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Abstract

Distributed problem solving is often characterised by multiple valid solutions, a solution 

being considered to be valid if it meets all the constraints. When there are multiple valid 

solutions, the user has a choice, which can be specified in terms of preferences on different 

desirable aspects (i.e. resources) of the solution. In that event, the best solution is the one 

that meets as many preferences as possible.

In this thesis, a multi-agent approach has been used for distributed problem-solving, 

each autonomous agent (task agent), under the supervision of a relevant task coordinator, 

solves its part of the subtask, in cooperation with other task agents. To resolve contention 

in the preferences for the same resources, a market-based payment scheme is applied for 

the preferences to be bought and sold by the contending task agents through their 

coordinators. The best solution is achieved for a task, when further iteration does not 

increase its total preference value, that is a convergence is achieved.

This thesis presents a preference model that includes a preference specification 

strategy, a preference processing technique, and a theoretical performance model, the latter 

describes the quantitative behaviour of the preference model. The thesis also presents a 

simulation study to show that the preference model works satisfactory and according to the 

theoretical performance model.

For the simulation study we used the problem of distributed scheduling in the 

manufacturing domain. The results of the study show that our agent based strategy not only 

reaches convergence on the final preference value for the whole system, that value is also 

independent of initial order of subtask allocation. The results verify the validity of our 

approach handsomely.
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Chapter 1

Introduction

In a distributed environment cooperative autonomous agents may work together to solve a 

joint task that often has a set of valid solutions. To help the cooperating agents in reaching 

a balanced decision, the choice of a solution can be expressed in the form of preferences on 

certain desired features of the solution. If the most preferred solution cannot be found, then 

the one that meets maximum amount of preferences can be accepted as the "best solution".

Therefore, associated with each task we identify a set of desired features, which can 

be resources or attributes. In this thesis we regard a resource as something that has a 

limited supply and can be consumed during the processing, whereas an attribute has no 

such limitation. The user requirement for preferences can vary widely depending on the 

application. For example, if the task is to schedule the manufacturing process of a product, 

the resources might be machine, time or labour, while attribute might be the colour of the 

product or the degree of polishing. The user may have preferences on a machine and on 

colour. If the task is the design of a web-page, we might think of the page size as a 

resource and the font-size as an attribute. The user may have preferences on the size of the 

web-page and the font-size as well as the layout of the web-page. If the resources are 

limited and multiple tasks are being executed concurrently, there will be inevitable 

contention. Contention can arise on desired resources but not on attributes. Resolving such 

contentions require not only negotiation and compromises among the agents responsible, 

but also enforcement of control for timely termination, avoiding explosive branches.
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Chapter 1: Introduction

If preferences are allocated only on the currently available resources, then there will 

not be any conflict. If a desired resource is not available, then that preference cannot 

simply be met and some preferred solutions may not be feasible due to the non-availability 

of the preferred resources. If a resource has already been allocated to a task, and then if a 

later task arrives with a higher preference on that resource, then we have two possible 

approaches: either the previous allocations cannot be changed, or the previous allocations 

can be pre-empted. The first approach leads to a tree model where the allocation of a 

preference to a parent affects only the children, and hence it terminates in a finite time. The 

second case leads to a network model, where the allocation to a node (task) affects all other 

nodes (tasks) that have a preference on that resource. The cascading effect of pre-emption 

and reallocation leads to branch explosions. In this thesis we shall consider the second 

case, which is more challenging, and show how a set of agents can cooperate together to 

produce a solution that converges. An introductory version of this network model has been 

published by us in [DEEN02J.

Thus in this thesis we address the problem of how to derive a preference-based 

solution in the presence of contention, where awarding preferences to the solution of one 

task can only be done by depriving/removing preferences from that of another in 

negotiation. Deprivation, and particularly removal, of preferences creates a high non

linearity leading to non-convergence. We propose a general preference model that 

produces a "reasonable" solution for trading and satisfying preferences and enforces timely 

termination in a "fairly competitive" market for cooperative agent-based scheduling.

As the preference model outlined above is highly non-linear, verification using 

available mathematical techniques is difficult. Therefore, based on the qualitative 

behaviour, of this model we also present in this thesis a theoretical performance model, 

2



Chapter 1: Introduction

which can predict the preference values that can be achieved by using our preference 

model.

To verify the validity of the theoretical model we performed a simulation study. In 

this study we have used the scenario of distributed scheduling, where a set of global tasks 

are resolved into subtasks by agents called Coordinators, and then these subtasks are 

allocated to Assembler agents through cooperation and negotiation, in which preferred 

resources are exchanged with payments. Agent-based systems support distributed 

scheduling, contrary to traditional centralised scheduling for manufacturing systems. We 

based our simulation for the multi-agent system on Cooperating Knowledge-Based 

Systems (CKBS) (see chapter 3).

1.1 Motivation

This work was inspired directly by our participation in the Holonic Manufacturing Systems 

(HMS) project (see section 2.4.2) and the current research activities in our DREAM (Dake 

Research into an Engineering Approach to Multi-agents) theme which has been applied to 

agent-based manufacturing and e-commerce and supply chain applications. Current 

research is focused on Cooperating Knowledge Based Systems (CKBS), where 

autonomous knowledge based systems, or agents, cooperate when solving problems in 

distributed applications. To solve a global task (joint task), the relevant agents normally 

form what we call a Cooperation Block (CB), where one agent acts as the coordinator and 

the other agents as cohorts (see section 3.3). The coordinator can be viewed as the user 

agent, since the user's requirements on the global task are expressed through this 

coordinator. Cooperation implies an enforceable agreement among the participating agents 

such that one agent can demand another to act within that agreement. Negotiation is the 

3



Chapter 1: Introduction

process by which agents agree on a mutually acceptable solution subject to constraints, 

meeting as many preferences as possible.

Our work in this thesis is an extension of the work on the contention-free (but not 

constraint free) solution that was published in [DEEN99]. This work is an extension and 

generalisation of these ideas to produce a generalised preference model for cooperative 

agent-based problem-solving and is not restricted to scheduling, even though scheduling 

offers most interesting examples for application.

1.2 Research objectives

The principal objective of this thesis is to develop a model for preference handling in a 

distributed agent based environment. In more specific terms we can state our objectives as 

follows:

1) To investigate the issues of preferences in task execution.

2) To study a mechanism for preference execution with convergence.

3) To develop an execution-cost model to control exploding branches.

4) To develop a theoretical performance model.

5) To implement a demonstrator to verify the approach and the validity of the 

theoretical model.

4



Chapter 1: Introduction

1.3 Thesis Structure

The remainder of the thesis consists of seven chapters. Chapter 2 is a literature review 

focusing on the current work on conflict resolution, the different applications that use 

preferences and current approaches in scheduling manufacturing systems.

Chapter 3 presents an overview of Cooperating Knowledge Based Systems (CKBS). 

This chapter describes the basic elements of the CKBS model, the cooperation 

environment and the operational architecture.

Chapter 4 presents our market-based approach to preference handling. It contains a 

detailed description of our preference and cost models. It describes the allocation process 

as well as the algorithm used for implementing the preference model among cooperating 

agents.

Chapter 5 presents a theoretical performance model. The model can roughly estimate 

the minimum remaining preference value. We study the effect of the clustering of requests 

for the same resource instances. The effect of the uniform distribution of these clusters on 

the developed formula is discussed first. Then we show how the formula is affected by the 

non uniform distribution of these clusters, or what we call a skewed distribution.

Chapter 6 presents our design and implementation of a Preference Model Simulator 

(PMS). In this chapter we outline the PMS architecture, discuss the platform of our 

implementation, and give a detailed description of the implementation.

Chapters 7 and 8 present the results obtained from a simulation study using the 

simulator discussed in chapter 6. We used scheduling in a distributed manufacturing 

environment as a case study. In chapter 7 we present the results from the exploratory 

experiments that were conducted to study the preference model convergence and its 

characteristics. These experiments led us to the theoretical performance model discussed in 

5



Chapter 1: Introduction

chapter 5. Chapter 8 presents further experiments that explored the working behaviour of 

the preference model and verified the theoretical performance model. Also, we present a 

comparison of the predicted remaining preferences values (i.e. the inverse of the preference 

gain) after the final iteration with the actual values obtained from the simulation 

experiments is presented in this chapter.

The thesis is concluded in chapter 9 that presents a review and evaluation of the 

concepts presented in this dissertation. It also discusses possible future research directions 

and value to industry.

6



Chapter 2

Literature Review

One of our main objectives in this thesis, as outlined in the introduction, is to devise a 

model that can resolve preferential conflicts among cooperating agents in multi-agent 

systems. The main area of application for this agent based preference model is in solving 

problems in distributed systems where multiple solutions usually exist. In agent-based 

distributed systems negotiation among agents is the method used to arrive at a decision 

regarding the choice of a solution. Therefore, before we embark on presenting our model 

(Chapter 4) we start by reviewing the different techniques used to resolve conflicts in the 

area of distributed agent-based systems. Next we outline the different applications that 

have applied the concept of preferences. Such applications include manufacturing systems, 

product design, and distributed meeting scheduling. As a manufacturing system is one of 

the most complex and interesting application of these, we have applied our technique on 

distributed manufacturing scheduling. Thus we also present in this chapter a review of 

some work in this research area. Then we discuss the main differences between our 

approach and previous approaches.

2.1 Conflict Resolution

Researchers in the field of cooperative distributed problem and multi-agent systems have 

developed various techniques for conflict resolution in multi-agent systems. Some of these 

7
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common techniques [LIU98] include case-based reasoning, voting, constraint relaxation, 

and market-based approaches as outlined below.

2.1.1 Case-Based Reasoning

Case-based reasoning (CBR) is an experience-based technique for knowledge acquisition 

and refinement [SEN99], It draws upon previous solutions that worked well for similar 

problems and uses them to solve new problems [WATS94]. Whenever a new problem is 

encountered, it is matched against previously stored cases, similar cases are retrieved and 

used as a starting point for solving the problem. When the system fails to find similar 

cases, a solution is generated from scratch. All problems and their solutions are stored as 

cases in what is called the case base. The processes involved in CBR can be described as a 

cyclical process comprising the four REs:

• RETRIEVE the most similar cases;

• REUSE the cases to attempt to solve the problem;

• REVISE the proposed solution if necessary, and

• RETAIN the new solution as a part of a new case.

To match cases a measure of similarity between the task attributes is used. Very 

often this cycle requires human intervention and most CBR encourages human 

collaboration in decision support [WATS94], The model integrates case-based reasoning 

and the multi-attribute utility theory [KEEN93]. One system that uses case-based reasoning 

to resolve conflicts during negotiation is the PERSUADER [SYCA89, SYCA89A, 

SYCA90] that has been used to resolve conflicts in labour relations.

8
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2.1.2 Voting

Voting is a mechanism whereby a number of equals indicate a choice from several 

conflicting alternatives by some voting mechanism (majority, two thirds, etc.). Participants 

are obliged to accept the result of the voting. Voting strategies are widely used in social 

sciences such as political science and economics and have their roots in Game Theory.

In the domain of multi-agent systems, often, a group of agents has to make a 

common decision, yet they have different preferences about which decision to take. For 

such cases, voting theory has been used as a technique for reaching consensus in a 

negotiation process and group-decision making [SAND99], Agents can perform voting on 

certain decisions, the result of the voting is obligatory for all agents participating in the 

voting. Several protocols for voting are presented in [SAND99], some of these protocols 

are presented below:

• Plurality protocol: This is a majority protocol where all alternatives are evaluated 

simultaneously and the one accepted by the maximal number of agents wins.

• Binary protocol: It uses the majority protocol but alternatives are evaluated in pairs. 

The one, which gets fewer votes is eliminated and the one which receives the 

majority is accepted and stays for the next round of voting.

• Bord's protocol: Each agent votes for the list of alternatives that is associated with a 

value. After the negotiations the values from the lists of all agents are added up and 

the alternative which gets the best value from all agents wins.

Voting has been used in several multi-agent decision making problems, such as 

distributed meeting scheduling [EPHR94, EPHR96, SEN97, SEN98] and collaborative 
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filtering [PENNOO, BREE98]. In the domain of distributed meeting scheduling all agents 

vote on all possible proposals to reach consensus on an acceptable time for the meeting 

(see section 2.3.4). In Collaborative filtering, a number of algorithms based on voting 

mechanisms attempt to predict the preferences of one user based on the preferences of a 

group of users. For example, given the user’s ratings for several books and a database of 

other users’ ratings, the system predicts how the user would rate unread books.

A key problem voting mechanisms are confronted with is that of manipulation by 

the voters, that is when an agent votes strategically and it does not sincerely declare its true 

preferences on the different alternatives so as to manipulate the outcome to be more 

favourable to the agent [CONI03]. Several mechanisms have been used to eliminate 

manipulative voting, one popular mechanism is the Clarke Tax Mechanism [EPHR94J. In 

this mechanism, a tax is imposed on those agents whose vote change the outcome and put 

other agents in a disadvantage.

2.1.3 Constraint Relaxation

Constraint satisfaction is an Al paradigm that represents problems as a finite number of 

variables and finite number of constraints [KocjOO, SYCA91]. Each variable has a domain 

with the possible values for that variable, and each constraint that hold the relation between 

the values of the variables on which only certain combinations of values are acceptable. A 

solution to a constraint satisfaction problem (CSP) is an assignment of values to the 

variables such that the constraints are satisfied. An example of a constraint-based 

representation is the map colouring problem in which a given a map is to be coloured using 

three colours, green, red, and blue, and that no two neighbouring countries have the same 
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colour. Each variable can be assigned a colour from a limited spectrum and each constraint 

defines that a particular pair of variables can not have the same colour. A distributed CSP 

is a CSP in which the variables and constraints are distributed among autonomous agents 

in multi-agent systems. Each agent has one or multiple variables and tries to determine the 

possible values for these variables.

Constraint relaxation modifies the relationship defined by a constraint allowing 

wider range of relationships. The modification changes the problem definition, allowing a 

superset of the original solutions [BECK94A], for example in the map colouring problem, 

described above, we might decide that a particular adjacent variable pair can be different 

colours or can both be red.

Agents in multi-agent systems make use of a constraint relaxation approach to 

resolve conflicts by making particular changes to the definition of the constraint, i.e. 

relaxing the constraints. Thus altering the problem and allowing relationships that were not 

allowed in the original problem to become acceptable. An example of using this technique 

in the supply chain domain has been shown in [BECK94],

2.1.4 Market Based Approach

The market-based approach, otherwise known as market-oriented programming [WELL93] 

[WELL96], is based on market price mechanism. In this approach, agents try to solve a 

conflict in a distributed system by computing the competitive equilibrium of an artificial 

economy. In the general equilibrium theory agents are regarded as consumers and 

producers and their tasks are defined in terms of production and consumption of goods. 

Agents choose strategies for production and consumption of goods based on the going 

market price, their capabilities, and their preferences.

11
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Cheng and Wellman have developed an algorithm that utilises this approach, and 

named it the Wallras algorithm [CHEN98], Wallras algorithm calculates the competitive 

equilibrium using a price-adjustment process where an excess demand triggers price 

increases, and excess supply triggers price decreases - this is called the tatonnemen process 

that was originally expressed by Leon Walras [WAL1874], The change in the price 

depends on excess demand. The Wallras algorithm has been used for practical applications 

such as transportation planning [WELL93] and allocating computational resources 

[BOGA94, DOYL94J.

2.2 Using Preferences

Preferences are being used in many applications including advanced information retrieval 

[SEOOO], quality of service provision [PARK98], product design [KEIN97], electronic 

commerce [JOOOO], distributed meeting scheduling [SEN97], concurrent engineering 

[DARR94], fuzzy ranking [WANG01], agent-based routing [ROGE99], cooperative 

decision-making [WONG94], computer-supported cooperative work (CSCW) 

[MCCAc98], document ordering, learning and storage in an Web-based environment 

[BURK01], and designing an intelligent environment [NAGE99]. Some of these 

applications try to learn user preferences, some utilise preferences as a method for solving 

a problem and others are mixture of both learning and at the same time utilising preference 

to find a solution. Most of these applications share similar concepts for using and building 

user preference models. We outline some of these concepts by describing some of these 

applications in this section.
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2.2.1 Advanced Information Retrieval

Information in the digital libraries and the internet is growing and the need to retrieve and 

refine relevant information effectively has prompted researchers to develop different 

models for information retrieval. Some of these models are based on sorting the 

information according to the user preferences that are stored in a user profile [PAZZ96], 

[TAN98, GLOV98] proposed retrieval systems that use a user profile to filter information 

from the web, the user profile is not modified automatically. [SEOOO] proposed a different 

information retrieval system, WAIR (Web-Agents for Information Retrieval), which learns 

user preferences by observing user behaviour during the user interaction with the system.

2.2.2 Concurrent Engineering

The design process of large-scale products involves consideration of hundreds or 

thousands of often competing concerns such as manufacturability, testability, cost, etc. 

[DARR94]. Concurrent Engineering (CE) is a product design methodology which aims to 

enhance productivity and to improve overall designs concerned with integrating all of the 

functions involved in the whole product development lifecycle. It has been used in the 

construction industry, electronic design, and manufacturing system design. A widely 

quoted example is the Boeing 777 jet was developed using concurrent engineering 

concepts [LOCHOO],

One system that is used in the construction industry and that uses the concept of 

preferences is the Designer Fabricator Interpreter (DFI) tool introduced by Werkman 

[WERK92]. DFI is a computer tool used in steel-connection design. The DFI provides a 

multi-agent architecture which models design, fabrication and construction processes. In 

13



Chapter 2: Literature Review

DFI each agent is an expert in its domain with its own preferences. The system considers 

preferences and issues that are important to each participating agent and produces a 

cooperative solution through negotiation. DFI uses an arbitrator as a means of central 

control through which agents communicate. There is no direct interaction between agents.

In the Automated Configuration-Design Service (ACDS) introduced by DARR and 

Birmingham [DARR94, DARR96], the system helps designers during the design phase of 

the product to select components from catalogues. Catalogue agents use system 

preferences to select components subject to performance and feasibility constraints.

An agent-based framework to solve hierarchical CE problems is presented in 

[ARBO96J. In this approach preferences and constraints of a design supervisor are 

distributed to design subordinates, who are expected to achieve global coordination by 

using their local expertise. The solution of the design problem is affected by the 

preferences of all decision-makers participating in the design process.

2.2.3 Electronic Commerce (E-Commerce)

The rapid development of the internet as an electronic market has encouraged the 

development of systems and services that support users to locate, buy, and sell goods on 

the World Wide Web [DAST01]. For such systems to be used effectively, it is essential for 

the system developers to pay attention to the effective representation and utilisation of user 

preferences [MUKH01]. This can be achieved by building a user preference model. Three 

approaches for modelling user preferences in e-commerce system are shown in [DAST01J. 

In the first approach, collaborative-based approach, the user preference model is 

constructed on the rating of items previously used by users thought to be statistically 

similar, as in [MOVIFINDER]. In the second approach, content-based approach, the user 
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preference model is constructed on the rating of previous items used and rated by the user, 

as in [BARGAINFINDER]. The third approach uses an integrated approach of the 

previous two approaches as in [BASU98].

An example of an e-commerce system that utilises user preferences is an agent-based 

grocery shopping system such as that was presented in [JOOOOJ. This system aims to 

automate grocery shopping by using agents that select products on the basis of information 

collected from different stores and comparing it with the user preferences. The agent learns 

and updates user preferences through the user evaluation of the previous results. This 

system demonstrated the effectiveness of using user preferences when selecting products.

2.2.4 Distributed Meeting Scheduling

The basic objective of meeting scheduling is to set a meeting time that is acceptable to all 

potential participants in the meeting. One key question that researchers in the area of 

distributed meeting scheduling are trying to find an answer to is how to choose an 

appropriate time slot from these feasible for a meeting [EPHR94]. Research in distributed 

meeting scheduling presented in [EPHR94, SEN97, GARR96, SHINOO] has used 

preferences to design models and systems that try to solve problems found in distributed 

meeting scheduling.

Ephrati et al. [EPHR94] introduced an approach that uses a primitive economic 

market, where the users indicate their preferences by assigning points to the different 

proposed solutions. Then the proposal with maximum points is taken as the accepted 

proposal. They analysed tradeoffs between mechanism complicity and information 

preferences using three centralised monetary-based meeting scheduling systems.
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Garido and Sycara [GARR96] presented an agent-based meeting scheduling system 

in which each agent in the system knows its user preferences and calendar availability. 

They presented experiments that show the meeting scheduling performance is stable when 

information on user preferences and calendar are kept private. However, they did not show 

how to reach a compromise solution with other agents.

Sen et al. [HAYN97, SEN98] developed an agent-based system that can automate 

scheduling meetings between group of users. It utilises user preferences to find a suitable 

meeting time. User preference dimensions such as meeting topics, duration, participants, 

host, etc. are rated by the user. Then each preference dimension is given a number of votes 

depending on the user rating and proposals with enough votes are accepted [SEN97J.

Shintani et al. [SHINOO] used a mechanism that includes multiple preference revision 

to design a distributed meeting scheduler. In this mechanism the invitee agent, that is the 

agent invited to the meeting tries to revise its preferences so that its most preferable 

alternative is the same as the host agent, that is the agent calling for a meeting. The 

negotiating agents try to reach a compromise by revising their preference until an 

agreement is reached.

2.3 Manufacturing Systems and Scheduling

The subject of scheduling has attracted researchers in many areas, such as manufacturing 

[SHEN99], project management [KIM01], and public transport [WREN99], as well as the 

production of timetables in schools, universities [SCHA95], Resource allocation in 

manufacturing systems is a typical representative scheduling and resource allocation 

application where various types of preferences need to be involved to obtain any 

acceptable solution. Also the manufacturing-scheduling problem has received considerable
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attention because of its highly combinatorial aspects (NP-hard1), dynamic nature, and 

practical interest for industrial applications [SHEN02].

1 That is, finding an optimal solution is impossible without using an essentially 
enumerative algorithm, and the computation time increases exponentially with the problem 
size

Scheduling plays an important part in manufacturing systems and several approaches 

and techniques have been proposed to solve the manufacturing-scheduling problem. Such 

techniques can be categorised into traditional approaches and agent-based approaches 

[SHEN02J. In the following subsections we first outline the traditional approaches in 

scheduling and then we discuss agent-based manufacturing systems with specific focus on 

scheduling.

2.3.1 Traditional Approaches in Scheduling

Such scheduling algorithms usually use search strategies to solve problems where the 

calculation of all possible solution is not possible with available computing equipment. In 

the research community different classifications for such algorithms have been proposed. 

For example [BROW95] classifies scheduling algorithms as artificial and computational 

intelligence methods, [BAKE98] divides them according to the degree of optimality 

sought, e.g. nearly-optimal scheduling, towards optimal scheduling and heuristic 

scheduling, and [GeYI99] categorises them as analytical, heuristic and Al approaches. In 

their most recent study [SHEN02] traditional algorithms are classified into analytical, 

heuristic and metaheuristic. We outline these categories in this section.

• Analytical Approaches: These techniques, such as queue theory, linear programming, 

branch and bound algorithm, dynamic programming etc., try to produce the exact
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solutions. However, they are only effective for solving small problems or problems that 

are not NP-complete.

• Heuristic Approaches: These algorithms try to replace exhaustive search algorithms 

by trying to discover solutions that point to the optimum solution, although they might 

miss the optimal solution. Such algorithms include forward/backward scheduling and 

deterministic simulation.

• Metaheuristic Artificial Intelligence Approaches: Under this name, the following 

algorithms are grouped: simulated annealing [JOHN89J; genetic algorithms [GOLD94]; 

neuro scheduling [RABE93]; tabu search [HERT95, DAM94J.

All the traditional methods outlined above use simplified theoretical methods and are 

essentially centralised [SHEN02], As we shall show below it is difficult to use them for 

modem manufacturing systems.

2.3.2 Agent-Based Approaches in Manufacturing Systems

In order to remain competitive modem manufacturing systems are required to adapt 

automatically to changes in the environment [BREN02J. Such changes can be market 

changes or the emergence of new technology. Manufacturing systems are required to deal 

with unpredictable demand for different products in small batches. Nowadays, many 

industries are changing from mass production to mass customisation [CHORAOl], The 

requirements for modem manufacturing systems are as follows [SHEN99J:
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• Integration: The manufacturing systems of a manufacturing organisation should be 

integrated with their related management systems via networks to support global 

competitiveness and rapid market responsiveness.

• Interoperability: Manufacturing systems may need to accommodate heterogeneous 

software and hardware in both their manufacturing and information environments. The 

components of such heterogeneous environments should interoperate in an efficient 

manner.

• Cooperation: Manufacturing systems need to cooperate with their suppliers, partners, 

and customers for material supply, parts fabrication, marketing and so on.

• Dynamism: It must be possible to schedule and reschedule without stopping and 

reinitialising the working environment.

• Flexibility: The system must handle different orders and deal with changing machine 

characteristics.

• Scalability: The system must handle any increase in orders or resources without 

disrupting any organisational links that were previously established.

• Fault Tolerance: The system should detect system failures at all levels and should be 

able to have a recovery procedure that can avoid system collapse or a reduction in 

system throughput.

Adapting traditional centralised manufacturing systems to fulfil the requirements 

above is cumbersome. In recent years researchers have been applying concepts in multi

agent systems to manufacturing systems and have developed new type of manufacturing 

systems such as Holonic Manufacturing Systems (HMS) [DEEN03AJ. HMS is an 

international project called Intelligent Manufacturing Systems (IMS), which started in 

1993 as a ten-year programme by Australia, Japan, Europe, Canada and the USA, and is 
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supported by respective Governments. The HMS project is focused on what might be 

described as an agent-based manufacturing system particularly suited to low-volume high- 

variety manufacturing. HMS can be viewed as a distributed system consisting of 

autonomous, cooperative, and recursive functional units called holons that can be viewed 

as special kinds of agents.

Agent-based manufacturing scheduling systems support distributed scheduling, in 

contrast to traditional manufacturing scheduling systems which support centralised 

schedulers. In the Agent-based approach each agent can locally handle its schedule. A 

global schedule can be produced through a given negotiation mechanism and protocol. A 

number of researchers have used agent technology to resolve the manufacturing scheduling 

problem. A survey by [SHEN99] reports on 30 projects using agent-based approaches for 

manufacturing planning, scheduling and execution control where agents represent physical 

entities, processes, operations, parts, etc. We overview some of the of recent projects and 

focus on how they deal with the scheduling problem.

• AARIA (Autonomous Agents at Rock Island Arsenal) [AARIA]: An implemented 

system that runs in a real or simulated mode for the U.S. Army facilities at Rock Island 

Arsenal. The system implements the following functionality: finite capacity 

scheduling, basic planning, order entry, purchasing, bill-of-materials management, 

inventory management, resource management, personnel management, integrated 

financials, and reporting [PARU97], AARIA uses agents representing the 

manufacturing capabilities of the system. When these agents are connected together, 

they self-configure to provide a full system functionality. AARIA demonstrates the 

interactive insertion of new jobs into a distributed schedule. It allows the dialog with 

customers and suppliers to optimise schedules and react to disturbances in the system.
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When a job arrives, it causes bid requests, bids, purchase orders, and commitments to 

propagate through the network [SOUSA99], Through this process, the system finds the 

minimum-cost schedule for each new job, assuming already-scheduled jobs cannot be 

moved.

• IBM Paper Mill Scheduling [IBM]: The IBM mill scheduling system is an interactive 

decision-support system for scheduling operations in a multi-mill multi-machine in the 

paper industry from manufacturing to product delivery [MURT97]. The system 

architecture is based on asynchronous team (A-Team) of cooperating agents. This 

architecture consists of a population of solutions and three types of agents, which 

create and modify this population. These three agents are Constructors, Improvers, and 

Destroyers [AKKI98]. The Constructors create initial solutions, then Improvers select 

existing solutions and modify them to produce a new solution, which is then added to 

the current population while the original solution is preserved. The main function of the 

Destroyers is to keep the size of the population of solutions in check, which is done by 

deleting clearly bad or redundant schedules.

• PROSA (Product -Resource -Order -Staff Architecture) [PROSA]: This is a reference 

architecture for HMS (see above). In the PROSA architecture a manufacturing system 

is built from three basic holons: order holon, product holon, and resource holon 

[WYNS99]. A product holon holds the process and product knowledge to ensure the 

correct fabrication of the product and acts as an information server to the other holons 

in the HMS. A resource holon represents the physical part that controls the resource 

and holds the methods to allocate the production resources, and the knowledge and 

procedures to organise, use and control these production resources to drive production
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[BRUS98]. An order holon is responsible for performing the work correctly and on 

time, it represents a manufacturing order. A staff holon whose mission is to assist and 

advise the basic holons can be added. An example of a staff holon is the scheduler. 

[BONG95] describes the schedule execution for this environment.

• Contract-Net Protocol for HMS [SOUS99J: This is a proposed dynamic-scheduling 

system architecture based on the Contract-Net Protocol [DAVI83], The proposed 

architecture adapted this negotiation protocol between all parts of the system to handle 

conflicts in the decision problem, and dynamic changes in the system. This architecture 

is composed of holons representing tasks and holons representing resources.

• HOLOS / MASSYVE: The HOLOS architecture developed at the New University of 

Lisbon is concerned about scheduling in Virtual Enterprises [RABE94]. A unique 

global and comprehensive schedule does not exist, but rather a collection of distributed 

and interrelated pieces of smaller schedules. HOLOS uses the Contract-Net Protocol 

co-ordinating mechanism to support information exchange among agents during the 

generation of the scheduler. It also uses the tandem agent architecture to support 

integration with legacy systems [LEIT01], This work was later on extended to 

distributed multi-site manufacturing systems and virtual enterprises in the framework 

of the INCO MASSYVE project [RABE99]

• MASCADA (Manufacturing Control Systems Capable of Managing Production 

Change and Disturbances) [MASCADA]: The focus of this project is to develop a 

manufacturing control system that is able to manage production change and 

disturbance both effectively and efficiently [MASCADA]. The manufacturing system 

in the MASCADA approach is composed of communicating local intelligent 
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autonomous agents. These agents are based on the HMS - PROSA reference 

architecture (see above). Within the MASCADA project the manAge architecture 

[HEIK99], which is an agent architecture for manufacturing control, has been tested.

• DEDEMAS (Decentralised Decision Making and Scheduling) [DEDEMAS]: The 

DEDEMAS system prototype, developed for the integration of distributed systems 

providing mechanisms for decentralised decision making and scheduling, covers both 

multi-site operations of one company and its chain of external suppliers [TOENOO]. 

The decision-making mechanism is based on the extended contract net and several 

monitoring schemes and rules support companies to optimise their processes. In that 

sense it is similar to HOLOS/MASSYVE approach (see above). It uses XML messages 

to support a high degree of transparency of the business processes and system 

integration.

• MetaMorphll: This is a multi-agent architecture for intelligent manufacturing 

developed at University of Calgary [METAM0RPH2]. Its objective is to integrate the 

manufacturing enterprise's activities such as design, planning, scheduling, simulation, 

execution, and so on, with those of its suppliers, customers and partners within a 

distributed intelligent open environment (MATU96). The project proposes a hybrid 

agent-based architecture, combining the Mediator and the autonomous agents 

approaches. MetaMorphll organises the manufacturing system at the highest level 

through subsystem mediators and each subsystem can be an agent-based system. Some 

of these agents may also be able to communicate directly with other subsystems or 

agents in other subsystems [METAMORPH2],
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2.4 Discussion

We outlined in section 2.3 some applications, which utilise preferences for solving 

problems in different domains. We summarise our findings on their use of preferences as 

follows:

• Most of these applications use preferences as a simple ranking mechanisim.

• Most of the applications require human intervention at one point or another of the 

processing.

• Complex tasks with multi-level subtasks and preferences are not handled.

• Most of these applications do not guarantee the convergence of distributed 

computation.

• The issues of relaxing preferences to determine the maximum possible preference 

values that can be achieved have not been addressed.

We outlined the various techniques that have been developed by researchers in the 

field of cooperative distributed problem and multi-agent systems for conflict resolution in 

multi-agent systems in section 2.2. Some of these techniques are based on game theory. In 

practical applications, negotiation can not be treated as a game, as in games one party loses 

and others win, while in real world situation both parties must gain some benefits 

[MUDGOO], Other techniques are based on decision theory such as utility theory 

[NEUM44]. Most of these techniques depend on the availability of well-behaved 

quantitative data. Such data is difficult to obtain in most applications [WONG94].

In this thesis we propose a model to solve preferential conflict based on a simple 

market-based approach. It differs from the market-based approaches discussed in section
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2.2.4 in that it does not use computational economics (general equilibrium theory). Our 

approach is based on a simple cost accounting approach. In our approach, agents can trade 

preferences for “money”, which enables agents to gain more preference values in 

subsequent iterations.

As the trend in modem manufacturing systems goes towards mass-customisation 

(section 2.3.4), customer preferences as well as manufacturer preferences play a major role 

when it comes to scheduling the product manufacturing process. We found that most 

manufacturing scheduling systems concentrate mainly on resolving constraints conflicts 

(referred to as hard constraints in some literature) and give only little consideration to 

solving preferential conflicts (referred to as soft constraints in some literature). We show 

how our preference model can be used for scheduling processes in distributed 

manufacturing systems.

We formulated a theoretical performance model based on the preference model 

presented in this thesis. For a given distribution of preference values over a number of 

resources the theoretical model can roughly estimate the minimum and maximum 

preference values that can be achieved. We did not find any performance models similar to 

this in previous research work on distributed manufacturing scheduling.

We apply our preference model for conflict resolution within the Cooperating 

Knowledge Based Systems (CKBS) paradigm. The CKBS approach is an engineering 

paradigm for solving real-world problems in distributed applications. This is in contrast to 

the mentalistic approaches used in current multi-agent systems (see section 3.1). We also 

use the cooperation model and the agent architecture as applied in CKBS. In the next 

chapters we outline the CKBS model and our preference model.
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Cooperating Knowledge Based Systems

The preference model, which is the focus of this thesis, is to be used as a means of 

resolving conflicts when solving problems in Multi-Agent Systems (MAS). From the 

various MAS architectures that are currently present we chose the Cooperating Knowledge 

Based Systems (CKBS) architecture as a framework to apply our preference model. CKBS 

is a research area in which the main objective is to develop good formalised solutions for 

computing problems in distributed application using an agent based approach. We use this 

chapter to outline the basic concepts in the CKBS architecture. In the following section we 

review the basic concepts in the CKBS model. Section 3.2 reviews the basic elements 

(Agents, Tasks, and Shadows) of the CKBS model. We outline the cooperation 

environment in section 3.3, while the operational architecture is outlined in section 3.4.

3.1 Basic Concepts of the CKBS Model

CKBS research overlaps with that of Multi-Agent Systems (MAS) of Distributed Artificial 

Intelligence (DAI) [DEEN96]. The CKBS approach emphasis is on solving real-world 

distributed problems, where effectiveness, performance, reliability, and usability are of 

utmost importance [DEEN96] [DEEN97]. In this respect, CKBS has been said to be an 

engineering approach to agent-based systems [DEEN96], this is in contrast to the 

DAI/MAS approach where models are formulated in terms of human behavioural concepts 
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such as belief, intention, and desire (BDI) [WOOL99]. Concepts of belief, desire and 

intention (BDI) were introduced by Bratman et al [BRAT88] and developed further by Rao 

and Georgeff [RA091] as the basis of single-agent architecture. An informal architectural 

frame for the CKBS was described in [DEEN96] and [DEEN97], To support fault 

tolerance in a distributed environment the CKBS model was developed further and 

presented in [Deen98J. Deen and Johnson presented an abstract and a formulised version of 

the CKBS model in [DEEN99A] and [DEEN03] respectively.

In the CKBS approach an agent, is an autonomous knowledge based systems having 

a compulsory software component and an optional hardware or human component. The 

agent can work with other agents in cooperation to solve a joint task. The collection of 

agents together constitute a Cooperating Knowledge Based System (CKBS) [DEEN96] 

[DEEN97][DEEN99j. In this thesis an agent is treated wholly as a software-based system 

with no hardware or human component.

AS outlined by Deen in [DEEN96] and later by Fletcher [FLET97] the CKBS main 

objective is to develop systems for real world applications. Towards this objective CKBS 

offers the following for interagent activities within a transaction oriented CKBS 

[DEEN96J:

• A development environment that reduces the development time for new applications.

CKBS provides well-defined structures and components as well as a friendly user 

interface such as a graphic user interface (GUI) that can help to achieve this goal.

• A framework to enable agents to manage and interpret cooperation strategies, and 

recovery mechanisms.

• A support for user interface tools and inter-agent communications to specify and 

invoke user-defined cooperation strategies for distinct tasks at different times.
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• A provision of simplified Cooperation strategy specifications. This is provided by 

using distribution transparency, that is, multi-agent systems are viewed as a mono

agent system.

• A multilevel schema to accommodate different levels of users with different expertise.

The CKBS model has been applied in different application areas that includes 

Holonic Manufacturing Systems (HMS) [CHRI98][FLET98][FLET98A], Air Traffic 

Control [DEEN97A] [NDOV94], Telecommunications Network Management [FLET97] 

and agent-based interoperability with partial global ontologies [ALQA99].

It should be noted that the CKBS has been adopted as an abstract foundation for agent

based manufacturing within the HMS project [DeenO3J.

3.2 Basic Elements of the CKBS Model

Agents, tasks, and shadows are the key elements in the CKBS model. In the following 

subsections we review these basic elements and their role in the CKBS model.

3.2.1 CKBS Agents

As indicated earlier, agents in the CKBS model are described as a large grain entity, which 

have a compulsory software component and an optional hardware component [DEEN96], 

While agents can participate in a joint task processing, so in that sense they are 

cooperative, they are autonomous, in the sense they can decide which joint task to 

participate in and then negotiating their role in that task [DEEN03]. Figure 3.1 shows the 
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structure of the agent as defined in the CKBS model. The agent has a head connected to a 

body by a communication link (the neck).

Fig. 3.1 Agent structure

Inter-agent activities take place in the agent head which holds knowledge about itself 

and knowledge about other agents in what is called the home model and the environment 

model respectively. Communications with the outside world is the responsibility of the 

communicator at the top of the head.

The body provides the individual skills of the agent as discussed later and makes all 

internal decisions regarding the skill execution.

Skill Classes

A skill is what an agent offers to other agents, it signifies the type the operations the agent 

can perform and the role it plays within its community [HAMA98]. An agent may possess 
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more than one skill, though each agent must have at least one skill. Agents are grouped by 

the skill they posses, one agent can belong to more than one skill class. Each skill is 

represented in a skill class. A skill can may have more than one agent, agents in one skill 

class are called twins.

Agent Classification

To simplify the process of solving problems in multi-agent systems, CKBS classifies 

agents into several categories [DEEN98], the following are the ones which are relevant to 

our work in this thesis:

1. Coordinator agents: such agents have the skill to coordinate task execution.

2. Processing agents (cohort agents): such agents possess the skill to process a task.

3. Service provider agents: such agents provide additional services that are needed in 

MAS. As examples of such agents are directory agents, transport agents, monitor 

agents, etc.

Within each category multiple classes of agents can be found. For instance to handle 

breakdowns each class can have a set of agents that have the same capability and can 

replace one another in the event of failure, these are called twins [DEEN99], A class of 

agents called minders whose responsibility is to supervise the replacement of the faulty 

agent and to schedule its twins.

3.2.2 Tasks

In MAS agents work together to solve a joint (i.e. global) task, say T*, which can be 

decomposed into a lower-level tasks (subtasks) (Tt ... TJ [DEEN99A]. Subsequently any 
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subtask can be decomposed to another set of subtasks. Each subtask requires a certain skill. 

Any agent that belongs to the skill class is a potential candidate to execute that subtask.

Tasks in the CKBS model are generally described using task schema, dependency 

schema, and preference schema. We outline these schemas below.

The Task Schema

The task schema describes the task procedure, the task parameters, and the pre/post 

conditions that apply to every instance of the schema [DEEN99]. Agents which possess the 

appropriate skills execute the task procedure and report the result of the execution. The 

task parameters such as start-time, duration, deadline, and success-parameter, are those 

associated with the execution of the task. Some parameters are set before task execution 

(input parameters), and others are set during execution. Some parameters remain static 

during execution and other parameters are subject to changes during execution. Pre

conditions can be system-dependent which guarantee that resources are available and in a 

fault-free state, or precedent-dependent that are derived dynamically from the dependency 

schema [DEEN99AJ. Postconditions are these conditions that the task must satisfy upon 

completion of the task, for example a quality check or that end-time is less than deadline.

Dependency Schema

Each subtask will have a dependency schema that describes the relevant task dependencies. 

It shows what tasks should be executed before starting the task execution. These are static 

constraints and contribute to the pre-conditions discussed above. This schema can be 

integrated with the task schema, but in this thesis we choose to separate it for clarity 

purposes.
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Preference Schema

Associated with each subtask is a set of preferences as well as the set of dependencies and 

constraints explained earlier. Preferences arise when multiple solutions are available for 

the task. In this case the user express his choice in the form of preferences on some 

desirable aspects of the solution. Preferences vary widely depending on the application, 

and each requires special presentation, such preferences can be a machine, time, labour, 

etc. It is not always possible to satisfy all preferences due to contention with preferences of 

other tasks.

Our focus in this thesis mainly, as pointed out in chapter 1, is how to derive a 

preference-based solution that satisfies as many preferences as possible in presence of 

contention.

3.2.3 Shadows

In order to keep the cost of communication as low as possible, we need to make sure that 

only the necessary information is exchanged amongst cooperative agents. The CKBS uses 

the concept of shadows [DEEN96] as means of exchanging information amongst agents. 

Information on what skills are available from an agent are called shadows of its skill 

relations. Shadows are derived from these relations, containing all the relevant attributes 

needed for the associated software function to be referenced or instantiated by a remote 

agent. Similarly, they are used in inter-agent activities, held at the upper head of the agent 

[DEEN97],

Shadows are quite similar to views in traditional relational databases, yet they 

provide strong distributed consistency and trigger schemes. A remote agent cannot directly 
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update the external relations of other agents, but it sends a message to request an update to 

be done.

From the perspective of the agent, there are two types of shadows: export shadows 

and import shadows. Export shadows are the means by which an agent can publish its 

skills and capabilities to other agents. They are views created from external relations of the 

agents to be used by other agents as import shadows [ALQA99]. An export shadow ES for 

a skill K offered by agent B to A has its scheme derived from the skill relation SR (the 

source table of the shadow) and is exported to remote relations in A. The agent posts its 

export shadows for other agents to import. The corresponding source relation is 

responsible for keeping its export shadow up-to-date.

An agent builds acquaintances by importing suitable shadows from other agents. 

Agents access each other’s shadows when communicating. Shadows that the agent collects 

form the partial global knowledge of the agent and can vary from time to time.

Multiple shadows, which are not necessarily identical, can be generated on a given 

skill. Import shadows received from agents with the same skill could be different, it would 

be the responsibility of the agent to map these shadows into one common import shadow 

for that skill for the convenience of operations at that agent.

3.3 Cooperation Environment

In this section we outline in general, with some details when needed, the basic concepts in 

the CKBS model, namely cooperation, coordination, inter-agent interactions, cooperation 

strategy and distribution transparency.
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3.3.1 Cooperation

In [DEEN99] cooperation is defined as the process in which agents carry out dependent 

activities of a joint task (global task) and negotiation is the process by which agents agree 

on mutually acceptable solutions. CKBS agents are implicitly cooperative, they work 

together in what is called a cooperation block, CB. A CB can be created and terminated 

dynamically during the processing of the task. A basic CB has a coordinator and a set of 

other agents that carry on the actual task, referred to as cohorts*. The coordinator can be 

viewed as the user agent. The same agent can be a cohort in one CB and a coordinator in 

another CB, and it can participate in more one CB at the same time. This leads to a 

heterarchy as shown in Figure 3.2.

In this figure, agent A is the coordinator of a CB with agents B, C, and D as cohorts. 

Agents C and D are in turn the coordinators of a lower two CB’s. Agent C is the 

coordinator of a CB with agents E and H as cohorts. Agent D is the coordinator of a CB 

with agents F, G and H as cohorts. Agents E is in turn the coordinator of a lower CB in 

which H, J, and I are cohorts. Note that H appears concurrently as a cohort in two CB’s, D 

act as the coordinator in one CB and C acts as a coordinator in the other. In general an 

agent in a CB can be a coordinator of a lower level CB to execute a subtask with the help 

of cohort agents, or a cohort agent in a CB that executes a subtask with other cohorts. An 

agent can participate in more than one CB concurrently. An agent can act as a cohort in 

one CB and a coordinator in a lower level CB.

This term is also widely used in distributed system processing and refer to processes that are working 
together
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Fig. 3.2 A heterarchy of cooperation blocks

3.3.2 Coordination

As stated in [DEEN96] cooperation can be trivial or non-trivial. A trivial cooperation 

involves a simple information retrieval, as a simple retrieval query in a database. In a 

trivial cooperation the agent is committed to answer queries from other agents, even 

though the answer could be noncooperative, (e.g. Can not participate in executing the 

task). In a non-trivial cooperation an agent (cohort) enters, implicitly or explicitly into a 

CB through a three Stage Coordination, 3SC, protocol that was proposed in [DEEN94]. As 

stated in that proposal the 3SC protocol embodies the following three stages:
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1- Agreement:

In this stage, agents enter into an enforceable agreement to perform a joint task 

subject to some constraints and preferences. The agreement is reached within a CB 

as agents in the CKBS model participate in a CB under a coordinator to solve a joint 

task. This agreement itself could be arrived through negotiation. Agents can enter 

this agreement one at a time or all at the same time depending on the application 

need.

2- Interactions:

The cohorts interact with each other to achieve the joint goal in accordance with the 

agreement. These interactions take place within a CB.

3- Termination

The task execution terminates when cohorts complete their tasks. Then the cohorts 

leave the CB one at a time, or all at the same time, depending on the application. The 

coordinator leaves last and then the CB terminates.

3.3.3 Inter-Agent Interactions

Effective communication is needed for a successful cooperation between agents. In a 

multi-agent research various proposals for inter-agent interactions have been made, most of 

these use psychological approaches by imitating biological organisation interactions and 

behaviours such as humans, insects and animals. One example is the BDI (Belief, Desire 

and Intention) that was introduced as a basis for research into multi-agent architectures 

[BRAT88][RAO95]. This BDI model defines the intra-agent behaviour in terms of mental 

faculties for the rational selection of action plans to satisfy goals. Some researchers 
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[MUEL96][FISH94][LUX97] in multi-agent systems are inspired by the Speech-Act 

Theory [SEAR69]. Speech-Act treats agent interaction and communication as a type of 

action to be incorporated into planning and reasoning processes. Primitives inspired by 

speech act theory include propose, refuse, respond, inform, etc. During the 1990s, 

DARPA introduced a LISP-based environment that integrates a Knowledge Interchange 

Format (KIF) [GENE92] and a Knowledge Querying and Manipulation Language 

(KQML) [FINI93]. More recently, FIPA (Foundation for Intelligent Physical Agents) 

[FIPA] defined a multi agent framework and an agent communication language (ACL) 

based on the Speech Act Theory and KQML. It uses modified BDI concepts and supports 

the Speech-Act inspired primitives mentioned above.

The CKBS takes a different approach based on a well-tried computer science 

concepts [Deen97J. A set of commands or communication primitives taken from the 

database domain, similar to the set of SQL commands used in the relational database 

model. The CKBS assumes the existence of six request primitives to reference inter-agent 

activities:

• Retrieve : to get information from another agent.

• Perform : to request an agent to carry out an action.

• Modify : to modify parameters on the agreed action.

• Delete : to delete an agreed action.

• Confirm: to confirm an action to proceed.

• Abort’, to abort an action after its execution has started.

The MODIFY and DELETE represent error correction on a previous command.

The above commands are used in the agents’ interactions to reference the exchanged 

shadows. For example, if an agent A has an import shadow Sb (section 3.2.3) of source 

external relation Rb at agent B, all operations requests by A on Sb are automatically 
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dispatched by the underlying communication system. In the CKBS model these 

communication systems are treated as a blackbox, however Hammad in [HAMA98] shows 

one way of implementing such mechanism.

3.3.4 Cooperation Strategies

A cooperation strategy, as define in [DEEN97], is a user-defined specification describing 

how a task should be performed. It specifies, using a high level language, how the 

coordinator and the cohorts should behave during the execution of the task. The 

cooperation strategy is flexible in that it can change from time to time and not predefined, 

the agent can adopt different user-defined strategies.

To explain the specification of cooperation strategy we use an example of agent

based scheduling in a manufacturing environment [FLETOOJ. Usually in this kind of 

environment a number of operations (weld, screw, cut, polish, mount etc.) are required by 

a number of assemblers for the assemblage of a product of a given type. We assume we 

have three types of agents for manufacturing:

• Coordinator agent: coordinates the assemblage of a product type.

• Assembler agent (cohort)', responsible for the assembly operations of various 

kinds

• Directory agent: provide information on assemblers’ skills.

We assume we have one Coordinator agent, a set of Assembler agents and one Directory 

agent. The basic steps for scheduling a task, using a contract net protocol [SMITH80] 

[DEEN97] proceeds as follows:

1. The Coordinotor invites tenders.

2. The Assemblers bid.
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3. The Coordinator evaluates the bids, decides on which one to accept and inform 

the bidders of its decision.

4. The successful bidders confirm agreement.

5. The work is done and the protocol ends.

We assume that the allocation is incremental, that is allocation is requested when 

needed, hence the requested Assemblers slots may not be free, as they might be already 

scheduled to other subtasks. We also note that the allocation in one Assembler affects that 

in others due to precedence constraints. In the case of a request for a pre-allocated slot, a 

number of different options for the Assembler are available, such as:

1. send a NO, or

2. send next free slot, or

3. send all the subsequent slots

The Coordinator may choose to schedule the Assemblers one at a time or all at the same 

time using the contract net protocol outlined above. These will lead to different 

cooperation strategies to be defined by the Coordinator. The user may code any suitable 

cooperation strategy, subject to the capabilities of the assembler. One such strategy 

[DEEN97] is outlined in the steps below:

1. The Coordinator requests information from the directory agent about agents that 

posses the required skill.

2. The Coordinator preselects suitable Assembler agents

3. The Coordinator requests them to schedule the task.
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4. The Coordinator receives the results of the requests, which is success or failure.

5. Based on the Assemblers’ replies, the Coordinator selects which assembler to 

process the task.

6. The Coordinator informs the Assemblers of the acceptance and wait for 

confirmation. It is assumed that all Assemblers accept. It also posts its rejection to 

these rejected Assemblers.

We show in Figure 3.3 a scenario for allocating three subtasks, Tj, T2, and T3, in 

that order, in three Assemblers. Shaded boxes indicate pre-allocated slots. We assume the 

duration for each subtask is one slot. With respect to the Coordinator, Assembler 1 is 

regarded as prior Assembler and Assembler 3 is regarded as next Assembler. Usually, 

there will be different prior and next assemblers with respect to different Coordinators for 

different assemblies. T! is allocated to the first available slot in Assembler 1, slot 3. Next 

T2 is scheduled at slot 5 of Assembler 2, though slot 3 of this assembler is free, this is due 

to the effect of precedent constraint mentioned above. Then T3 is allocated to slot 7 at 

Assembler 3.
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Coordinator

Indicates the slot is already occupied

Fig. 3.3 Cooperative scheduling

In the above scenario, no consideration was given to the subtasks’ preferences during 

scheduling the subtasks. Precedent constraints were the only pre-condition that was 

considered. In the next chapters we present a model that takes preferences into 

consideration during the scheduling process.

3.3.5 Distribution Transparency

The concept of distribution transparency [Deen97] is one whereby the user views the 

multi-agent system as a mono-agent system, giving the illusion that the coordinator is the 
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only agent in the system and is capable of performing the task locally. In the CKBS model 

the task is decomposed into subtasks and processed by different cohorts. The user specifies 

the cooperation strategy (section 3.3.4) at the coordinator level. The Coordinator, using a 

lower-level system-software that identifies the remote agents, dynamically dispatches the 

sub-cooperation strategies for the relevant cohorts. Sub-strategies are communicated as 

parameters along with the subtask request. Figure 3.4 illustrates this concept.

Fig. 3.4 Distribution transparency

The end-users can benefit from the distribution transparency in a number of ways, 

some of these benefits are outlined below:

1. From the user point view, the system appears to perform as a mono system, 

without having to know unnecessary system details, such as communication 

network, protocols and message handling is not needed.

2. The user specifies strategies as a normal program without the need to know the 

operational details.
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3.4 Operational Architecture

In this section we outline the scenario for the steps taken by the different agents to process 

a global task as outlined in [DEENOOJ. Initially the coordinator forms an initial cooperation 

block, then it decomposes the global task into subtasks, and determines the skills needed 

for each subtask. It enters the selection process for the appropriate cohort as shown in 

Figure 3.5. Using the directory agent, the coordinator finds the appropriate cohorts that are 

available to execute the subtasks (Figure 3.5(a)). The coordinator then enters into 

negotiation to select one of these cohorts (Figure 3.5(b)). After a successful negotiation the 

coordinator records and handles all communications to and from that cohort. If a 

contracted cohort becomes unable to meet its commitment, prior to the start of execution, 

the coordinator is informed so that rescheduling can take place. Each cohort reports its 

progress to the coordinator. In the case of delays the coordinator may negotiate with 

another cohort that has the same skill and thus change the membership of the CB 

dynamically. In the event of a cohort's breakdown during execution, the cohort will 

rollback to a recoverable point and informs the coordinator. The coordinator then aborts 

the processing and advises the other affected cohorts to rollback.

Cohort to cohort communication in the same CB may be needed in some cases. This 

includes messages on results, task-sharing, and resource-sharing. If the tasks of two 

cohorts have common subtasks, then they may negotiate with each other on such subtasks. 

Also common resources can be shared subject to some negotiation during task execution. 

Such negotiation may affect the execution order of subtasks, within each cohort.
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Coordinator
Retrieve

Respond Directory

Fig. 3.5(a). Coordinator locates the appropriate cohorts

Fig. 3.5(b). Coordinator selects final cohort through negotiation

Fig. 3.5 Cohort selection process
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3.5 Summary

In this chapter we outlined the CKBS approach for solving distributed real-world 

problems. The CKBS model is based on an engineering paradigm in contrast to the 

DAI/MAS approach where models are based on human behavioural concepts such as 

belief, intention and desire. The CKBS approach is based on well-established computer 

science concepts. It uses a layered architecture where the details of distribution and inter

agent communication are hidden from the end-user. We have outlined the structure of the 

CKBS agent and the cooperation environment concepts found in the CKBS model, namely, 

cooperation, coordination, inter-agent interactions, cooperation strategy and distribution 

transparency.

In the next chapter we present a preference model to resolve preferential conflicts 

among cooperating agents.
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The Preference Model

In cooperative processing, agents work together as cohorts to solve a joint (i.e. global) task 

T, subdivided to lower-level subtasks (Tj ... Tn) (see chapter 3). Each task has both its own 

exclusive resources and some shared resources. Tasks have constraints and a set of 

preferences. In the introduction to this thesis (chapter 1) we explained the notion of 

preferences. Such preferences are expressed on resources such as machines, time, and 

labour. We use preferences, specified by the task, to choose a satisfactory solution which 

preserves as many preferences as possible. It is not always possible to satisfy all 

preferences due to contention with those of other agents. In this chapter we present a 

market-based approach for preference exchange and processing. An overview of our 

approach is given in section 4.2, while the model details are presented in section 4.2, and 

an algorithm for implementing the model is given in section 4.3.

4.1 Overview

The decomposition of the global task into lower-level tasks (see above) is shown in Figure 

4.1. The figure shows a global task, T, decomposed into lower-level subtasks, (Ti ... Tn), 

which are in turn decomposed into a lower-level subtasks. A task can have other tasks as 
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precedents (indicated by dotted arrows in the figure). As can be seen from the figure this 

can lead to a heterarchical task dependency structure.

Fig. 4.1 Task decomposition & dependencies.

One agent might act as the task agent or the coordinator, responsible for the global 

task. If a resource has already been allocated to a task, and then if a later task arrives with a 

higher preference on that resource, then we may have to change the previous allocation. 

This leads to conflicts which can be represented in a network model, where the allocation 

to a node (task) affects all other nodes (tasks) that have preference on the same resource. 

The cascading effect of pre-emption and reallocation leads to branch explosions shown in 

figure 4.2. In this figure we show three subtasks, T], T2, T3, which are part of a global task 

T (not shown). Each subtask is decomposed into lower level subtasks. We assume that all 

subtasks are allocated. To reallocate subtask T15 requires reallocating T23 which in turn 

require reallocating T32, which could require the reallocation of more subtasks.
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Reallocating T15 could require 
reallocation of T

I

I

1

Cascading ' 
effects x

More cascading effects f
----- ---------------------------------

Fig. 4.2 The cascading effect of pre-emption and reallocation.

In this chapter we show how a set of agents can cooperate together to produce a 

solution that converges. This global solution space is the intersection of the local solution 

spaces. It may include more than one satisfactory global solution. In this case we accept 

the solution that preserves most preferences, we call this the best solution. It is often 

impossible to satisfy all the preferences due to one or more of the following reasons:

(i) contention with the preferences of other agents,

(ii) processing cost, and

(iii) intractability leading to non-convergence.
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We shall also be presenting a market-based approach for preference exchange and 

processing, an outline of the allocation process, and an algorithm for implementing the 

preference model among cooperating agents.

4.2 Market-Based Approach

In order to assign preferences we categorise resources into two types:

• discrete, such as a machine or any physical items, and

• continuous, such as end-time, distance, and quality.

In discrete resources a list of alternative resources, each with its preferences, is specified. 

In contrast, in continuous resources an appropriate strategy for preference allocation is 

used, for example, if a preferred end-time cannot be met, the resultant end-time should be 

as close to the preferred end-time as possible. Preferences for both discrete and continuous 

resources for a task can be expressed as a number (i.e. a value), the higher the value, the 

higher the preference value. Since a user (through the coordinator of a task) can specify 

any preference values for the resources required by a task, an additional mechanism, in the 

form of what the user is prepared to pay to other agents for them to give up their 

preferences is introduced. We refer to these other agents as sellers. The sellers will sell 

their resources only if the price is right. An agent can accumulate such costs received and 

use them to buy preference values for itself later when needed. This market-based model 

also helps enforce convergence.

In some cases there could be resource type dependency. For example, task 

scheduling in machines, if a task has a preference on a machine and also on end time, the 

end-time will be dependent on the machine. In this case the evaluation process will have to 

evaluate both the combinations. If there are r dependent resource types, then the number of 
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combinations will be r!. Thus resource type dependency will involve extra processing. In 

our subsequent discussion we will assume the preferred resource types of a task to be 

orthogonal to one another. By using this assumption we can restrict our discussion to a 

single resource without any loss of generality.

4.2.1 Preference Model

We define a preference satisfaction function (PSF) that returns a value to indicate the 

number of preference values that are not satisfied. If all preferences are satisfied then the 

PSF returns 0, otherwise it returns a negative value. PSF is expressed as follows:

= (4.1)
,=/ j=l

where p^ is a preference loss function and can be expressed as follows:

Pv=f(Vu) (4.2)

where/is a user defined function on preference loss, Vij is the value set by the task agent T, 

for a preference j, k is the number of preferences, n is the number of tasks. We choose a 

positive cut-off (U) so that the acceptable PSF values are

-U <(PSF) <0

For example if U has the value of 4 then the acceptable values of PSF are these between 0 

and 4.

One way of expressing preference values in the case of continuous resources (e.g. 

end-time) is to use a user-defined Preference Reduction Function, p. p can be a fixed 

percentage reduction of the preference value, V, for each resource instance lower than the 

preferred instance. For example, if the resource type is time, and instances are hourly time
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slots, then the time-slots on either side of the preferred time-slot have less preference value 

expressed as follows:

V(1 - sp) (4.3)

where s is the number of slots away from the preferred time-slot. For example if a 

preference value V is expressed for a 10 am time-slot, then it will be V(1 - 2p) for the 8 am 

time-slot and V(1 - p) for the 11 am time-slot. We can express p in other forms, for 

instance we can specify preference values separately for each resource instance of a 

resource type for a given subtask.

To avoid cycles that can lead to non-convergence we use a preference cut-off, cp. A 

solution is acceptable if it improves the overall preference value by (p. A smaller value of cp 

leads a larger number of exchanges and a higher final preference value. A larger value of cp 

leads to fewer iterations and a lower final preference value. The user sets the value of cp.

4.2.2 Cost Model

A task agent can specify very high preference values greedily. To control this greed, we 

use a market based cost model. The task agent must state how much it is prepared to pay to 

achieve its preference, thus a task T can be presented for T as:

T:: [(Pj/Vj/O,, P2/V2/O2,.. .. P./V/O,.]

where each triplet P/V/Cf represents preference value V) on resource Pj for which the task 

agent is willing to offer price Cf. Observe that Oj is the offer price in a negotiation, which is 

paid by this task agent to another agent in proportion to the percentage of V) met by that 

agent (see later).

A number of alternative solutions are usually available for the task agent. Each 

solution is associated with a certain cost, which is meant to be covered by the offer price.
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We use two types of cost: initial cost Ci, and a refinement cost Cr. Ci is the cost of finding 

a solution (acceptable PSF value) for the task without taking preferences into account. 

Such a solution might have satisfied some or all the preferences. If the minimum amount of 

preference values indicated by the cut-off value is not met, a refinement is needed to gain 

more preference values. In the refinement process, this task may be given a preferred 

resource, removing that resource from other tasks (some resources can be shared by several 

tasks). The cost of finding alternative resources for those affected tasks is the refinement 

cost CR. There can be a cascading effect involving successive re-allocation due to task 

dependencies. The sum of CR and Ci form the total cost Ct, This cost is meant to be 

covered by the offered price (Oi), as implied earlier.

Initial selection of candidate exchanges with likely preference gains and costs are 

made on estimates. The actual preference gain is found when the exchanges are actually 

carried out, and at that point the best result (the best gain) is selected, and payment from 

the offer price is made pro-rata to [(the actual preference gained)/ (the originally desired 

preference gain)], as indicated earlier. This cost is also used to terminate a branch if the 

agreed cost is exceeded.

Each agent can accumulate the payment it has received to pay for its preferences in 

the future. Ct can be less than the offer price, depending on the negotiation but can not 

exceed it, in other words Ct <Oj. The total cost Ct is expressed as follows:

i=m

CT = C[ + Cff (4.4)
¡=1

where m is the number of refinements needed to find a solution.
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4.3 Algorithm

Using the market-based approach and the concepts outlined in the preference model 

described in the previous sections, we propose a scheduling algorithm that can be used by 

cooperative autonomous agents to resolve contention in the preferences for the same 

resource during subtasks scheduling. The following algorithm is a high level overview of 

implementing the preference model. An illustrative example to describe this algorithm is 

discussed in section 4.3.1, the lower level details are discussed later in section 4.3.2, and a 

practical implementation is discussed in more details in chapter 6.

Get an initial solution
If(initial solution satisfies preferences cut-off)

Accept solution
else{

Seek new allocation by negotiating with
other coordinator agents.
Find the gain in preference values and costs 
of new solutions.
Find a solution with maximum (PSF)Sc(PSF >
U)& (Oi < CT)
If (such solution exists)

Accept the obtained solution
else

Accept the initial solution
}
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4.3.1 Example

To illustrate the concepts outline in the preference model we introduce the following 

simple example. For the sake of clarity and not to lose focus, we use an example where 

each task is decomposed into one level of subtasks, and show the reallocation of two tasks. 

This should be adequate to illustrate the main concepts of the preference model.

In this example we assume that a task T is decomposed into three subtasks (T , T , 

and T ) which are further decomposed into more subtasks, as shown in Figure 4.3. Three 

resources (Ri, R2, and R3) are required by the subtasks. The duration and the resource 

required by each task is shown in the figure, for example Tn requires resource Ri,and its 

duration is 4 slots.

T1

| e T11(4,RI) # TI2(3,R2) # T|3(3, R3) « TI4(1,R2) * |

T2

# T2[(3,R2) e T22(6,R3) # T23(2,R2) »

t3

# T31(4,R,) * T32(2,R2) * T33(2,R,) 9

Legend: Task Name (duration, resource required)

Fig. 4.3 The global task decomposition used in the example
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To find an initial schedule we can use any of the various scheduling technigues used 

for optimal resource usage such as the Critical Path Method (CPM) [EPPEN84], As our 

focus in this research is on satisfying as many task preferences as possible, it does not 

matter what technique we use for initial allocation. Therefore, we allocate tasks on a first 

come first serve basis. One possible schedule is as the one shown in Figure 4.4.

Ri Tn Th Tn Tn j Jllll T3) T3i

r2 t21 Tit t21 IBI Tiil Tu

r3 t22 t22 t22 t22

Th T33 T33

t22 t32 T23 T23 Tu

t22 t22 Th T>3 T13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Slots

Fig. 4.4 Initial allocation of all the tasks

Assume that the specified preference value, offer price and the preferred end-time slot for 

each task is as shown in Table 4.1. For simplicity reasons the end-time preference are 

stated for the global task (T1), though preferences can be given for each subtask.

Table 4.1 Tasks Attributes (Figure 4.3)

Task Preference 
value

Offer 
price

Preferred 
end-timeslot

T1 30 40 12
T2 30 40 10
T3 70 60 8

Table 4.1: This Table shows the task attributes from Figure 4.3

During the initial allocation, as shown in Figure 4.4, T1 achieved its preferred end

time slot (slot 12); i.e. its preference value is totally satisfied, while the preferred end-time 
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slot for T3 is shifted three places (namely slot 11). Satisfying the total preference value of 

T3 requires negotiation with T1 to give up some of its satisfied preference value by 

reallocating its subtasks. Reallocation of T1, according to the preference model, can only 

take place if the following conditions are satisfied:

1. Potential gain in total preference is greater or equal to the preference cut-off, cp.

2. The cost of reallocation is less than or equal to the T3 offer price.

3. T3 has enough funds to pay for the reallocation cost to T1.

Therefore, we need to calculate the cost and preference gain using the equations described 

in the previous sections. Assuming the initial cost (Q) is 5 units and the reallocation cost 

(CR) is 10 units, the total cost (CT) is :

5 + 10X 3 =35 Cost units (using Equation (4.4))

where 3 is the number of reallocated subtasks. Assuming the preference reduction function 

(p) is 0.1, the initial preference value for T3 is:

70(1 - 0.1 X 3) = 49 Preference value units (using Equation (4.3)).

Therefore, if T3 is reallocated to slot 0 the gain in preference value will be 21 (70 - 49). To 

estimate the overall gain, we need to calculate a new preference value for T1. It is difficult 

to predict the new allocation of T1 precisely, as this depends on the current status of all the 

tasks and the lack of the current knowledge available to the tasks. We assume that T1 will 

be shifted to the right by the duration of the longest subtask (in this example, T33 is the 

longest duration, so T1 is assumed to be shifted 4 slots to the right). Therefore, the 

predicted new preference value for T1 is:

30(1-0.1 X 4)= 18 Preference value units (using Equation (4.3)).

The predicted preference loss for T1 is then 12 (30 - 18). Thus, the overall gain will be 9 

(21 - 12) if this reallocation occurs. Assuming cp < 9, the reallocation takes place. The 

resulting schedule with T3 of this reallocation is shown in Figure 4.5, (note T1 is not yet 
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reallocated). T3 pays the reallocation cost T1. Faulty predictions that cause drops in the

overall preference value can be corrected in the subsequent iterations.

Slots

Fig. 4.5 Reallocation of T3 (T1 not yet reallocated)

Reallocating T1 using the first available slot yields an end-time for T1 at slot 17 (Tn 

finishes at slot 11, T12 finishes at slot 14, T]3 finishes at slot 17, and Tu finishes at 18). T1 

then needs to negotiate with T and T to regain all or some of its preferences. Subject to 

the aforementioned conditions, one option is shifting T33 two slots and shifting T23 one slot, 

both to the right as shown in figure 4.6. This can occur if all the aforementioned 

conditions are satisfied. T1 pays both T2 and T3 the reallocation cost of two subtasks (T23 

and T33).

Ri T.-.i T-u T31 t31 Tu Tu Tn

r2 T2i t21 T:1 • 32 I 32

r3 t2- 1 1’22 T22

Tn T33 T33

t12 t12 t12 T23 T23 T14

T22 1’??. TLi 1’15 t13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Slots

Fig. 4.6 Reallocation of T1

57



Chapter 4: The Preference Model

Further negotiation can take place until no further gain in preferences can occur, then 

the iterations terminate.

4.3.2 Allocation Process

Below we shall use the capital letters U for coordinators (as user agents), T for global 

tasks, A for agents (i.e. cohorts), and R for the remaining preference values. The letters a, 

b, c used as superscripts in U and T are used to imply the specific instances of coordinators 

and global tasks, and the subscript letters i, j, k, are used to represent subtasks.

Initially the coordinator allocates preferences to its tasks, with the help of the 

cohorts, via a contract net protocol (CN). It invites all cohorts to bid for the allocation of 

the resource instances to all the tasks of the coordinator, which can then select the best 

bids. This allocation, called initial allocation (Phase I), is made without any pre-emption of 

resource instances and without using any cost or preference cut-offs, but otherwise an 

attempt is made to gain as much preference values as possible. This is iteration 0, for 

which no cost is paid to the cohorts, but each task gets its initial allocation. The agent that 

allocates a resource to a subtask becomes the home agent of that subtask. During phase I 

each subtask gets its home agent, which can change subsequently if the subtask is allocated 

another resource instance by another agent. In that event, this new agent becomes the new 

home agent for that subtask.

Once this Phase I is completed, each cohort takes over the reallocation of its tasks 

either to itself or to other cohorts (depending on the preferences of the tasks), using the 

coordinators for negotiation on cost. If a task is successfully reallocated to another cohort, 

the new cohort will take it over. The following are the steps in Phase II:
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Step 0: [ setup]

Coordinators are sorted according to their ID. Cost parameters are set and fund F is 

allocated to each coordinator. This assumes that a fund F is given for all the subtasks of 

the coordinator concerned, rather than individually to each subtask.

Step 1: [start allocation process]

Select the first coordinator in the ID order, say t/a. This selection is arbitrary, any 

coordinator can be selected.

Step 2: [sort subtasks of current coordinators]

All the subtasks of the current coordinator are sorted in decreasing order, using the 

remaining preference values (7?ai), so that the cost available can be put to maximum 

benefit. This order will be referred to below as the remainder order. The coordinator 

selects the first subtask.

Step 3: [resource reallocation]

The coordinator then asks the relevant home agent A; to reallocate the resource type.

Step 4: [select a subtask]

A subtask, along with its preferred resource instance is selected in the remainder order.

Say this is T1 iu(x) wishing to acquire another instance y of resource u to gain preference 

Gaiu(y)-

Step 5: [invite bidding]

The cohort invites all coordinators, including t/a, to bid.

Step 6: [tentative bids]

All coordinators having a subtask in possession of the resource instance z of u may bid. 

But if it has a subtask holding instance y2 of u (not z of u) such that z > y2 > x (in 

preference order), then it can bid for y2 with the potential preference gain GaiU(y2) instead 

of GaU(Z). Either way, we say the sacrificial task for this seller coordinator is Ty Each 
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coordinator will evaluate the precedent tree of 7] , and thus calculate the expected cost 

and the potential preference gain (which can be Gaiu<y2) instead of GajU(Z)), which are then 

sent them to the home agent concerned. This is a tentative bid, as there is no guarantee 

that the successful coordinator 77b will actually be able to deliver the bid.

Step 7: [bid failures}

If no coordinators have any bid, then this is a bid-failure (see section 4.2.4), and in that 

case the processing moves to Step 12. Otherwise, the home agent forwards the bids to the 

coordinator i/a.

Step 8: [effect of cost cut-off p or cost run-out}

The coordinator If accepts the best bid that it can afford and advises the home agent to 

proceed with it. Say it is the task 7*^3) and preference gain GaiU(y3) for instance y3. This 

GajU(y3) is now the expected gain. The coordinator Ga may use a cost cut-off p, that is, it 

may decide not to pay for any bid if the expected cost is > p. Also, it may not have 

enough funds left in F to pay for this bid. In either case, the bid fails and control moves 

to step 12.

Step 9: [single bid pre-selection}

The home agent asks the coordinator if of subtask 7^ to proceed. This step is refered to 

later as single bid pre-selection.

Step 10: [reallocation of the subtasks}

The coordinator if asks the relevant home agent, say Aj to reallocate. This cohort will 

ask the home agents of the precedent tasks of to reallocate them. These will be 

recursive steps, carried out from the root (7*j) down to the leaves. We do not show them, 

but they have been described in the simulation (chapter 7). A further important point is 

this: although has given up its resource instance y3, it may not be possible to

secure y3 for task F¡u (e.g. if some precedent subtasks of cannot be moved). In that 
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event T®iU might end up getting some other lower instance of u, say y < y3, with less gain 

GTiu(y) < GTiu(y3). In fact GTjU(y) can be even be unacceptable to i/a (see below).

Therefore this agreement by t/a with if3 for this exchange is a gamble. It may be that 

some other rejected bidders could have provided a better gain. One may wonder if is it 

not possible to avoid this gamble by asking, in Step 9, for all the bidders [multiple bids 

pre-selection] to go ahead with their bids and then selecting the best from the final 

results. This should be possible, subject to the cost availability. However, if these bidders 

work in parallel, it will not work in general, since each bidder will potentially get in the 

way of the other bidders with contentions on the resources required by their respective 

precedent tasks. If the bidders work serially, then it should work, except for the high 

processing cost (including the time cost). The user can control the cost and exercise a 

choice. Once the best bid is selected, the rest of the processing will be the same - 

assuming the best bid to be the same as above, that is, if3 offering originally resource 

instance y3 of 7jU(y3) with expected preference gain GTiU(y3), but finally offering resource 

instance y with actual preference gain GTiU(y).

Step 11: [possible outcomes]

Three possible outcomes can occur after processing step 10:

(a) The attempt fails due to the use of the preference cut-off (p. In this case iteration 

number, task and amount of the gain is recorded. The process returns to Step 12.

(b) The attempt succeeds partially, that is, instead of resource instance y3 it gets 

instance y, with preference gain GaiU(y), The cost paid will be pro rata to the gain. 

Further explanation of this outcome is shown below.

(c) The attempt succeeds completely, getting the resource instance y3 with gain 

Gaiu(y3) •
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Further explanation on outcome (b):

If GTiu(y) < (p, where GTjU(y) is the net preference gain by the whole system then we 

have subcase (bl), or else (b2).

Subcase (bl):

In this case the exchange has failed, and the processing returns to Step 13. We shall 

refer to this preference loss as being due to delayed effect of preference cut-off tp, or 

simply delayed preference cut-off.

Subcase (b2):

In this case the exchange is acceptable. But in this exchange the coordinator 

might (but not necessarily) lose any preference value; that is, GbjU(y) (i> for this 

iteration I could be negative.

The exchange has gained preference value GajU(y) <i), although it was expecting to gain 

GajU(y3)(i). This loss 7t = GajU(y3)(i) - GaU(y)(i), which we shall refer to as the 71 loss.

The fund Fa of i/a would lose pro rata and those of the other coordinator involved 

will gain.

Step 12: [check all subtasks of the current coordinator are processed)

If all the subtasks of the current coordinator have been allocated, then the processing 

moves to Step 13, else it returns to Step 3 for the next subtask of the current coordinator.

Step 13: [check all coordinators are processed]

If all the coordinators have been processed, then processing moves to Step 14, or else it 

returns to Step 2 for the next coordinator.
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Step 14: [check preference gain]

If there was no preference gain for any task in the system during the last iteration, then 

the process stops, otherwise it increments the iteration number by one and returns to Step 

1.

The flow diagram shown in figure 4.3 shows an outline of the allocation process described 

above.
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Fig. 4.7. Outline of the allocation process
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4.3.3 Comments on the allocation process

In the allocation process steps shown in the in the previous section, the home agent (see 

previous section) handles the resource allocation on behalf of the requester coordinator, 

contacting other coordinators and cohorts as necessary. The requester coordinator can also 

carry out this allocation directly, by inviting other coordinators to bid themselves. This will 

be an acceptable alternative, except that it could arguably be more cumbersome, since a 

coordinator will have to ask the cohorts for allocations, since only they can allocate and 

have the direct knowledge of which resources are held by which tasks. Therefore it seems 

more efficient for the home cohort to carry out the allocation directly, with the help of 

other cohorts as outlined above.

Also, instead of allocating one resource at a time, it is possible to allocate all the 

resources of a task at the same time (i.e. in the same loop) by inviting bids for all of the 

resource types in Phase II. In that case the coordinator of the task will ask all the home 

agents of the task, and each home cohort will invite the relevant coordinators, in parallel, to 

bid for its resource type. Eventually the bids will be forwarded to the requestor 

coordinator, which will tentatively accepts the best bid, subject to the availability of funds. 

The cohorts will execute and present the actual outcome of each resource type that meets 

the preference cut-off to the requester coordinator, which will pay pro-rata for each 

outcome.

Preference loss

In the steps outlined above we can attribute the preference loss either to the resource 

conflicts or to the lack of funds, these are discussed below.
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I- Preference loss due to resource conflicts

We identify four sources of preference loss, these sources are:

(a) Bid failure (Step 7)

(b) preference cut-off (p (Step 11(a))

(c) Delayed cut-off (p (Step ll(bl))

(d) The n loss (Step ll(b2))

The bid failure (a) is purely due to the conflicts of subtasks on resources. The conflict is so 

severe that no movement is possible. If there were no conflict, we would have gained all 

the preference values, and if we did, then we would not have the sources b, c, and d either. 

The failure to exceed the preference cut-off, in both (b) and (c), implies conflicts are severe 

but not as bad as in (a). The situation in (d) is much better as the preference gain exceeds 

the cut-off, but not as much as expected. Therefore the conflicts on resources are better 

than in (b) and (c). These resources are not independent, the failure of a subtask to gain 

preference value due to any one of these four reasons might have enabled it to make much 

better gain later.

II- Preference loss due to lack of funds

This preference loss is due to cost cut-off (Step 8). There are two separate situations where 

preference loss will occur due to lack of funds (i) when some exchanges are disallowed as 

being too expensive, this is to force a fast termination (// cut-off) and (ii) when funds run 

out at later iterations (cost run-out). It is not easy to predict which exchanges would be 

considered too expensive and when the funds would actually run out, particularly since the 

coordinators both gain and lose funds from each other like money in a market during the 

processing.
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4.4 Summary

This chapter presented a preference model to be used by cooperative agents that are 

working together towards solving a global task. The preference model is used to resolve 

conflicts among the cooperating agents. A preference satisfaction function (PSF) is 

defined, it returns a value that indicates the total preference values that are not satisfied. A 

cost model is presented. This model is used to ensure that a timely convergence, towards 

an acceptable solution, can occur. An allocation process, in which tasks are allocated for 

the agents according to task preferences, is shown. We presented a high level view of a 

scheduling algorithm based on this preference model and the allocation process. In the next 

chapter we present a mathematical formulation for this preference model, while in chapter 

6 we outline an implementation of the algorithm presented in this chapter.
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Theoretical Distribution Model

Because the preference model, explained in the previous chapter, is highly nonlinear, 

verification using available mathematical techniques is difficult and hence it is quite hard 

to make a quantitative analysis. It is not possible to predict the preference values that can 

be achieved after executing phase I of the allocation process. We cannot relate preference 

values, cost elements and preference cut-offs in any mathematical formula, as these are 

arbitrary user choices. However, the allocation process described in the previous chapter is 

meant to improve the final global preference gradually over many iterations, with the 

preference gain G decreasing per iteration as the iteration I increases. In this chapter we try 

to model the qualitative behaviour of the preference gain over the iterations. We present a 

formula that can roughly estimate the minimum remaining preference value. We study the 

effect of the clustering of requests for the same resource instances. The effect of the 

uniform distribution of these clusters on the developed formula is discussed first. Then we 

show how the formula is affected by the non uniform distribution of these clusters (skewed 

distribution).

5.1 Basic Formulation

During the allocation process, described in chapter 4, the final global preference gain, G 

for all tasks, gradually decreases per iteration as the iteration I increases. This process will
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converge to a minimal value, RT, which is the total remaining preference value. This we 

can describe by an exponential distribution function of the form:

R, = A + BeXI (5.1)

where A is the height of the plateau when e 'XI tends to zero, and hence A = Rmin, the 

remaining minimum preference value at e ' =0. Constant B is Rmax, which is equal to

(Ri - Rmin) and constant X gives the curvature of the distribution and is related to the rate 

of preference gain. Thus the equation can be written as follows:

R i = Rmin + Rmax c 'Xl. (5.2)

A graphical presentation of equation (5.2) is shown in Figure 5.1. for arbitrary values of

Rmin, Rmin, and
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Fig. 5.1 A graphical presentation of the decreasing rate of preference gain
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It can be seen that at 1=0, that is after the initial allocation, where allocations are 

made without considering preference (see 4.2.3), Ro = Rmin + Rmax- At I = 1, R i = Rmjn 

+ Rmax e Z , and as I increases, i.e. e ’ZI —> 0, R i = Rmin .

In order to estimate a value Rmin we have found that it is mainly affected by the distribution 

of preferences for the same resources. Next in this section we try to formulate an 

estimation for the value of Rmin- In this formulation we use two values, the distribution 

density, d, and the Preference Reduction Function, p, that was described in the previous 

chapter. If we have t subtasks and all have preferences over the same m(<t) preferred 

resources, then the density d = t/m.

We assume we have t=2h subtasks distributed over m=2n resources (see figure 5.2). 

At each resource instance, as a time-slot, preference values will decrease on either side of 

the most preferred time-slot, this decrease is given by p. In order to find the preference loss 

formula we need to evaluate the average movement from slot 1 at the right side of the 

midpoint mi for the right half slots and hence half the subtasks (t/2).

Resource Position

Fig. 5.2 Preference distribution
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The first d subtasks at slot 1 move to slots l,2,3,...d, with displacements [0, 1, 2, 

d-1], then the displaced d subtasks move to slots d+1, d+2, .. 2d, with displacements [d-1, 

d, d+1, .. 2(d-l)], and then the displaced d subtasks move to slots 2d+l, 2d+2, .. 3d, with 

displacements [2(d-l),.. 3(d-1)], and so on. Generally speaking:

The displaced d subtasks move to slots (n-1 )d+l, (n-l)d+2, .. nd, with 

displacements [(n-l)(d-l), (n-l)d, (n-l)(d+l), .. n(d-l)].

The summation of the displacement of each sets of d subtasks gives:

(1) [0,1,2, .., d-1] = (d-l)d/2

(2) [d-1, d, d+1,.. 2(d-l)] = [(d-l)+2(d-l)]d/2= 3(d-l)d/2

(3) [2(d-l),.. 3(d-l)] = [2(d-l)+3(d-l)]d/2= 5(d-l)d/2

(n) [(n-l)(d-l), .. n(d-l)] = [(n-l)(d-l)+n(d-l)]d/2= (2n-l)(d-l)d/2

If we sum the right-hand side we get

(1+ 3 + 5 + 7 +.....+ (2n-l))(d-l)d/2 = [1 + 2n -l](n/2)(d-l)d/2 = nn(d-l)d/2 (1)

This also applies for the subtasks in the left half, hence the total displacement for the whole 

distribution is.

Total = nn(d-l)d (2)

To get the average movement per subtask we divide by t = 2nd, and the average movement 

per subtask then becomes:

nn(d- l)d / (2nd) = n(d - 1) / 2

If the preference loss per unit shift is p, then the preference loss per subtasks is:
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pn(d -1)/2 (3)

which can be taken as the percentage preference loss for the subtasks in a target agent.

5.2 Skewed Distribution

In the previous section, we assumed that there are the same number of slots (h) available 

on either side of the midpoint. Let us suppose there are only y slots on one side, say the left 

side of the midpoint mi, where y<h. This will lead to a skewed distribution as shown in 

figure 5.3.

We divide the m preferred slots into two unequal groups by a break point b, with a left 

group of width n’ and a right group of width n”, such that:

ri / n" = (h - x)/(h + x) (4)
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where (h - x) = (y - n + n') is the number of slots available on the left side of the break

point b. Note y < h, n' + n" = 2n = m , therefore :

n" = 2n - n'

x = h- y + n-n'

Replacing n" and x in Eqn (4)

n' / (2n - n') = (y - n + n') I (2h - y + n - n')

Solving this for n' we get:

n' = n(y - n) / (h - n) (5)

To evaluate the effect of this skewed distribution, we use eqn (1), replacing n by ri - (h -

x)/d for the left side and n by n" - (h + x)/d for the right side, then this eqn becomes:

Total = n' n'(d - 1) d/ 2 + n" n" (d - 1) d/ 2

= [(h-x)/dj2 (d-l)/d/2 + [(h+x)/d]2 (d-l)/d/2

= (d-1 )d[h2 - 2hx +x2 + h2 +2hx + x2]/(2d2)

= (d-l)[ h2 +x2 ]/d

= (d-l)[ (nd)2 +x2 ]/d

= n2(d-l) d +x2 (d-l)/d

Dividing it by t = 2h = 2nd, we get:

n(d - l)/2 + x2(d - l)/2nd2

Therefore the average shift

p[ n(d - l)/2 + x2(d - l)/2nd2] (6)

The difference between equation (3) and equation (6) is the term x2(d - l)/2nd2, and we 

refer to this term as the correction term. This term disappears when x=0, which is the case 
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for a uniform distribution. It should be noted that when evaluating equation (6), in the case 

of uneven distribution, both mj and b should be determined by counting the number of 

subtasks on the left and right side, rather than from the slots they occupy.

5.3 Effect of Multiple Target Agents

In the analysis discussed in the previous sections we only considered the case where there 

was one target agent, in this section we will consider the impact of having more than one 

target agent. If we assume the subtasks are to be distributed over s resources, where s > t, 

then the resultant distribution density D = s/m, in contrast to d = t/m.

The degree of impact of more than one target agent depends on task precedence 

dependencies. To determine the overall effect over q target agents we consider the 

following two cases: with no precedence dependencies and with precedence dependencies. 

Case I: No precedence dependencies:

We assume here that there are no precedence dependencies among the subtasks, that is the 

subtasks do not have any precedence constraints and hence can be allocated freely. In that 

case we can calculate a weighted average of the total preference loss, which is the same as 

the remaining preference values, as follows:

Rt (case I) = [ PiLj + P2L2 +.... + PqLq ]/q (7)

where Li is the preference loss (in percentage) pf agent A;, calculated from equation (6) , 

and then P, is the total preference value of agent A;. This is the minimal loss based on 

density dj in each agent A; and hence is predicted to be the lowest limit.

Case II: With precedence dependencies:

In this case we take for each agent the number of slots over which the subtasks were 

distributed by phase I as representing an expression of dependency for that agent. We use
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this slot number to evaluate D, and we use this value of D in the preference loss evaluation 

as in case I. This is assumed to be the upper limit.

The final loss should lie between case I and case II. We should note that there will also be 

other factors such as preference cut-off, cost cut-off etc, which we have not taken into 

account in these estimates.

5.4 Summary

A theoretical formulation for the preference model was presented in this chapter. Two 

formulae were derived one for uniform distribution and one for uneven distribution, which 

can be regarded as a general case. Using the assumption whether precedence dependencies 

exists or not we have shown how to calculate the lower and upper limits for the remaining 

preference values when more than one resource is available.

In the following chapters we show our implementation for the preference model and 

the results collected from the experiments performed using this implementation. We 

compare those experimental results with those predicted using the formulae derived in this 

chapter. We have submitted this model and our results for publication in [DEEN03BJ.
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Design and Implementation

In the course of this research we developed a market based preference model to be used in 

resolving conflicts among cooperating agents. We designed and implemented a simulator 

for the preference model called the preference model simulator (PMS). We used 

distributed scheduling in manufacturing as a case study for testing the preference model 

characteristics. This chapter describes the software design and implementation of the PMS. 

We present the case study, along with the results obtained from the simulation study that is 

described in chapter 7.

6.1 Overview

The objectives for developing the PMS are as follows:

• To test the behaviour of the preference model described in Chapter 4.

• To compare the results obtained from the simulation with the theoretical 

results presented in Chapter 5.

The Cooperating Knowledge Based System (CKBS) approach, discussed in detail in 

Chapter 3 is used in our implementation of the simulator. As stated in Chapter 3, the CKBS 

approach is an engineering paradigm as opposed to the mentalistic paradigm of DAI/MAS. 

Effectiveness, reliability, performance, and usability are of great importance in CKBS.
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Agents in CKBS are autonomous and cooperative. The preference model requires agents to 

be distributed and cooperative to achieve a common global goal through negotiation. For 

the aforementioned reasons, the preference model lends itself naturally to the CKBS 

approach.

During the design process we used the notion of classes and methods adopted by the 

object-oriented approach [BOOC94J. Thus enabling us to apply abstraction in modelling 

the various system components and easy transition from the design phase to the 

implementation phase.

We first present an agent design in section 6.2, then we discuss agent communication 

in section 6.3, and in section 6.4 we discuss the implementation of the PMS.

6.2 Agent Design

We based our agent design on the CKBS model described in section 3.2.1. While the main 

concepts of the CKBS agent are retained, some features, which are not necessary for the 

implementation of the preference model, are omitted. Our agent design provides the default 

behaviour and structures for all the different types of agents (section 6.2.1).

The agent relations are categorised into internal relations and external relations; this 

separation of relations into internal and external relations conforms to the schema layering 

outlined in section 3.4. The internal relations that relate to the agent’s internal work are 

found in the home model while the external relations are the agent’s interface to the 

outside world. The agent structure, shown in Figure 6.1, is divided into four parts: 

graphical user interface, communication components, public components and home 

schema of the agent. We discuss these agent parts below.
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Interaction between the human user and the agent is performed via the graphical user 

interface (GUI). The user can utilises the GUI to change certain parameters such as initial 

budget, initial allocation cost, and reallocation cost, and also to monitor the agent status.

Fig. 6.1 Agent Structure

The communication layer is used by the agent to communicate with the outside 

world and is discussed in section 6.3.

The home schema includes the internal structures and the intrinsic functions needed 

for the execution of the subtasks. It forms part of the cohort architecture and is located at 

the base of the cohort.

The public component includes agent identity, a task schema that includes a 

dependency schema, and a preference schema. The identity holds the agent basic 

information and can be represented as follows:
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Identity (
ID
Type
Address

)

The ID attribute is a unique key that represents the agent. The type attribute reflects the 

agent type (see later) such as coordinator agent, home agent, etc. The address attribute is 

needed for inter-process communications between the agents. As the agents can be 

anywhere in the network, the address attribute represents the agent address in the network 

and its communication details.

We assume that the task is described and decomposed by the system user during the 

system execution. Each subtask has a set of attributes and can be represented as follows: 

SubTask {
Task ID
Duration
Predecessors;
Successors;
Resources; 
Preferences;

}

Task ID uniquely identifies each subtask held by the agent. Precedence schema is 

stored in the predecessors and successors attributes. The preference schema is stored in the 

preferences attribute. Subtask duration and required resources are stored in the duration 

and resources attributes respectively.

79



Chapter 6: Design and Implementation

6.2.1 Agent Types

Each agent has a different function to perform in the system. In this section we describe 

each of these agents and the role it carries out. The basic features of each agent are 

inherited from the generic agent described above.

The Coordinator Agent

The coordinator agent is responsible for scheduling subtasks and cooperating with other 

coordinators during the allocation process. The coordinator agents use the allocation 

process of the preference model outlined in chapter 4 to trade preference values among 

cooperating agents. A coordinator agent is assigned for each task that is decomposed into 

subtasks.

The Home Agent

The home agent is responsible for executing the subtask. Each home agent can perform 

more than one skill. In the system there can be more than one home agent with the same 

skill. The subtask can specify a preference on a home agent to be used when carrying out 

the task.

The Directory Agent

The directory agent maintains a list of the agent identities that are currently running in the 

system. Also each agent keeps a local directory of those agents that it contacted recently. 

This to reduce the number of communication in the system.
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6.3 Operational Structure and Agent Communication

The basic system structure consists of multiple agents connected through a communication 

network (internet or a local network) as shown in Figure 6.2. A Message passing schema is 

used for agent communication. The communication network must provide the following 

services [HAMA98]:

• Dispatch and reception of messages among various agents that exist in different 

locations in the network.

• Buffers should be available for storing incoming and outgoing messages. This is 

helpful for transmitting the requests in case of failure.

• Errors and failures that occur, due to agent break-down, during transmission 

should be identified and reported back to the initiating agent.

6.3.1 Agent Messages

As mentioned before agent communication is handled by a message passing schema. The

general message syntax is as follows:
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<message tagxsender identityxreceiver identityxmessage con.ten.ts>

The message tag identifies the type of the message, the identities of the senders and the 

receivers are contained in the sender and the receiver parts of the message respectively, 

while the message contents part carries the actual message. The message is interpreted 

according to the tag. There are different message types, we classify these types according 

to the communicating agents interactions as shown below:

• Agent* Directory agent.

• Coordinator agent <=> Coordinator agent.

• Home agent <=> Coordinator agent.

The different message types used in the system are shown in Figure 6.3 and outlined 

below.

Fig. 6.3 Message types used in the system

By agent here we mean a home agent or a coordinator agent.
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Agent and Directory Messages

These messages are exchanged between the coordinator agents or the home agents and the 

directory agent. These messages are:

add_agent\ This message is sent by the agent requesting an identity. This is sent 

during the loading of the agent.

agent-added'. This message is sent by the directory agent to the agent in response 

to the add-agent request. It informs the agent that its request for identity is 

granted and assigns a unique identity to the agent.

get_id'. This message is sent by the agent to the directory agent requesting the 

identity of another agent.

agent_id\ This message is sent by the directory to the agent in response to the 

get_id request.

get_skill_id'. This message is sent by the agent to the directory agent requesting 

the identity of a home agent with certain types of skills.

agent_skill_id: This message is sent by the directory agent to the agent in 

response to the get_skill_id request. It contains all the home agents that are 

capable of performing the requested skill.

rmv_agent\ This message is sent by the agent to the directory agent requesting 

removal from the system.

agent_rmvd'. This message is sent by the directory agent to the agent in response 

to the rmv_agent request.
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Coordinator and Coordinator Messages

These messages are exchanged amongst the coordinator agents. These messages are : 

calc_cosf. This message is sent as a request to a coordinator to calculate the cost 

of rescheduling one of its subtasks.

cost_of_resch'. This message is sent in response to a calc_cost request. It contains 

the cost of rescheduling a subtask.

rdy_to_accepf. This message is sent to inform the coordinator that the proposal 

for rescheduling is acceptable and requesting confirmation.

reject'. This message is sent to inform the coordinator that the proposal for 

rescheduling is rejected.

conf_accept'. This message is sent to confirm acceptance of the proposal. 

roll_back'. This message is sent asking all coordinators to roll back to the previous 

state.

Home and Coordinator Messages

These messages are exchanged between the coordinator agents and the home agents.

These messages are :

get_init_alloc. This message is sent as a request to a home agent to assign an 

initial allocation to a subtask.

init_alloc\ This message is sent in response to a get_imt_alloc request. It contains 

the initial allocation of the subtask.

get_sched_cord'. This message is sent requesting a list of coordinators allocated to 

given slots.
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sched_cord\ This message is sent in response to a get_sched_cord request. It 

contains the list of coordinators that are allocated to the given slots.

resched'. This message is sent asking the home agent to reschedule a subtask. 

resched_confirmed'. This message is sent by the home agent to confirm 

rescheduling of the subtask.

6.4 Implementation

At the time we started the development of the PMS we looked at different agent 

development environments. A non-exhaustive list is presented in Tables 6.1 and 6.2 

[UMBCJ. These listed in Table 6.1 include academic and research agent development 

platforms and the list in Table 6.2 includes commercial and industrial agent development 

platforms.

Table 6.1 Academic and research platforms for agent development

Name Research Group Comments

JIAC Technical University 
Berlin DAI-Lab

A Java class library for the 
development of a universal 
architecture of agent-oriented 
systems
(ALBA99)

MAST Technical University 
of Madrid

A general purpose distributed 
framework for the cooperation of 
multiple heterogeneous agents 
(IGLE95)

OAA SRI Al Centre

A framework for integrating 
heterogeneous software agents in a 
distributed environment 
(MART99)

Zeus British Telecom Lab
ISR Group

A library of software components 
and tools that facilitate the design, 
development and deployment of 
agent systems 
[NWAN99]
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Table 6.2 Commercial platforms for agent development

Name & URL Company Comments

Aglets
(http://www.trl.ibm.eom/a
glets/)

IBM Japan
An environment for 
programming mobile Internet 
agents in Java

AgentBuilder
(http : // agentbuil der. com) Reticular 

Systems, Inc.

An integrated software 
development tool to build 
intelligent agent-based 
applications

JACK
(http ://www. agent
software.com.au)

Agent
Oriented 
Software 
Group

An environment for building, 
running and integrating 
JAVA-based multi-agent 
systems using a component
based approach.

At the time of writing many such platforms exist. For a more comprehensive list of 

academic agent development platforms see reference [UMBCA], and for commercial 

platforms see reference [UMBCB].

When considering these and other agent development platforms at the time the 

simulation was being created, we excluded frameworks that are free for non-commercial or 

academic use. Therefore, the candidate frameworks fulfilling our constraint are those in 

Table 6.1.

For evaluation purposes we considered the following characteristics of the 

frameworks, each characteristic has a weight (from 1-3) indicating its overall importance:

1. Stage of development (maturity): how long has the framework been in development? 

Are all features available? Is it bug free? - weight: 3.

2. Use of the Java language. This is our primary programming language, this is 

necessary to speed up the learning curve - weight: 3.

3. Good library documentation and the availability of tutorial material - weight: 3.
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4. Support for Agent design and communications, this is necessary to speed up the 

development of the simulator - weight: 2.

5. Good debugging tools - weight: 2.

6. Community support, important for solving any problems encountered. It is judged on 

the availability of active mailing lists and discussion boards - weight: 1.

Our evaluation is shown in Table 6.3. The values in the table indicate the presence and 

quality of the corresponding feature: 0 indicates its absence, 10 indicates that it is very well 

implemented. This evaluation shows that the JDK appears to be the form most suited for 

the development of the simulator. We therefore implemented the simulator using Java 

Development Kit (JDK1.2.2) [FLAN99].

Table 6.3 Feature analysis

Framework Maturity Java Documentation Agent 
Support

Debugging 
Tools

Community 
Support

JDK 9 10 9 5 7 8

JIAC 6 0 5 7 5 5

MAST 6 0 6 7 4 4

OAA 5 0 6 7 4 4

Zeus 7 10 7 7 5 6
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6.4.1 PMS Infrastructure

The basic PMS infrastructure consists of multiple agents connected through a

communication network (internet or a local network) as shown in Figure 6.4.

Fig. 6.4 PMS infrastructure

The Agent Message Router (AMR) handles interactions among the agents. Each 

agent is assigned a unique identity by the AMR. Agents can either broadcast a message to 

all agents or can send a message to a specific agent or group of agents.

For agent communication we used a modified message-passing scheme as described in 

[FARL98], We chose message passing as a communication method as it is relatively 

simple to implement using the java.io.package, and there are no communication overheads 

as in the case of CORBA1 [ORFA97]. This message passing scheme, the basic structure of 

the AMR, and the agents are described below.

' CORBA home page ((Object Management Group) http://www.omg.org
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6.4.2 The Message-Passing Scheme

A message is a structured piece of information sent from one agent to another over a 

communication channel. These messages can be requests made to one agent by another, or 

can be data or notification sent to another agent [Farl98], Based on this definition, the 

following is a representation of a generic message object.

public abstract class Messageclass
{
//Attributes
protected String id;
protected Vector argList;

//Constructor
public Messageclass (String mid)

//Methods
public void addArg (String arg) {...}
public String getID (){...}
public void setId(String mid) {...}
public Vector getArg () {...}
public abstract boolean Do (){...}

}

Messages are treated as a string of tokens, a message is simply a series of tokens 

followed by an end of message indicator. The first token is the message identifier and the 

rest are arguments of the message. Each message object has an identifier, id, and a list of 

arguments, arglist. The methods getID() and getArgO are used to get information about the 

message object. The abstract method Do() is used to interpret the message arguments and 

to perform whatever is required for the message depending on its type. A different 

implementation of the Do() method is used in the subclasses of the MessageClass for each 

type of message defined in our system.

The class MessageHandler, is implemented so that an agent can receive and send 

messages over the established connection, a representation of this class is shown below:
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public abstract class MessageHandler implements Runnable
{

//Attributes
public static MessageHandler current = null; 
Hashtable connections - new HashtableO; 
Hashtable handlers = new Hashtable();

//Constructor
public MessageHandler(iputStream i, outputstream

o) {...}
I/Methods

synchronized public int nextAgentld () (...) 
synchronized public Vector getAgentlds () (...) 
synchronized public int addAgent(Inputstream i,

Outputstream o)
synchronized public int addAgent(String

name, Inputstream i, Outputstream o) (...) 
synchronized public void addAgent(int id,

Inputstream i, Outputstream o) (...) 
synchronized public boolean removeAgent (int id) (...) 
synchronized public int getAgentld(String n) (...) 
synchronized protected AgentConnection getAgent(int

id) (...)
public Message readMsg(int id) throws (...)
public boolean sendMsg(Message msg, int id) throws

IOException (...)
public boolean sendMsg(Message msg) throws

IOException (...)
public void run ()(...) 
protected Message buildMessage (String msgld) (...)

)

Various methods are supplied in this class for adding, removing and getting agent 

connections. Each connection is associated with an id number, such connections are stored 

in a table connections, that is maintained by the MessageHandler. There are two versions 

of sendMSgfg one sends a message to a specific agent and the other broadcasts the 

message to all the agents. Every time an agent is added, the following events take place:

• A connection is established to hold the details of the InputStream and 

Outputstream connected to the agent, this is stored in a hashtable using the 

agent's id as the key.

• An AgentHandler is created and given the id number of the agent.

• A new thread is created for the AgentHandler.

• The new thread is started.
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The AgentHandler implements a runnable interface and its run() method is a loop 

that continuously attempts to read messages from its agent and then acts on it as shown 

below:

public void run() {
while (true) {

try {
Message m = Msghandler.readMsg(Agentld);
m.Do();

}
catch (IOException e) {}

}

Multiple connections are handled by creating a thread for each agent. The thread can 

asynchronously read messages and act on them. Agents can be added to the 

MesageHandler at any time. To allow asynchronous agent handling, the readMsgO, 

sendMesage() and the methods for adding and removing agents are synchronised.

6.4.3 The Agent Message Router (AMR)

The AMR performs the following tasks:

• Register new agents and provide them with a unique identifier.

• Remove agents.

• Send messages.

• Broadcast messages.

We need to provide an identity for each agent in the system so that transactions 

among agents can be traced and targeted to individual agents. The Identity class, shown 

below, is provided to support this function.

public class Identity implements Serializable {

//Attributes
Hashtable property = new Hashtable ();

//Constructors
public Identity(int id) {..}
public IdentityOI)
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I/Methods
public boolean equals(Object o) {..}
public int getldO {}
public String getName() {. . }
public void setName(String n) {..}
public Object getProperty(Object key) {..}
public void setProperty(Object key, Object val) {..} 

)

We use two properties to identify each agent. We use the name property as a 

descriptive property that can be used in a user interface and the integer id is used as an 

internal identifier to tag each agent. These properties and additional properties that can be 

used to further define the agent are stored in the property list defined in the class. A set of 

methods is provided for setting and getting these properties. In order for identity objects to 

pass back and forth between agents on the network, the Identity class is made to implement 

the Serializable interface.

The AMR uses the MessageHandler to route messages back and forth between 

cooperating agents, a ServerSocket to accept socket connections, and a port number that it 

listens to for asynchronous connections from agents. A representation of the AMR class is 

shown below:

public class AMR implements Runnable {
//Attributes
MessageHandler msgHandler = new MessageHandler();
ServerSocket socket = null;
int port = 5009;// Other port number can be uses 
private AMRGUIWindow window;

//Constructors
public AMR(int p) {..}
public AMR(){..}
public AMR(Serverwindow S) {..}

//Methods
protected void initHandler() {..}
public void run() {

// Make the server socket..

}
public Identity newMember() {..}
public boolean remove(Identity i) { .. } 
public Vector getMembers() {..} 
public boolean send(Identity to, Identity from, 

String mtag, String s) throws IOException {..} 
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public boolean broadcast(Identity from, String 
mtag, String s) throws IOException {..}

}

The inithandler() method is called in each constructor. It is used to initialise the 

MessageHandler. The run() method in the AMR class creates the ServerSocket that listens 

to its designated port for connections requests from agents. Each time a new connection is 

made, the agent is added to the handler by calling its addagentQ method. The AMR creates 

a unique Identity for the agent by calling newMember(), then a message is sent to the agent 

containing its Identity.

To create an AMR object, we implemented a CreateAMR which has a main method 

in which the AMR object is created and a GUI (Graphic User Interface) that shows the 

AMR status and communication messages. The main classes used (the MessageHandler, 

the Identity , and the messageClass) in AMR, their main methods, and their relations are 

shown in Figure 6.5.

Fig. 6.5 Main classes used in the AMR
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We can create an AMR on a given port on a host, then any client can connect to the 

system by creating the client agent, using the AMR host and port number. The agent can 

then engage in cooperative tasks with any other agents connected to the host using the 

appropriate methods. The AMR services each connection made in a separate thread. A 

screen shot of a running AMR is shown in Figure 6.6.

•znofxi

Messages:

^Server running on port 5009
Got new connection, Agent identity ===» 
Got new connection, Agent identity ===> 
Got new connection, Agent identity ===> 
Got new connection, Agent identity ===>

0
1
2
3

Exit |

Fig. 6.6 Screen shot or running AMR

6.4.4 Agent Implementation

As the main concern of this implementation is to demonstrate the working of the 

preference model and to perform experiments to verify our theoretical formulations, we 

have a generic agent class (parent class). It is used to build the different types of agents, 

discussed in section 6.4, and to provide the default behaviour and structures for all agents. 

In this implementation each agent has the ability to be connected to the AMR and to other 

agents in the system and can engage in communication with them. Also each agent can 

send messages and be notified of incoming messages. A representation of our agent class is 

shown below:

public class Agent
{
//Attributes

MessageHandler handler = new MessageHandler();
Identity id - null;
String name;
private AgentGUIWindow window;

//Constructors
public Agent(String host, int port,

String n) {..}
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//Methods
public Identity getldentity() { . . }
public boolean connect(Properties p) {..} 
public boolean send(String tag, String msg,

Identity dst) throws IOException {..} 
public boolean broadcast(String tag, String msg) 

throws IOException {..}
public boolean notify(String tag, String msg, 

Identity src) throws IOException {..}
}

This class provides the constructor with a name along with the host and port number 

of the AMR to which it will connect. The constructors initialise the Messagehandler, 

establish the appropriate connection to the AMR, and create a GUI to show agent status 

and communication messages. Each agent has a unique identity defined by the Identity 

class discussed in the previous section. The send() method sends a message to a particular 

agent, while the broadcast) method broadcast the message to all agents in the system. The 

notifyO method checks the message type or body and reacts accordingly.

The main classes used in the Agent class, that is MessageHandler and Identity, their 

main methods, and where these classes are used are shown in Figure 6.7.
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Fig. 6.7 Main classes used in the Agent class

6.4.5 Implementation of Agent Types

As stated before the focus of our implementation is scheduling in a manufacturing 

environment. In this environment, we need an agent for task management, which we call 

the coordinator agent and an agent for machine management, which we call the home 

agent. We also use a directory agent. Each agent has a different function to perform in the 

system. In this section we describe each of these agents and the role it carries out. The 

basic features of each agent are inherited from the basic Agent class described in section 

6.4.4.
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The Coordinator Agent Implementation

A coordinator agent is assigned for each task. Each task is decomposed into subtasks 

stored in a hashtable, with an initial budget. A presentation of the task is shown below: 

public class Task {
//Attributes
public String taskName;
public Hashtable subTasks;
public int initailBudget;
public int currentBudget;

//Constructor
public Task(String name,Hashtable 

subtasks,int intbud){..}
}

Each subtask is presented using the following class:

public class subTask {
// Attributes

public String subTaskname;
public int duration;
public Vector predecessors;
public Vector successors;
public Hashtable resources ;
public Hashtable preferences;

//Constructor
public TaskClass(String name,int duration, 

Vector preds, Vector sue, 
Hashtable res,' Hashtable prefs{..} 

}

Preferences for each subtask is stored in a hashtable, and each preference is presented 

using the following class:

public class Preference {
//Attributes

public String prefName;
public String target;
public int value;
public int offer;
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//Constructor 
public Preference (String name, String 

tget, int val, int offer){..}
}

Figure 6.8 shows the relationship between the coordinator agent, the task , the subTask, 

and the preference classes.

Preferences

Fig. 6.8 Main classes used in the coordinator

We provided a GUI that enables the user to change certain parameters (initial budget, 

initial allocation cost, and reallocation cost), and show the cost, remaining preferences and 

the messages received and sent by the coordinator. A screen shot of the coordinator GUI is 

shown in Figure 6.9.

Fig. 6.9 A screen shot of the coordinator GUI

The Home Agent Implementation

During the task allocation process, outlined in chapter 4, the home agent is consulted 

regarding the task allocation. According to this consultation the task allocation is initiated. 

Once the task allocation process has ended all affected coordinator agents send the
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appropriate home agents messages informing them of the new allocations. Subsequently 

the home agents update their schedules. A graphical interface that enables the user to see 

the current status of tasks scheduled and the messages received and sent by the home agent 

is provided. A screen shot of this graphical interface is shown in Figure 6.10.

| Skills |s3 fj

Fig. 6.10 A screen shot of the home agent graphic interface

The Directory Agent Implementation

Upon creation the agent registers with the directory and subsequently it receives a unique 

identity from the directory agent. This identity is used while communicating with other 

agents. On leaving the system the agent is removed from the list and the details of this 

removal are cascaded to other agents to update local directories. We should note that the 

directory agent should be created first. Also the agent class maintains a default address for 

the directory.

A GUI is provided to enables the user to change certain parameters (preference cut

off and the weights for the different preferences), and to show the messages received 

and sent by the directory. A screen shot of the directory GUI is shown in Figure 6.11.
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Fig. 6.11 A screen shot of the directory GUI

6.5 Running PMS

To simplify the implementation and to emphasise the main concepts of the preference 

model, we have limited the number of preference types to be handled to one type, namely 

the end-time preference. Also we have limited the resource type to continuous resource 

(see section 4.2.1). These limitations do not constrain the PMS from demonstrating the 

basic concepts of the preference model, which is the main focus of the PMS as stated at the 

beginning of this chapter.

In this implementation we run the AMR first, then the directory agent is loaded and 

then the coordinators and the home agents can be loaded. The number of coordinators and 

home agents and their attributes are read from a disk file and these can be changed from 

one run to another. Though the user can remove a coordinator or a home agent during the 

run, the cascading effect of this is not dealt with in this implementation. We thought that 

this complicates the implementation and leaving it out does not prevent us achieving the 

objectives of the PMS.

The coordinator agents load the subtasks and their attributes from disk storage and 

starts the allocation process outlined in Chapter 4. The intermediate results and the end 
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results are stored on disk to be analysed later. These results are discussed in the next 

chapter. The main events that take place during run time are summarised in Figure 6.12.

6.6 Summary

In this chapter we discussed the design and implementation of the PMS. We designed the 

PMS to demonstrate and verify the working of the preference model. We built an 

infrastructure for the message passing system to be used by the various agents in the 

system. We used an abstract class for the agent from which all agents in the system inherit 

their properties. Message types and structures used in the demonstrator were presented. 

The different type of agents and their roles in the implementation were discussed. We 

discussed the assumption made in the implementation and the main events that take place 

during the running of the system. In the next chapter we shall present and analyse the 

results obtained from running a case study on the implemented simulator.
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Exploratory Experiments

This research is mainly driven experimentally. Therefore the operational functionality of 

the preference model was developed incrementally using the several hundred experiments 

we conducted using the PMS presented in chapter 6. Apart from the initial numerous test 

runs to verify the programme correctness, several hundred experiments have been 

conducted with many permutations and combinations, first to develop an insight and then 

to determine what is or is not significant. These experiments have been carried out over a 

period of three years. Due to the non-linearity of the process, initially we were not even 

sure that the processes would converge, and that the final preference value would at all be 

stable or that a simple theoretical model would be possible. It was always the experimental 

results that guided us to our conclusions. The objectives of the experiments presented in 

this chapter are as follows:

1. To show that the preference model converges to a stable value, regardless of the 

number of tasks and their configuration.

2. To study the characteristics of this convergence and to determine the effect and 

significance of the different parameters in the preference model on the 

convergence to the final solution.

3. To investigate if the preference model behaviour can be predicted using 

mathematical formulae, at least qualitatively.

102



Chapter 7: Preliminary Experiments

A group of experiments were planned to help us in achieving these objectives. A 

case study, presented in section 7.1 is used throughout these experiments. The experiments, 

presented in this chapter, are divided into three groups. The objective of the first group is 

to demonstrate that preference model converges, for the second group it is to investigate 

the effect of the different parameters on the convergence characteristics, and for the third 

group it is to investigate the preference losses discussed in section 4.2.4. These 

experiments are presented in sections 7.2, 7.3, and 7.4 respectively. We summarise our 

findings in section 7.5.

7.1 The Simulated Case Study

For the purpose of the experiments presented in this chapter we have considered the 

problem of scheduling a number of tasks T'. We have used a set of coordinators U1, U2, .. 

Un, each U1 is responsible for scheduling a (global) task T1, each task T1 being further 

subdivided into subtasks: Tj | {j = 1, 2, .. m}, one or more subtasks being allocated to a 

home agent Ak. But in reality we have used up to n = 14, that is, up to 14 coordinators 

(and hence 14), up to six subtasks (m= 6) in each task, and three home agents, each 

sharing many subtasks of different coordinators. The subtasks have precedent subtasks and 

their allocation to the target agents can be considered as the allocation to Assembler agents 

in manufacturing. The preferred resource type used in our simulation is the end-time slot of 

a subtask. Apart from resource conflicts, precedent constraints can also disallow the 

allocation of some resources. We have used the algorithm outlined in section 4.3 to find a 

schedule that satisfies as much preference values as possible. According to this algorithm, 
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each subtask is initially allocated the earliest possible slot that satisfies the precedence 

constraints. As explained in detail in Chapter 4, the coordinator will accept a negotiation 

for an exchange if its offer price O > the cost C for the expected preference gain g. After 

the negotiation, an actual exchange with preference gain g' | g' < g is proposed. The 

coordinator will accept it if g' > cp, but pay pro-rata to C*g'/g. If the exchange is 

unsuccessful, the negotiation will continue for another possible exchange.

In the case study we used in our simulation, each subtask T j has a preference value 

V; and an offer price O; that the task is willing to pay for preference satisfaction. Also the 

costs Cj and Cr, are set by the task agent, and indicate the price that the task should pay for 

a preferred allocation (see section 4.2.2 for the explanation of those parameters). The 

preference values and offer prices are assigned randomly using the random method 

available in the Java Math package. The user-defined Preference Reduction Function, p, 

was used to allocate reduction on preference gain for slots away from either side of the 

preferred end time slot (section 4.2.1). Observe that subtasks have precedent constraints. 

The diagram in Figure 7.1 shows the coordinators, tasks, subtasks, and tasks attributes, for 

n=6. To obtain more general results we have experimented with three different values of n 

and with different values for the different subtask attributes (i.e. duration, resource agent, 

preferred end time, preference value, offer price).

In order to generalise the results and not to be biased towards a specific configuration 

of values and subtasks we used a variety of test cases. Each coordinator is assigned a 

unique set of subtasks. This is done so that the only knowledge about other agents is 

acquired through negotiation. The main features that were included in the test cases are as 

follows:
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1- Variable numbers of subtasks for each coordinator. As can be from Figure 7.1, 

different numbers of subtasks were assigned for the different coordinators.

2- Variable numbers of predecessor and successor subtasks, i.e. subtasks can have one or 

more predecessor and successors.

3- Interdependency of subtasks so that one subtask that belongs to one coordinator is 

dependent on the results of a subtask that belongs to another coordinator.

4- Though the preference values and offer prices are assigned randomly, as indicated 

above, a constraint is made so that they are close to each other in order to ensure 

contention for resources.

105



Chapter7: Preliminary Experiments

Parameters: (Task Name (duration, resource agent, preferred end time, preference value, offer price))

Fig. 7.1 Task Parameters.
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7.2 Investigation of Convergence

As stated before, the main objective of this group of experiments is to investigate if the 

preference model converges to a stable solution, and to see if this stable solution remains 

the same regardless of the order of initial allocation. We start by investigating the gain in 

preference values when only one task (including its subtasks) is reallocated, using two 

scenarios. In the first scenario the preferences of the reallocated tasks are not considered, 

while these are taken into consideration in the second scenario. Then we change the order 

of the initial allocation to investigate whether such variations affect the gain in preference 

values. We expect that a gain in preference values should be achieved in both cases, 

although the gain might be less in the second case as other task preference values are 

considered. Also, we expect the cost to be affected at the points where a gain in preference 

value is achieved. The order of task allocation should have less effect on the final gain in 

preference value, although the intermediate gain values might be different.

7.2.1 Individual Task Reallocation (without considering other tasks preferences)

In these experiments all tasks are initially allocated to the first available slot. Tasks are 

allocated according to the order Tb T2 ... T6, without considering preferences. Then one 

task is subsequently reallocated to satisfy its preferences. We expect a gain in preference 

value for this task, while other tasks might lose some of their preference values. The tasks 

that gained preference values pay those disadvantaged tasks. As a result of this reallocation 

some tasks can be reallocated. These tasks are reallocated to the first available slot without 

taking their preferences into account.

Figures 7.2 shows the result of conducting this experiment for task T3 when tasks are 

initially allocated according to the order Ti, T2 ... T6. Figure 7.3 shows the result of this 
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experiment for task T3 when tasks are initially allocated according to the order T6, T5 ... Tj. 

These figures show how the total cost (C ) and gain in preference values (G ) of T3 vary 

during the reallocation process. Iteration points are indicated by square symbols for the 

gain in preference value, and by diamond symbols for the total cost. With respect to the G 

graph, the Y-axis values indicate the percentage preference gain while in the case of the 

(C3) graph, they indicate the total cost units.

The G3 graph shows that during the initial allocation (iteration 0) around 40% of the 

preference value is satisfied when tasks are initially allocated according to the order Tj, T2 

... Tg, while 44% of the preference value is satisfied when tasks are initially allocated 

according to the order T6, T5 ... Tp A preference gain occurs at iteration 1 in both cases 

and remains constant throughout the subsequent iterations, around 93% in both cases.

The C1 graph shows an increase in cost at iteration 1, 160 cost units in the first case 

and 90 cost units in the second case. We think the difference between these cost values (70 

cost units) is due to the fact that the negotiating tasks involved are not the same and 

therefore the exchanged preferences can be different. This is expected as each gain in 

preference value is associated with an increase in cost and the results conform to our 

expectations.

Since only one task is competing to gain preference value, we might expect that all 

preference values should be satisfied, but, as the results show, this is not the case. This is 

due to the cost constraint. The cost the task is willing to pay is less than the actual cost, and 

therefore not all the preference value is satisfied.
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Iterations -------->

Fig. 7.2 T3 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 1,2,3,4,5,6)

Iterations ------->-

Fig. 7.3 T3 preference satisfactions & cost variation 
(without considering other tasks preferences 
and initial reverse allocation order 6,5,4,3,2,1)
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Appendix A shows graph of results obtained when this experiment was conducted 

using the other tasks and with different order of initial allocation. The results are similar to 

the one above and conform to our expectations.

7.2.2 Individual Task Reallocation (considering other tasks preferences)

These experiments are the same as in the previous section except that preferences of the 

affected tasks are taken into account during their reallocation. We expect the gain to be less 

and that it might require more iterations to converge to the final value. This is because the 

other tasks are now also competing to gain preference values, in contrast to the previous 

experiment where only one task is allowed to compete for gain in preference values.

Iterations ------- ►

q
Fig. 7.4 T preference satisfactions & cost variation 

(considering other tasks preferences)
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The result of this experiment for task T3 is shown in Figure 7.4. The results for the 

other tasks are shown in Appendix B. Figure 7.4 shows how the total cost (C3) and gain in 

preference values (G ) of T3 varies during the reallocation process. Iteration points are 

indicated by square symbols for the preference value gain, and by diamond symbols for the 

total cost. It can be seen that the graphs in Figure 7.4 are similar to the ones obtained in the 

previous experiment but differ in that the preference value in the G3 graph converges (to 

approximately 74%) after iteration 14. The preference value is less than the value reached 

in the previous experiment, and it took more iterations to reach this value. This is to be 

expected as in this case there is contention on resources and other tasks are negotiating for 

the same slot. Therefore T has to trade some of its preference value with other tasks and 

this causes the drop in the preference value (T2, T4, and T6) as shown in Figure 7.5.

Fig. 7.5 Preference satisfactions for all the tasks when reallocating T3 
only and considering other tasks preferences
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7.2.3 Reallocation of all Tasks

In this group of experiments we demonstrate the overall gain in preference value when all 

tasks are reallocated. The procedure is the same as in the previous two groups of 

experiments, but instead of considering the reallocation one task at a time, all tasks are 

allocated concurrently. We expect this to affect the overall gain in preference value for all 

tasks. This value should be higher than the value obtained when reallocation was 

performed on individual basis as, in this experiment, all the tasks are cooperating to get a 

better overall preference value. Also, the gain in preference values for each individual task 

might be different to the one obtained during the individual reallocation.

Initially all tasks are allocated to the first available slot, tasks being allocated 

according to the order Ti, T2 ... T6, without considering preferences. Then all the tasks are 

reallocated concurrently. The result of this experiment is shown in Figure 7.5.

Fig. 7 .6 Preference satisfactions for all the tasks when reallocating all the tasks
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Figure 7.6 shows how the preference value (G1) for each task T; varies during the 

reallocation process and it also shows the variation of the overall preference value. The 

graphs in this figure follow the same pattern as the ones in the previous experiments, 

though the final satisfied preference values are different. In this case there are more 

exchanges of preference values among the tasks. Compared with the initial satisfied 

preference value, the final satisfied preference values for all the tasks, apart from Ti and Tg, 

have increased. This experiment shows that the preference model converges to a solution 

that satisfies as many preference values as possible.

7.3 Investigation of Convergence Characteristics

To demonstrate that the preference model also works satisfactorily for different 

configurations of tasks and subtasks, we repeated this experiment for different numbers of 

tasks and coordinators as well as different cut-off values and different initial allocation 

ordering. Sample presentations of the results of these experiments are shown in Figure 7.6, 

Figure 7.7, and Figure 7.8, the rest are shown in Appendix C.

7.3.1 The Effect of Initial Order

For this experiment we used 6 coordinators and 24 subtasks. The tasks are allocated first 

using initial order Tj, T2, . . , Tg. The experiment is then repeated using a reverse initial 

order Tg, T5, . . , Tp This is also repeated for another two random initial orders. Figure 7.7 

shows the results of these experiments. The results show that the convergence is stable as 

the final preference value in the investigated cases converges to similar values (61%, 60, 

and 59%). This is expected as the tasks negotiating are not the same and it takes a different 
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number of iterations, depending on the initial situation, to reach the same final preference 

value. This also affects the number of iterations needed to reach convergence. Figure 7.7 

shows that the iteration cycle at which this convergence is achieved differs from one case 

to another. For example, for the order of allocation Ti, T2, . . , T6 convergence occurs at 

iteration 8, for the reverse order of allocation convergence occurs at iteration 6, and for 

random order of initial allocation convergence occurs at iteration 12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterations ------- ►

Fig. 7 .7 Effect of initial allocation order on convergence characteristics
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7.3.2 The Effect of Varying the Number of Coordinators and Subtasks

To investigate the effect of the number of tasks and coordinators on the convergence 

characteristics, we investigated five different cases: A, B, C, D, and E. Cases A and B use 

6 coordinators and 24 subtasks, C uses 7 coordinators and 29 subtasks, while D and E use 

14 coordinators and 54 subtasks. Although some cases share the same number of 

coordinators and subtasks, the subtask attributes (preference value, offer, and so on) are 

different. The results are shown in Figure 7.8. This demonstrates that the gain in preference 

value follows the same pattern in all cases. In all these cases the gained preference value 

converges to a value larger than the initial value, though this gain might be small, as in 

case D. These results motivated us to try to find a mathematical model that would describe 

these curves and to search for the parameters that affect their characteristics. This led us to 

formulate the theoretical distribution model discussed in chapter 5, and to perform more 

experiments, presented in chapter 8, to validate the model and to investigate the effect of 

the different parameters of the preference model.
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Fig 7.8 Preference satisfaction for different cases

7.3.3 The Effect of Varying Cut-off Value

To investigate the effect of varying the cut-off value (<p) on the convergence 

characteristics. Initially we used 10 coordinators and 45 subtasks and used different values 

for cp (5, 15, 25, and 35). The results are shown in Figure 7.9. We also conducted the same 

experiment using different numbers of coordinators and subtasks, the results of which are 

shown in Appendix C. These diagrams shows that <p has little effect on the final preference 

value ( ± 1%) but that it did affect the number of iterations needed to reach this final value. 

From the results of these experiments we can say that the lower the value of cp the fewer 

iterations were needed to reach convergence. Initially we thought the effect of (p might be 
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much larger than this. To investigate this we undertook the experiments in section 7.4 so 

that we can identify the sources of losses.

00

? 20
cu

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations

Fig 7.9 Varying the cut-off value (<p)

7.4 Sources of Preference Loss

Five sources of preference loss during the allocation process were identified in section

4.3.3. To recall, these sources are:

(a) Bid failure ( see step 7 in the allocation process)

(b) The cost cut-off (see step 8 in the allocation process)

(c) Preference cut-off cp (see step 11 (a) in the allocation process)

(d) Delayed cut-off (p (see step 11 (bl) in the allocation process)

(e) The n loss (see step 1 l(b2) in the allocation process)
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The bid failure in (a) is a result of severe conflicts on resources, so no movement is 

possible. The loss due to preference cut-off (c and d) implies that the conflicts are still 

severe, but not as bad as in (a). In (e), also due to resource conflict, the preference gain 

exceeds the cut-off, but not as much as expected. The conflicts on resources are better than 

in (c) and (d). The cost cut-off loss is due to lack of funds, either because exchanges are 

too expensive as a means, or because the fund has run out.

We conducted several experiments to monitor the above losses and see if we can 

derive a form of relation which would predict and control these losses

Table 7.1 shows a typical result from one of these experiments in which we used 6 

coordinators, 24 subtasks, the preference cut-off value (<p) is set to 30%, and the preference 

loss rate (p), see section 4.2.1, is set to 5%. Results of other cases are shown in Appendix 

D. For the purpose of these experiment we treated the preference cut-off and the delayed 

cut-off (c and d) as one item, referred to as the average preference cut-off loss.

Examining the results of these experiments we find it difficult to predict which 

exchanges would be considered too expensive and when the funds would actually run-out, 

particularly since the coordinators both gain and lose funds from each other like money in 

a market during the processing. These preference losses are not independent. The failure of 

a subtask to gain preference value due to any one of the above mentioned four reasons 

might have enabled it to make a much better gain later and this is difficult for us to know 

or predict. Therefore, monitoring the preference losses from these four sources at each 

iteration would not guide us to control or predict the solution during the allocation process.
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Table 7.1. Sources of preference loss (24 tasks)

Subtask Average pref, 
cut-off loss

Cost cut-Off 
loss Average Pi loss

Til 7.3 5.0 0.0
T12 10.5 29.7 0.0
T13 8.3 0.0 0.0
T14 0.0 5.0 56.4
T21 0.0 6.6 10.0
T22 11.3 58.0 24.0
T23 8.0 0.0 27.7
T31 0.0 0.0 0.0
T32 11.8 35.4 53.1
T33 10.4 9.7 64.1
T34 7.2 9.1 71.3
T35 5.0 5.0 64.4
T41 7.3 0.0 11.1
T42 9.0 0.0 10.6
T43 0.0 0.0 3.5
T44 8.7 0.0 17.0
T45 10.0 15.2 9.8
T51 6.0 6.0 5.3
T52 9.0 0.0 7.5
T53 9.3 0.0 20.7
T54 10.0 27.0 35.1
T61 7.0 0.0 10.5
T62 10.3 10.4 15.5
T63 6.3 32.8 25.8

Total 8.6 18.2 22.6

Table 7.1: This Table shows the different sources of preference loss during the allocation 
process for 24 tasks and 6 coordinators. <p=30% and p =5%.

7.5 Summary

We presented the simulation results of the initial experiments conducted on the simulator 

described in Chapter 6. We used scheduling of different numbers of distributed tasks as a 

case study in our simulation.

We used the first set of experiments to demonstrate that preference model converges 

and to show that there is a common pattern to this convergence. These experiments 
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demonstrated that <p has little effect on the final preference value (± 1%) but that it did 

affect the number of iterations needed to reach this final value. We concluded that the 

lower the value of <p the fewer iterations were needed to reach convergence.

In the second group of experiments we investigated the different sources of 

preference losses. We found it difficult to predict which exchanges would be considered 

too expensive and when the funds would actually run-out as the coordinators both gain and 

lose funds from each other like money in a market during the processing. Thus, we came to 

the conclusion that monitoring the preference losses from the different four sources at each 

iteration would not guide us to any way of controlling or predicting the solution during the 

allocation process.

Although we can conclude from these results that the preference model provides a 

convergence to a “satisfactory” global solution, these experiments do not show the effect 

of task parameters on the convergence to a solution. Initially we thought we could predict 

the solution by monitoring preference losses, in order to predict the solution. The 

experiments in section 7.3 proved us wrong. Therefore we conducted further experiments 

using different combinations and permutation of tasks and coordinators. These 

experiments, which are presented in the next chapter, gave us deeper insight into the 

working of the preference model.

To concentrate on the fundamental characteristics of the preference model, the 

experiments presented in this chapter dealt with a single preference value. In our 

discussion of the preference model in section 4.2 we made the assumption that preferred 

resource types of a subtask are orthogonal to one another. Thus, to calculate the overall 

gain in preference value we need to sum the individual gain in each preference value for 

each source type, this involves extra programming and extra processing. This would only 

have affected the number of iterations needed to reach convergence and the gain in 
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preference value. The general characteristics would remain the same. Therefore, we 

decided to concentrate on implementing a single preference value and defer the idea of 

using multiple preferences for future work.

The experiments, presented in this chapter, were performed during the initial stages 

of the research and led us to the mathematical formulation presented in chapter 5. Also, 

these experiments motivated us to explore the effect of the distribution of preference 

values and other parameters on the functionality of the preference model. In the next 

chapter we present further experiments that cast more light on the behaviour of the 

preference model.
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Simulation Results - Further Study

The results in the previous chapter motivated us to conduct further experiments to explore 

the working behaviour of the preference model. In this chapter we aim to present results 

obtained from these extended experiments. The experiments in this chapter use the same 

simulation study for scheduling in a manufacturing environment as was used in the 

previous chapter. The experiments that are presented in this chapter are divided into the 

following two sets:

I. The experiments that are presented in the first set are those experiments that 

were conducted to illustrate some of the basic desirable properties of the 

preference model, namely: that the solution converges to a stable final 

preference value independent of the initial order of subtask processing and that 

its value is also stable against reasonable variations in the preference cut-off 

value (p and the offer price.

H. The experiments that are presented in the second set are those experiments that 

were conducted to show that the results conform with the predicted results 

calculated by using the formulae from the theoretical model developed in 

Chapter 5.
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We used the PMS implementation described in Chapter 6 for the purpose of these 

experiments. For the simulation study we have used a set of coordinators, each responsible 

for a global task that is being further subdivided into subtasks. Our objective is to find a 

schedule that satisfies as many preference values as possible, for which we have used the 

algorithm outlined in Chapter 4. In section 8.1 we outline the case study and we present 

our results in the subsequent sections.

8.1 The Case Study

As the experiments in this chapter are an extension of the ones described in the previous 

chapter, we have used the same types of configuration. A detailed presentation of the case 

study was given in section 7.1, for the sake of clarity we give a brief summary of the case 

study and show a presentation of the case study in Figure 8.1 with different parameters and 

configuration. This figure shows the coordinators, tasks, subtasks, and their attributes, for 6 

coordinators. In this case study we used a set of coordinators U1, U2, .. Un, each U1 with a 

(global) task T‘, each task T1 being further subdivided into subtasks: T'j | {j = 1, 2, .. m}, 

one or more subtasks being allocated to a home agent Ar. We used up to n = 14, up to six 

subtasks (m= 6) in each task, and three home agents (k=3). Also we used the algorithm 

outlined in section 4.3 to find a schedule that satisfies as many preference values as 

possible. We used a varying number of coordinators and tasks with different attributes to 

obtain a large number of results.

So that our results would not be biased we adopted the same strategy in choosing the 

test cases as the one described in section 7.1.
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T61(2, A3,5,57,50) T62(3, A2,7,58,40) T63(2, Ab9,89,48)

Parameters: (Task Name (duration, resource agent, preferred end time, preference value, offer price))

Fig. 8.1 A presentation of the case study for n = 6
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We classify the experiments into two sets. One set concerns those experiments that 

were conducted to confirm some basic desirable properties, while in the second are those 

experiments that were conducted to verify our theoretical model. In the next sections we 

present the results of these experiments and then we discuss their findings.

8.2 Verification of Basic Properties (First Set)

The objectives of these experiments are to show that:

III. The solution converges to the same final preference value independent of 

the initial order of subtask processing.

IV. That value is also stable against reasonable variations in the preference cut

off value cp.

V. That value is stable against higher offer prices by some coordinators.

In the following subsection we present the experiments we have conducted to achieve the 

above objectives.

8.2.1 Variation in Subtasks Processing Order

In section 7.3.1 we presented an experiment that investigated the effect of changing the 

order of the initial allocation on the convergence to the final value. We repeated that 

experiment but this time the specified end-time preference value was set to be the same as 

the one achieved in the initial allocation. So that if these subtasks are allocated in the 

arrival order (which was the end time order) over three target agents without paying any 

attention to their preferences, 100% preference values will be automatically achieved. In 

order to show that the solution converges to the same final value independent of the initial 

order of subtask processing, we carried out an experiment with 24 subtasks of all mixes but 

with non-conflicting end times slots (preferred resource). We then allocated these tasks in 

the reverse order without taking any preference into account. This yielded 30% preference 
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gain. On this distribution we applied our model and re-allocated the subtasks, this time 

(iteration 1) taking preferences into account. This first iteration achieved 100% gain. We 

repeated this experiment with different initial ordering, and each case 100% gain was 

achieved at the first iteration. In these experiments the value of preference cut-off, f, was 

kept fixed at 5%.

We show the results of this experiment, which were performed using 6 coordinators 

and 24 subtasks in Figure 8.2. This figure shows subtask allocations after the initial 

allocation and for the subsequent two iterations. The order of the initial allocation was in 

random order. As can be seen from the figure, the maximum gain in preference value was 

achieved after the first iteration. There are no changes on the allocation after the first 

iteration.

The results of this experiment and the experiments presented in 7.3.1 confirms that 

our model behaves as we expected, and that it does lead to convergence. A significant 

point is that this model produces results which are independent of initial allocations (i.e the 

order of subtask processing), this is difficult to achieve using traditional machine

scheduling.

Init. Alloc.
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Fig.8.2. The results of allocation of subtasks with non-conflicting end times
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8.2.2 Variation in Cut-Off Value q>

Our reason for using the preference cut-off (p was to reduce unnecessary processing and to 

avoid cycles. The effect of a cut-off value is complex and hence needed investigation. We 

were interested in answering the following questions:

I. What should be the correct value of <p?

II. Is it sensitive to some values?

In order to answer these questions we carried out experiments that varied the preference 

cut-off values from 1 percent to 100 percent of each subtask preference value. Figure 8.3 

shows the results of these experiments. We can see from the graph in this figure that the 

resultant preference gain is largely flat up to 20 percent cut-off values, and then tapers 

gently downward for higher cut-off values. This result gives us the confidence that the 

final preference gain is not sensitive to any reasonable cut-off value, which is likely to be 

between 1 and 10 percent.

70 -i

20 -

10 -

0----------- 1------------------------- 1-------------------------i-------------------------1------------------------- i------------------------- 1-------------------------i >

0 5 10 15 20 25 30 40 50
Cut-off Value (q) ------------>>

TFig 8.3. Effect of varying cut-off value (<p) on preference satisfaction (G ).
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8.2.3 Variation in Offer Price

We investigated whether higher offer prices by some coordinators can distort the results 

significantly. We used six coordinators, each task T' of the coordinator U1 having m 

number of subtasks, m varying from 3 to 6. Initially all subtasks were allocated on the first 

available (time) slots in the order T1, T2, ..., T6, at a given offer price (taken from Figure 

8.1) and preference cut-off value (p, but without considering preferences.

Then a series of iterations was carried out for the same (p. At each iteration, the offer 

price of one of the coordinators was raised by 5%, and its subtasks reallocated, taking only 

its preferences into consideration. The results presented in Figure 8.4 shows the changes in 

the preferences satisfied during the allocation of each task (T1, T2, ..., T6 ) in which only 

preferences of that task were taken into account. So our conclusion is that higher offer 

prices do not make any drastic change, and therefore our model produces a stable 

preference gain.

Fig. 8.4. Preference satisfaction (GT) over iterations.
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Next we examined whether the preference gain and the cost of one task is affected by 

the increasing offer prices of the other coordinators. We have conducted this experiment 

for each task T1, but selected arbitrarily to show it for T3 in Figure 8.5, which was typical. 

It shows the preference gain and cost for T , against the accumulated offer prices of the 

other coordinators. Evidently the increase in their offer prices did not affect the preference 

gain of T3s in any significant way. This result is typical for all T”s.

Fig. 8.5. T3 preference satisfactions, offer & cost variation.

8.3 Verification of the theoretical model (Second Set)

Our aim from this set of experiments was to verify that the preference gain over iterations 

obeys the theoretical model discussed in Chapter 5. In these experiments we used different 

distributions of subtask preference values. Distributions from six experiments on 

preference-based task allocations by three target agents are shown in the Figures 8.6(a) to 

8.6(g). Preferences were assigned on end-times for 29 subtasks (7 coordinators) in Figure 
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8.6(b), for 12 subtasks (3 coordinators) in Figure 8.6(c), and for 54 subtasks (14 

coordinators) in the other figures. The preference cut-off value ((p) and the preference loss 

rate (p), see section 4.2.1, were sometimes varied as shown in the tables later. The 

distributions in the last four figures are skewed (see section 5.3). We shall use these 

distributions in our analyses presented in the following subsections

Fig. 8.6(a). Skew-free distribution (54 subtasks).
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Fig. 8.6(b). Skew-free Distribution (29 subtasks).

Fig. 8.6(c). Skew-free distribution (12 subtasks).

131



Chapter8: Simulation Results

Fig. 8.6(d). Skewed distribution (54 subtasks).

Fig. 8.6(e). Skewed distribution (54 subtasks).
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Fig. 8.6(f). Skewed Distribution (54 subtasks)

Fig. 8.6(g). Skewed distribution (54 subtasks )
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We categorise the results of the experiments under the following three categories:

1. The effect of variable distribution and fixed <p value on the exponential 

function of the predicted remaining preference values, R .

2. The effect of variable (p value and fixed distribution on R .

3. The effect of variables (p and p on RT.

We present the results for the experiments that fall under the first category in 

subsection 8.3.1, the results for the second category in section 8.3.2, and the result for the 

third category in subsection 8.3.3.

8.3.1 Fixed (p Value and varied Distribution.

In this study we used data from Figures 8.6(d), 8.6(e), 8.6(f), and 8.6(g), with the 

preference cut-off value <p fixed at 5% to demonstrate that the distribution of R over the 

iterations matches the exponential pattern predicted by the theory. We show the 

exponential fit on the results in Fig 8.7. The graph shows that all the cases obey the 

predicted exponential curve. The final value of RT is different for each case shown in the 

figure.

We can conclude that this variation in RT is due to the distribution effect as this is 

the only factor that changed during these experiments. Examining the distribution graphs 

in Fig. 8.6 we can observe that the more dispersed the distribution of preference values the 

less is the value of RT. For example for the sparse distribution of preference values shown 

in Fig 8.6(g) the value of RT is around 25%, while for the more congested distribution of 

preference values shown in Fig 8.6(d) the value of RT is around 60%. This behaviour 

confirms to the formulation of the theoretical model discussed in section 5.2.
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Fig. 8.7. Confirmation of the Exponential Pattern for RT for Fixed cp.

8.3.2 Variable <p value.

As mentioned, (p is used to avoid cycles that lead to non-convergence. To demonstrate the 

effect of <p values on preference gain (inverse of the remaining preference value RT), we 

have used the distribution of preference values from Figure 8.6(a), with cp = 2, 5, and 8, as 

displayed in Figure 8.8. For clarity of presentation the plot for (p is 8 is not shown, as its 

result is similar to the others.

As in the previous experiments the plots in Figure 8.8 fit our theoretical exponential 

distribution. The two horizontal straight lines show the predicted minimum and maximum 

remaining preference values RT in %. Variation of cp value has little effect on RT, as can be 
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seen from the graphs in Figure 8.8. The greater the value of cp the more gain in the 

preference value. Using high values of (p could lead to higher gain in preference values but 

at the expense of more processing time. We did not investigate the effect of varying (p 

values on the processing time during the course of this research as processing time was not 

one of our major concerns. We hope to investigate this in future work.

Fig. 8.8. Confirmation of the Exponential Pattern for RT for Variable (p.

8.3.3 Predicted Remaining Preference Values

The objective of this set of experiments is to compare RT, the predicted remaining 

preference values (inverse of the preference gain) after the final iteration, with the actual 

values obtained from the simulation experiments, based on the subtask distributions given 
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in Figures 8.6(a) to 8.6(g). The actual values are expected to lie between the upper and 

lower bounds of the predicted values for both skewed and non-skewed distributions with 

variable values of (p and p, as shown in the four tables below. Tables 8.1, 8.2, and 8.3, 

show results for unskewed distribution for 54, 29 and 12 subtasks respectively. Table 8.4 

shows results for skewed distribution for 54 subtasks.

Table 8.1. Unskewed Distribution (Figure 8.6(a))

Case No. of 
Subtasks

Pref. Loss 
Rate 
(P)

Cut-off 
Value

(9)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

1 54 5 2 23 32.5 27

2 54 5 5 23 32.5 25

3 54 5 8 23 32.5 24

4 54 2 2 9 27 15

5 54 2 5 9 27 14

Table 8.1: This Table shows data from Figure 8.6(a) for 54 subtasks, with five pairs of 
different (p and p values, referred to as the five Cases, numbered 1 to 5. All simulation 
values lie within the predicted bounds.

137



Chapter8: Simulation Results

Table 8.2. Unskewed Distribution (Figure 8.6(b))

Case No. of 
Subtasks

Pref. Loss 
Rate 
(P)

Cut-off 
Value

(<P)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

6 29 5 5 9.9 23 23

7 29 5 10 9.9 23 23

9 29 7 5 13.9 32 26

9 29 10 5 19.8 46.2 37

10 29 10 10 19.8 46.2 37

Table 8.2: This Table shows data from Figure 8.6(b) for 29 subtasks, with five pairs of 
different (p and p values, referred to as the five Cases, numbered 6 to 10. All simulation 
values lies within the predicted bounds.

Table 8.3. Unskewed Distribution (Figure 8.6(c))

Case No. of 
Subtasks

Pref. Loss 
Rate 
(P)

Cut-off 
Value

(<p)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

11 12 5 5 5 12 11

12 12 5 7 5 12 9

13 12 5 12 5 12 8

14 12 10 5 10 24 22

15 12 10 7 10 24 21

16 12 10 12 10 24 15

Table 8.3: This table shows data from Figure 8(c) for 12 subtasks, with six different pairs 
of (p and p values, referred to as Cases 11 to 16. Again the simulation values lie within the 
bounds of the predicted values.
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Table 8.4. Skewed Distribution (results summary)

Distribution 
Source Case No. of 

Subtasks

Remaining Pref, values %
Predicted

ActualLower Upper

Figure 8.6 (d) 16 54 57 66 59

Figure 8.6 (e) 17 54 42 51 50

Figure 8.6 (f) 18 54 22 32 30

Figure 8.6 (g) 19 54 22 32 25

Table 8.4: This Table shows data from the remaining four figures for 54 subtasks with 
fixed values of at 5% and that of p also at 5%. The entries are numbered as Cases 16 to 
19. Again the simulation result obeys the predictions.

From the results presented in the above tables we can see that all the experimental

results lie between the two boundaries predicted by the theoretical model, therefore we can

conclude that the simulation experiments confirm our theoretical model.

8.4 Summary

We presented the simulation results of the experiments conducted on the simulator 

presented in Chapter 6. We used distributed scheduling in manufacturing as a case study in 

our simulation. The experiments were classified into two categories. In the first category 

are those experiments conducted to confirm some basic desirable properties of the 

preference model, while in the second category are those experiments that were conducted 

to verify the formulae in the theoretical model.
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We can conclude the following from the results of the experiments:

1. The preference model provides convergence to a “satisfactory” global 

solution.

2. The initial order of allocation does not affect the final results.

3. The values calculated by the theoretical model are a good estimate of the 

best preference values that can be achieved by a given set of tasks and 

resources.
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Evaluation and Concluding Remarks

In this thesis we have presented an agent based cooperative preference model that can be 

used to solve problems in distributed systems that are often characterised by multiple valid 

solutions, a solution being considered to be valid if it meets all the constraints. In our 

approach, the different choices are specified in terms of user preferences on the different 

desirable aspects (i.e. resources) of the solution. Using this model, we have shown how to 

derive a preference-based solution in the presence of contention on resources. In that 

event, the best solution that can be achieved is the one that meets as many preferences as 

possible.

One of the most important achievements of this research is the formulation of a 

theoretical performance model. Using this formulation, the user can describe the 

quantitative behaviour of the preference model and estimates the boundaries of the 

solution, i.e. the best preference values that can be achieved (see Chapter 5). Our approach 

in deriving this formulation followed the classical scientific tradition of observation

modelling-hypothesis-experiments. This model was developed after conducting trial-and- 

error experimentation on a simulator designed for experimentation and testing purposes. 

The results from the initial experiments conducted on the simulator (see Chapter 7) not 

only showed that the preference model would converge to a solution, but also showed that 

there is a pattern to this convergence. This motivated us to explore farther and investigate 
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to see if we could model this pattern mathematically. As a result of this exploration, and 

after conducting more experiments, we formulated a theoretical performance model that 

describes the quantitative behaviour of the preference model and estimates the best 

preference values that can be achieved (see Chapter 5). The results of the experiments that 

were conducted after developing this model (see Chapter 8) are consistent with our 

mathematical formulation. We have submitted this model for publication in [DEEN03B], 

and our initial work was published in [DEEN02J.

We have developed a multi-agent approach for solving distributed problems where 

cooperative autonomous agents work together to solve a joint task. Each autonomous agent 

(task agent), under the supervision of a relevant task coordinator, solves its part of the 

subtask in cooperation with other task agents. To resolve contention for the same 

resources, a market-based payment scheme has been applied that allows the preferences to 

be bought and sold by the contending task agents, through the medium of their 

coordinators. The best solution is achieved for a task when further iterations do not 

increase the task total preference value, at that point convergence is achieved.

Thus, the general preference model, which has been proposed in this thesis (see 

Chapter 4) includes a preference specification strategy, a preference processing technique, 

and a theoretical performance model. The preference model can produce a solution, 

regarded as the best solution, for trading and satisfying preferences and enforces timely 

termination in a "fairly competitive" market for cooperative agent-based systems. That 

solution is independent of the order of task agent requests for the resources. Section 9.1 of 

this chapter summarises the achievements of this work. We present an evaluation for this 

work in section 9.2.

For the simulation study we have used the scenario of distributed scheduling in 

manufacturing, where agents, (coordinators), resolve a set of global tasks into subtasks that 
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have precedent subtasks. The coordinators perform the allocation of subtasks to the target 

agents (assemblers) through cooperation and negotiation, in which preferred resources are 

exchanged with payments. Agent-based systems support distributed scheduling, contrary to 

traditional centralised scheduling for manufacturing systems. We based our simulation for 

the multi-agent system on Cooperating Knowledge-Based Systems (CKBS) (see Chapter 

3). To simplify the implementation of the simulator we imposed some limitations, these 

limitations are discussed in section 9.3.

We have implemented the simulator using Java Development Kit (JDK1.2.2). Java 

is popular, widely used, well supported, available freely, and comes with well-defined 

interfaces to system functions, multithreading capabilities, communication protocols, 

graphical tools, and is the author's primary programming language. At the time of writing, 

different agent development platforms, such as JADE [JADE], FIPA-OS[FIPAOS], and 

JACK[JACK], have become available. We discuss the potential use of these development 

platforms in section 9.4.

Briefly, we can conclude that the results of the study show that our agent based 

strategy reached convergence on the final preference value for the whole system in a form 

that could be estimated using our mathematical formulation. We also emphasise the fact 

that this estimated value is also independent of the initial order of subtask allocation. 

Although we used scheduling in distributed manufacturing systems to illustrate this, the 

potential application areas for our approach are diverse and are not restricted solely to 

scheduling. We discuss these application areas in section 9.4.
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9.1 Achievements

In general, the work described in this thesis contributes to the field of distributed problem 

solving and multi-agent systems through the introduction of a preference model that can 

derive a solution that satisfies as many preferences as possible. The agent-based preference 

model presented in this thesis has been developed after several years of work in agent

based systems and in the HMS project. The specific contributions of this research are as 

follows:

• A preference model that can be used by cooperative autonomous agents that are 

working together to solve a joint task.

• A quantitative mathematical formula that can describe the quantitative behaviour of 

the preference model and estimate the boundaries of the solution, i.e. the best 

preference values that can be achieved form an estimate of the minimum remaining 

preference value that can be achieved for a given problem.

• Using a cost-based negotiation approach, the preference model presented provides 

techniques to specify user preferences, and an algorithm that ensures that the 

system can derive a preference-based solution in the presence of contention on 

resources. In that event, the best solution that can be achieved is the one that meets 

as many preferences as possible.

• The effects of uniform and non-uniform clustering of requests for the same resource 

instances were studied and the effects of the non-uniform distribution of these 

clusters (skewed distribution) on the formula were shown.
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9.2 Evaluation

We would have liked to evaluate our preference model by comparing the results obtained 

by our implementation with those of other manufacturing scheduling systems. 

Unfortunately, this has proved to be infeasible as most of the current manufacturing 

scheduling systems concentrate mainly on resolving constraint conflicts and give only little 

consideration to solving preferential conflicts. Thus, to evaluate our work, we have 

expressed the objectives of this work (see section 1.3) in the form of a number of questions 

and our evaluation of the model is expressed in the form of answers to these questions.

In view of the presence of severe non-linearity we were mainly concerned with the 

following questions:

• Has the proposed model been successfully implemented?

We have run several experiments to test that the simulator behaves according to 

the model rules. The results, presented in chapters 7 and 8, demonstrated that the 

preference model simulator implements the proposed model successfully.

• Can the technique provide convergence to a global preference value?

The experiments demonstrated the effectiveness of the preference model and 

showed that convergence can be achieved using our preference model.

• Does the initial order of allocation affect the final result?

When using the agent based preference-processing approach presented in this 

thesis the initial order of allocation has no effect on the final result.

• Is a simplified theoretical performance model feasible?
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A theoretical performance model that models the behaviour of the system was 

developed. The simulation results verify the validity of this theoretical 

performance model.

• Do the global values achieved in practice agree with the values calculated by the 

theoretical model?

The values calculated by the theoretical performance model are a good estimate of 

the best preference values that can be achieved by a given set of tasks and 

resources.

As can be seen from the answers given to the questions above, all of the objectives set 

forth for this thesis have been met by this work.

9.3 Current Limitations

The present preference model and the simulator have some present limitations, as noted 

below:

• Although the preference model, presented in this thesis, produces a solution that 

satisfies as many preferences as possible, it does not guarantee an optimal 

solution. To consider all alternative solutions is infeasible in a large set of 

subtasks, as the number of possible solutions grows exponentially with the 

number of subtasks.

• We assumed the resources types to be orthogonal so that a preference on one type 

does not affect that on another resource type. This assumption of orthogonality 

allowed us to restrict ourselves to considering only a single resource for the 

purpose of the preference model formulation and implementation. In some cases 

there could be resource type dependency. For example if a task has a preference 
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on a machine and also on end time, then the end time will be dependent on a 

machine. In this case we can linearise it by pairing the machine with their 

available time slot as the instances of a single resource type. In cases where 

linearisation is not possible, the evaluation process will have to consider all 

combinations, as discussed in section 4.2. Thus resource type dependency will 

involve extra processing and this should not affect our algorithm.

• In the experiments conducted we only dealt with a single preference value. Our 

intention was to make the implementation as simple as possible and to concentrate 

on the fundamental characteristics of the preference model. As observed above, 

simulating the effect of multiple preference values would only affect the 

execution time, as there will be more solutions to search for. Therefore, the issue 

of dealing with multiple preference values has been left for further research. For 

this purpose we designed the simulator in a way that it can be adapted to deal with 

multiple preferences by including dummy routines that deal with the issue of 

using multiple preferences.

• At present the simulator works in a batch mode, where tasks are specified in 

external files before running the system. The results are also stored in external 

files before they are migrated to other software for processing and graph drawing. 

We would like to extend the GUI part of the simulator so the specification of task 

parameters and result analysis are all integrated within the same package.
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9.4 Value to Industry and Further Work

We see the potential of applying the preference model in many application areas, not only 

scheduling, but also in distributed processing where initial plans need to be merged into a 

global plan, such as for distributed project management and concurrent engineering. This 

research could have impact on the industry by:

• Improving schedules.

• Enhancing resource utilisation.

• Supporting cooperative relationships among the different project partners.

This research provides a foundation to develop a distributed scheduling algorithm 

that can help to produce a schedule that will satisfy as many participants' preferences as 

possible. It can even predict the boundaries of the solution.

We are however, aware that industrial applications are a lot more complex, and 

therefore to verify the real usefulness of the model to industries, an industrial trial will be 

necessary, an eventuality we would welcome.

For future work we hope to extend the implementation to include multiple 

preferences so that we can investigate further how this affects the model. We hope to make 

use of the agent development tools available today, such as JADE (Java Agent 

Development Environment) that is regarded as a robust and efficient environment for 

distributed multi-agent systems. Such tools were not available during the development 

stage, we think such tools can have a positive impact on the development time.

We would also like to investigate how the model behaves in practical situations. We 

hope to implement the model in such real-life applications as distributed project 
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management, university timetabling, and meeting scheduling, and to compare our results 

with the results produced by current software packages designed specifically for use in 

such application domains.

Our approach can be used in applications where there is a need to combine different 

schedules, subject to dependencies and shared resources with preferences on such 

resources, into one single schedule. This problem is an example of a resource allocation 

problem, as there is a need to allocate the shared resources effectively among involved 

tasks, information about such resources and dependencies is distributed among tasks. 

Using a central resource controller has serious drawbacks, including lack of robustness; if 

this controller fails the whole system fails, and its computation and communication 

demands on a single bottleneck process. Our approach can overcome such limitations, with 

decision making being distributed among the processes controlling the separate resources. 

Resource allocation is performed by agents which have the ability to make decisions 

regarding the allocation of resources. Such agents need to cooperate together to find an 

effective common schedule to accomplish the task set by the project.
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Appendix A

In this appendix we present the results of the experiments that are similar to the one 

discussed in section 7.2.1. This group of experiments investigates the convergence of the 

gain in preference values and cost when only one task, including its subtasks, is reallocated 

without considering the preferences of the reallocated tasks. Also, we reverse the order of 

the initial allocation to investigate whether such variations affect the gain in preference 

values and cost.

In these experiments all tasks are initially allocated on the first available slot, tasks 

are allocated according to the different order without considering preferences. Then one 

task is subsequently reallocated to satisfy its preferences. As a result of this reallocation 

some tasks can be reallocated. These tasks are reallocated to the first available slot without 

taking their preferences into account.

Figures in this appendix show how the total cost (C1) and gain in preference values 

(G1) of T; vary during the reallocation process. Iteration points are indicated by square 

symbols for the gain in preference value, and by diamond symbols for the total cost. With 

respect to the G1 graph, the Y-axis values indicate the percentage preference gain while in 

the case of the (C1) graph, they indicate the total cost units.

Figure A.l shows the result of conducting this experiment for task Ti when tasks are 

initially allocated according to the order Tp T2 ... T6. Figure A.2 shows the result of this 

experiment for task Ti when tasks are initially allocated according to the order T6, T5 ... Tj.

The G1 graph shows that during the initial allocation (iteration 0) around 80% of the 

preference value is satisfied when tasks are initially allocated according to the order Tp T2 

... T6, while 0% of the preference value is satisfied when tasks are initially allocated 

according to the order T6, T5 ... Tp This is expected, as Ti was last to be allocated and has 
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initially less chance of its preferences to be satisfied in the second case. A preference gain, 

around 95%, occurred at iteration 1 in both cases and remained constant throughout the 

subsequent iterations.

The C1 graph shows an increase in cost at iterations 1, 120 cost units in the first case 

and 180 cost units in the second case. We think the difference between these cost values 

(60 cost units) is due to the fact that negotiating tasks are not the same and therefore the 

exchanged preferences can be different. This behaviour is similar to the experiment 

discussed in section 7.2.1.

Iterations ______

Fig. A.l T1 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 1,2,3,4,5,6)
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Iterations ---------b
i
I

Fig. A.2 T1 preference satisfactions & cost variation
(without considering other tasks preferences 
and initial reverse allocation order 6,5,4,3,2,1)

The remaining figures in this appendix show the results of the above experiment 

when repeated for tasks order T2, T4, T5, and T6. Figures A.3 and A.4 show the results of 

conducting the experiment for task T2. Figures A.5 and A.6 show the results of conducting 

the experiment for task T4. Figures A.7 and A.8 show the results of conducting the above 

experiment for task T5. Figures A.9 and A. 10 show the results of conducting the above 

experiment for task T6. The results of all these experiments are similar and confirm to the 

behaviour of the preference model
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Fig. A.3 T2 preference satisfactions & cost variation 
(without considering other tasks preferences and 

initial allocation order 1,2,3,4,5,6)

Fig. A.4 T preference satisfactions & cost variation 
(without considering other tasks preferences 
and initial reverse allocation order 6,5,4,3,2,1)
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Iterations ---------- ►

Fig. A.5 T4 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 1,2,3,4,5,6)

Iterations --------------►

Fig. A.6 T4 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 6,5,4,3,2,1)

169



Appendix A

Iterations --------

Fig. A.7 T5 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 1,2,3,4,5,6)

Fig.A.8 T5 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 6,5,4,3,2,1)
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Iterations --------

Fig. A.9 T6 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 1,2,3,4,5,6)

Iterations ----------

Fig. A.10 T6 preference satisfactions & cost variation 
(without considering other tasks preferences 

and initial allocation order 6,5,4,3,2,1)
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Appendix B

In this appendix we present the results of the experiments that are similar to the one 

discussed in section 7.2.2. This group of experiments investigates the convergence of the 

gain in preference values and cost when only one task, including its subtasks, is reallocated 

considering the preferences of the reallocated tasks. Also, we reverse the order of the initial 

allocation in one experiment to investigate whether such variations affect the gain in 

preference values and cost.

In these experiments all tasks are initially allocated on the first available slot, tasks 

are allocated according to the different order without considering preferences. Then one 

task is subsequently reallocated to satisfy its preferences. As a result of this reallocation 

some tasks can be reallocated. These tasks are reallocated to the first available slot taking 

their preferences into account.

Figures in this appendix show how the total cost (C1) and gain in preference values 

(G1) of Tj vary during the reallocation process. Iteration points are indicated by square 

symbols for the gain in preference value, and by diamond symbols for the total cost. With 

respect to the G1 graph, the Y-axis values indicate the percentage preference gain while in 

the case of the (C1) graph, they indicate the total cost units.

Figure B.l shows the result of conducting this experiment for task Ti when tasks are 

initially allocated according to the order Ti, T2 ... Tg. Figure B.2 shows the result of this 

experiment for task Ti when tasks are initially allocated according to the order Tg, T5... T], 

Figure B.3 shows the result of conducting this experiment for task T4 when tasks are 

initially allocated according to the order Ti, Tz ... Tg Figure B.4 shows the result of 
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conducting this experiment for task T5 when tasks are initially allocated according to the 

order Ti, T2 ... T6.

These graphs are similar to the graphs in Appendix A except that the final gain in 

preference value is reduced. For example in the case of T5 it converged to 100% in A.7, 

while in B.4 it converged to 92% (8% reduction). This is expected, as explained in 7.2.2 is 

due to the fact that other tasks are also competing to gain preference values.

Fig. B.l T1 preference satisfactions & cost variation 
(considering other tasks preferences and initial allocation order 1,2,3,4,5,6)
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V
al

ue
s ----». 

I 
V

al
ue

s

Fig. B.2 T1 preference satisfactions & cost variation 
(considering other tasks preferences and initial reverse allocation order 6,5,4,3,2,1)

Iterations —>■

Fig. B.3 T4 preference satisfactions & cost variation 
(considering other tasks preferences and initil allocation order 1,2,3,4,5,6)
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Fig. B.4 T5 preference satisfactions & cost variation 
(considering other tasks preferences and initil allocation order 1,2,3,4,5,6)
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Appendix C

In this appendix we present the results of the experiments that were conducted to 

investigate the impact of varying the cut-off value (<p) on the convergence characteristics. 

These are similar to the experiment presented in 7.3.3. Figure C.l shows the result for 

conducting the experiment using 14 coordinators and 54 subtasks. Figure C.2 shows the 

result for conducting the experiment using 6 coordinators and 24 subtasks. We used 

different values for (p as shown in the figures. As explained in 7.3.3 and shown in these 

diagrams, cp has little effect on the final preference value (± 1%). Though, <p did affect the 

number of iterations needed to reach this final value. As we stated before we can say that 

the lesser the value of <p the less iterations we need to reach convergence.

40 
t

30

c5oo 20
cut-off = 15 cutoff = 5 cut-off = 40

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations ------

Fig. C.l Varying the cut-off value (cp) ( 54 subtasks and 14 coordinators)
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Fig. C.2 Varying the cut-off value ((p) ( 24 subtasks and 6 coordinators)
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Appendix D

In this appendix we present the results of the experiments that are similar to the one 

discussed in section 7.4. This experiment is conducted to monitor the preference losses 

discussed in section 4.3.3. In these experiments we used 6 coordinators, 24 subtasks, and 

varied the preference cut-off value ((p) and the preference loss rate (p), see section 4.2.1. 

The results are shown in the tables D.l, D.2, and D.3. Table D.l shows the result of the 

experiment when <p is set to 20% and p is set to 5%. Table D.2 shows the result when <p is 

set to 20%, and p is set to 10%. Table D.3 shows the result when cp is set to 10%, and p is 

set to 10%.

As stated in section 7.4, we find it difficult to predict which exchanges would be 

considered too expensive and when the funds would actually run-out using these results. 

This due to the fact that coordinators gain and lose funds from each other like money in a 

market during the processing. These preference losses are not independent. Therefore, 

monitoring the preference losses from these four sources at each iteration would not guide 

us to control or predict the solution during the allocation process.
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Table D.l. Sources of preference loss

Subtask Average pref, 
cut-off loss

Cost cut-Off 
loss Average Pi loss

Til 7.3 5.0 11.1
T12 10.3 36.3 29.5
T13 8.3 0.0 35.9
T14 0.0 0.0 32.1
T21 0.0 6.6 10.0
T22 9.7 41.0 36.9
T23 10.0 16.0 41.1
T31 0.0 0.0 0.0
T32 12.1 26.1 39.1
T33 10.9 9.9 49.0
T34 11.5 17.9 70.3
T35 5.0 5.0 49.3
T41 7.3 0.0 11.1
T42 9.0 0.0 14.2
T43 0.0 0.0 9.0
T44 11.0 0.0 27.1
T45 10.0 10.0 16.3
T51 6.0 6.0 5.3
T52 9.0 0.0 8.9
T53 10.9 0.0 24.9
T54 10.9 38.7 59.9
T61 7.0 0.0 10.5
T62 10.3 10.5 15.5
T63 0.0 39.1 47.8

Total 9.3 19.1 27.3

Table D.l: This Table shows the different sources of preference loss during the allocation 
process for 24 tasks and 6 coordinators. cp=2O% and p =5%.
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Table D.2. Sources of preference loss

Subtask Average pref. 
cut-off loss

Cost cut-Off 
loss Average Pi loss

Til 0.0 0.0 0.0
T12 11.0 36.2 13.8
T13 9.0 9.0 0.0
T14 0.0 0.0 65.2
T21 0.0 13.2 20.0
T22 14.0 50.6 23.4
T23 12.0 21.3 43.6
T31 0.0 0.0 0.0
T32 14.4 38.5 64.3
T33 0.0 0.0 74.6
T34 13.0 17.5 95.8
T35 10.0 10.0 75.3
T41 0.0 0.0 2.6
T42 13.0 22.7 40.6
T43 0.0 0.0 11.3
T44 11.8 39.0 37.6
T45 11.0 0.0 13.8
T51 11.0 11.0 10.7
T52 0.0 0.0 13.5
T53 10.0 0.0 23.8
T54 14.0 49.1 95.0
T61 0.0 0.0 2.3
T62 11.3 43.8 77.6
T63 13.5 43.9 95.0

Total 11.9 29.0 37.5

Table D.2: This Table shows the different sources of preference loss during the allocation 
process for 24 tasks and 6 coordinators. cp=20% and p =10%.
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Table D.3. Sources of preference loss

Subtask Average pref, 
cut-off loss

Cost cut-Off 
loss Average Pi loss

Til 0.0 0.0 0.8
T12 0.0 0.0 1.9
T13 0.0 0.0 11.3
T14 0.0 0.0 10.8
T21 0.0 0.0 10.4
T22 9.0 43.8 96.7
T23 0.0 0.0 96.3
T31 0.0 0.0 0.0
T32 0.0 43.9 71.4
T33 0.0 0.0 81.6
T34 8.0 13.0 98.6
T35 0.0 0.0 80.6
T41 0.0 0.0 0.8
T42 0.0 13.0 35.6
T43 0.0 0.0 3.5
T44 9.0 39.0 51.9
T45 0.0 0.0 13.8
T51 9.0 12.7 19.7
T52 0.0 0.0 11.6
T53 0.0 0.0 32.7
T54 9.0 28.1 55.6
T61 0.0 0.0 0.8
T62 8.0 46.3 94.1
T63 8.0 43.9 100.0

Total 8.6 31.5 40.8

Table D.3: This Table shows the different sources of preference loss during the allocation 
process for 24 tasks and 6 coordinators. <p= 10% and p =10%.
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