Figure 5.6, where we see accumulation of charge around the top-most

chalcogen atoms and the pentacene molecule, with a depletion of charge in the region

between layers; this is typical of Pauli repulsion.

In order to quantitatively assess the change in charge distribution we integrated the

difference in charge density along the x-y plane to obtain the plane-averaged differential

charge density, ∆ρ (z):

∆ρ (z) =

∫
xy

∆ρ (x, y, z) δxδy , (5.6)

where the integral is over the entire x-y plane and ∆ρ (x, y, z) is the differential charge

density at the point (x, y, z),

∆ρ (x, y, z) = ρPEN/TMD (x, y, z)− ρPEN (x, y, z)− ρTMD (x, y, z) . (5.7)
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The cumulative charge difference through the heterostructure, ∆Q (z), can then be

calculated as

∆Q (z) =

∫ z

−∞
∆ρ (z′) δz′ . (5.8)

The results of this analysis are displayed in Figure 5.7, where we see that the change

in charge distribution between pentacene and the TMDs is between 0.011 and 0.013

electrons per supercell (the maximum cumulative charge difference), corresponding to

between 4×10−4 and 5×10−4 electrons per chalcogen atom (of the top plane of chalcogen

atoms), or between 3.6× 1011 and 4.7× 1011 electrons per square centimeter.
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Figure 5.7: (a) The plane-averaged differential charge density, ∆ρ (z) (Equation 5.6) of the
four 7×4 PEN/TMD heterostructures. (b) The cumulative change in charge distribution,
∆Q (z) (Equation 5.8) of the four PEN/TMD heterostructures. The horizontal gray bands
represent the position of heterostructure atomic planes. In order from the top of the image:
pentacene, the top chalcogen plane of the TMD substrate, the transition metal plane of
the TMD substrate, and the bottom chalcogen plane of the TMD substrate. The bands
representing the transition metal and chalcogen positions are wider than that for the
molecular plane due to variation between TMDs. The cyan band represents the position
of the heterostructure interface.

For the PEN/MoS2 heterostructure, we calculated a change in charge distribution of

0.013 electrons per supercell, which is low compared to previous results on similar systems

(although the same order of magnitude); flat-lying pentacene adsorbed on a hexagonal

MoS2 monolayer with a substrate size of 7 × 4 molecules per supercell (i.e. the same

concentration we investigated here) has had charge transfer calculated as 0.066 electrons

per supercell [142]. However, this value is from calculations using the HSE06 functional

and Grimme’s DFT-D2 van der Waals correction [51]: an improvement in exchange-
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correlation functional, but a less accurate treatment of van der Waals interactions.

Additionally, this work did not appear to consider adsorption site favorability, and used a

site between what we have called Top-TM and hollow. These differences in methodology

may account for the differences in results. This work also investigated the equivalent

heterostructure with 1T-MoS2, finding the charge transfer to be approximately 7 times

greater than the hexagonal monolayer case. There are charge transfer values of between

0.10 and 0.013 electrons per sulfur atom reported for Ti3C3 and Ti3C2F2, respectively,

adsorbed on 1T-MoS2 [145], much larger than what we have found for pentacene on 1H

monolayers, and there is a dearth in the literature for the other TMDs with adsorbed

pentacene in a manner similar to the structures we investigated here.

We have not distinguished between cases of charge polarization resulting from

heterostructure formation and true charge transfer i.e. we did not adequately define the

geometry of the interfacial surface between heterostructure layers, nor ‘track’ the origin

and final destination of individual electrons by e.g. partitioning our charge density grid

into Bader volumes and assessing the energetic cost of adding and removing electrons

to the volumes. We cannot, therefore, consider our results here to be robustly a case

of charge transfer, and polarization seems more likely. Given that our heterostructures

are either of Type-I or Type-II band alignment, for true charge transfer to occur then

an electron must first be excited into the conduction band where migration becomes

possible. As these are ground state calculations we conclude that this is not a case of

charge transfer, but rather is indeed a case of polarization.

Additionally, our intergrations over charge densities were performed on a grid and our

results were small in magnitude. By performing the calcualtions over a finer grid it is

possible that we would efface our low magnitude results and so find that they are only due

to numerical error. The character of our charge redistribution curve (Figure 5.7) i.e. the

physical positions within the cell that we see local maxima and minima in the differential

charge density, would imply that numerical error alone is not responsible for our results,

however.

Finally, we calculated the reduction in work function (see Table 5.8) due to absorption
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of the pentacene molecule, where the work function, ϕ, is calculated as

ϕ = ϵ0 − ϵF , (5.9)

where ϵ0 is the energy in vacuum, set automatically as the zero reference by the

computational suite (accurate as long as the integrity of the monolayer is maintained) i.e.

ϵ0 = 0, and ϵF is the Fermi energy (see subsection 2.4.1). We can see from Figure 5.3 that

the reduction comes primarily from the introduction of permitted states within the band

gap from pentacene’s HOMO, increasing the Fermi energy. The change in work function

being smaller in selenium systems compared to their sulfur counterparts agrees with this

observation, as the difference in pentacene’s HOMO energy to the underlying TMD’s

VBM energy is greater in the sulfur systems than in the selenium systems. Similarly,

the difference in pentacene’s HOMO and the TMD’s VBM is greater in molybdenum

systems than tungsten, and so the change in work function from pentacene adsorption is

greater in molybdenum systems than the corresponding tungsten systems. As expected,

then, the MoS2 heterostructure sees the largest change in work function, and WSe2 the

smallest.

Table 5.8: Work function of the TMDs and their 7 × 4 PEN/TMD heterostructures, as
well as the change in work function due to pentacene adsorption, ∆ϕ = ϕTMD−ϕPEN/TMD.

TMD ϕTMD/eV ϕPEN/TMD/eV ∆ϕ/eV
MoS2 5.01 4.42 0.59
MoSe2 4.65 4.21 0.44
WS2 4.59 4.25 0.34
WSe2 4.35 4.17 0.18
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Chapter 6

The effect of molecular concentration

and rotation on PEN/TMD

heterostructures

Publication relating to this chapter [146]:

E. Black and J. M. Morbec, "Effect of molecular rotation and concentration on the

adsorption of pentacene molecules on two-dimensional monolayer transition metal

dichalcogenides," Electronic Structure, vol. 6, no. 2, p. 025008, 2024.

As we have investigated favorable adsorption sites for pentacene molecules on

7 × 4-molecule TMD substrate layers and the electronic properties of the resultant

heterostructures, we then looked at the effect of pentacene concentration within similar

heterostructures. By constructing supercells of 6× 3-molecule TMD substrate layers and

introducing a pentacene molecule to the cell, we created PEN/TMD heterostructures

with higher pentacene concentration than in Chapter 5. We performed the same

analysis on these high concentration pentacene structures as before by identifying the

heterostructure with the most favorable molecular adsorption site for each TMD layer
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and then calculating their electronic properties. As mentioned previously, here we

also initially considered a vertical adsorption site for high concentration pentacene;

we did so early in the project, where high concentration pentacene is the smaller and

less computationally expensive supercell structure, and determined that the vertical

adsorption of pentacene is extremely unfavorable: of the order of 1 eV less favorable than

the most favorable flat-lying adsorption site in both PEN/MoS2 and PEN/MoSe2. As

such, vertically adsorbed pentacene was not investigated further.

Additionally, while molecular pentacene has been determined to remain flat-lying

on substrates (by us and in existing literature [141, 147]), there is limited literature

on the alignment of pentacene with an underlying TMD substrate and how that may

affect the electronic properties. So far, we have only considered pentacene with its long

axis aligned with that of the long axis of the underlying substrate. This results in an

alignment where the pentacene long axis is perpendicular to the plane of some transition

metal-chalcogen bonds within the hexagonal pattern. By rotating pentacene by 30°,

we align the long axis of pentacene such that it is instead parallel to some of these

bond planes. A rotation of 60° results in the same alignment between any one particular

pentacene molecule and the underlying substrate due to the rotational symmetry of the

substrate layer, but changes the relationship of the molecule with surrounding molecules

due to the asymmetric nature of the supercells’ dimensions. 90° rotation provides the

same relationship between between a given molecule and the substrate as does 30°, but

similarly changes the molecule-molecule distances. These three angles of rotation were

investigated around the previously determined favorable adsorption sites and compared

to the unrotated, or 0°, heterostructures, for both concentrations of pentacene.
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6.1 Investigating pentacene concentration

We controlled pentacene concentration by changing the number of molecular units that

were within a supercell of the underlying substrate. Previously, our substrate layers were

made up of 28 molecular units of TMD, in a 7×4 supercell. This gave us low concentration

pentacene, and corresponded to one pentacene molecule per 244 Å2 for MoS2 and WS2

heterostructures, 264 Å2 for PEN/MoSe2, and 263 Å2 for PEN/WSe2. By reducing the

number of molecular units of TMD per supercell to 18 (dimensions of 6 × 3 molecular

units), pentacene molecules were closer to their neighbours across periodic cell boundaries.

This was the high concentration pentacene regime, with concentration of one pentacene

molecule per 157 Å2 for MoS2 and WS2, 170 Å2 for MoSe2, and 169 Å2 for WSe2. The

underlying TMD substrates for each concentration regime are compared in Figure 6.1.

Figure 6.1: Ball and stick representation of the underlying monolayer TMD substrate.
The extent of the figure in its entirety is the substrate for a 7× 4 supercell, with the 6× 3
equivalent enclosed by the red quadrilateral (showing the limits of the 6 × 3 supercells),
and a single molecular unit, representing the unit cell of a pristine monolayer TMD, is
enclosed within the green quadrilateral.

6.1.1 High concentration pentacene heterostructures: structure

After optimizing the geometry of the 6× 3 supercell heterostructures, we found that the

molecule-molecule separation across periodic boundary conditions was approximately 3.4

Å for sulfur systems, and 3.7 Å for selenium systems. We considered the same adsorption

sites as in Chapter 5, those being Bridge-A, Bridge-B, Hollow, Top-TM and Top-Ch
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(see Figure 5.1). As mentioned above, we additionally considered a heterostructure with

vertically adsorbed pentacene (see Figure 5.2) that was shortly abandoned. Following

relaxation of the heterostructures, we found that the Top-TM site for pentacene-MoS2

was unstable: the relax calculation for this heterostructure showed that pentacene is

most favorable in an adsorption site between Top-TM and Hollow, the result of which

is shown in Figure 6.2. When it came to rotation of the pentacene molecule, discussed

later in this chapter, we investigated both the relaxed intermediate site as well as the pre-

relaxation Top-TM site where we did not permit the molecule to move along the substrate

surface. We found even after rotation that the heterostructures with a pre-relaxed Top-

TM adsorption site were less favorable than those with the intermediate adsorption sites,

where we had still allowed the rotated structure to further relax. Therefore, we shall refer

to the intermediate site obtained following relax calculations here as ‘Top-TM’, with the

structures where the adsorption site was forced to remain at ‘true’ Top-TM referred to

as ‘true’ Top-TM. This was not a concern for any other heterostructure, as the rest were

stable: only PEN/MoS2, and then only in the high concentration pentacene case.

Figure 6.2: The intermediate adsorption site resulting from relaxation of pentacene
adsorbed on 6× 3 MoS2, starting geometric relaxation in the Top-TM site.

Unlike the 7 × 4 case, the most favorable adsorption site depended on the

heterostructure. By calculating the total energy of each heterostructure with different

adsorption sites, we determined the energetic favorability of the various adsorption sites;

this comparison is equivalent to comparing adsorption energy between heterostructures

222



with the same TMD. Pentacene-MoS2 was found to be most favorable in the Top-TM

site, which as discussed above found stability in an intermediate adsorption site. The

next-most favorable site was Bridge-B, with a total energy 48 meV higher than that

of Top-TM. The difference between Top-TM and the least favorable adsorption site

was 143 meV. The PEN/MoSe2 heterostructure favored the Bridge-B adsorption site,

but this was closely contended by Top-Ch (the most favorable in the low concentration

pentacene case), with a difference between the two of only 5 meV. 89 meV separated

the most from the least favorable adsorption site, indicating high molecular mobility.

Similarly, the pentacene-WS2 heterostructure was mobile between Top-Ch and Bridge-B

with a difference in total energy of 12 meV, but in this case it was Top-Ch that had the

lowest total energy. The least favorable site here was 87 meV less favorable than Top-Ch,

implying good mobility across the entire surface of the TMD substrate, similar to MoSe2

systems. The lowest molecular mobility was found in the PEN/WSe2 heterostructure,

with a difference between the most favorable adsorption site, Bridge-A, and the next

most favorable, Bridge-B, to be 137 meV, almost as large as the differential across all

adsorption sites in the PEN/MoS2 systems. The difference in total energies between the

most and least favorable flat-lying sites for pentacene-WSe2 heterostructures was found

to be 188 meV. The differences in total energies of the various adsorption sites for high

concentration pentacene systems compared to the most favorable sites are displayed in

Table 6.1. The pentacene molecule remains flat-lying for all systems, with only minor

deformation.

Table 6.1: The difference in total energy, in eV, between adsorption sites of pentacene-
TMD heterostructures with high concentration pentacene and their most favorable
adsorption site.

Heterostructure Bridge-A Bridge-B Hollow Top-TM Top-Ch
PEN/MoS2 0.143 0.048 0.098 0.000 0.054
PEN/MoSe2 0.089 0.000 0.050 0.060 0.005
PEN/WS2 0.087 0.011 0.061 0.062 0.000
PEN/WSe2 0.000 0.137 0.186 0.187 0.140

Layer separation, d, was found to not be the smallest for the most favorable

adsorption site, in contrast to the case with 7× 4 heterostructures. The pentacene-MoS2
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heterostructure did have a smaller layer separation in its most favorable adsorption site,

at 3.297 Å, but both PEN/MoSe2 and PEN/WS2 heterostructures had their smallest

layer separation in their second-most favorable site, Top-Ch and Bridge-B, respectively.

Their most favorable adsorption sites, Bridge-B and Top-Ch, respectively, were the

second closest-binding systems. We noted that the values between both the total energy

and the layer separation in both cases for both TMDs are very close: only 5 meV and

11 meV, and 8 mÅ and 1 mÅ, respectively. PEN/WSe2 interestingly has its largest

layer separation with pentacene in its most favorable adsorption site, Bridge-A. The

closest binding adsorption sites here are Bridge-B and Top-Ch, as in PEN/MoSe2 and

PEN/WS2, and we notice that all heterostructures have the greatest layer separation with

the Bridge-A adsorption site. In keeping with what we saw with the high concentration

pentacene heterostructures, there were larger binding distances observed in selenium

systems than in sulfur, again explained by the large van der Waals radii of the respective

chalcogen atoms. The layer separations for each heterostructure are displayed in Table

6.2.

Table 6.2: Layer separation, d, in Å, of 6 × 3 PEN/TMD heterostructures, defined as
the distance between the center of mass of pentacene and the average z-coordinate of the
top-most chalcogens of the underlying TMD substrate.

Heterostructure Bridge-A Bridge-B Hollow Top-TM Top-Ch
PEN/MoS2 3.421 3.342 3.397 3.297 3.346
PEN/MoSe2 3.482 3.425 3.477 3.480 3.417
PEN/WS2 3.412 3.320 3.402 3.401 3.321
PEN/WSe2 3.480 3.410 3.468 3.464 3.416

As with the high concentration regime, we continued our calculations and analysis

only on the most favorable adsorption sites, with the exception of briefly revisiting the

‘true’ Top-TM adsorption site for PEN/MoS2 when we investigated rotated pentacene.

By examining the relaxed heterostructure geometry and comparing it to the relaxed

geometry of the TMDs and pentacene out of heterostructure, we observed some minor

deformation of the pentacene molecule. We recall that isolated pentacene had a mean

atomic deviation from the molecular plane of 0.49 mÅ, with the largest atomic deviation

being 1.02 mÅ (see Section 4.3). As for the case of high concentration pentacene
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systems, we saw more deviation from the molecular plane than in the case of isolated

pentacene, and with their maximum deviation occurring near, but not necessarily at,

the middle of the molecule: there is some very minor twisting noted. Pentacene within

the PEN/MoS2 heterostructure saw a mean atomic deviation of 60 mÅ, and a maximum

atomic deviation of 118 mÅ on one side of the middle carbon ring, the PEN/MoSe2

heterostructure saw a mean atomic deviation of 41 mÅ and a maximum of 111 mÅ at

one of the second from middle carbon rings, PEN/WS2 had a mean atomic deviation of

38 mÅ and a maximum of 105 mÅ in the middle of the molecule, and PEN/WSe2 had

a mean atomic deviation of 26 mÅ and a maximum of 67 mÅ between one of the outer

carbon rings and the next one in. Pentacene’s carbon-carbon bond lengths were again

negligibly changed, by less than 0.1%, with the formation of the heterostructures. The

transition metal-chalcogen bond lengths underwent position-dependent change, with the

largest contraction (3.6 mÅ, 4.1 mÅ, 3.9 mÅ, and 4.8 mÅ in PEN/MoS2,PEN/MoSe2,

PEN/WS2, and PEN/WSe2 heterostructures, respectively) occurring underneath the

pentacene molecule and the largest bond lengthening (2.3 mÅ, 2.9 mÅ, 3.5 mÅ, and

2.4 mÅ in PEN/MoS2,PEN/MoSe2, PEN/WS2, and PEN/WSe2 heterostructures,

respectively) observed in bonds near those most contracted, but no longer underneath

the pentacene.

The adsorption energies, Eads (Equation 5.1), of the favorable heterostructures are

shown in Table 6.3. The differences between total energies of different binding sites from

Table 6.1 apply to adsorption energies as well, as the different adsorption sites for the

same TMD share the same energies of their materials out of heterostructure, but the

absolute value of total and adsorption energies will differ.

Table 6.3: Adsorption energy, Eads and layer separation, d, of the 6× 3 heterostructures
with pentacene in the most favorable adsorption site.

Heterostructure Adsorption Site Eads/eV d/Å
PEN/MoS2 Top-TM -1.461 3.297
PEN/MoSe2 Bridge-B -1.437 3.425
PEN/WS2 Top-Ch -1.454 3.321
PEN/WSe2 Bridge-A -1.606 3.480
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Unlike in the 7× 4 case, we did not perform calculations here without van der Waals

corrections, as we showed previously that the adsorption energy due to van der Waals

was many times large than that without; there is no reason to expect any difference here

(or indeed later), and the level of interest in any slight differences beyond that discussed

in the context of molecule-substrate interactions is not worth the computational cost of

additional large heterostructure calculations.

We additionally calculated the contributions to adsorption energy from molecule-

molecule and molecule-substrate interactions, and molecule and substrate deformation

effects, as described in Section 5.1 and defined by Equations 5.2-5.5. The results of

these calculations are given in Table 6.4, where we see that the major contribution

is molecule-substrate interaction. This is expected, given that this includes van der

Waals interactions. Deformation effects are small, but molecule-molecule interactions

are an order of magnitude larger than deformation effects, as well as molecule-molecule

interactions in the low concentration pentacene calculations (see Table 5.4), which is,

again, expected given the decreased distance between molecules.

Table 6.4: Contributions to the adsorption energy of 6 × 3 heterostructures in
their favorable adsorption site from molecule-molecule, molecule-substrate, molecule
deformation and substrate deformation effects, in eV. Molecule-substrate interaction is
consistently the largest contribution across all systems.

PEN/MoS2 PEN/MoSe2 PEN/WS2 PEN/WSe2
molecule-molecule interaction -0.059 -0.038 -0.056 -0.038
molecule-substrate interaction -1.398 -1.400 -1.374 -1.422
molecule deformation -0.009 -0.005 -0.009 -0.007
substrate deformation 0.002 0.002 0.003 -0.005

6.1.2 High concentration pentacene heterostructures: electronic

properties

Density of states

The density of states was calculated for each heterostructure in its most favorable

geometry, the results of which are displayed in Figure 6.3. In all cases, pentacene’s

HOMO is located within the TMD band gap, closer to the TMD’s VBM in the cases of
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the selenide systems. The differences between pentacene’s HOMO and the TMD’s VBM,

determined with the density of states calculations, were 1.05 eV, 0.50 eV, 0.90 eV, and

0.25 eV, for PEN/MoS2, PEN/MoSe2, PEN/WS2, and PEN/WSe2, respectively.

Pentacene’s LUMO is close to the TMD’s CBM, excepting the case of the PEN/MoS2

system, which maintains a robust Type-II heterojunction with a difference between the

pentacene’s LUMO and the CBM of MoS2 of 0.30 eV. PEN/WS2 is predicted to have a

Type-II band alignment, but close: a difference between LUMO and CBM of only 0.05

eV. PEN/WSe2 forms a Type-I heterojunction, where pentacene’s LUMO is 0.35 eV below

the CBM of WSe2. In the case of PEN/MoSe2, however, there was no difference between

LUMO and CBM to the precision of our density of states calculation. These values are

presented in Table 6.5.

Figure 6.3: The density of states of 6 × 3 PEN/TMD heterostructures, with the Fermi
energies given by the vertical black dashed line.

227



Table 6.5: Frontier orbital energies and their difference, ∆, in eV, of 6 × 3 PEN/TMD
heterostructures. The values presented here are from density of states calculations, and so
have a precision only of 0.05 eV. As in the case of the 7× 4 heterostructures, PEN/WSe2
is in a Type-I band alignment. However, with high concentration pentacene, PEN/MoSe2
now potentially forms a Type-I heterojunction as well.

PEN TMD ∆

Heterostructure HOMO LUMO VBM CBM HOMO-VBM LUMO-CBM
PEN/MoS2 -4.70 -3.85 -5.75 -4.15 1.05 0.30
PEN/MoSe2 -4.65 -3.75 -5.15 -3.75 0.50 0.00
PEN/WS2 -4.70 -3.80 -5.60 -3.85 0.90 0.05
PEN/WSe2 -4.70 -3.80 -4.95 -3.45 0.25 -0.35

The band alignment of MoSe2 and pentacene out of heterostructure, but with a

molecular concentration consistent with the 6 × 3 heterostructures, was determined in

Chapter 4 to be of Type-II. Here, however, we could not distinguish between Type-I and

Type-II within the precision of our density of states calculations. The higher precision scf

calculations do not map frontier orbital energies on to molecular orbitals, and so we cannot

tell what the band alignment is from there. As such, we repeated the density of states

calculations with a smaller energy bin, 0.01 eV, in order to determine the band alignment.

The frontier orbitals from this calculation were a TMD CBM of −3.77 eV and a pentacene

LUMO of −3.81 eV, resulting in a Type-I heterojunction. Knowing now which orbital the

scf calculation energies belonged to, we then determined the contributions of molecule-

molecule and molecule-substrate interactions to the change in frontier orbital energies

seen when bringing pentacene into high concentration heterostructure with MoSe2.

Table 6.6: HOMO and LUMO positions of pentacene in a well-isolated environment
(PENiso), in a 6× 3 supercell without a substrate (PEN6×3), and in the PEN/MoSe2 and
PEN/WSe2 heterostructures (PENPEN/TMD). Values are in eV, and are either extracted
from scf calculations as in Chapter 4, resulting in higher precision, or are extracted from
density of states (pDOS) calculations (reporting the values for PENPEN/WSe2 using the
0.05 eV bin for consistency).

scf pDOS

System HOMO LUMO HOMO LUMO
PENiso -4.446 -3.307 -4.35 -3.40
PEN6×3 -4.681 -3.541 -4.55 -3.60
PENPEN/MoSe2 -4.799 -3.687 -4.65 -3.75
PENPEN/WSe2 -4.788 -3.669 -4.70 -3.80
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Figure 6.4: The total density of states of pentacene in three different environments with
their HOMO and LUMO energies labelled and marked on all three subplots with solid
and dashed colored lines, respectively: (a) well-isolated pentacene in green, (b) pentacene
in a cell defined by the 6 × 3 PEN/MoSe2 heterostructure, but without the TMD (and
geometrically optimized in this cell, without the TMD), in blue, and (c) pentacene in the
PEN/MoSe2 heterostructure in red. It is clear that the frontier orbitals decrease in energy
with both an increase in concentration and adsorption.

We see from Table 6.6 that bringing isolated pentacene into a concentration consistent

with the PEN/MoSe2 heterostructure (but without the TMD) results in a decrease of both

HOMO and LUMO energies of 235 meV and 234 meV, respectively. This represents the

effect of molecule-molecule interactions on the frontier orbitals. There is a further decrease

in the HOMO upon adsorption on the MoSe2 substrate of 118 meV, and a decrease of 146

meV in the LUMO. These are the molecule-substrate interaction contributions. We can

see this effect in Figure 6.4. Both are required to result in a transition from Type-II to

Type-I band alignment (as would be expected, given that the 7×4 system remained Type-

II; molecule-substrate interaction there was not sufficient). We additionally compared the

frontier orbital energies of these systems as determined by density of states calculations,

the results of which are presented in Table 6.6, where we observe the same effect. Molecule-

molecule interactions act on both frontier orbitals to decrease them by 0.20 eV, and
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molecule-substrate interactions further decrease them by 0.10 eV and 0.15 eV for the

HOMO and LUMO, respectively.

Frontier orbital energies used to predict band alignment in Chapter 4 were calculated

with scf and bands calculations, which differ slightly from results obtained from density

of states calculations. As such, we present in Figure 6.5a the density of states of well-

isolated pentacene and MoSe2 out of heterostructure, showing a predicted staggered band

gap alignment. Figure 6.5b displays the density of states of pentacene in a 6×3 supercell,

without the TMD, superimposed on the same MoSe2 data. These calculations, that do

not take into account molecule-substrate interactions, but the latter of which did consider

molecule-molecule interactions, predicted a staggered gap. Only with the addition of

molecule-substrate interactions was the tuning of frontier orbital energies enough to

change the band alignment.

(a) (b)

Figure 6.5: (a) The density of states of well-isolated pentacene (blue) and that of MoSe2
(green), presented to demonstrate type-II band alignment of the materials outside of
heterostructure when using frontier orbital energies from density of states calculations,
for comparison with those from the heterostructure. Pentacene’s HOMO and LUMO, as
well as the TMD’s VBM and CBM, are labelled. (b) The density of states of pentacene in
a 6 × 3 supercell without the substrate (blue) and that of MoSe2, demonstrating that
pentacene’s LUMO and the TMD’s CBM are effectively overlapping. The molecule-
molecule interaction effects on the orbitals is not enough to cause a band alignment
type transition, but the additional molecule substrate effects were.
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As we saw that PEN/WSe2 formed a Type-II heterojunction when in the low

concentration regime due to molecule-molecule and molecule-substrate effects, it was

reasonable to assume that with increased concentration, and so increased molecule-

molecule interaction, this alignment would be maintained in the 6× 3 system. This was

the case, as can be seen in Figure 6.3, where the pentacene frontier orbitals are completely

straddled by the TMD frontier orbitals. Isolated pentacene was predicted to have Type-II

band alignment with WSe2 in Chapter 4, but did not consider the effects that come

with heterostructure formation. Density of states calculations (see Table 6.6) show that

molecule-molecule interactions move pentacene’s HOMO and LUMO energetically lower

by 0.20 eV, and molecule-substrate interactions have the same effect again, by 0.15 eV

for the HOMO and 0.20 eV for the LUMO. The combination of the two is enough for

a Type-II to Type-I band alignment transition. Because of the straddling gap, we can

use scf calculation values for a more precise discussion, with values also given in Table

6.6. The molecule-molecule effects are discussed above in the context of the MoSe2

heterostructure, and are independent of the TMD. Molecule-substrate interaction results

in a further decrease in the HOMO energy of 107 meV, and the LUMO of 128 meV.

These are both within 20 meV of the changes seen from heterostructure formation with

MoSe2. We can see these changes in Figure 6.6, which demonstrates the changes in

frontier orbital energies of pentacene as it is brought into the high concentration regime,

and then heterostructure with WSe2.
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Figure 6.6: The total density of states of pentacene in three different environments with
their HOMO and LUMO energies labelled and marked on all three subplots with solid
and dashed colored lines, respectively: (a) well-isolated pentacene in green, (b) pentacene
in a cell defined by the 6× 3 PEN/WSe2 heterostructure, but without the TMD, in blue,
and (c) pentacene in the PEN/WSe2 heterostructure in red. It is clear that the frontier
orbitals decrease in energy with both an increase in concentration and adsorption.

Work function

The reduction in work function, ϕ (Equation 5.9), of the TMDs due to adsorption

of high concentration pentacene was calculated as described in subsection 5.2.2, with

results displayed in Table 6.7. The introduction of permitted pentacene orbitals into the

TMD band gap results in an increase in the Fermi energy, reducing the work function.

The change in work function being more pronounced in sulfur systems agrees with this

observation, where the selenium systems with the smaller difference between pentacene’s

HOMO and the TMD’s VBM (see Table 6.5) experience a smaller change in work function.
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Table 6.7: Work function of the TMDs and their 6 × 3 PEN/TMD heterostructures, as
well as the change in work function due to pentacene adsorption, ∆ϕ = ϕTMD−ϕPEN/TMD.

TMD ϕTMD/eV ϕPEN/TMD/eV ∆ϕ/eV
MoS2 5.01 4.45 0.56
MoSe2 4.65 4.25 0.40
WS2 4.59 4.26 0.33
WSe2 4.35 4.20 0.15

We did not perform charge transfer calculations on the high pentacene concentration

heterostructures, as we have already shown the position within the heterostructures that

charge transfer (likely polarization rather than true charge transfer, see subsection 5.2.2)

occurs, and noted no significant difference between choice of TMD beyond that expected

due to electron density.

6.1.3 Comparison of pentacene concentrations

Structural favorability

Compared to the 7×4 heterostructures of Chapter 5, the pentacene molecules in the high

concentration regime are approximately 3.2 Å closer to each other across the periodic

boundaries, and 64% the concentration by area.

With increased concentration to the 6×3 supercell comes changes to the most favorable

adsorption site. All PEN/TMD systems with low concentration pentacene were most

favorable with the adsorbed molecule in the Top-Ch site. We see PEN/MoS2 express much

less mobility in its molecular adsorption site with increased concentration of pentacene,

and the Top-TM site become unstable; this site relaxes to an intermediate site between

Top-TM and Hollow, which is the most favorable adsorption site. High concentration

PEN/WSe2 also expresses a marked decrease in pentacene’s mobility across the TMD

surface, being most favorable in the Bridge-A adsorption site. PEN/MoSe2 is again most

favorable in a different adsorption site (Bridge-B) compared to the low concentration

pentacene case, but retains its mobility, and PEN/WS2 is most favorable in the same

site as in the 7 × 4 supercell, and comparably mobile. A summary of this is given in

Table 6.8. We believe these effects to be due to increased molecule-molecule interactions,
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which exaggerate effects from differences in the lattice parameters between TMDs. These

difference in lattice parameters affect a difference in the spatial relationship between

pentacene’s carbon rings and the underlying chalcogens. This difference is minor, given

that all the TMDs are broadly similar in structure: they form a hexagonal lattice with

similar lattice parameters, where chalcogens form the adsorption surface at a similar

distance from the transition metal atoms deeper in the TMD later. In the absence of strong

molecule-molecule interactions these differences are not significant enough to influence

the preferred adsorption site. However, in the high concentration regime, where we would

expect steeper energetic barriers to surround stable adsorption sites, they are. This results

in a variation in adsorption sites, compared to the consistent Top-Ch site found in the

7 × 4 systems. Thus, molecular mobility was reduced, with adjacent pentacene’s acting

to constrain the positions which were found favorable. The 7 × 4 systems demonstrated

a difference in Eads between most and next-most favorable adsorption sites of between

2 meV and 6 meV, and a difference between most and least favorable of between 24

meV to 83 meV. The 6 × 3 systems, however, had a much larger range of differences:

between 5 meV and 137 meV for the differences between most and next-most favorable

adsorption sites, and between 87 meV and 188 meV for the difference between most and

least favorable adsorption site. As expected from lower molecule-molecule interaction, the

molecular mobility within the 7× 4 heterostructures is greater.

Table 6.8: A structural comparison of PEN/TMD heterostructures of the two
concentration regimes investigated. Adsorption site mobility is the range of difference
in energy of the most favorable adsorption site and the others.

PEN/MoS2 PEN/MoSe2 PEN/WS2 PEN/WSe2
7× 4, low concentration
Adsorption Site Top-Ch Top-Ch Top-Ch Top-Ch
Adsorption Site Mobility/eV 3 - 79 2 - 72 2 - 83 6 - 75
Adsorption Energy/eV -1.39 -1.42 -1.43 -1.46
d/Å 3.31 3.40 3.30 3.38
Minimum molecule-molecule distance/Å 6.2 6.5 6.2 6.5
6× 3, high concentration
Adsorption Site Top-TM Bridge-B Top-Ch Bridge-A
Adsorption Site Mobility/eV 48 - 143 5 - 89 11 - 87 137 - 187
Adsorption Energy/eV -1.46 -1.44 -1.45 -1.61
d/Å 3.30 3.42 3.32 3.48
Minimum molecule-molecule distance/Å 3.4 3.7 3.4 3.7
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This difference in mobility between molecular concentrations is seen prominently

in PEN/MoS2, which has the smallest lattice parameter, the shortest transition metal-

chalcogen bonding, and the shortest distance in the z-direction between the transition

metal atoms and the adsorption surface (increasing their effect on pentacene), resulting

in the second lowest mobility between adsorption sites. However, it is PEN/WSe2

which has the lowest mobility between adsorption sites. We expect PEN/WSe2 to

exhibit the strongest binding between layers of any TMD, given that the majority of the

adsorption effect is due to van der Waals forces, and WSe2 contains the largest atoms

of the TMDs investigated. We saw that this was indeed the case, and with increased

molecular concentration we saw an increased layer separation, d, but also an increased

binding strength (when comparing the unrotated systems across concentrations); the

high concentration regime investigated here was not high enough to completely saturate

the adsorption sites (after which one would expect a decrease in binding strength).

A direct comparison of Eads for each PEN/TMD pair in different molecular

concentrations is difficult, as they favored different adsorption sites. However, the

general trend is that the 6× 3 systems have lower adsorption energy, indicating stronger

binding, but with a larger layer separation (see Table 6.8). As the substrate is not

saturated in either concentration regime, the increased adsorption strength in the high

concentration regime is due to effectively the same van der Waals effect on each pentacene

molecule across concentrations, but more pentacene molecules per TMD unit, and so

increased van der Waals interaction per TMD unit in the high concentration case.

Additionally, molecule-molecule interactions assist in binding, a claim supported by the

larger magnitude of molecule-molecule interactions seen in the 6 × 3 supercell systems.

The van der Waals force response curve minima (see Figure 2.14) becomes shifted to

higher distances, but is increased in depth.

The differences in layer separation between high and low concentration regimes are 12

mÅ for PEN/MoS2, 25 mÅ for PEN/MoSe2, 24 mÅ for PEN/WS2, and a large 102 mÅ

for PEN/WSe2. The discrepancy between PEN/WSe2 and the other systems is due to

the differences in layer separation within the 6× 3 systems, with the 7× 4 all being fairly
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similar. For 6 × 3 PEN/WSe2, the most favorable adsorption site was Bridge-A, which

was the site with the largest layer separation for all the TMDs. This explains why there

is such a difference within the WSe2 systems.

During our calculation and previous discussions of adsorption energies, we were able

to determine the respective contributions from various effects: molecule-molecule and

molecule-substrate interactions, as well as molecule and substrate deformations. To a

limited extent we can discuss changes in the electronic structure of heterostructures arising

from varying molecular concentration and rotation in this way as well, which we do so in

the remainder of this subsection.

Molecule-substrate interaction effects

The interaction between the adsorbed pentacene molecule and the TMD layer of the

supercell includes the van der Waals interaction, as well as competing electrostatic

repulsion. With changing pentacene concentration the magnitude of these effects is

altered. A summary of the contribution of molecule-substrate interactions to Eads across

the two concentration regimes, as well as the difference between them, is presented in

Table 6.9.

Table 6.9: The contributions to Eads of molecule-substrate interactions, in eV, in unrotated
heterostructures across the concentration regimes, as well as their difference. A positive
difference represents a more positive (oppositional) contribution with an increase in
concentration.

Heterostructure 7× 4 6× 3 ∆
PEN/MoS2 -1.402 -1.398 0.004
PEN/MoSe2 -1.423 -1.400 0.023
PEN/WS2 -1.340 -1.347 -0.007
PEN/WSe2 -1.452 -1.422 0.030

We see that the effect of increasing molecular concentration is to decrease the

contribution of molecule-substrate interactions to the adsorption energy in selenium

systems by a few tens of meV. Sulfur systems experience a much smaller modulation of

these effects by an order of magnitude. In PEN/WS2 this change is a small increase in

contribution. The relative change with increasing concentration is effectively negligible
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in all heterostructures.

We can also consider the contribution of the molecule-substrate interaction on changes

in frontier orbital energies in a similar manner to that outlined in Section 5.1, but with

density of states calculations. In this case, however, the effects were small and only

to a precision of 0.05 eV (being determined from our density of states calculations), so

we did not uncouple the molecule-substrate effects from deformation effects. We have

seen previously that molecule-substrate effects are always much larger than those due to

material deformation (Tables 5.4 and 6.4 for 7× 4 and 6× 3 systems, respectively), and

so differentiation between the two would be effaced by the precision limit.

The effect of increasing molecular concentration on the molecule-substrate interaction

contribution to pentacene’s frontier orbital energies is presented in Table 6.10, where we

see that the molybdenum systems are affected slightly more than the tungsten, and the

HOMO more or the same as the LUMO. All effects due to increased concentration are

either zero within our precision limit, or act to decrease the effect of the molecule-substrate

interaction on frontier orbital energy.

Table 6.10: The effect on pentacene’s frontier orbitals from molecule-substrate interactions
and material deformation, in eV, in heterostructures across both concentration regimes
(a negative value represents a decrease in orbital energy due to these effects) and the
modulation of these effects due to increasing concentration. Deformation effects are a
smaller contribution to Eads than molecule-substrate interaction effects.

7× 4 6× 3 ∆

Heterostructure HOMO LUMO HOMO LUMO HOMO LUMO
PEN/MoS2 -0.25 -0.30 -0.15 -0.25 0.10 0.05
PEN/MoSe2 -0.20 -0.25 -0.10 -0.15 0.10 0.10
PEN/WS2 -0.20 -0.25 -0.15 -0.20 0.05 0.05
PEN/WSe2 -0.20 -0.20 -0.15 -0.20 0.05 0.00

The effect of increasing molecular concentration of the same on TMD frontier orbital

energies is presented in Table 6.31, where we see no effect on tungsten systems, and a small

increase in the molecule-substrate interaction contribution to frontier orbital energies in

molybdenum systems. A distinction along the lines of the transition metal is expected,

as the frontier orbitals of the TMD are provided by molybdenum or tungsten d-orbitals.

Overall we see that the molecule-substrate interaction component of the effect of
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increasing molecular concentration on frontier orbital energies is larger in pentacene than

the TMDs, and larger in molybdenum systems.

Table 6.11: The effect on the TMD’s frontier orbitals from molecule-substrate interactions
and material deformation, in eV, in heterostructures across both concentration regimes
(a negative value represents a decrease in orbital energy due to these effects) and the
modulation of these effects due to increasing concentration. Deformation effects are a
smaller contribution to Eads than molecule-substrate interaction effects.

7× 4 6× 3 ∆

Heterostructure VBM CBM VBM CBM VBM CBM
PEN/MoS2 0.10 0.00 0.15 0.05 0.05 0.05
PEN/MoSe2 0.10 0.00 0.15 0.05 0.05 0.05
PEN/WS2 0.10 0.00 0.10 0.00 0.00 0.00
PEN/WSe2 0.10 0.00 0.10 0.00 0.00 0.00

Molecule-molecule interaction effects

Molecule-molecule interactions, those between pentacene molecules across periodic cell

boundaries, for both concentration regimes are displayed and compared in Table 6.12.

We see that there is a significant relative increase in molecule-molecule interaction with

increasing concentration, acting to assist heterostructure binding; this is presumably

due to decreased inter-molecular distances and increased van der Waals attraction.

Additionally, the contributions in sulfur systems, with smaller inter-molecular distances

than selenium systems, are of greater magnitude.

Table 6.12: The contributions to Eads of molecule-molecule interactions, in meV, in
heterostructures across the concentration regimes, as well as their difference. A positive
difference represents a more positive (oppositional) contribution with an increase in
concentration.

Heterostructure 7× 4 6× 3 ∆
PEN/MoS2 -4 -59 -55
PEN/MoSe2 -3 -38 -35
PEN/WS2 -4 -56 -51
PEN/WSe2 -3 -38 -35

Given that our investigation of frontier orbital energies comes primarily from density

of states calculations with a precision of 0.05 eV, and we are interested here in excluding

interactions involving the substrate, we did not gather frontier orbital data from pentacene
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in supercells defined by each of the heterostructures’ lattice parameters. As the lattice

parameters are all broadly similar, we instead evaluated pentacene in one supercell per

concentration regime, representative of the lattice parameters from the 7 × 4 and 6 × 3

TMD substrates, and not separately for each TMD.

The effect of molecule-molecule interactions on frontier orbital energies, then, is

the difference between the well isolated case and that of the molecule in a supercell

representative of that in the 7 × 4 or 6 × 3 supercell. We did not consider pentacene in

the adsorbed geometry here, only the relaxed geometry, different from the determination

of the contribution to adsorption energy (Equation 5.2). The differences between the two

methods are those introduced by molecular deformation, which is not only small, but

broadly accounted for in the fact that we compare relaxed geometry in both the isolated

and the concentration-specific superstructure cases. We expect any discrepancies to be

effaced by our precision limit.

The effect of increased concentration on pentacene’s frontier orbitals due to molecule-

molecule interactions is displayed in Table 6.13. We see that these effects are responsible

for a change in HOMO and LUMO energies in the 7 × 4 supercell compared to the well

isolated case of 0.10 eV, acting to decrease both energies, and a further change of the

same amount between the 7× 4 supercell and the 6× 3 supercell.

Table 6.13: The effect on pentacene’s frontier orbitals from molecule-molecule interactions,
in eV, across both concentration regimes (a negative value represents a decrease in
orbital energy due to these effects) and the modulation of these effects due to increasing
concentration.

Heterostructure HOMO LUMO
PEN7×4 -0.10 -0.10
PEN6×3 -0.20 -0.20
∆ -0.10 -0.10

Molecular deformation due to heterostructure formation

By bringing pentacene into heterostructure with the TMDs, there is a change in structure

that occurs. This is the molecular deformation, and with changed atomic position comes

a change in electronic density profile. As such, deformation of the molecule (and the
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substrate itself) can contribute to adsorption energy. We did not decouple deformation

effects from molecule-substrate interaction effects for frontier orbital energies due to the

relative magnitude of these effects, but we did so for adsorption energy contributions.

Table 6.14 shows the contribution of molecular deformation to adsorption energy for

each heterostructure between pentacene concentration regimes, as well as their difference,

representing the effect of increasing molecular concentration on the energetic contribution

of molecular deformation to Eads. We can see that with increasing concentration,

molecular deformation becomes a larger contributor to the adsorption energy, except for

PEN/WSe2, where no effect is observed. There is a greater magnitude of change due

to concentration increase in the molybdenum systems, although the effect throughout is

small.

Table 6.14: The contributions to Eads of molecule deformation effects, in meV, in
heterostructures across the concentration regimes, as well as their difference. A positive
difference represents a more positive (oppositional) contribution with an increase in
concentration.

Heterostructure 7× 4 6× 3 ∆
PEN/MoS2 5 -9 -14
PEN/MoSe2 -7 -10 -3
PEN/WS2 -3 -9 -6
PEN/WSe2 -7 -7 0

We also investigated the atomic deviation of pentacene from its molecular plane, where

we saw that well isolated pentacene was effectively flat lying, with a very slight bowling

effect of approximate magnitude of 1 mÅ. There was no significant change from this

structure when considering pentacene in a 7× 4 or 6× 3 supercell without the substrate.

Only when introducing a substrate was there molecular deviation greater than a few mÅ.

It should be noted that even in the most extreme case these deviations were approximately

one tenth of an angstrom, so the molecule can still reasonably be considered flat lying with

no significant twisting. The difference between the z-coordinates of pentacene atoms out

of heterostructure are displayed in Figure 6.7, showing the nature of this small deviation

from the molecular plane. We can see that isolated pentacene and pentacene in both the

7 × 4 and the 6 × 3 supercell, without the TMD, are very similar: the carbon rings sit
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higher than the hydrogen atoms, forming an upside-down bowl shape. This is identical

to the case where the carbon rings sit below the hydrogen atoms, as in the absence of a

substrate there is no up or down reference.

Figure 6.7: The deviation in z-coordinate of pentacene atoms from the minimum z-
coordinate value of the atoms for well-isolated pentacene and pentacene in the 7× 4 and
6 × 3 supercells without TMDs, shown as a heat map on the molecular plane. Circular
black points mark the atomic positions of carbon atoms. Positions between atomic sites
are interpolated for grid plotting. There is no large difference between the systems, all
showing a mild bowling effect where the outer hydrogen atoms are offset from the carbon
rings, which themselves are deflected from the position of the central ring. The scale here
is very small: the maximum deviation from the molecular plane is only 1.02 mÅ.

When in heterostructure, however, we see two different effects occur depending on

molecular concentration. These can be seen in Figure 6.8. In the low concentration

regime, there is an increased deflection from the molecular plane, with an exaggeration of

the bowl shape of isolated pentacene: the middle carbon ring is closer to the substrate than

the outer rings or hydrogen atoms. Note the change in scale for the heat maps of Figures

6.7 and 6.8. In the high concentration regime the clear bowling effect was lost, with

larger overall deviation but with effects that are dependent on the underlying substrate

structure, although each heterostructure in this concentration regime was investigated

in a different adsorption site. The exception was PEN/WS2, which favored the same

adsorption site as the 7× 4 systems. When adsorbed on MoS2, in the Top-TM site, there

is some twisting of the pentacene. The central ring is higher on one side than the other,
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with the deviation across that ring being greater than the outer rings. This is due to the

Top-TM site here having shifted slightly to between Top-TM and Hollow, and a clear loss

of symmetry in underlying substrate atom across the long axis of the pentacene molecule.

With the MoSe2 substrate, in the Bridge-B adsorption site, there is a similar lack of

symmetry in underlying substrate atom across the long axis of pentacene, and there is

again some minor twisting. In PEN/WSe2, there was a slight reversal of the bowling

effect that was seen in the 7×4 systems, with the central carbon ring sitting further from

the underlying substrate than the hydrogen atoms, as well as some lateral warping.

When we instead investigated the atomic deviation of high concentration pentacene

in the Top-Ch adsorption site, instead of whichever was most favorable, we saw that

pentacene adopts the bowling effect seen in the low concentration regime. This confirms

that the warping effects are due to the adsorption site rather than other TMD-specific

interactions. The corresponding image can be seen in Appendix I. The bowling effect

described is not well reported for pentacene in the literature, presumably due to the very

small deviations from flat-lying geometry for isolated pentacene, but it has been noted in

N-phenylenes which are broadly similar in structure [148].

We see that pentacene within molybdenum systems experienced more deformation in

the higher concentration regime than the lower, with an increase in both the mean and

the maximum values of atomic deviation from the molecular plane. Conversely, pentacene

in heterostructure with the tungsten dichalcogenides experienced a decrease in mean and

maximum atomic deviation. Appendix I contains a summary table of the mean and

maximum atomic deviations from the molecular plane for each heterostructure, and a

comparison of these across concentration regimes. However, where these deviations occur

is not described by such data.

Substrate deformation due to heterostructure formation

Upon adsorption of pentacene, the underlying TMD undergoes slight deformation as well

as the molecule. This deformation can again contribute to the adsorption energy and

changes in frontier orbital energies, but we did not decouple the effect from the molecule-
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Figure 6.8: The deviation of pentacene atoms from the molecular plane for pentacene in
heterostructure, shown as a heat map. Circular black points mark the atomic positions
of carbon atoms. The 7× 4 systems show a clear bowling effect, with the central carbon
ring closer to the substrate than the outer hydrogen atoms by approximately 0.1 Å. The
effects noted in the high concentration regime are TMD-specific.
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substrate interaction in the case of frontier orbital energies. TMD bond length changes

were all small, and slightly larger in the 7× 4 systems due to smaller layer separation.

Table 6.15 shows the contribution of substrate deformation to adsorption energy

for each heterostructure between concentration regimes, as well as their difference,

representing the effect of increasing molecular concentration on the energetic contribution

of substrate deformation to Eads. We see that PEN/WS2 in the low concentration regime

experiences quite a large contribution towards its adsorption energy from substrate

deformation of 88 meV, acting to strengthen molecular adsorption. This may be due to

the size of tungsten and the small layer separation, which was the closest binding out of all

unrotated systems. The other heterostructures had substrate deformations that opposed

pentacene adsorption. In the high concentration regime, PEN/WS2 was now more in

line with the other heterostructures. PEN/WSe2 was the only one that strengthened

adsorption, but in all cases the effect magnitude was small. As the heterostructures in

the high concentration regime experienced a very small contribution to their adsorption

energies from substrate deformation, the difference between concentration regimes was

most extreme for PEN/WS2. In the other systems, increased molecular concentration

acted to change substrate deformation in such a way as to oppose pentacene adsorption

less.

Table 6.15: The contributions to Eads of substrate deformation effects, in meV, in
PEN/TMD heterostructures across the concentration regimes, as well as their difference.
A positive difference represents a more positive (oppositional) contribution with an
increase in concentration.

Heterostructure 7× 4 6× 3 ∆
PEN/MoS2 12 2 -10
PEN/MoSe2 8 2 -6
PEN/WS2 -88 3 91
PEN/WSe2 4 -5 -9

A summary of transition metal-chalcogen bond length changes between TMDs in

heterostructure and pristine TMDs is provided in Table 6.16, as well as the difference

between effects across concentration regimes. Bond contraction was observed underneath

the pentacene molecule, and subsequent lengthening necessarily occurred elsewhere to
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maintain fixed cell parameters, with the maximum lengthening occurring near areas of

bond contraction. The effect is consistently small throughout the structure.

Table 6.16: Changes in transition metal and upper layer chalcogen bond lengths from
their lengths in TMDs without adsorbed pentacene, in mÅ, in unrotated heterostructures
across the concentration regimes, as well as their difference.

Heterostructure 7× 4 6× 3 ∆
Maximum bond contraction
PEN/MoS2 3.7 3.6 -0.1
PEN/MoSe2 4.5 4.1 -0.4
PEN/WS2 4.3 3.9 -0.4
PEN/WSe2 6.4 4.8 -1.6
Maximum bond lengthening
PEN/MoS2 4.7 2.3 -2.4
PEN/MoSe2 3.3 2.9 -0.4
PEN/WS2 4.1 3.5 -0.6
PEN/WSe2 1.6 2.4 0.8

Work function

Finally, we looked at the change in work function, ∆ϕ, of TMDs due to the adsorption

of pentacene. A comparison of this change between pentacene concentrations is given

in Table 6.17, where we see that the effect of increasing pentacene concentration is to

decrease the effect that pentacene adsorption has on the work function.

Table 6.17: The change in work function, ∆ϕ, of the TMD due to unrotated pentacene
adsorption, in eV, across the concentration regimes, as well as their difference.

Heterostructure 7× 4 6× 3 ∆
PEN/MoS2 0.59 0.56 -0.03
PEN/MoSe2 0.44 0.40 -0.04
PEN/WS2 0.34 0.33 -0.01
PEN/WSe2 0.18 0.15 -0.03
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6.2 Investigating pentacene rotation

The effect of adsorbate rotation was investigated by rotating the pentacene molecule

about its center of mass in the plane of the monolayer substrate. This was done for each

PEN/TMD system across both concentrations with the most favorable adsorption site.

We considered counterclockwise rotation angles of 30°, 60° and 90°, resulting in systems

with varying relationships to underlying TM-Ch bonds, as described at the beginning of

this chapter. Following rotation, we performed relax calculations to optimize the new

geometry. Rotated geometry, before relaxation, is displayed in Figure 6.9.

Figure 6.9: The rotation of pentacene, measured counterclockwise from the 0 ° case, being
defined as pentacene’s long axis being aligned with the supercell’s x-axis (and therefore the
underlying substrate). From top-left, clockwise: 30°, 60°, 90°. 30° and 90° angles share the
same relationship between pentacene atoms underlying substrate atoms, but with different
molecule-molecule spatial relationships across the periodic boundaries. The same is true
for the angle of 60° and the unrotated case.

6.2.1 Low concentration pentacene heterostructures: structure

Within the 7×4 heterostructures, Top-Ch was found to be the most favorable adsorption

site throughout. Using the relaxed geometry of these long-axis aligned systems (referred to

here as 0° systems), we rotated the pentacene and again relaxed the resulting structures.

All systems were stable under relaxation around their initial angles of rotation. The
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minimum molecule-molecule distance for the 0° systems were previously determined to

be 6.2 Å and 6.5 Å for sulfur and selenide systems, respectively. With 30° of rotation

these distances were 5.2 Å and 6.0 Å for sulfur and selenide systems, 5.9 Å and 6.3 Å

with 60° rotation for sulfur and selenide systems, and 1.9 Å and 2.5 Å with 90° sulfur and

selenide systems. Rotate pentacene systems have only a small number of carbon atoms

located over chalcogens on the substrate layer, so all rotation angles experience similar

steric repulsion as do the unrotated systems.

We found that all four PEN/TMD systems were more energetically favorable at a

rotation of 60°, where all but PEN/WSe2 was next most favorable at 0° and least favorable

at 30°. The differences in total system energies compared to the most favorable rotation

angle are presented in Table 6.18. We found that layer separation was very similar

between the most favorable rotation angle of 60° and the previously determined 0° systems.

The layer separations of 60° systems were 3.309 Å, 3.400 Å, 3.296 Å, and 3.388 Å, for

PEN/MoS2, PEN/MoSe2, PEN/WS2 and PEN/WSe2, respectively. The only differences

between the layer separation of favorably rotated systems and the unrotated systems are

in PEN/WS2 and PEN/WSe2, of a small 1 mÅ and 10 mÅ, respectively.

Table 6.18: The difference in total energy, in eV, between rotations of PEN/TMD
heterostructures with low concentration pentacene and their most favorable rotation angle.

Heterostructure 0° 30° 60° 90°
PEN/MoS2 0.001 0.029 0.000 0.020
PEN/MoSe2 0.001 0.039 0.000 0.003
PEN/WS2 0.002 0.037 0.000 0.029
PEN/WSe2 0.355 0.045 0.000 0.011

The mobility between rotation angles is fairly high, again, excepting PEN/WSe2,

with differences between most and next most favorable angles being only 1 meV for the

molybdenum systems and 2 meV for PEN/WS2. The difference between most and least

favorable angles is 29 meV for PEN/MoS2, 39 meV for PEN/MoSe2, and 37 meV for

PEN/WS2. PEN/WSe2, however, is next most favorable with 90° rotation by 11 meV,

and least favorable at 0°, by a large 355 meV. These values imply that, with the exception

of PEN/WSe2, the adsorbed molecule is mobile within its z-axis rotational degree of
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freedom, with reduced mobility as it rotated from 0° to 30°, near which it finds a local

minima (as all rotation angles we used as relaxation inputs were stable) in adsorption

energy. Beyond this energy barrier lies another local minima around 60° of rotation,

with yet another around 90°. We additionally note that, again excepting PEN/WSe2, the

adsorption energies of 0° and 60° are very similar, as are those of 30° and 90°. These angles

of rotation naturally form pairs, where if considering a single molecule on and infinite

underlying substrate, they are equivalent with to their counterpart: the only difference

arises from the unequal spacing between molecules in the x- and y-directions that arises

from our choice of supercell dimensions. The small discrepancies in energy, then, between

0° and 60° of 1-2 meV and between 30° and 60° of 9-36 meV are due to molecule-molecule

interaction effects. The larger difference between 30° and 90° observed in PEN/MoSe2 of

36 meV is due to the relative favorability of 90° of rotation in this system compared to

the others: PEN/MoSe2 has the largest supercell dimensions, and the largest molecule-

molecule distance. We see also that a rotation of 90° in the PEN/WSe2 heterostructure

is relatively more favorable than in the sulfur systems due to the larger supercell and

molecule-molecule separation.

The contributions to the adsorption energy of favorably rotated (60°) 7 × 4 systems

from molecule-molecule interactions, molecule-substrate interactions, and molecule and

substrate deformation effects were calculated in the same manner as described in Section

5.1, and are displayed in Table 6.19.

Table 6.19: Contributions to the adsorption energy of favorably rotated 7 × 4
heterostructures in their favorable adsorption site from molecule-molecule, molecule-
substrate, molecule deformation and substrate deformation effects, in eV. Molecule-
substrate interaction is consistently the largest contribution across all systems.

PEN60°/MoS2 PEN60°/MoSe2 PEN60°/WS2 PEN60°/WSe2
molecule-molecule interaction -0.005 -0.003 -0.005 -0.004
molecule-substrate interaction -1.393 -1.422 -1.439 -1.461
molecule deformation -0.007 -0.010 -0.006 -0.009
substrate deformation 0.006 0.001 0.100 -0.346

Expectedly, molecule-substrate interaction is the overwhelming majority contributor

to adsorption energy in the rotated systems, as this includes the van der Waals interaction,
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but we found that in tungsten systems the substrate deformation effects were only an

order of magnitude smaller than molecule-substrate interaction effects. Substrate

deformation effects contribute 346 meV to the adsorption energy in PEN60°/WSe2, and

in the case of PEN60°/WS2, they oppose heterostructure formation by 100 meV. In the

unrotated systems, heterostructures of the TMDs except WS2 have substrate deformation

effects that oppose heterostructure formation, but the effects are much smaller (see Table

5.4). Molecule-molecule interaction is similar to that of unrotated systems in the low

concentration regime.

The atomic deviation of the pentacene molecule within rotated systems was again

examined. We found a mean atomic deviation of 40 mÅ from the molecular plane

within the PEN60°/MoS2 heterostructure, with a maximum atomic deviation of 112 mÅ,

occurring at the middle of the molecule. Pentacene within PEN60°/MoSe2 had a mean

atomic deviation of 34 mÅ with a maximum of 88 mÅ, also at the middle of the molecule.

For the PEN60°/WS2 heterostructure, we observed a very similar change in structure,

with a mean atomic deviation from the molecular plane of 43 mÅ, and a maximum

atomic deviation of 123 mÅ, again at the middle of the molecule. The PEN60°/WSe2

heterostructure did not behave differently, with a mean atomic deviation of 41 mÅ and a

maximum of 97 mÅ, again occurring at the middle of the pentacene molecule. These values

are all very similar to the unrotated structures: within 1 mÅ except for PEN60°/WSe2,

which is within 8 mÅ. Carbon-carbon bond lengths in pentacene again barely changed,

with differences of approximately 0.1% with the formation of heterostructure, regardless

of the substrate, and the substrate itself experienced similar bond length changes of less

than 0.1% as a result of the addition of pentacene.

We found the largest TM-Ch bond contraction to be 4.0 mÅ, 5.2 mÅ, 5.5 mÅ and

5.7 mÅ compared to the TMD out of heterostructure, an increase of 8%, 16%, 28% and

a decrease of 10% compared to the contraction observed in the unrotated structures

for PEN60°/MoS2, PEN60°/MoSe2, PEN60°/WS2, and PEN60°/WSe2 heterostructures,

respectively. This again occurred underneath the pentacene molecule. Bond lengthening

was observed in surrounding bonds, the maximum of which was 4.2 mÅ, 3.8 mÅ, 4.4
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mÅ, and 0.9 mÅ for PEN60°/MoS2, PEN60°/MoSe2, PEN60°/WS2, and PEN60°/WSe2

heterostructures, respectively. This represents a decrease of 11% and 44% in the cases

of PEN60°/MoS2 and PEN60°/WSe2, and an increase of 15% and 7% in the cases of

PEN60°/MoSe2 and PEN60°/WS2.

6.2.2 Low concentration pentacene heterostructures: electronic

properties

The favorably rotated low concentration pentacene systems then had their electronic

properties investigated. The results of density of states calculations for these systems are

displayed in Figure 6.10.

Figure 6.10: The density of states of favorably rotated 7×4 PEN/TMD heterostructures,
with the Fermi energies given by the vertical black dashed line.

We saw no additional effects that would change band alignment between the density

of states of unrotated and rotated systems, with comparable contributions from atomic

orbitals, but we do note a second carbon p-orbital state within the TMD band gap of

PEN60°/MoS2. In this heterostructure there are therefore two density of states peaks

contributed by pentacene’s carbon atoms within the TMD band gap: the HOMO and
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another orbital around −5.75 eV, whereas the TMD’s VBM is at −5.80 eV. This does not

affect the band alignment, as both orbitals are occupied. We see again that pentacene’s

HOMO sits further within the TMD band gap for the sulfur systems than the selenium

systems, and pentacene’s LUMO is energetically higher than the TMD’s CBM in the case

of all systems except PEN60°/WSe2, which forms a Type-I heterostructure. The HOMO

and LUMO energies of pentacene within these heterostructures, along with the TMD

VBM and CBM energies are presented in Table 6.20.

Table 6.20: Frontier orbital energies and their difference, ∆, in eV, of favorably rotated
7× 4 PEN/TMD heterostructures. The values presented here are from density of states
calculations, and so have a precision only of 0.05 eV.

PEN TMD ∆

Heterostructure HOMO LUMO VBM CBM HOMO-VBM LUMO-CBM
PEN60°/MoS2 -4.70 -3.80 -5.80 -4.20 1.10 0.40
PEN60°/MoSe2 -4.65 -3.75 -5.20 -3.80 0.55 0.05
PEN60°/WS2 -4.65 -3.75 -5.60 -3.80 0.95 0.05
PEN60°/WSe2 -4.65 -3.70 -4.95 -3.45 0.30 -0.25

We again examined the work function of the heterostructures, and can calculate the

reduction in work function, ϕ (Equation 5.9), of the TMDs due to formation of the

heterostructures in the same manner as in subsection 5.2.2, with results displayed in

Table 6.21.

Table 6.21: Work function of the TMDs and their favorably rotated 7 × 4 PEN/TMD
heterostructures, as well as the change in work function due to pentacene adsorption in
the rotated position, ∆ϕ = ϕTMD − ϕPEN/TMD.

TMD ϕTMD/eV ϕPEN/TMD/eV ∆ϕ/eV
MoS2 5.01 4.43 0.58
MoSe2 4.65 4.21 0.44
WS2 4.59 4.25 0.34
WSe2 4.35 4.17 0.18

The introduction of permitted pentacene orbitals into the TMD band gap results in

an increase in the Fermi energy, reducing the work function. The change in work function

being more pronounced in sulfur systems agrees with this observation, where the selenium

systems with the smaller difference between pentacene’s HOMO and the TMD’s VBM

(see Table 6.20) experience a smaller change in work function.
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6.2.3 High concentration pentacene heterostructures: structure

Within the 6 × 3 heterostructures, the favorability of adsorption site varied. We had

previously found that PEN/MoS2 is most favorable in the Top-TM site, PEN/MoSe2

is most favorable in the Bridge-B site, PEN/WS2 is most favorable in the Top-Ch site,

and PEN/WSe2 is most favorable in the Bridge-A site (see Table 6.1 and Table 6.8).

We only considered rotation within the most favorable site for each heterostructure,

where we rotated the pentacene molecule by 30°, 60°, and 90°, then relaxed the resulting

structure. With the higher molecular concentration, the 90° rotation was unstable:

PEN90°/MoS2 relaxed to a pentacene angle of rotation of 79°, PEN90°/WS2 to 70°, and

both PEN90°/MoSe2 and PEN90°/WSe2 to 74°. We will continue to refer to the systems

as having been rotated by 90°, but they did not remain there, in contrast to the 7 × 4

systems. 30° and 60° rotations were stable and remained at their rotation angles following

geometry optimization.

With 30° of rotation, the minimum molecule-molecule distance was 2.3 Å in

PEN30°/MoS2, 2.4 Å in PEN30°/WS2, and 3.0 Å in the selenide systems. 60° rotated

pentacene resulted in minimum molecule-molecule distances of 3.2 Å, 3.5 Å, 3.1 Å, and

3.4 Å, for heterostructures of MoS2, MoSe2, WS2, and WSe2, respectively. 90° systems

all had a minimum molecule-molecule distance of 2.3 Å, except PEN90°/WSe2, which was

2.2 Å.

We found that the molybdenum systems were more favorable unrotated. We had

already investigated these structures, with the results reported in Section 6.1. Tungsten

systems, however, were most favorable with a pentacene rotation angle of 60°, the same

as in the low concentration regime. The differences in total system energies compared

to the most favorable rotated system are presented in Table 6.22. The layer separations

of the tungsten systems with 60° rotated pentacene were 3.322 Å and 3.462 Å, for WS2

and WSe2 systems, respectively. This gives a difference in layer separation between the

unrotated and favorably rotated WS2 systems of 2 mÅ, and a difference of 18 mÅ between

the WSe2 systems.
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Table 6.22: The difference in total energy, in eV, between rotations of PEN/TMD
heterostructures with high concentration pentacene and their most favorable rotation
angle.

Heterostructure 0° 30° 60° 90°
PEN/MoS2 0.000 0.090 0.162 0.159
PEN/MoSe2 0.000 0.052 0.081 0.032
PEN/WS2 0.006 0.034 0.000 0.048
PEN/WSe2 0.076 0.045 0.000 0.015

The mobility between rotation angles was lower in the molybdenum systems, which

preferred no rotation, than in the tungsten systems. PEN/MoS2 is least mobile through

rotation, with the next most favorable rotation angle of 30° being 90 meV less favorable

than the unrotated case, and 60° being the least favorable, separated energetically by 162

meV. PEN/MoSe2 is next most favorable at 90° of rotation (although following relaxation

this angle is only 74°) with a difference between it and the most favorable unrotated

case of 32 meV, and the least favorable 60° case differing by 81 meV. Only PEN/WS2

has a difference between most and next most favorable rotation angle of the order of

meV, but this is between 60° and 0°: these are closely related geometrically, as previously

discussed at the beginning of this chapter, but are physically separated by the relatively

unfavorable angles of 30° and 90°, the latter of which is least favorable and differs from

the most favorable by 48 meV. PEN/WSe2 is least favorable in the unrotated case, with

a differential of 76 meV, and next most favorable at 90(74)° by 15 meV.

The contributions to the adsorption energy of favorably rotated 6 × 3 systems

from molecule-molecule interactions, molecule-substrate interactions, and molecule and

substrate deformation effects were calculated in the same manner as described in Section

5.1, and are displayed in Table 6.23.
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Table 6.23: Contributions to the adsorption energy of favorably rotated 6 × 3
heterostructures in their favorable adsorption site from molecule-molecule, molecule-
substrate, molecule deformation and substrate deformation effects, in eV. Molecule-
substrate interaction is consistently the largest contribution across all systems.

PEN60°/WS2 PEN60°/WSe2
molecule-molecule interaction -0.065 -0.038
molecule-substrate interaction -1.393 -1.422
molecule deformation -0.009 -0.007
substrate deformation 0.003 -0.218

We see once again that molecule-substrate interactions are the largest contributor to

the adsorption energy. In the high concentration rotated case, we see that molecule-

molecule interactions take on a relatively large role, an order of magnitude larger than

the low concentration rotated case (see Table 6.19), and similar to the high concentration

unrotated case (see Table 6.4). Molecule deformation effects again play a larger role in

the WSe2 system, with a contribution of 218 meV.

The mean atomic deviation of pentacene from the molecular plane within the

PEN60°/WS2 was found to be 39 mÅ with a maximum deviation of 94 mÅ at the center

of the molecule. Pentacene within the PEN60°/WSe2 heterostructure experienced a mean

atomic deviation of 20 mÅ and the maximum deviation was 50 mÅ, located on one side

of one of the carbon rings next out from the central ring. This indicated some small

amount of twisting. These values are similar to the unrotated case for high concentration

pentacene. Carbon-carbon and carbon-hydrogen bond lengths are again effectively

unchanged.

The largest TM-Ch bond contraction was again located underneath the pentacene

molecule, and compared to the TMDs out of heterostructure was found to be 4.2 mÅ

and 5.0 mÅ: an increase of 8% and 4% from the unrotated cases for PEN60°/WS2

and PEN60°/WSe2 heterostructures, respectively. Bond lengthening, observed at its

maximum in nearby bonds again, was maximally 3.6 mÅ and 0.4 mÅ for PEN60°/WS2

and PEN60°/WSe2 heterostructures, respectively. This represents a change from the

unrotated case of 3% for PEN60°/WS2. With very little bond lengthening anywhere in

the PEN60°/WSe2 heterostructure, there is a decrease in maximum bond lengthening

254



between unrotated and favorably rotated 6× 3 PEN/WSe2 systems of 83%.

6.2.4 High concentration pentacene heterostructures: electronic

properties

The 6 × 3 PEN60°/WS2 and PEN60°/WSe2 heterostructures then had their electronic

properties investigated. Their density of states are displayed in Figure 6.11.

Figure 6.11: The density of states of favorably rotated 6×3 PEN/TMD heterostructures,
with the Fermi energies given by the vertical black dashed line.

We saw no effects from the rotation of pentacene that change band alignment, and note

broadly the same structure as before; the Fermi energy sits slightly energetically higher

within the TMD band gap in the case of the sulfur system, as pentacene’s HOMO energy

is further in to the gap. PEN60°/WS2 maintains its Type-II heterojunction, although

is again close to a transition to Type-I as it is in the unrotated case, and indeed the

low concentration case. PEN60°/WSe2 is a Type-I heterostructure, no different than the

unrotated or high concentration cases. The frontier orbitals are displayed in Table 6.24.

Table 6.24: Frontier orbital energies and their difference, ∆, in eV, of favorably rotated
6× 3 PEN/TMD heterostructures. The values presented here are from density of states
calculations, and so have a precision only of 0.05 eV.

PEN TMD ∆

Heterostructure HOMO LUMO VBM CBM HOMO-VBM LUMO-CBM
PEN60°/WS2 -4.75 -3.80 -5.60 -3.85 0.85 0.05
PEN60°/WSe2 -4.70 -3.80 -5.00 -3.45 0.30 -0.35
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The change in reduction in work function, ϕ (Equation 5.9), from heterostructure

formation with rotated pentacene was again calculated as in subsection 5.2.2, with results

displayed in Figure 6.25.

Table 6.25: Work function of the TMDs and their favorably rotated 6 × 3 PEN/TMD
heterostructures, as well as the change in work function due to pentacene adsorption in
the rotated position, ∆ϕ = ϕTMD − ϕPEN/TMD.

TMD ϕTMD/eV ϕPEN/TMD/eV ∆ϕ/eV
WS2 4.59 4.28 0.31
WSe2 4.35 4.22 0.13

As has been the case for unrotated high concentration systems, the introduction of

pentacene’s HOMO into the TMD band gap results in a reduction in the work function

due to pentacene adsorption and subsequent increase in the Fermi energy.

6.2.5 Comparison of pentacene rotation angles

Structural favorability

Investigating the effects of rotation on adsorption energy and layer separation, we see from

Table 6.26 that rotation only has a small effect on most systems. Rotational mobility is

high, and the effect on layer separation of rotation of pentacene is minor. The exception

is PEN/WSe2 in the low concentration regime, where substrate deformation effects of

a magnitude not seen in other systems result in a much more favorable heterostructure

when pentacene is rotated by 60°. This was not observed in the unrotated case. Overall,

the difference in adsorption energy between concentrations is relatively small, but when

allowing for rotation PEN/WSe2 greatly favors the low concentration regime. Within

concentration regimes, rotating the pentacene molecule only greatly affects Eads in the

PEN/WSe2 system.
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Table 6.26: The adsorption energies, Eads, and layer separations, d, of the heterostructures
compared across pentacene angles of rotations, as well as the effect of rotation on these
parameters.

0° 60° ∆

Heterostructure Eads/eV d/Å Eads/eV d/Å Eads/meV d/mÅ
7× 4
PEN/MoS2 -1.389 3.309 -1.390 3.309 -1 0
PEN/MoSe2 -1.424 3.400 -1.425 3.400 -1 0
PEN/WS2 -1.434 3.297 -1.436 3.296 -2 -1
PEN/WSe2 -1.458 3.378 -1.813 3.388 -355 10
6× 3
PEN/WS2 -1.454 3.321 -1.460 3.322 -6 1
PEN/WSe2 -1.606 3.480 -1.682 3.462 -76 -18

Within the low concentration regime, all PEN/TMD heterostructures favored a

pentacene rotation angle of 60°, where adsorption energies decreased slightly between

unrotated and PEN60°/TMD systems, with differences of 1 meV, 1 meV and 2 meV for

PEN/MoS2, PEN/WSe2, and PEN/WS2, respectively. PEN/WSe2 was notably more

favorable through all rotation angles, with the most favorable again being 60°, with

a difference in Eads between that and the unrotated case of a much larger 355 meV.

Differences in layer separation between the 0° and 60° systems were small, only noticed

in the tungsten systems where they are 10 mÅ.

A summary of the structural properties of 7× 4 heterostructures with unrotated and

favorably rotated (60°) pentacene is given in Table 6.27. We can see that there are no

large changes in any of the parameters, which is reflected in the minimal changes of the

electronic properties.
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Table 6.27: A structural comparison of PEN/TMD heterostructures of the 7×4 unrotated
and 7 × 4 favorably rotated structures. All systems have pentacene in the Top-Ch
adsorption site. Molecule-molecule interaction energies here are that which contributes
to Eads.

PEN/MoS2 PEN/MoSe2 PEN/WS2 PEN/WSe2
0°
Adsorption Energy (Eads/eV -1.39 -1.42 -1.43 -1.46
d/Å 3.31 3.40 3.30 3.38
Minimum molecule-molecule distance/Å 6.2 6.5 6.2 6.5
Molecule-molecule interaction/eV -0.004 -0.003 -0.004 -0.003
60°
Adsorption Energy/eV -1.39 -1.42 -1.43 -1.81
d/Å 3.31 3.40 3.30 3.39
Minimum molecule-molecule distance/Å 5.9 6.3 5.9 6.3
Molecule-molecule interaction/eV -0.005 -0.003 -0.005 -0.004

Within the high concentration regime, molybdenum systems were most favorable

at a molecular angle of 0°. Tungsten systems, in the same manner as for the 7 × 4

heterostructures, were most favorable with a pentacene angle of 60°. The differences in

Eads here are 6 meV and 76 meV for PEN/WS2 and PEN/WSe2, respectively.

A summary of the structural properties of 6× 3 heterostructures with unrotated and

favorably rotated (60°) pentacene is given in Table 6.28. We can see that there is a

small decrease in the minimum molecule-molecule distances and a subsequent increase

in molecule-molecule interaction contribution to the adsorption energy of the PEN/WS2

heterostructures with rotation of pentacene.

Table 6.28: A structural comparison of PEN/TMD heterostructures of the 6×3 unrotated
and 6 × 3 favorably rotated structures. Molecule-molecule interaction energies here are
that which contributes to Eads.

PEN/WS2 PEN/WSe2
Adsorption site Top-Ch Bridge-A
0°
Adsorption Energy (Eads/eV -1.45 -1.61
d/Å 3.32 3.48
Minimum molecule-molecule distance/Å 3.4 3.7
Molecule-molecule interaction/eV -0.056 -0.038
60°
Adsorption Energy/eV -1.46 -1.68
d/Å 3.32 3.46
Minimum molecule-molecule distance/Å 3.1 3.4
Molecule-molecule interaction/eV -0.065 -0.038
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In the low concentration case, pentacene rotation did not lead to changes in frontier

orbital energies within the pentacene or TMDs, within the precision of our density of states

calculations. The only change to pentacene’s frontier orbitals resulting from rotation

within the high concentration regime was a decrease of the HOMO in PEN60°/WS2 of

0.05 eV compared to that of the unrotated case. This is not enough to cause band

alignment changes: the HOMO-VBM alignment was consistently robust, and the LUMO-

CBM alignment is where any changes may occur.

Molecule-substrate interaction effects

The effect of molecular rotation on the contribution of molecule-substrate interactions to

the adsorption energy is displayed in Table 6.29, and mostly shows only a small change due

to rotation. The PEN/WS2 systems experience a larger change in effect of approximately

7% in the low concentration case, increasing in contribution to Eads.

Table 6.29: The contributions to Eads of molecule-substrate interactions, in eV, compared
across pentacene rotation angles, as well as their difference. A positive difference
represents a more positive (oppositional) contribution with rotation to 60°.

Heterostructure 0° 60° ∆
7× 4
PEN/MoS2 -1.402 -1.393 0.009
PEN/MoSe2 -1.423 -1.422 0.001
PEN/WS2 -1.340 -1.439 -0.099
PEN/WSe2 -1.452 -1.461 -0.009
6× 3
PEN/WS2 -1.347 -1.393 -0.046
PEN/WSe2 -1.422 -1.422 0.000

Similarly, we can compare the effect of molecular rotation on frontier orbital energies.

Tables 6.30 and 6.31 show the effect of molecular rotation on the molecule-substrate

contribution to the pentacene and TMD frontier orbital energies, respectively. The effect

of rotation on pentacene’s frontier orbitals is only noted in the high concentration systems,

with a larger effect on the LUMO. The effect of rotation on the TMD frontier orbitals is

zero within our precision for all but the CBM of 7× 4 PEN/WS2 and the VBM of 6× 3

PEN/WSe2, where it is instead of magnitude 0.05 eV.
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Table 6.30: The effect on pentacene’s frontier orbitals from molecule-substrate interactions
and material deformation, in eV, in heterostructures across angles of rotation for pentacene
(a negative value represents a decrease in orbital energy due to these effects) and the
modulation of these effects due to rotation. Deformation effects are a smaller contribution
to Eads than molecule-substrate interaction effects.

0° 60° ∆

Heterostructure HOMO LUMO HOMO LUMO HOMO LUMO
7× 4
PEN/MoS2 -0.25 -0.30 -0.25 -0.30 0.00 0.00
PEN/MoSe2 -0.20 -0.25 -0.20 -0.25 0.00 0.00
PEN/WS2 -0.20 -0.25 -0.20 -0.25 0.00 0.00
PEN/WSe2 -0.20 -0.20 -0.20 -0.20 0.00 0.00
6× 3
PEN/WS2 -0.15 -0.20 -0.15 -0.15 0.00 0.05
PEN/WSe2 -0.15 -0.20 -0.10 -0.15 0.05 0.10

Table 6.31: The effect on the TMD’s frontier orbitals from molecule-substrate interactions
and material deformation, in eV, in heterostructures across angles of rotation for pentacene
(a negative value represents a decrease in orbital energy due to these effects) and the
modulation of these effects due to rotation. Deformation effects are a smaller contribution
to Eads than molecule-substrate interaction effects.

0° 60° ∆

Heterostructure VBM CBM VBM CBM VBM CBM
7× 4
PEN/MoS2 0.10 0.00 0.10 0.00 0.00 0.00
PEN/MoSe2 0.10 0.00 0.10 0.00 0.00 0.00
PEN/WS2 0.10 0.00 0.10 0.05 0.00 0.05
PEN/WSe2 0.10 0.00 0.10 0.00 0.00 0.00
6× 3
PEN/WS2 0.10 0.00 0.10 0.00 0.00 0.00
PEN/WSe2 0.10 0.00 0.05 0.00 -0.05 0.00

Overall we see that the molecule-substrate interaction component of the effect of

molecular rotation on frontier orbital energies is negligible for most systems, with small

effects on pentacene’s orbitals in the high concentration regime.

Molecule-molecule interaction effects

The effect of molecular rotation on molecule-molecule interaction effects is displayed in

Table 6.32, where we see that molecular rotation in the low concentration regime affects
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only a small change on the molecule-molecule interaction contribution to Eads, which is

of maximum magnitude 1 meV. In the high concentration regime, this contribution is

increased in magnitude by 6 meV in the PEN/WS2 heterostructure, with no change in

the PEN/WSe2 heterostructure.

Table 6.32: The contributions to Eads of molecule-molecule interactions, in meV, compared
across pentacene rotation angles, as well as their difference. A positive difference
represents a more positive (oppositional) contribution with rotation to 60°.

Heterostructure 0° 60° ∆
7× 4
PEN/MoS2 -4 -5 -1
PEN/MoSe2 -3 -3 0
PEN/WS2 -4 -5 -1
PEN/WSe2 -3 -4 -1
6× 3
PEN/WS2 -59 -65 -6
PEN/WSe2 -38 -38 0

Overall, we see that the effects of increasing concentration and molecular rotation

on the contribution to Eads from molecule-molecule interactions are relatively large,

with increasing concentration increasing the contribution by an order of magnitude, but

absolutely small when compared to the molecule-substrate interaction contribution.

Similarly, we can examine the effect of molecular rotation by comparing the rotated

molecule to the unrotated molecule in a supercell of the same size. This is displayed in

Table 6.33, where we can see that there are not significant enough changes in molecule-

molecule interaction effects with molecular rotation in the low concentration regime to

affect a change in frontier orbital energies, but in the high concentration case there are.

This effect is to reduce both frontier orbital energies by 0.05 eV.

Table 6.33: The effect of molecular rotation on pentacene’s frontier orbitals from molecule-
molecule interactions, in eV, in both concentration regimes (a negative value represents a
decrease in orbital energy due to changes in these effects through rotation).

0° 60° ∆

Heterostructure HOMO LUMO HOMO LUMO HOMO LUMO
PEN7×4 -0.10 -0.10 -0.10 -0.10 0.00 0.00
PEN6×3 -0.20 -0.20 -0.25 -0.25 -0.05 -0.05

261



Molecular deformation due to heterostructure formation

Changes in atomic deviation of pentacene from the molecular plane are fairly minor

with rotation, with mean and maximum atomic deviations being similar, and the overall

bowling effect being maintained. A heat map of atomic deviation for favorably rotated

systems across both concentration regimes is displayed in Figure 6.12.

Figure 6.12: The deviation of pentacene atoms from the molecular plane for favorably
rotated pentacene in heterostructure, shown as a heat map. Circular black points mark
the atomic positions of carbon atoms. The 7× 4 systems and PEN60°/WS2 show a clear
bowling effect, but of lesser magnitude than the unrotated 7 × 4 systems in Figure 6.8.
There is some bowling, skewed from the center, in the high concentration PEN60°/WSe2
heterostructure.

Changes in the atomic deviation of pentacene within the PEN/WS2 heterostructure

due to rotation lead to the bowling effect noted in all 7 × 4 heterostructures, whereas

when unrotated we observed bowling in the opposite direction: the middle carbon ring

was further from the substrate than the extremities. This is reversed with rotation of 60°.
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PEN/WSe2 had a similar magnitude of deviation between rotation angles, but moves

closer to the bowl shape of the low concentration systems in the 60° case. This can be

seen in Figure 6.12.

The effect of molecular rotation on the contribution of molecular deformation towards

adsorption energies is displayed in Table 6.34. We see that the effect size is small

throughout, being zero in the high pentacene concentration systems and at most only

a modulation of 12 meV in the case of low molecular concentration PEN/MoS2.

Table 6.34: The contributions to Eads of molecule deformation, in meV, compared across
pentacene rotation angles, as well as their difference. A positive difference represents a
more positive (oppositional) contribution with rotation to 60°.

Heterostructure 0° 60° ∆
7× 4
PEN/MoS2 5 -7 -12
PEN/MoSe2 -7 -3 4
PEN/WS2 -3 -6 -3
PEN/WSe2 -7 -9 -2
6× 3
PEN/WS2 -9 -9 0
PEN/WSe2 -7 -7 0

When considering the effect of rotation, we noted that the 7 × 4 systems maintain

their bowl shape upon rotation, with PEN/MoS2 shown in Figure 6.13 as representative

of the others, which can be found in Appendix I.
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Figure 6.13: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 7 × 4 PEN/MoS2 heterostructures, with 0° and favorable (60°) rotation
angles. We can see a bowling effect in both cases, with the central carbon ring being
closer to the TMD substrate (a negative deviation from the molecular plane). This is
broadly representative of all 7× 4 systems, with only minor differences in the magnitude
of deviation.

The high concentration PEN60°/WS2 system maintains the bowling effect (Figure

6.14), and the PEN60°/WSe2 system remains slightly twisted but closer in general to

the bowled shape (Figure 6.15. We recall that PEN/WS2 was most favorable in the Top-

Ch adsorption site across both concentration regimes, which explains why it adopts the

bowl shape noted in all 7× 4 systems as discussed in subsection 6.1.3.
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Figure 6.14: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 6×3 PEN/WS2 heterostructures, with 0° and favorable (60°) rotation angles.
The unrotated case shows a bowling effect, but inverted from that in the 7 × 4 systems,
and the rotated case demonstrates the same bowl shape as 7 × 4 systems, but slightly
less extreme. These are in the Top-Ch adsorption site, which was most favorable for high
concentration PEN/WS2.
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Figure 6.15: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 6×3 PEN/WSe2 heterostructures, with 0° and favorable (60°) rotation angles.
The unrotated case shows a warping effect with one side of the pentacene lifting and
twisting, and the rotated case demonstrates a movement towards the same bowl shape as
7× 4 systems, but does not quite adopt it entirely. These are in the Bridge-A adsorption
site, which was most favorable for high concentration PEN/WSe2.

Substrate deformation due to heterostructure formation

Similarly looking at the effect of molecular rotation, we see differing effects between

substrates and pentacene concentrations, presented in Table 6.35. The low concentration

regime molybdenum systems see only small modulation of the substrate deformation

contribution to Eads due to molecular rotation, as does the high concentration PEN/WS2

heterostructure. The low concentration tungsten systems, however, experience

modulations of opposite effects. PEN/WS2 substrate deformation, which greatly

increased the strength of unrotated molecular adsorption, greatly opposes rotated

adsorption, whereas PEN/WSe2 was unremarkable in the unrotated case but very

strongly assists in rotated molecular adsorption. It is this effect that leads to such strong

adsorption in this system compared to the others. Similarly, high concentration rotated

pentacene adsorption is assisted by WSe2 deformation as well.

266



Table 6.35: The contributions to Eads of substrate deformation, in meV, compared across
pentacene rotation angles, as well as their difference. A positive difference represents a
more positive (oppositional) contribution with rotation to 60°.

Heterostructure 0° 60° ∆
7× 4
PEN/MoS2 12 6 -6
PEN/MoSe2 8 1 -7
PEN/WS2 -88 100 188
PEN/WSe2 4 -346 -350
6× 3
PEN/WS2 3 3 0
PEN/WSe2 -5 -218 -213

A summary of transition metal-chalcogen (upper layer) bond length changes between

TMDs in heterostructure and pristine TMDs are provided in Table 6.36, for changes across

rotation regimes. Bond contraction was observed underneath the pentacene molecule, and

subsequent lengthening necessarily occurred elsewhere to maintain fixed cell parameters,

with the maximum lengthening occurring near areas of bond contraction.

In the low concentration tungsten systems, which exhibited large changes in substrate

deformation contributions to Eads with molecular rotation and, in the case of PEN/WS2,

concentration, we see no outstanding distinction from the molybdenum systems. This is

also true for high concentration PEN/WSe2 upon rotation, with maximum bond length

changes with rotation being only slightly larger than the other systems. It is important

to note that, similarly to pentacene deviation data, the maximum values reported here

do not capture the entire effect: the pattern of bond length changes, where they occur,

and in what cardinal direction the corresponding atomic position deviations occur in are

all important metrics.
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Table 6.36: Changes in transition metal and upper layer chalcogen bond lengths from
their lengths in TMDs without adsorbed pentacene, in mÅ, in heterostructures across
pentacene rotation angles, as well as their difference.

Heterostructure 0° 60° ∆
7× 4
Maximum bond contraction
PEN/MoS2 3.7 4.0 0.3
PEN/MoSe2 4.5 5.2 0.7
PEN/WS2 4.3 5.5 1.2
PEN/WSe2 6.4 5.7 -0.7
Maximum bond lengthening
PEN/MoS2 4.7 4.2 -0.5
PEN/MoSe2 3.3 3.8 0.5
PEN/WS2 4.1 4.4 0.3
PEN/WSe2 1.6 0.9 -0.7
6× 3
Maximum bond contraction
PEN/WS2 3.9 4.2 0.3
PEN/WSe2 4.8 5.0 0.2
Maximum bond lengthening
PEN/WS2 3.5 3.6 0.1
PEN/WSe2 2.4 0.4 -2.0

Work function

The effect of molecular rotation on the change in work function is presented in Table

6.37, where we see little or no effect in the low concentration regime, and an effect similar

in magnitude to increasing concentration in the high concentration regime, which is also

small.

Table 6.37: The change in work function, ∆ϕ, of the TMD due to pentacene adsorption,
in eV, across rotation angles, as well as their difference.

Heterostructure 0° 60° ∆
7× 4
PEN/MoS2 0.59 0.58 -0.01
PEN/MoSe2 0.44 0.44 0.00
PEN/WS2 0.34 0.34 0.00
PEN/WSe2 0.18 0.18 0.00
6× 3
PEN/WS2 0.33 0.31 -0.02
PEN/WSe2 0.15 0.13 -0.02

268



Chapter 7

Conclusion

In this project we have investigated the structural and electronic properties of van der

Waals heterostructures comprised of pentacene in two different concentration regimes

adsorbed on TMD substrates. We considered the effects of adsorption on the physical

structure and density of states of the materials, and differences in these effects due

to the concentration of pentacene and the rotation of pentacene with respect to the

underlying substrate. Varying concentrations and rotation angles results in varying

spatial relationships between pentacene and substrate, and pentacene and other pentacene

molecules, leading to a change in heterostructure properties. We have attempted to

identify which changes are due to which relationship.

Ultimately, we have shown that pentacene forms stable heterostructures with all

four TMDs investigated, in both concentration regimes. Rotation of pentacene is also

stable, but with varying favorability. As such, we expect laboratory samples to express

multiple pentacene adsorption sites and rotation angles, but with some specific adsorption

geometries being more common. The largest contribution to the adsorption energies is

the molecule-substrate interaction, which would be expected as this includes van der

Waals attraction. Molecule-molecule interactions are much more pronounced in the high

concentration regime due to the closer approach of pentacene molecules to each other,

and these act to increase adsorption energy. Substrate deformation plays a fairly large

role in the selenium systems, and molecule deformation effects are consistently small.

Nevertheless, we were able to describe small changes to pentacene’s geometry due to
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adsorption, although these were of such low magnitude that we would still consider

pentacene to be effectively flat lying.

In terms of device creation, we have shown that a PEN/MoS2 heterostructure forms

a robust Type-II heterojunction in both concentration regimes, with low concentration

PEN/MoSe2 and PEN/WS2 heterostructures also forming Type-II heterojunctions,

but with a smaller difference between the TMD’s CBM and pentacene LUMO in

these case. The effect of using HSE calculations is not expected to change this band

alignment, instead acting to increase pentacene’s LUMO by a larger amount than

they should increase the TMD’s CBM (in some cases decreasing the TMD’s CBM).

Low concentration PEN/WSe2 is predicted to form a robust straddling (Type-I)

heterojunction, with increasing pentacene concentration or rotation not changing orbital

energies by enough to transition to Type-II. In the high concentration regime, we predict

a small shift in frontier orbitals, acting to change the band alignment in favor of Type-I

heterojunctions. There is enough of a change in the case of PEN/MoSe2 to cause a

concentration-dependent heterojunction transition from Type-II in the low concentration

regime to Type-I in the high concentration regime. Molecule-molecule interactions are

responsible for slight decreases in pentacene’s LUMO, with an expectedly greater effect

in the high concentration regime. In combination with the reduced molecule-substrate

interactions that act to decrease the CBM of MoSe2 in the high concentration regime,

resulting in a higher CBM than in the low concentration regime, we see that the

concentration-dependent heterojunction type transition in PEN/MoSe2 is not due to only

one effect.
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7.1 Future projects within the materials group

and investigations of interest

Over the course of this project, a few branching paths appeared as potential choices for

how this investigation should develop. We chose those which seemed most interesting,

but of course a single project does not encompass all work that may go on within a

research group. Here we present a few suggestions for interesting future investigations

(without claims as to the suitability of such work for a self-contained PhD project), that

if performed here would have amounted only to excursus.

It seems clear that the most favorable molecular adsorption site is related to the

spatial relationship between pentacene’s carbon rings and underlying substrate structure,

and we believe that the higher molecular concentration may exacerbate any ‘phase

differences’ between successive carbon rings and their underlying substrate structure

by increasing the depth of potential wells experienced by pentacene along the plane of

the chalcogen surface; this results in something almost analogous to a lattice mismatch

between carbon rings and TMD ‘rings’ that develops over the length of the pentacene

molecule. If this is indeed the case, one may expect to see a change of adsorption

site favorability with strain. Investigating variously strained heterostructures would

allow calculations on systems of differing supercell sizes without being limited to integer

numbers of molecular units as we were here.

While we considered a range of different substrates, we did not investigate any

different adsorbates. Perfluoropentacene is a potential alternative to pentacene, where it

forms similar thin films and has a similar band gap energy [149]. Also of interest may

be other polycyclic aromatic hydrocarbons such as anthracene or tetracene, both organic

semiconductors. Similarly, there are a wide variety of transition-metal dichalcogenides

that were not investigated, but would not have been unreasonable to include if not for

limitations of scope. Foremost amongst these is molybdenum ditelluride, MoTe2, an
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indirect band gap semiconductor in bulk, which a transition to direct upon exfoliation to

bi- or monolayer structure [150], the same as our TMDs here.

Something that was not feasible with the resources available to our project (but that

might provide some entertainment to somebody with infinite computational resources at

their disposal) is to perform our calculations using a higher level of theory or a higher level

of control. This could be as simple as performing the heterostructure calculations with

hybrid functionals, or using much larger supercells with multiple pentacene molecules

in each one, allowing for a combination of binding sites and rotation angles. We do not

believe that using a level of theory such as HSE would result in qualitatively different

conclusions, but perhaps combinations of different sites and angles would. We did not

entertain this idea for long.

A more reasonable suggestion may be to continue using DFT, but to investigate thin

films of pentacene on monolayer and bilayer TMDs. Pentacene thin films condense to

a herringbone structure, which can necessitate fairly large supercells in certain specific

structures. These calculations would be laborious, but more in line with the structures

that an experimentalist may be interested in, at least until they figure out how to create

true van der Waals ‘Lego’ structures.
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Appendix A

Central equation

The derivation of the central equation (Equation 2.30) begins with a wavefunction

expressed as its Fourier series expansion of the sum of all allowed wavevectors, and the

periodic potential, also expressed as a Fourier series of all allowed wavevectors with a

periodicity of the lattice (see subsection 2.1.2):

ψ(r) =
∑
k

Cke
ik·r (A.1)

Ur =
∑
G

UGe
iG·r . (A.2)

The kinetic energy term of the time-independent Schrödinger equation (Equation 2.1) is

− ℏ2

2m
∇2ψ(r) =

ℏ2

2m

∑
k

k2Cke
ik·r , (A.3)

and the potential energy term is

U(r)ψ(r) =

(∑
G

UGe
iG·r

)
ψ(r) =

∑
G

∑
k

UGCke
i(k+G)·r . (A.4)

As the sums over k are infinite and as G is a reciprocal lattice vector, we can substitute

in w’ = (k + G), where summation over w’ is the same as summation over k:

U(r)ψ(r) =
∑
G

∑
w’

UGCw’−Ge
iw’·r . (A.5)
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We are free to make the substitution k = w’ using the same reasoning:

U(r)ψ(r) =
∑
G

∑
k

UGCk−Ge
ik·r , (A.6)

and so the time-independent Schrödinger equation is then

ℏ2

2m

∑
k

k2Cke
ik·r +

∑
G

∑
k

UGCk−Ge
ik·r − E

∑
k

Cke
ik·r = 0 . (A.7)

As the Born-von Karman boundary condition requires, the plane waves eik·r are an

orthogonal set. We multiply our Schrödinger equation by e−iw’·r and integrate over the

unit cell, where w’ is a wavevector belonging to the set of k wavevectors:

ℏ2

2m

∫
cell

∑
k

k2Cke
ik·re−ik·rdr +

∫
cell

∑
G

∑
k

UGCk−Ge
ik·re−ik·rdr

−E
∫

cell

∑
k

Cke
ik·re−ik·rdr = 0 .

(A.8)

Due to the orthogonality of our vectors, their inner products evaluate to either 0 or a

volume constant which can be divided out, so is set to 1 here:

∫
cell
eik·re−iw’·rdr =


1, k = w’

0, k ̸= w’
. (A.9)

As such, the sums over k only count the terms where k = w’, and we now have

ℏ2

2m
k2Ck +

∑
G

UGCk−G − ECk = 0 . (A.10)

Gathering terms and making the substitution for λk, we arrive at the central equation

(Equation 2.30),

(λk − E)Ck +
∑
G

UGCk−G = 0 , (A.11)
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where

λk =
ℏ2k2

2m
. (A.12)

For some uses, this is better displayed in an equivalent form, where we make the notational

substitution G → G’,

(λk − E)Ck +
∑
G’

UG’Ck−G’ = 0 (A.13)

and then let k = k’ − G:

(λk’−G − E)Ck’−G +
∑
G’

UG’Ck’−G−G’ = 0 . (A.14)

We make the variable substitution G’ → G’ − G, and note that as both G and G’ are

reciprocal lattice vectors, a sum over the difference between them is the same as the sum

over either of them:

(λk’−G − E)Ck’−G +
∑
G’

UG’−GCk’−G’ = 0 , (A.15)

and finally the notational substitution of k’ → k produces the variation of the central

equation that we use in Section 2.2,

(λk−G − E)Ck−G +
∑
G’

UG’−GCk−G’ = 0 . (A.16)
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Appendix B

Bloch electron velocity

Consider electrons in a system as described in subsection 2.1.2, in which subsection we

claimed that the Bloch theorem predicts a non-vanishing mean electronic velocity in the

periodic lattice. Here we will demonstrate the reasoning for this claim. If the system is

perturbed by some potential, V , the eigenvalues of the Hamiltonian H = H0 + V , where

the unperturbed Hamiltonian has eigenvalues ϵ0n, are

ϵn = ϵ0n + ⟨ψ|V |ψ⟩+ ... . (B.1)

We only need consider the first-order term here, as we will consider the first derivative

with respect to k of ϵn (k). The Taylor expansion of ϵn (k + q), up to the linear term in

q and centered on k and with q being our small perturbation, is

ϵn (k + q) = ϵn (k) +
∑
i

δϵn
δki

qi + ... (B.2)

By applying the (unperturbed) Hamiltonian to a Bloch wavefunction, we can simplify

it to exclude the exponential term and only consider the periodic function, unk:
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Hψ = ϵψ = − ℏ2

2m
∇2ψ + Uψ = − ℏ2

2m
eik·runk + Uψ

= − ℏ2

2m

[
∇ ·
(
ikeik·runk

)
+ eik·r∇unk

]
+ Ueik·runk

= − ℏ2

2m

[
−k2eik·runk + 2ikeik·r∇unk + eik·r∇2unk

]
+ Uunk

= eik·r
[
ℏ2

2m

(
∇2 − 2ik · ∇+ k2

)
+ U

]
· unk = eik·r

[
ℏ2

2m
(k − i∇)2 + U

]
· unk .

(B.3)

Dividing by eik·r allows us to extract a simplified Hamiltonian in k for use on Bloch

systems;

Hkunk = ϵn (k)unk =

[
ℏ2

2m
(k − i∇)2 + U

]
· unk (B.4)

and therefore

Hk =
ℏ2

2m

[
(k − i∇)2 + U

]
. (B.5)

As ϵn (k) is an eigenvalue of Hk, our perturbed energy from before, ϵn (k + q), must

be an eigenvalue of Hk+q:

Hk+q =
ℏ2

2m

[
(k + q − i∇)2 + U

]
=

ℏ2

2m

(
−∇2 − 2ik · ∇+ k2 + q2 − 2iq · ∇+ 2k · q

)
+ U

=
ℏ2

2m

(
−∇2 − 2ik · ∇+ k2

)
+ U +

ℏ2

2m

(
q2 − 2iq · ∇+ 2k · q

)
= Hk +

ℏ2

2m

(
q2 − 2iq · ∇+ 2k · q

)
= Hk +

ℏ2

m
q · (k − i∇) +

ℏ2q2

2m
.

(B.6)

This is of the form H = H0 + V , where V = ℏ2
m

q · (k − i∇) + ℏ2q2
2m

. As such, we can

substitute this in to the first-order term of our perturbed energy eigenvalue, where we

only need the the term linear in q. This expression is equal to the linear term in q of the

Taylor expansion of ϵn (k + q) and is represented as a sum over all elements of q:
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∑
i

δϵn
δki

qi =
∑
i

⟨ψ|Vi|ψ⟩ =
∑
i

∫
cell
u∗nk

ℏ2

m
(k − i∇) qiunkdr . (B.7)

The integration is over the space that unk is normalized over, we construct the functions

such that this is the primitive cell. As the dependence of V on q has been represented as

a scalar sum over qi, i ∈ Z, we can divide by qi, eliminate the summation and express in

terms of ψnk through Bloch’s theorem (Equation 2.33):

δϵn
δk

=

∫
cell
u∗nk

ℏ2

m
(k − i∇)unkdr =

ℏ2

m

∫
cell
eik·rψ∗

nk (k − i∇) e−ik·rψnkdr

=
ℏ2

m

∫
cell
eik·rψ∗

nk
[
ke−ik·rψnk − i∇e−ik·rψnk

]
dr

=
ℏ2

m

∫
cell
eik·rψ∗

nk
[
ke−ik·rψnk + i2ke−ik·rψnk − ie−ik·r∇ψnk

]
dr

=
ℏ2

m

∫
cell
eik·re−ik·rψ∗

nk (−i∇)ψnkdr .

(B.8)

By rearranging some factors we can show the equivalence of the expectation value of

the velocity, where the momentum operator is p = −iℏ∇ and the velocity operator is

v = p
m

;

1

ℏ
δϵn
δk

=

∫
cell
ψ∗
nk

(
−iℏ
m
∇
)
ψnkdr

= ⟨ψnk| −
iℏ
m
∇|ψnk⟩ = ⟨ψnk|

p
m
|ψnk⟩ = ⟨ψnk|v|ψnk⟩ .

(B.9)

Therefore, the expectation value of the velocity of a Bloch electron, interpreted as the

mean group velocity of an electronic wave packet within the semiclassical model, is

vn (k) =
1

ℏ
δϵn (k)
δk

. (B.10)
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Appendix C

Semiclassical equations of motion

The semiclassical equations of motion of a Bloch electron are two equations that use the

electronic wave behaviour of the Drude-Sommerfeld theory and apply it to behaviour in

classically treated electromagnetic fields. There are limitations to this, which are discussed

in the subsection 2.1.3, and this treatment requires the modelling of the electrons as wave

packets: maintaining their wave behaviour for the purposes of interaction with the small

scale periodic field from the lattice ions, and introducing particle properties such as a

partially defined position.

The first semiclassical equation of motion is that which is stated in subsection 2.1.2 and

derived in Appendix B for the velocity of a Bloch electron, and here has the interpretation

that the electronic velocity is the wave packet’s group velocity,

ṙ = vn (k) =
1

ℏ
δϵn (k)
δk

. (C.1)

The second semiclassical equation of motion is the rate of change of a Bloch electron’s

crystal momentum, and is an analogy to the Lorentz force for a semiclassical Bloch system:

ℏk̇ = −e
[
E (r, t) +

1

c
ṙn (k)× H (r, t)

]
. (C.2)
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Crystal momentum changes only in response to external fields and is unaffected by

the periodic field of the ionic lattice, whereas the real electronic momentum, p, responds

to both external and periodic potentials. The rate of change in true momentum due to

only the periodic potential is δ
δt
(p − ℏk).
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Appendix D

Vanishing current contribution of filled

bands

ϵ (k) is periodic over the Brillouin zone, i.e. ϵ (k) = ϵ (k + G). Integration of this

function is closed if performed over the Brillouin zone, and the integration of its gradient

is equivalent to

∫
BZ

δ

δk
ϵ (k) δk =

∫ k+G

k

δ

δk
ϵ (k) δk . (D.1)

δ
δkϵ (k) represents the rate of change with varying k in ϵ (k), the integral over which

then represents the net change in ϵ (k) over the limits of the integral:

∫ k+G

k

δ

δk
ϵ (k) δk = [ϵ (k)]k+G

k = ϵ (k + G)− ϵ (k) = 0 . (D.2)

Therefore, our equation for the contribution of a filled band towards electric current

density within the semiclassical model is (see subsection 2.1.3)

j = −e
∫

BZ

1

4π3ℏ
δϵ (k)
δk

δk = −e 1

4π3ℏ

∫
BZ

δϵ (k)
δk

δk = 0 . (D.3)

281



Considering now the contribution towards jϵ, and that δ
δkϵ

2 (k) = 2ϵ (k) δϵ(k)
δk by the

chain rule of calculus, we have

jϵ =
∫

BZ

1

4π3ℏ
ϵ (k)

δϵ (k)
δk

δk =
1

8π3ℏ

∫
BZ

δ

δk
ϵ2 (k) δk . (D.4)

The integral of the gradient is still the net change, but this time in ϵ2 (k), over the

integral limits. A function periodic in k is still periodic over the same boundary when

squared, and so similarly to the above case of the electric current density, we can show

that the contribution towards jϵ of a semiclassical filled band is zero:

jϵ =
1

8π3ℏ

∫
BZ

δ

δk
ϵ2 (k) δk =

1

8π3ℏ

∫ k+G

k

δ

δk
ϵ2 (k) δk =

1

8π3ℏ
[
ϵ2 (k)

]k+G
k = 0 . (D.5)
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Appendix E

Spin-orbit coupling

Spin-orbit coupling, or the spin-orbit interaction, is an important effect in the context of

energy bands, discussed in subsection 2.2.3. This appendix provides detail on how the

the perturbation to the Hamiltonian from spin-orbit coupling, HSO, is derived. HSO is a

sum of the Larmor interaction energy and the Thomas interaction energy. The Larmor

interaction energy is the energy associated with Larmor precession, the precession of a

magnetic moment in a magnetic field, B,

HL = −µ · B , (E.1)

where µ is the magnetic dipole moment. For an electron undergoing spin-orbit coupling,

the magnetic moment is its spin magnetic moment, µs,

µ = µs = −gsµB
S
ℏ
, (E.2)

where S is the spin angular momentum, µB is the Bohr magneton, and gs is the electron

spin g-factor (a proportionality constant). The magnetic field felt by the electron in its

own frame is

B = −v × E
c2

= − 1

mec2
p × r|E|

r
, (E.3)

283



where v is the electronic velocity through an electric field E, which results in momentum

p = mev. We have taken advantage of the radial nature of the electric field with respect to

the ion, E = |E|r
r

where r is the displacement of the electron from the ion. As |E| = 1
e
δU
δr

,

where U is the potential energy of the electron, and the angular momentum of the electron

is L = r × p, we have that

B =
1

rmeec2
δU (r)
δr

L , (E.4)

as given in subsection 2.2.3. So, the Larmor interaction energy is

HL = −µs · B = gsµB
S
ℏ
· 1

rmeec2
δU (r)
δr

L =
gsµB

ℏrmeec2
δU (r)
δr

L · S . (E.5)

The Thomas interaction energy, HT , is the energy change associated with the relativistic

correction of Thomas precession of angular velocity ωT , whereby a particle moving in a

curved trajectory experiences precession of its reference frame. The precession of reference

frame includes precession of spin axis in the observer’s frame,

HT = ωT · S . (E.6)

The spin axis precesses with an angular velocity of

ωT =
1

c2
γ2

γ + 1
a × v , (E.7)

where γ is the Lorentz factor, which in the non-relativistic limit of v ≪ c is

lim
γ→1

ωT =
1

2c2
a × v = − 1

2c2
v × a . (E.8)

As our electron is a charged particle in an electric field, we can describe its acceleration,

a, in terms of E and make the same substitution as we did for Larmor precession for

284



radial fields:

ωT = − 1

2c2
v ×

(
eE
me

)
= − 1

2c2me

v ×
(
−r
r

δU (r)
δr

)
= − r × v

2c2rme

δU (r)
δr

. (E.9)

Substituting in L = r × p = mer × v and the Bohr magneton, µB = eℏ
2me

, we get

ωT = − µB

ℏmeec2r

δU

δr
L , (E.10)

and therefore

HT = − µB

ℏmeec2r

δU

δr
L · S . (E.11)

Our total spin-orbit energy correction is then

HSO = HL +HT = µB
gs − 1

rℏmeec2
δU (r)
δr

L · S . (E.12)

Finally, consider the total angular momentum, J = L + S we have

J · J = J2 = L2 + S2 + 2L · S , (E.13)

and therefore

L · S =
1

2

(
J2 − L2 − S2

)
. (E.14)

As J2 = ℏ2j (j + 1), where j = |l ± s|, L2 = ℏ2l (l + 1) and S2 = ℏ2s (s+ 1), we can say

that

L · S =
ℏ2

2
(j (j + 1)− l (l + 1)− s (s+ 1)) , (E.15)

as required for subsection 2.2.3.
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Appendix F

Scattering

In subsection 3.2.2, it is shown that the first energy derivative of the logarithmic derivative

Dl (ϵ, rcut) is the same between wavefunctions that match at and beyond rcut if they are

norm-conserving with respect to each other. This results in the same change in energy

states between wavefunctions when perturbed by scattering potentials i.e. when placed

in a poly-atomic system.

Here we consider a spherical scattering potential, where V = 0 beyond r = rcut.

The wavefunction of an electron travelling in this potential is a superposition of an

incoming plane wave and an outgoing scattered spherical wave, as in Figure F.1. The

well-known radial Schrödinger equation can be simplified by substituting for the reduced

radial solution, ul (r) = rAl (r), such that it reduces to

[
δ2

δr2
− V + ϵ− l (l + 1)

r2

]
ul (r) = 0 . (F.1)

Beyond rcut, V (r) = 0, and the equation has solutions

ul (r) = C1,lrjl (kr) + C2,lrnl (kr) , (F.2)

where jl (kr) and nl (kr) are the spherical Bessel and spherical Neumann functions,
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Figure F.1: An incoming plane wave (blue) along some Cartesian direction z, scattering
at angle θ, with an outgoing scattered spherical wave of form eik·r

r (red).

respectively:

jl (kr) = (−kr)l
(

1

kr

δ

δkr

)l
sin kr

kr
(F.3)

nl (kr) = − (−kr)l
(

1

kr

δ

δkr

)l
cos kr

kr
, (F.4)

and the usual

k =

√
2mϵ
ℏ

. (F.5)

We introduce this in terms of the Hankel functions,

h
(1)(kr)
l = jl (kr) + inl (kr) (F.6)

and

h
(2)
l (kr) = jl (kr)− inl (kr) , (F.7)
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in order to condense our reduced solution:

ul (r) = C
(1)
l rh

(1)
l (kr) + C

(2)
l rh

(2)
l (kr) . (F.8)

We can re-express this in terms of the ratio of the coefficients C(1)
l and C

(2)
l . As the

coefficients are the amplitudes of the respective waves, their ratio is the phase difference

between them, as shown below for two arbitrary phase-dependent wave amplitudes, A

and B:

A = |A|eiϕA , B = |B|eiϕB (F.9)

A

B
=

|A|
|B|

ei(ϕA−ϕB) (F.10)

= CABe
iη , (F.11)

where CAB is a real constant and η is the phase difference between waves. As such, our

coefficient ratio for those in ul (r) is

C
(1)
l

C
(2)
l

= e2iη , (F.12)

where we have dropped the resultant real coefficient (as it has no effect on later discussion,

serving only to take up more space in equations, so it may as well be 1) and represented

the phase shift as 2ηl to be in keeping with the convention of scattering theory (this also

does not change our final conclusion for our purposes). ηl (ϵ) is a function ϵ, but we will

not notate this explicitly. We now represent ul (r) as

ul (r) = C
(2)
l

[
e2iηrh

(1)
l (kr) + rh

(2)
l (kr)

]
= C

(2)
l reiη

[
eiη (jl (kr) + inl (kr)) + e−iη (jl (kr)− inl (kr))

]
= C

(2)
l reiη [(cos η + i sin η) (jl (kr) + inl (kr)) + (cos η − i sin η) (jl (kr)− inl (kr))]

= 2C
(2)
l reiη [jl (kr) cos η − nl (kr) sin η]

(F.13)
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Consider again our logarithmic derivative from subsection 3.2.2, Dl (ϵ, rcut), (Equation

3.117) which here is

Dl (ϵ, r) = r
u′l (r)

ul (r)
, (F.14)

where a prime denotes differentiation with respect to r. We take the derivative of ul (r),

u′l (r) = 2C
(2)
l reiη [krj′l (kr) cos η + jl (kr) cos η − rn′

l (kr) sin η − nl (kr) sin η] , (F.15)

and solve for Dl (ϵ, r):

Dl (ϵ, r) = r
2C

(2)
l reiη

2C
(2)
l reiη

[
jl (kr) cos η − nl (kr) sin η

rjl (kr) cos η − rnl (kr) sin η
+
krj′l (kr) cos η − krn′

l (kr) sin η

rjl (kr) cos η − rnl (kr) sin η

]
,

(F.16)

which at r = rcut is

Dl (ϵ, rcut) = 1 + krcut

[
j′l (krcut) cos η − n′

l (krcut) sin η

jl (krcut) cos η − nl (krcut) sin η

]
. (F.17)

Dropping the variable dependence notation to reduce clutter (remembering that the Bessel

and Neumann functions act on krcut), this can be rearranged as

(Dl − 1) (jl cos η − nl sin η) = krcutj
′
l cos η − krcutn

′
l sin η , (F.18)

and so

(Dl − 1) (jl cot η − nl) = krcutj
′
l cot η − krcutn

′
l

krcutj
′
l cot η − (Dl − 1) jl cot η = krcutn

′
l − (Dl − 1)nl ,

(F.19)

resulting in

cot η =
krcutn

′
l − (Dl − 1)nl

krcutj′l − (Dl − 1) jl
. (F.20)
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We see then that when considering the scattering process for electrons described by the

pseudopotentials from subsection 3.2.2, the phase shift depends only on parameters that

agree between the pseudo- and all-electron wavefunctions and the logarithmic derivative,

Dl (ϵ, r). As a result, if the first energy derivative of Dl (ϵ, r) agrees between pseudo- and

all-electron wavefunctions, the phase shift experienced in a scattering process (interaction

with an external potential) will be identical. This means that they undergo the same

scattering process, and so any resultant energy shift will be the same.
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Appendix G

Derivative discontinuity

In subsection 3.1.1, we stated that a drawback of DFT is the underestimation of band

gap energies. This is due to the derivative discontinuity of energy with respect to number

of electrons, as discussed here.

Consider the energy of a system with N electrons; adding an electron will change the

energy of the system, depending on the starting electronic configuration. Removing an

electron will likewise result in a change in energy. Treating this system as an ensemble,

Perdew et al. [151] show that by letting N take non-integer values, N = M + ω, where

M is an integer and 0 ≤ ω ≤ 1, the lowest average energy of a system of M + ω electrons

is a statistical mixture of integer electron systems, with coefficients in ω being respective

probabilities,

E = (1− ω)EM + ωEM+1 . (G.1)

The curve of E against N , then, is a continuous series of straight line segments, each

between integer values of N . While this function is continuous, its gradient is not; the

gradient is discontinuous at integers of N , as in Figure G.1.

Specific physical meaning is attached to the gradient: the ionization energy, I (N),

which is the energy required to remove an electron, and the electron affinity, A (N),

which is the energy required to add an electron, are the negative of the gradient δE
δN

between N − 1 and N , and N and N + 1, respectively. These energies are also related
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Figure G.1: A schematic representation of a system’s energy with N − 1, N and N + 1
electrons. Fraction electron counts are found through linear interpolation between integer
points, which results in a discontinuity in δE

δN
across integer values of N .

to the band structure, where the true fundamental band gap is I − A. The Kohn-Sham

band gap, however, is just the difference in the energy between the lowest unoccupied

molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), i.e. the

energy difference of the system at integer values of N , EN − EN+1.

The discrepancy between the DFT band gap and the true fundamental band gap, then,

arises from this discontinuity; as we move through integer values of N , the discontinuity

acts as an addition of a constant to the gradient. This must be only a constant, as a

variable value would result in non-unique potentials defining a density, which is disallowed

by the Hohenberg-Kohn theorem. The DFT band gap is

E
(DFT)
G = ϵN+1 − ϵN = ELUMO − EHOMO . (G.2)

In an infinite crystal, the addition of one extra electron affects the density by an

infinitesimal amount, δ, associated with an infinitesimal change in the effective potential,

with a constant which may appear as the electron number increases through an integer.
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So, for positive δ,

I (N) = −ϵN (N − δ) , A (N) = −ϵN+1 (N + δ) , (G.3)

where ϵN are orbital energies. So, given that an increase through integer N (by adding

the infinitesimal change δ), can result in our modification by positive constant C,

A (N) = −ϵN+1 (N + δ) = − [ϵN+1 (N − δ) + C] , (G.4)

we have the true fundamental band gap of

E
(true)
G = I (N)− A (N) = ϵN+1 (N − δ)− ϵN (N − δ) + C

= ϵN+1 (N)− ϵN (N) + C = ELUMO − EHOMO + C ,

(G.5)

i.e.

E
(DFT)
G = E

(true)
G − C . (G.6)

With C being a positive constant, we find that the Kohn-Sham DFT band gap is an

underestimation of the true fundamental band gap, due to the derivative discontinuity

through integer electron numbers of energy against electron number.
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Appendix H

Minimizing the Kohn-Sham energy

functional

In order to minimize the Kohn-Sham energy functional in subsection 3.1.1, we used the

method of Lagrange multipliers. We began with the variational equation, Equation 3.17,

and ended with the Kohn-Sham equations, Equation 3.24. This process is outlined more

fully here.

Beginning with the variational equation,

δEKS

δψ∗
i

=
δTS
δψ∗

i

+
δn

δψ∗
i

Veff (r) , (H.1)

and the constraint of minimization,

⟨ψi|ψj⟩ = δij , (H.2)

we define a set of constraint functions,

gij = 0 = ⟨ψi|ψj⟩ − δij . (H.3)

Our objective function is just the derivative of the Kohn-Sham energy functional with
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respect to ψ∗
i , and so the derivative of the Lagrangian is

δL
δψ∗

i

=
δEKS

δψ∗
i

−
∑
i,j

λij
δgij
δψ∗

i

= 0 , (H.4)

with λij being the set of undetermined (Lagrange) multipliers. We substitute in

equivalencies from Equations 3.18 - 3.21 (subsection 3.1.1) to get

−1

2
∇2ψi (r) + Veff (r)ψi (r)−

∑
i,j

λij
δgij
δψ∗

i

= 0 , (H.5)

which we can rearrange for

(
−1

2
∇2 + Veff (r)

)
ψi (r) =

∑
j

λijψj (r) . (H.6)

Multiplying by ψ∗
j (r) we get

∑
j

λijψ
∗
j (r)ψj (r) = ψ∗

j (r)
(
−1

2
∇2 + Veff (r)

)
ψi (r) , (H.7)

which we can integrate with respect to r for

λij⟨ψj|ψj⟩ = ⟨ψ∗
j |HKS|ψi⟩ , (H.8)

and therefore

∴ λij = δijϵj (H.9)

for non-degenerate systems. Substituting this in to Equation H.6, and removing the

summation as contributions are only non-zero when i = j, we are left with

(
−1

2
∇2 + Veff (r)

)
ψi (r) = ϵiψi (r) , (H.10)

which is Equation 3.24 through the definition of the Kohn-Sham Hamiltonian, Equation
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3.9.
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Appendix I

Pentacene’s atomic deviation from the

molecular plane

In subsection 6.1.3, we compared the atomic deviation of pentacene’s atoms from

the molecular plane in heterostructures with their favorable binding sites in the high

concentration regime. The effects seen were varied (see Figure 6.8), but when we

performed the same analysis using heterostructures with the Top-Ch adsorption site,

regardless of favorability, we recovered the bowling effect seen in the low concentration

regime. The results of this are displayed in Figure I.1.
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Figure I.1: The deviation of pentacene atoms from the molecular plane for both low (7×4)
and high (6× 3) concentration pentacene in heterostructure with the Top-Ch adsorption
site, shown as a heat map. Circular black points mark the atomic positions of carbon
atoms. The systems show a clear bowling effect,in contrast to the effects noted in the
high concentration regime with favorable adsorption sites, which are TMD-specific.

Table I.1 displays the mean and maximum values of the atomic deviation from the

molecular plane, δz, for each heterostructure, without rotation, across both concentration

regimes, as well as their difference.

Table I.1: Atomic deviation from the molecular plane of unrotated pentacene in the
different concentration regimes, in mÅ.

7× 4 6× 3 ∆

Heterostructure Mean δz Maximum δz Mean δz Maximum δ Mean δz Maximum δ
PEN/MoS2 40 111 60 118 20 7
PEN/MoSe2 33 89 41 111 8 22
PEN/WS2 42 122 38 105 -4 -17
PEN/WSe2 33 92 26 67 -7 -25
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Additionally, in Section 6.2.5, we presented Figure 6.13, a heat map of the atomic

deviation for pentacene in heterostructure with MoS2, in the low concentration regime,

comparing the unrotated and favorably rotated systems. This graphic is representative of

the heterostructures with other TMDs in the same concentration, and here we present the

equivalent graphics for PEN/MoSe2 (Figure I.2), PEN/WS2 (Figure I.3), and PEN/WSe2

(Figure I.4).

Figure I.2: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 7 × 4 PEN/MoSe2 heterostructures, with 0° and favorable (60°) rotation
angles. We can see a bowling effect in both cases, with the central carbon ring being
closer to the TMD substrate (a negative deviation from the molecular plane).
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Figure I.3: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 7×4 PEN/WS2 heterostructures, with 0° and favorable (60°) rotation angles.
We can see a bowling effect in both cases, with the central carbon ring being closer to the
TMD substrate (a negative deviation from the molecular plane).
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Figure I.4: Heat maps of the atomic deviation from the molecular plane in the pentacene
molecules of 7 × 4 PEN/WSe2 heterostructures, with 0° and favorable (60°) rotation
angles. We can see a bowling effect in both cases, with the central carbon ring being
closer to the TMD substrate (a negative deviation from the molecular plane). This is
broadly representative of all 7× 4 systems, with only minor differences in the magnitude
of deviation.
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