
This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-commercial
use and shall not be passed to any other individual. No quotation may be

published without proper acknowledgement. For any other use, or to quote
extensively from the work, permission must be obtained from the copyright

holder/s.

https://www.keele.ac.uk/library/specialcollections/

An agent based co-operative preference model

Rashid Jayousi

Doctor of Philosophy

October 2003

Keele University

Abstract

Distributed problem solving is often characterised by multiple valid solutions, a solution

being considered to be valid if it meets all the constraints. When there are multiple valid

solutions, the user has a choice, which can be specified in terms of preferences on different

desirable aspects (i.e. resources) of the solution. In that event, the best solution is the one

that meets as many preferences as possible.

In this thesis, a multi-agent approach has been used for distributed problem-solving,

each autonomous agent (task agent), under the supervision of a relevant task coordinator,

solves its part of the subtask, in cooperation with other task agents. To resolve contention

in the preferences for the same resources, a market-based payment scheme is applied for

the preferences to be bought and sold by the contending task agents through their

coordinators. The best solution is achieved for a task, when further iteration does not

increase its total preference value, that is a convergence is achieved.

This thesis presents a preference model that includes a preference specification

strategy, a preference processing technique, and a theoretical performance model, the latter

describes the quantitative behaviour of the preference model. The thesis also presents a

simulation study to show that the preference model works satisfactory and according to the

theoretical performance model.

For the simulation study we used the problem of distributed scheduling in the

manufacturing domain. The results of the study show that our agent based strategy not only

reaches convergence on the final preference value for the whole system, that value is also

independent of initial order of subtask allocation. The results verify the validity of our

approach handsomely.

II

Contents

Abstract..II

List of figures.. VII

List of tables.. X

Acknowledgement... XI

1 Introduction.. 1

1.1 Motivation.. 3

1.2 Research objectives.. 4

1.3 Thesis structure... 5

2 Literature Review.. 7

2.1 Conflict resolution... 7

2.2.1 Case-based reasoning... 8

2.2.2 Voting... 9

2.2.3 Constraint relaxation.. 10

2.2.4 Market-based approaches... 11

2.2 Using preferences.. 12

2.2.1 Advanced information retrieval.................................. 13

2.2.2 Concurrent engineering... 13

2.2.3 Electronic commerce... 14

2.2.4 distributed meeting scheduling....................................... 15

2.3 Manufacturing systems and scheduling................................... 16

2.3.1 Traditional approaches in scheduling........................... 17

2.3.2 Agent-based approaches in manufacturing systems...... 18

2.4 Discussion... 24

3 Cooperating Knowledge Based Systems (CKBS)..............................26

3.1 Basic concepts of the CKBS model...26

3.2 Basic elements of the CKBS model..28

hi

Contents

3.2.1 CKBS agents.. 28

3.2.2 Tasks.. 30

3.2.3 Shadows... 32

3.3 Cooperation environment.. 33

3.3.1 Cooperation.. 34

3.3.2 Coordination... 35

3.3.3 Inter-agent interactions.. 36

3.3.4 Cooperation strategies... 38

3.3.5 Distribution transparency.. 40

3.4 Operational architecture.. 43

3.5 Summary... 45

4 The Preference Model.. 46

4.1 Overview... 46

4.2 Market-Based approach... 49

4.2.1 Preference model... 50

4.2.2 Cost model.. 51

4.3 Algorithm.. 53

4.3.1 Example... 54

4.3.2 Allocation process... 58

4.3.3 Comments on the allocation process.......................... 65

4.4 Summary.. 67

5 Theoretical Distribution Model.. 68

5.1 Basic formulation... 68

5.2 Skewed distribution... 72

5.3 Effect of multiple target agents... 74

5.4 Summary... 75

6 Design and Implementation.. 76

6.1 Overview... 76

6.2 Agent design.. 77

IV

Contents

6.2.1 Agent types.. 80

6.3 Operational structure and agent communication..................... 81

6.3.1 Agent messages... 81

6.4 Implementation.. 85

6.4.1 PMS Infrastructure... 88

6.4.2 The message-passing scheme...................................... 89

6.4.3 The agent message router... 91

6.4.4 Agent implementation... 94

6.4.5 Implementation of agent types.................................... 96

6.5 Running PMS..100

6.6 Summary... 101

7 Exploratory Experiments...102

7.1 The simulated case study.. 103

7.2 Investigation of convergence... 107

7.2.1 Individual task reallocation (without considering

other tasks preferences)...107

7.2.2 Individual task reallocation (considering other tasks

preferences).. Ill

7.2.3 Reallocation of all tasks ... 112

7.3 Investigation of convergence characteristics...........................113

7.3.1 The effect of initial order.. 113

7.3.2 The effect of varying the number of coordinators

and subtasks.. 115

7.3.3 The effect of varying cut-off value...............................116

7.4 Sources of preference loss... 117

7.5 Summary.. 119

8 Simulation Results - Further study.. 122

8.1 The case study... 123

8.2 Verification of basic properties (First set).................................125

v

Contents

8.2.1 Variation in subtasks processing order..........................125

8.2.2 Variation in cut-off value... 127

8.2.3 Variation in offer price... 128

8.3 Verification of the theoretical model (Second set)...................129

8.3.1 Fixed cut-off value and varied distribution order..........134

8.3.2 Variable cut-off value... 135

8.3.3 Predicted remaining preference values....................... 136

8.4 Summary... 139

9 Evaluation and Concluding Remarks.. 141

9.1 Achievements.. 144

9.2 Evaluation.. 145

9.3 Current limitations... 146

9.4 Value to industry and future work.. 148

References... 150

Appendices.. 165

Appendix A... 165

Appendix B... 172

Appendix C.. 176

Appendix D... 178

VI

List of Figures

3.1 Agent structure.. 29

3.2 A heterarchy of cooperation blocks... 34

3.3 Cooperative scheduling.. 41

3.4 Distribution transparency... 42

3.5 Cohort selection process.. 44

4.1 Task decomposition & dependencies.. 47

4.2 The cascading effect of pre-emption and reallocation.. 48

4.3 The global task decomposition used in the example.. 54

4.4 Initial allocation of all the tasks... 55

4.5 Reallocation of T3 (T1 not yet reallocated).. 57

4.6 Reallocation of T1... 57

4.7. Outline of the allocation process.. 64

5.1 A graphical presentation of the decreasing rate of preference gain................... 69

5.2 Preference distribution... 70

5.3 Skewed distribution..72

6.1 Agent Structure.. 78

6.2 Basic PMS structure... 81

6.3 Message types used in the system... 82

6.4 PMS infrastructure... 88

6.5 Main classes used in the AMR...93

6.6 Screen shot or running AMR.. 94

6.7 Main classes used in the Agent class... 96

6.8 Main classes used in the coordinator... 98

6.9 A screen shot of the coordinator GUI... 98

6.10 A screen shot of the home agent graphic interface... 99

6.11 A screen shot of the directory GUI.. 100

6.12 The main events during run time... 101

7.1 Task Parameters... 106

7.2 T preference satisfactions & cost variation (without considering other tasks

preferences and initial allocation order 1,2,3,4,5,6)...109

VII

List of Figures

7.3 T3 preference satisfactions & cost variation (without considering other tasks

preferences and initial reverse allocation order 6,5,4,3,2,1).............................109

7.4 T3 preference satisfactions & cost variation (considering other

tasks preferences)..110

7.5 Preference satisfactions for all the tasks when reallocating T only

and considering other tasks preferences... Ill

7.6 Preference satisfactions for all the tasks when reallocating all the tasks............ 112

7.7 Effect of initial allocation order on convergence characteristics........................ 114

7.8 Preference satisfaction for different cases... 116

7.9 Varying the cut-off value (<p)..117

8.1 A presentation of the case study for n = 6... 124

8.2. The results of allocation of subtasks with non-conflicting end times............ 126

8.3. Effect of varying cut-off value (<p) on preference satisfaction (G).................127

8.4. Preference satisfaction (GT) over iterations... 128

8.5. T preference satisfactions, offer & cost variation.. 129

8.6(a). Skew-free distribution (54 subtasks)... 130

8.6(b). Skew-free Distribution (29 subtasks)... 131

8.6(c). Skew-free distribution (12 subtasks)... 131

8.6(d). Skewed distribution (54 subtasks)... 132

Fig. 8.6(e). Skewed distribution (54 subtasks).. 132

Fig. 8.6(f). Skewed Distribution (54 subtasks)...133

Fig. 8.6(g). Skewed distribution (54 subtasks)... 133

Fig. 8.7. Confirmation of the Exponential Pattern for RT for Fixed ip.................... 135

Fig. 8.8. Confirmation of the Exponential Pattern for RT for Variable tp.............. 136

A.l T1 preference satisfactions & cost variation (without considering....................

other tasks preferences and initial allocation order 1,2,3,4,5,6)........................166
A.2 T1 preference satisfactions & cost variation (without considering

other tasks preferences and initial reverse allocation order 6,5,4,3,2,1)..........167

A.3 T preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 1,2,3,4,5,6)........................ 168

A.4 T preference satisfactions & cost variation (without considering

other tasks preferences and initial reverse allocation order 6,5,4,3,2,1)...........168
A.5 T4 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 1,2,3,4,5,6)....................... 169

VIII

List of Figures

A.6 T4 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 6,5,4,3,2,1)................... 169

A.7 T5 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 1,2,3,4,5,6)....................... 170

A.8 T5 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 6,5,4,3,2,1)....................... 170

A.9 T6 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 1,2,3,4,5,6)....................... 171

A. 10 T6 preference satisfactions & cost variation (without considering

other tasks preferences and initial allocation order 6,5,4,3,2,1)..................... 171

B. l T1 preference satisfactions & cost variation (considering other tasks

preferences and initial allocation order 1,2,3,4,5,6).......................................173

B.2 T1 preference satisfactions & cost variation (considering other tasks

preferences and initial reverse allocation order 6,5,4,3,2,1)............................ 174

B.3 T4 preference satisfactions & cost variation (considering other tasks

preferences and initil allocation order 1,2,3,4,5,6)...174
B. 4 T5 preference satisfactions & cost variation (considering other tasks

preferences and initil allocation order 1,2,3,4,5,6).. 175

C. l Varying the cut-off value (<p) (54 subtasks and 14 coordinators).................... 176

C.2 Varying the cut-off value ((p) (24 subtasks and 6 coordinators)..................... 177

IX

List of Tables

4.1 Tasks Attributes (Figure 4.3).. 55

6.1 Academic and research platforms for agent development................................ 85

6.2 Commercial platforms for agent development.. 86

6.3 Feature analysis ... 87

7.1 Sources of preference loss ...119

8.1 Skew-free Distribution (Figure 8.6(a)) ... 137

8.2 Skew-free Distribution (Figure 8.6(b)) ..138

8.3 Skew-free Distribution (Figure 8.6(c)) ... 138

8.4 Skewed Distribution (results summary) .. 139

D.l Sources of preference loss (<p=20% and p =5%)..179

D.2 Sources of preference loss (tp=20% and p =10%)... 180

D.3 Sources of preference loss (<p= 10% and p =10%)... 181

X

Acknowledgments

Thanks are mainly due to my supervisor Professor S. Misbah Deen for his active support

and guidance throughout this research project. His insights into the research, his constant

encouragement, and his continued academic and personal advice enabled me to complete

this work, I am honoured to be one of his students.

I am grateful for Al-Quds university in Jerusalem for its financial support and its

cooperation in enabling me to complete this research.

I would also like to thank the members of the Data and Knowledge Engineering

group for their valuable contributions and advice throughout our discussions, namely

Thomas Neligwa, Peter Granby, James Cole, Martyn Fletcher, Kapila Ponnamperuma, and

Ryad Soobhany. The work would not have been possible without the assistance of the

Computer Science Departments at Keele University who provided equipment, software

and technical assistance.

I would like to thank Michael Alcock and James Cole for the time they have

devoted to the task of proof-reading my thesis.

My special thanks to my parents, brother, sisters, other members of my family, and

friends for their support and encouragement during my period of study at Keele University.

Most of all, I owe a huge debt of gratitude to my wife Suhad and daughters (Zenah,

Farah, and Israa) who always gave me the strength and resolve I need.

XI

Chapter 1

Introduction

In a distributed environment cooperative autonomous agents may work together to solve a

joint task that often has a set of valid solutions. To help the cooperating agents in reaching

a balanced decision, the choice of a solution can be expressed in the form of preferences on

certain desired features of the solution. If the most preferred solution cannot be found, then

the one that meets maximum amount of preferences can be accepted as the "best solution".

Therefore, associated with each task we identify a set of desired features, which can

be resources or attributes. In this thesis we regard a resource as something that has a

limited supply and can be consumed during the processing, whereas an attribute has no

such limitation. The user requirement for preferences can vary widely depending on the

application. For example, if the task is to schedule the manufacturing process of a product,

the resources might be machine, time or labour, while attribute might be the colour of the

product or the degree of polishing. The user may have preferences on a machine and on

colour. If the task is the design of a web-page, we might think of the page size as a

resource and the font-size as an attribute. The user may have preferences on the size of the

web-page and the font-size as well as the layout of the web-page. If the resources are

limited and multiple tasks are being executed concurrently, there will be inevitable

contention. Contention can arise on desired resources but not on attributes. Resolving such

contentions require not only negotiation and compromises among the agents responsible,

but also enforcement of control for timely termination, avoiding explosive branches.

1

Chapter 1: Introduction

If preferences are allocated only on the currently available resources, then there will

not be any conflict. If a desired resource is not available, then that preference cannot

simply be met and some preferred solutions may not be feasible due to the non-availability

of the preferred resources. If a resource has already been allocated to a task, and then if a

later task arrives with a higher preference on that resource, then we have two possible

approaches: either the previous allocations cannot be changed, or the previous allocations

can be pre-empted. The first approach leads to a tree model where the allocation of a

preference to a parent affects only the children, and hence it terminates in a finite time. The

second case leads to a network model, where the allocation to a node (task) affects all other

nodes (tasks) that have a preference on that resource. The cascading effect of pre-emption

and reallocation leads to branch explosions. In this thesis we shall consider the second

case, which is more challenging, and show how a set of agents can cooperate together to

produce a solution that converges. An introductory version of this network model has been

published by us in [DEEN02J.

Thus in this thesis we address the problem of how to derive a preference-based

solution in the presence of contention, where awarding preferences to the solution of one

task can only be done by depriving/removing preferences from that of another in

negotiation. Deprivation, and particularly removal, of preferences creates a high non

linearity leading to non-convergence. We propose a general preference model that

produces a "reasonable" solution for trading and satisfying preferences and enforces timely

termination in a "fairly competitive" market for cooperative agent-based scheduling.

As the preference model outlined above is highly non-linear, verification using

available mathematical techniques is difficult. Therefore, based on the qualitative

behaviour, of this model we also present in this thesis a theoretical performance model,

2

Chapter 1: Introduction

which can predict the preference values that can be achieved by using our preference

model.

To verify the validity of the theoretical model we performed a simulation study. In

this study we have used the scenario of distributed scheduling, where a set of global tasks

are resolved into subtasks by agents called Coordinators, and then these subtasks are

allocated to Assembler agents through cooperation and negotiation, in which preferred

resources are exchanged with payments. Agent-based systems support distributed

scheduling, contrary to traditional centralised scheduling for manufacturing systems. We

based our simulation for the multi-agent system on Cooperating Knowledge-Based

Systems (CKBS) (see chapter 3).

1.1 Motivation

This work was inspired directly by our participation in the Holonic Manufacturing Systems

(HMS) project (see section 2.4.2) and the current research activities in our DREAM (Dake

Research into an Engineering Approach to Multi-agents) theme which has been applied to

agent-based manufacturing and e-commerce and supply chain applications. Current

research is focused on Cooperating Knowledge Based Systems (CKBS), where

autonomous knowledge based systems, or agents, cooperate when solving problems in

distributed applications. To solve a global task (joint task), the relevant agents normally

form what we call a Cooperation Block (CB), where one agent acts as the coordinator and

the other agents as cohorts (see section 3.3). The coordinator can be viewed as the user

agent, since the user's requirements on the global task are expressed through this

coordinator. Cooperation implies an enforceable agreement among the participating agents

such that one agent can demand another to act within that agreement. Negotiation is the

3

Chapter 1: Introduction

process by which agents agree on a mutually acceptable solution subject to constraints,

meeting as many preferences as possible.

Our work in this thesis is an extension of the work on the contention-free (but not

constraint free) solution that was published in [DEEN99]. This work is an extension and

generalisation of these ideas to produce a generalised preference model for cooperative

agent-based problem-solving and is not restricted to scheduling, even though scheduling

offers most interesting examples for application.

1.2 Research objectives

The principal objective of this thesis is to develop a model for preference handling in a

distributed agent based environment. In more specific terms we can state our objectives as

follows:

1) To investigate the issues of preferences in task execution.

2) To study a mechanism for preference execution with convergence.

3) To develop an execution-cost model to control exploding branches.

4) To develop a theoretical performance model.

5) To implement a demonstrator to verify the approach and the validity of the

theoretical model.

4

Chapter 1: Introduction

1.3 Thesis Structure

The remainder of the thesis consists of seven chapters. Chapter 2 is a literature review

focusing on the current work on conflict resolution, the different applications that use

preferences and current approaches in scheduling manufacturing systems.

Chapter 3 presents an overview of Cooperating Knowledge Based Systems (CKBS).

This chapter describes the basic elements of the CKBS model, the cooperation

environment and the operational architecture.

Chapter 4 presents our market-based approach to preference handling. It contains a

detailed description of our preference and cost models. It describes the allocation process

as well as the algorithm used for implementing the preference model among cooperating

agents.

Chapter 5 presents a theoretical performance model. The model can roughly estimate

the minimum remaining preference value. We study the effect of the clustering of requests

for the same resource instances. The effect of the uniform distribution of these clusters on

the developed formula is discussed first. Then we show how the formula is affected by the

non uniform distribution of these clusters, or what we call a skewed distribution.

Chapter 6 presents our design and implementation of a Preference Model Simulator

(PMS). In this chapter we outline the PMS architecture, discuss the platform of our

implementation, and give a detailed description of the implementation.

Chapters 7 and 8 present the results obtained from a simulation study using the

simulator discussed in chapter 6. We used scheduling in a distributed manufacturing

environment as a case study. In chapter 7 we present the results from the exploratory

experiments that were conducted to study the preference model convergence and its

characteristics. These experiments led us to the theoretical performance model discussed in

5

Chapter 1: Introduction

chapter 5. Chapter 8 presents further experiments that explored the working behaviour of

the preference model and verified the theoretical performance model. Also, we present a

comparison of the predicted remaining preferences values (i.e. the inverse of the preference

gain) after the final iteration with the actual values obtained from the simulation

experiments is presented in this chapter.

The thesis is concluded in chapter 9 that presents a review and evaluation of the

concepts presented in this dissertation. It also discusses possible future research directions

and value to industry.

6

Chapter 2

Literature Review

One of our main objectives in this thesis, as outlined in the introduction, is to devise a

model that can resolve preferential conflicts among cooperating agents in multi-agent

systems. The main area of application for this agent based preference model is in solving

problems in distributed systems where multiple solutions usually exist. In agent-based

distributed systems negotiation among agents is the method used to arrive at a decision

regarding the choice of a solution. Therefore, before we embark on presenting our model

(Chapter 4) we start by reviewing the different techniques used to resolve conflicts in the

area of distributed agent-based systems. Next we outline the different applications that

have applied the concept of preferences. Such applications include manufacturing systems,

product design, and distributed meeting scheduling. As a manufacturing system is one of

the most complex and interesting application of these, we have applied our technique on

distributed manufacturing scheduling. Thus we also present in this chapter a review of

some work in this research area. Then we discuss the main differences between our

approach and previous approaches.

2.1 Conflict Resolution

Researchers in the field of cooperative distributed problem and multi-agent systems have

developed various techniques for conflict resolution in multi-agent systems. Some of these

7

Chapter 2: Literature Review

common techniques [LIU98] include case-based reasoning, voting, constraint relaxation,

and market-based approaches as outlined below.

2.1.1 Case-Based Reasoning

Case-based reasoning (CBR) is an experience-based technique for knowledge acquisition

and refinement [SEN99], It draws upon previous solutions that worked well for similar

problems and uses them to solve new problems [WATS94]. Whenever a new problem is

encountered, it is matched against previously stored cases, similar cases are retrieved and

used as a starting point for solving the problem. When the system fails to find similar

cases, a solution is generated from scratch. All problems and their solutions are stored as

cases in what is called the case base. The processes involved in CBR can be described as a

cyclical process comprising the four REs:

• RETRIEVE the most similar cases;

• REUSE the cases to attempt to solve the problem;

• REVISE the proposed solution if necessary, and

• RETAIN the new solution as a part of a new case.

To match cases a measure of similarity between the task attributes is used. Very

often this cycle requires human intervention and most CBR encourages human

collaboration in decision support [WATS94], The model integrates case-based reasoning

and the multi-attribute utility theory [KEEN93]. One system that uses case-based reasoning

to resolve conflicts during negotiation is the PERSUADER [SYCA89, SYCA89A,

SYCA90] that has been used to resolve conflicts in labour relations.

8

Chapter 2: Literature Review

2.1.2 Voting

Voting is a mechanism whereby a number of equals indicate a choice from several

conflicting alternatives by some voting mechanism (majority, two thirds, etc.). Participants

are obliged to accept the result of the voting. Voting strategies are widely used in social

sciences such as political science and economics and have their roots in Game Theory.

In the domain of multi-agent systems, often, a group of agents has to make a

common decision, yet they have different preferences about which decision to take. For

such cases, voting theory has been used as a technique for reaching consensus in a

negotiation process and group-decision making [SAND99], Agents can perform voting on

certain decisions, the result of the voting is obligatory for all agents participating in the

voting. Several protocols for voting are presented in [SAND99], some of these protocols

are presented below:

• Plurality protocol: This is a majority protocol where all alternatives are evaluated

simultaneously and the one accepted by the maximal number of agents wins.

• Binary protocol: It uses the majority protocol but alternatives are evaluated in pairs.

The one, which gets fewer votes is eliminated and the one which receives the

majority is accepted and stays for the next round of voting.

• Bord's protocol: Each agent votes for the list of alternatives that is associated with a

value. After the negotiations the values from the lists of all agents are added up and

the alternative which gets the best value from all agents wins.

Voting has been used in several multi-agent decision making problems, such as

distributed meeting scheduling [EPHR94, EPHR96, SEN97, SEN98] and collaborative

9

Chapter 2: Literature Review

filtering [PENNOO, BREE98]. In the domain of distributed meeting scheduling all agents

vote on all possible proposals to reach consensus on an acceptable time for the meeting

(see section 2.3.4). In Collaborative filtering, a number of algorithms based on voting

mechanisms attempt to predict the preferences of one user based on the preferences of a

group of users. For example, given the user’s ratings for several books and a database of

other users’ ratings, the system predicts how the user would rate unread books.

A key problem voting mechanisms are confronted with is that of manipulation by

the voters, that is when an agent votes strategically and it does not sincerely declare its true

preferences on the different alternatives so as to manipulate the outcome to be more

favourable to the agent [CONI03]. Several mechanisms have been used to eliminate

manipulative voting, one popular mechanism is the Clarke Tax Mechanism [EPHR94J. In

this mechanism, a tax is imposed on those agents whose vote change the outcome and put

other agents in a disadvantage.

2.1.3 Constraint Relaxation

Constraint satisfaction is an Al paradigm that represents problems as a finite number of

variables and finite number of constraints [KocjOO, SYCA91]. Each variable has a domain

with the possible values for that variable, and each constraint that hold the relation between

the values of the variables on which only certain combinations of values are acceptable. A

solution to a constraint satisfaction problem (CSP) is an assignment of values to the

variables such that the constraints are satisfied. An example of a constraint-based

representation is the map colouring problem in which a given a map is to be coloured using

three colours, green, red, and blue, and that no two neighbouring countries have the same

10

Chapter 2: Literature Review

colour. Each variable can be assigned a colour from a limited spectrum and each constraint

defines that a particular pair of variables can not have the same colour. A distributed CSP

is a CSP in which the variables and constraints are distributed among autonomous agents

in multi-agent systems. Each agent has one or multiple variables and tries to determine the

possible values for these variables.

Constraint relaxation modifies the relationship defined by a constraint allowing

wider range of relationships. The modification changes the problem definition, allowing a

superset of the original solutions [BECK94A], for example in the map colouring problem,

described above, we might decide that a particular adjacent variable pair can be different

colours or can both be red.

Agents in multi-agent systems make use of a constraint relaxation approach to

resolve conflicts by making particular changes to the definition of the constraint, i.e.

relaxing the constraints. Thus altering the problem and allowing relationships that were not

allowed in the original problem to become acceptable. An example of using this technique

in the supply chain domain has been shown in [BECK94],

2.1.4 Market Based Approach

The market-based approach, otherwise known as market-oriented programming [WELL93]

[WELL96], is based on market price mechanism. In this approach, agents try to solve a

conflict in a distributed system by computing the competitive equilibrium of an artificial

economy. In the general equilibrium theory agents are regarded as consumers and

producers and their tasks are defined in terms of production and consumption of goods.

Agents choose strategies for production and consumption of goods based on the going

market price, their capabilities, and their preferences.

11

Chapter 2: Literature Review

Cheng and Wellman have developed an algorithm that utilises this approach, and

named it the Wallras algorithm [CHEN98], Wallras algorithm calculates the competitive

equilibrium using a price-adjustment process where an excess demand triggers price

increases, and excess supply triggers price decreases - this is called the tatonnemen process

that was originally expressed by Leon Walras [WAL1874], The change in the price

depends on excess demand. The Wallras algorithm has been used for practical applications

such as transportation planning [WELL93] and allocating computational resources

[BOGA94, DOYL94J.

2.2 Using Preferences

Preferences are being used in many applications including advanced information retrieval

[SEOOO], quality of service provision [PARK98], product design [KEIN97], electronic

commerce [JOOOO], distributed meeting scheduling [SEN97], concurrent engineering

[DARR94], fuzzy ranking [WANG01], agent-based routing [ROGE99], cooperative

decision-making [WONG94], computer-supported cooperative work (CSCW)

[MCCAc98], document ordering, learning and storage in an Web-based environment

[BURK01], and designing an intelligent environment [NAGE99]. Some of these

applications try to learn user preferences, some utilise preferences as a method for solving

a problem and others are mixture of both learning and at the same time utilising preference

to find a solution. Most of these applications share similar concepts for using and building

user preference models. We outline some of these concepts by describing some of these

applications in this section.

12

Chapter 2: Literature Review

2.2.1 Advanced Information Retrieval

Information in the digital libraries and the internet is growing and the need to retrieve and

refine relevant information effectively has prompted researchers to develop different

models for information retrieval. Some of these models are based on sorting the

information according to the user preferences that are stored in a user profile [PAZZ96],

[TAN98, GLOV98] proposed retrieval systems that use a user profile to filter information

from the web, the user profile is not modified automatically. [SEOOO] proposed a different

information retrieval system, WAIR (Web-Agents for Information Retrieval), which learns

user preferences by observing user behaviour during the user interaction with the system.

2.2.2 Concurrent Engineering

The design process of large-scale products involves consideration of hundreds or

thousands of often competing concerns such as manufacturability, testability, cost, etc.

[DARR94]. Concurrent Engineering (CE) is a product design methodology which aims to

enhance productivity and to improve overall designs concerned with integrating all of the

functions involved in the whole product development lifecycle. It has been used in the

construction industry, electronic design, and manufacturing system design. A widely

quoted example is the Boeing 777 jet was developed using concurrent engineering

concepts [LOCHOO],

One system that is used in the construction industry and that uses the concept of

preferences is the Designer Fabricator Interpreter (DFI) tool introduced by Werkman

[WERK92]. DFI is a computer tool used in steel-connection design. The DFI provides a

multi-agent architecture which models design, fabrication and construction processes. In

13

Chapter 2: Literature Review

DFI each agent is an expert in its domain with its own preferences. The system considers

preferences and issues that are important to each participating agent and produces a

cooperative solution through negotiation. DFI uses an arbitrator as a means of central

control through which agents communicate. There is no direct interaction between agents.

In the Automated Configuration-Design Service (ACDS) introduced by DARR and

Birmingham [DARR94, DARR96], the system helps designers during the design phase of

the product to select components from catalogues. Catalogue agents use system

preferences to select components subject to performance and feasibility constraints.

An agent-based framework to solve hierarchical CE problems is presented in

[ARBO96J. In this approach preferences and constraints of a design supervisor are

distributed to design subordinates, who are expected to achieve global coordination by

using their local expertise. The solution of the design problem is affected by the

preferences of all decision-makers participating in the design process.

2.2.3 Electronic Commerce (E-Commerce)

The rapid development of the internet as an electronic market has encouraged the

development of systems and services that support users to locate, buy, and sell goods on

the World Wide Web [DAST01]. For such systems to be used effectively, it is essential for

the system developers to pay attention to the effective representation and utilisation of user

preferences [MUKH01]. This can be achieved by building a user preference model. Three

approaches for modelling user preferences in e-commerce system are shown in [DAST01J.

In the first approach, collaborative-based approach, the user preference model is

constructed on the rating of items previously used by users thought to be statistically

similar, as in [MOVIFINDER]. In the second approach, content-based approach, the user

14

Chapter 2: Literature Review

preference model is constructed on the rating of previous items used and rated by the user,

as in [BARGAINFINDER]. The third approach uses an integrated approach of the

previous two approaches as in [BASU98].

An example of an e-commerce system that utilises user preferences is an agent-based

grocery shopping system such as that was presented in [JOOOOJ. This system aims to

automate grocery shopping by using agents that select products on the basis of information

collected from different stores and comparing it with the user preferences. The agent learns

and updates user preferences through the user evaluation of the previous results. This

system demonstrated the effectiveness of using user preferences when selecting products.

2.2.4 Distributed Meeting Scheduling

The basic objective of meeting scheduling is to set a meeting time that is acceptable to all

potential participants in the meeting. One key question that researchers in the area of

distributed meeting scheduling are trying to find an answer to is how to choose an

appropriate time slot from these feasible for a meeting [EPHR94]. Research in distributed

meeting scheduling presented in [EPHR94, SEN97, GARR96, SHINOO] has used

preferences to design models and systems that try to solve problems found in distributed

meeting scheduling.

Ephrati et al. [EPHR94] introduced an approach that uses a primitive economic

market, where the users indicate their preferences by assigning points to the different

proposed solutions. Then the proposal with maximum points is taken as the accepted

proposal. They analysed tradeoffs between mechanism complicity and information

preferences using three centralised monetary-based meeting scheduling systems.

15

Chapter 2: Literature Review

Garido and Sycara [GARR96] presented an agent-based meeting scheduling system

in which each agent in the system knows its user preferences and calendar availability.

They presented experiments that show the meeting scheduling performance is stable when

information on user preferences and calendar are kept private. However, they did not show

how to reach a compromise solution with other agents.

Sen et al. [HAYN97, SEN98] developed an agent-based system that can automate

scheduling meetings between group of users. It utilises user preferences to find a suitable

meeting time. User preference dimensions such as meeting topics, duration, participants,

host, etc. are rated by the user. Then each preference dimension is given a number of votes

depending on the user rating and proposals with enough votes are accepted [SEN97J.

Shintani et al. [SHINOO] used a mechanism that includes multiple preference revision

to design a distributed meeting scheduler. In this mechanism the invitee agent, that is the

agent invited to the meeting tries to revise its preferences so that its most preferable

alternative is the same as the host agent, that is the agent calling for a meeting. The

negotiating agents try to reach a compromise by revising their preference until an

agreement is reached.

2.3 Manufacturing Systems and Scheduling

The subject of scheduling has attracted researchers in many areas, such as manufacturing

[SHEN99], project management [KIM01], and public transport [WREN99], as well as the

production of timetables in schools, universities [SCHA95], Resource allocation in

manufacturing systems is a typical representative scheduling and resource allocation

application where various types of preferences need to be involved to obtain any

acceptable solution. Also the manufacturing-scheduling problem has received considerable

16

Chapter 2: Literature Review

attention because of its highly combinatorial aspects (NP-hard1), dynamic nature, and

practical interest for industrial applications [SHEN02].

1 That is, finding an optimal solution is impossible without using an essentially
enumerative algorithm, and the computation time increases exponentially with the problem
size

Scheduling plays an important part in manufacturing systems and several approaches

and techniques have been proposed to solve the manufacturing-scheduling problem. Such

techniques can be categorised into traditional approaches and agent-based approaches

[SHEN02J. In the following subsections we first outline the traditional approaches in

scheduling and then we discuss agent-based manufacturing systems with specific focus on

scheduling.

2.3.1 Traditional Approaches in Scheduling

Such scheduling algorithms usually use search strategies to solve problems where the

calculation of all possible solution is not possible with available computing equipment. In

the research community different classifications for such algorithms have been proposed.

For example [BROW95] classifies scheduling algorithms as artificial and computational

intelligence methods, [BAKE98] divides them according to the degree of optimality

sought, e.g. nearly-optimal scheduling, towards optimal scheduling and heuristic

scheduling, and [GeYI99] categorises them as analytical, heuristic and Al approaches. In

their most recent study [SHEN02] traditional algorithms are classified into analytical,

heuristic and metaheuristic. We outline these categories in this section.

• Analytical Approaches: These techniques, such as queue theory, linear programming,

branch and bound algorithm, dynamic programming etc., try to produce the exact

17

Chapter 2: Literature Review

solutions. However, they are only effective for solving small problems or problems that

are not NP-complete.

• Heuristic Approaches: These algorithms try to replace exhaustive search algorithms

by trying to discover solutions that point to the optimum solution, although they might

miss the optimal solution. Such algorithms include forward/backward scheduling and

deterministic simulation.

• Metaheuristic Artificial Intelligence Approaches: Under this name, the following

algorithms are grouped: simulated annealing [JOHN89J; genetic algorithms [GOLD94];

neuro scheduling [RABE93]; tabu search [HERT95, DAM94J.

All the traditional methods outlined above use simplified theoretical methods and are

essentially centralised [SHEN02], As we shall show below it is difficult to use them for

modem manufacturing systems.

2.3.2 Agent-Based Approaches in Manufacturing Systems

In order to remain competitive modem manufacturing systems are required to adapt

automatically to changes in the environment [BREN02J. Such changes can be market

changes or the emergence of new technology. Manufacturing systems are required to deal

with unpredictable demand for different products in small batches. Nowadays, many

industries are changing from mass production to mass customisation [CHORAOl], The

requirements for modem manufacturing systems are as follows [SHEN99J:

18

Chapter 2: Literature Review

• Integration: The manufacturing systems of a manufacturing organisation should be

integrated with their related management systems via networks to support global

competitiveness and rapid market responsiveness.

• Interoperability: Manufacturing systems may need to accommodate heterogeneous

software and hardware in both their manufacturing and information environments. The

components of such heterogeneous environments should interoperate in an efficient

manner.

• Cooperation: Manufacturing systems need to cooperate with their suppliers, partners,

and customers for material supply, parts fabrication, marketing and so on.

• Dynamism: It must be possible to schedule and reschedule without stopping and

reinitialising the working environment.

• Flexibility: The system must handle different orders and deal with changing machine

characteristics.

• Scalability: The system must handle any increase in orders or resources without

disrupting any organisational links that were previously established.

• Fault Tolerance: The system should detect system failures at all levels and should be

able to have a recovery procedure that can avoid system collapse or a reduction in

system throughput.

Adapting traditional centralised manufacturing systems to fulfil the requirements

above is cumbersome. In recent years researchers have been applying concepts in multi

agent systems to manufacturing systems and have developed new type of manufacturing

systems such as Holonic Manufacturing Systems (HMS) [DEEN03AJ. HMS is an

international project called Intelligent Manufacturing Systems (IMS), which started in

1993 as a ten-year programme by Australia, Japan, Europe, Canada and the USA, and is

19

Chapter 2: Literature Review

supported by respective Governments. The HMS project is focused on what might be

described as an agent-based manufacturing system particularly suited to low-volume high-

variety manufacturing. HMS can be viewed as a distributed system consisting of

autonomous, cooperative, and recursive functional units called holons that can be viewed

as special kinds of agents.

Agent-based manufacturing scheduling systems support distributed scheduling, in

contrast to traditional manufacturing scheduling systems which support centralised

schedulers. In the Agent-based approach each agent can locally handle its schedule. A

global schedule can be produced through a given negotiation mechanism and protocol. A

number of researchers have used agent technology to resolve the manufacturing scheduling

problem. A survey by [SHEN99] reports on 30 projects using agent-based approaches for

manufacturing planning, scheduling and execution control where agents represent physical

entities, processes, operations, parts, etc. We overview some of the of recent projects and

focus on how they deal with the scheduling problem.

• AARIA (Autonomous Agents at Rock Island Arsenal) [AARIA]: An implemented

system that runs in a real or simulated mode for the U.S. Army facilities at Rock Island

Arsenal. The system implements the following functionality: finite capacity

scheduling, basic planning, order entry, purchasing, bill-of-materials management,

inventory management, resource management, personnel management, integrated

financials, and reporting [PARU97], AARIA uses agents representing the

manufacturing capabilities of the system. When these agents are connected together,

they self-configure to provide a full system functionality. AARIA demonstrates the

interactive insertion of new jobs into a distributed schedule. It allows the dialog with

customers and suppliers to optimise schedules and react to disturbances in the system.

20

Chapter 2: Literature Review

When a job arrives, it causes bid requests, bids, purchase orders, and commitments to

propagate through the network [SOUSA99], Through this process, the system finds the

minimum-cost schedule for each new job, assuming already-scheduled jobs cannot be

moved.

• IBM Paper Mill Scheduling [IBM]: The IBM mill scheduling system is an interactive

decision-support system for scheduling operations in a multi-mill multi-machine in the

paper industry from manufacturing to product delivery [MURT97]. The system

architecture is based on asynchronous team (A-Team) of cooperating agents. This

architecture consists of a population of solutions and three types of agents, which

create and modify this population. These three agents are Constructors, Improvers, and

Destroyers [AKKI98]. The Constructors create initial solutions, then Improvers select

existing solutions and modify them to produce a new solution, which is then added to

the current population while the original solution is preserved. The main function of the

Destroyers is to keep the size of the population of solutions in check, which is done by

deleting clearly bad or redundant schedules.

• PROSA (Product -Resource -Order -Staff Architecture) [PROSA]: This is a reference

architecture for HMS (see above). In the PROSA architecture a manufacturing system

is built from three basic holons: order holon, product holon, and resource holon

[WYNS99]. A product holon holds the process and product knowledge to ensure the

correct fabrication of the product and acts as an information server to the other holons

in the HMS. A resource holon represents the physical part that controls the resource

and holds the methods to allocate the production resources, and the knowledge and

procedures to organise, use and control these production resources to drive production

21

Chapter 2: Literature Review

[BRUS98]. An order holon is responsible for performing the work correctly and on

time, it represents a manufacturing order. A staff holon whose mission is to assist and

advise the basic holons can be added. An example of a staff holon is the scheduler.

[BONG95] describes the schedule execution for this environment.

• Contract-Net Protocol for HMS [SOUS99J: This is a proposed dynamic-scheduling

system architecture based on the Contract-Net Protocol [DAVI83], The proposed

architecture adapted this negotiation protocol between all parts of the system to handle

conflicts in the decision problem, and dynamic changes in the system. This architecture

is composed of holons representing tasks and holons representing resources.

• HOLOS / MASSYVE: The HOLOS architecture developed at the New University of

Lisbon is concerned about scheduling in Virtual Enterprises [RABE94]. A unique

global and comprehensive schedule does not exist, but rather a collection of distributed

and interrelated pieces of smaller schedules. HOLOS uses the Contract-Net Protocol

co-ordinating mechanism to support information exchange among agents during the

generation of the scheduler. It also uses the tandem agent architecture to support

integration with legacy systems [LEIT01], This work was later on extended to

distributed multi-site manufacturing systems and virtual enterprises in the framework

of the INCO MASSYVE project [RABE99]

• MASCADA (Manufacturing Control Systems Capable of Managing Production

Change and Disturbances) [MASCADA]: The focus of this project is to develop a

manufacturing control system that is able to manage production change and

disturbance both effectively and efficiently [MASCADA]. The manufacturing system

in the MASCADA approach is composed of communicating local intelligent

22

Chapter 2: Literature Review

autonomous agents. These agents are based on the HMS - PROSA reference

architecture (see above). Within the MASCADA project the manAge architecture

[HEIK99], which is an agent architecture for manufacturing control, has been tested.

• DEDEMAS (Decentralised Decision Making and Scheduling) [DEDEMAS]: The

DEDEMAS system prototype, developed for the integration of distributed systems

providing mechanisms for decentralised decision making and scheduling, covers both

multi-site operations of one company and its chain of external suppliers [TOENOO].

The decision-making mechanism is based on the extended contract net and several

monitoring schemes and rules support companies to optimise their processes. In that

sense it is similar to HOLOS/MASSYVE approach (see above). It uses XML messages

to support a high degree of transparency of the business processes and system

integration.

• MetaMorphll: This is a multi-agent architecture for intelligent manufacturing

developed at University of Calgary [METAM0RPH2]. Its objective is to integrate the

manufacturing enterprise's activities such as design, planning, scheduling, simulation,

execution, and so on, with those of its suppliers, customers and partners within a

distributed intelligent open environment (MATU96). The project proposes a hybrid

agent-based architecture, combining the Mediator and the autonomous agents

approaches. MetaMorphll organises the manufacturing system at the highest level

through subsystem mediators and each subsystem can be an agent-based system. Some

of these agents may also be able to communicate directly with other subsystems or

agents in other subsystems [METAMORPH2],

23

Chapter 2: Literature Review

2.4 Discussion

We outlined in section 2.3 some applications, which utilise preferences for solving

problems in different domains. We summarise our findings on their use of preferences as

follows:

• Most of these applications use preferences as a simple ranking mechanisim.

• Most of the applications require human intervention at one point or another of the

processing.

• Complex tasks with multi-level subtasks and preferences are not handled.

• Most of these applications do not guarantee the convergence of distributed

computation.

• The issues of relaxing preferences to determine the maximum possible preference

values that can be achieved have not been addressed.

We outlined the various techniques that have been developed by researchers in the

field of cooperative distributed problem and multi-agent systems for conflict resolution in

multi-agent systems in section 2.2. Some of these techniques are based on game theory. In

practical applications, negotiation can not be treated as a game, as in games one party loses

and others win, while in real world situation both parties must gain some benefits

[MUDGOO], Other techniques are based on decision theory such as utility theory

[NEUM44]. Most of these techniques depend on the availability of well-behaved

quantitative data. Such data is difficult to obtain in most applications [WONG94].

In this thesis we propose a model to solve preferential conflict based on a simple

market-based approach. It differs from the market-based approaches discussed in section

24

Chapter 2: Literature Review

2.2.4 in that it does not use computational economics (general equilibrium theory). Our

approach is based on a simple cost accounting approach. In our approach, agents can trade

preferences for “money”, which enables agents to gain more preference values in

subsequent iterations.

As the trend in modem manufacturing systems goes towards mass-customisation

(section 2.3.4), customer preferences as well as manufacturer preferences play a major role

when it comes to scheduling the product manufacturing process. We found that most

manufacturing scheduling systems concentrate mainly on resolving constraints conflicts

(referred to as hard constraints in some literature) and give only little consideration to

solving preferential conflicts (referred to as soft constraints in some literature). We show

how our preference model can be used for scheduling processes in distributed

manufacturing systems.

We formulated a theoretical performance model based on the preference model

presented in this thesis. For a given distribution of preference values over a number of

resources the theoretical model can roughly estimate the minimum and maximum

preference values that can be achieved. We did not find any performance models similar to

this in previous research work on distributed manufacturing scheduling.

We apply our preference model for conflict resolution within the Cooperating

Knowledge Based Systems (CKBS) paradigm. The CKBS approach is an engineering

paradigm for solving real-world problems in distributed applications. This is in contrast to

the mentalistic approaches used in current multi-agent systems (see section 3.1). We also

use the cooperation model and the agent architecture as applied in CKBS. In the next

chapters we outline the CKBS model and our preference model.

25

Chapter 3

Cooperating Knowledge Based Systems

The preference model, which is the focus of this thesis, is to be used as a means of

resolving conflicts when solving problems in Multi-Agent Systems (MAS). From the

various MAS architectures that are currently present we chose the Cooperating Knowledge

Based Systems (CKBS) architecture as a framework to apply our preference model. CKBS

is a research area in which the main objective is to develop good formalised solutions for

computing problems in distributed application using an agent based approach. We use this

chapter to outline the basic concepts in the CKBS architecture. In the following section we

review the basic concepts in the CKBS model. Section 3.2 reviews the basic elements

(Agents, Tasks, and Shadows) of the CKBS model. We outline the cooperation

environment in section 3.3, while the operational architecture is outlined in section 3.4.

3.1 Basic Concepts of the CKBS Model

CKBS research overlaps with that of Multi-Agent Systems (MAS) of Distributed Artificial

Intelligence (DAI) [DEEN96]. The CKBS approach emphasis is on solving real-world

distributed problems, where effectiveness, performance, reliability, and usability are of

utmost importance [DEEN96] [DEEN97]. In this respect, CKBS has been said to be an

engineering approach to agent-based systems [DEEN96], this is in contrast to the

DAI/MAS approach where models are formulated in terms of human behavioural concepts

26

Chapter 3: Coopearating Knowledge Based Systems

such as belief, intention, and desire (BDI) [WOOL99]. Concepts of belief, desire and

intention (BDI) were introduced by Bratman et al [BRAT88] and developed further by Rao

and Georgeff [RA091] as the basis of single-agent architecture. An informal architectural

frame for the CKBS was described in [DEEN96] and [DEEN97], To support fault

tolerance in a distributed environment the CKBS model was developed further and

presented in [Deen98J. Deen and Johnson presented an abstract and a formulised version of

the CKBS model in [DEEN99A] and [DEEN03] respectively.

In the CKBS approach an agent, is an autonomous knowledge based systems having

a compulsory software component and an optional hardware or human component. The

agent can work with other agents in cooperation to solve a joint task. The collection of

agents together constitute a Cooperating Knowledge Based System (CKBS) [DEEN96]

[DEEN97][DEEN99j. In this thesis an agent is treated wholly as a software-based system

with no hardware or human component.

AS outlined by Deen in [DEEN96] and later by Fletcher [FLET97] the CKBS main

objective is to develop systems for real world applications. Towards this objective CKBS

offers the following for interagent activities within a transaction oriented CKBS

[DEEN96J:

• A development environment that reduces the development time for new applications.

CKBS provides well-defined structures and components as well as a friendly user

interface such as a graphic user interface (GUI) that can help to achieve this goal.

• A framework to enable agents to manage and interpret cooperation strategies, and

recovery mechanisms.

• A support for user interface tools and inter-agent communications to specify and

invoke user-defined cooperation strategies for distinct tasks at different times.

27

Chapter 3: Coopearating Knowledge Based Systems

• A provision of simplified Cooperation strategy specifications. This is provided by

using distribution transparency, that is, multi-agent systems are viewed as a mono

agent system.

• A multilevel schema to accommodate different levels of users with different expertise.

The CKBS model has been applied in different application areas that includes

Holonic Manufacturing Systems (HMS) [CHRI98][FLET98][FLET98A], Air Traffic

Control [DEEN97A] [NDOV94], Telecommunications Network Management [FLET97]

and agent-based interoperability with partial global ontologies [ALQA99].

It should be noted that the CKBS has been adopted as an abstract foundation for agent

based manufacturing within the HMS project [DeenO3J.

3.2 Basic Elements of the CKBS Model

Agents, tasks, and shadows are the key elements in the CKBS model. In the following

subsections we review these basic elements and their role in the CKBS model.

3.2.1 CKBS Agents

As indicated earlier, agents in the CKBS model are described as a large grain entity, which

have a compulsory software component and an optional hardware component [DEEN96],

While agents can participate in a joint task processing, so in that sense they are

cooperative, they are autonomous, in the sense they can decide which joint task to

participate in and then negotiating their role in that task [DEEN03]. Figure 3.1 shows the

28

Chapter 3: Coopearating Knowledge Based Systems

structure of the agent as defined in the CKBS model. The agent has a head connected to a

body by a communication link (the neck).

Fig. 3.1 Agent structure

Inter-agent activities take place in the agent head which holds knowledge about itself

and knowledge about other agents in what is called the home model and the environment

model respectively. Communications with the outside world is the responsibility of the

communicator at the top of the head.

The body provides the individual skills of the agent as discussed later and makes all

internal decisions regarding the skill execution.

Skill Classes

A skill is what an agent offers to other agents, it signifies the type the operations the agent

can perform and the role it plays within its community [HAMA98]. An agent may possess

29

Chapter 3: Coopearating Knowledge Based Systems

more than one skill, though each agent must have at least one skill. Agents are grouped by

the skill they posses, one agent can belong to more than one skill class. Each skill is

represented in a skill class. A skill can may have more than one agent, agents in one skill

class are called twins.

Agent Classification

To simplify the process of solving problems in multi-agent systems, CKBS classifies

agents into several categories [DEEN98], the following are the ones which are relevant to

our work in this thesis:

1. Coordinator agents: such agents have the skill to coordinate task execution.

2. Processing agents (cohort agents): such agents possess the skill to process a task.

3. Service provider agents: such agents provide additional services that are needed in

MAS. As examples of such agents are directory agents, transport agents, monitor

agents, etc.

Within each category multiple classes of agents can be found. For instance to handle

breakdowns each class can have a set of agents that have the same capability and can

replace one another in the event of failure, these are called twins [DEEN99], A class of

agents called minders whose responsibility is to supervise the replacement of the faulty

agent and to schedule its twins.

3.2.2 Tasks

In MAS agents work together to solve a joint (i.e. global) task, say T*, which can be

decomposed into a lower-level tasks (subtasks) (Tt ... TJ [DEEN99A]. Subsequently any

30

Chapter 3: Coopearating Knowledge Based Systems

subtask can be decomposed to another set of subtasks. Each subtask requires a certain skill.

Any agent that belongs to the skill class is a potential candidate to execute that subtask.

Tasks in the CKBS model are generally described using task schema, dependency

schema, and preference schema. We outline these schemas below.

The Task Schema

The task schema describes the task procedure, the task parameters, and the pre/post

conditions that apply to every instance of the schema [DEEN99]. Agents which possess the

appropriate skills execute the task procedure and report the result of the execution. The

task parameters such as start-time, duration, deadline, and success-parameter, are those

associated with the execution of the task. Some parameters are set before task execution

(input parameters), and others are set during execution. Some parameters remain static

during execution and other parameters are subject to changes during execution. Pre

conditions can be system-dependent which guarantee that resources are available and in a

fault-free state, or precedent-dependent that are derived dynamically from the dependency

schema [DEEN99AJ. Postconditions are these conditions that the task must satisfy upon

completion of the task, for example a quality check or that end-time is less than deadline.

Dependency Schema

Each subtask will have a dependency schema that describes the relevant task dependencies.

It shows what tasks should be executed before starting the task execution. These are static

constraints and contribute to the pre-conditions discussed above. This schema can be

integrated with the task schema, but in this thesis we choose to separate it for clarity

purposes.

31

Chapter 3: Coopearating Knowledge Based Systems

Preference Schema

Associated with each subtask is a set of preferences as well as the set of dependencies and

constraints explained earlier. Preferences arise when multiple solutions are available for

the task. In this case the user express his choice in the form of preferences on some

desirable aspects of the solution. Preferences vary widely depending on the application,

and each requires special presentation, such preferences can be a machine, time, labour,

etc. It is not always possible to satisfy all preferences due to contention with preferences of

other tasks.

Our focus in this thesis mainly, as pointed out in chapter 1, is how to derive a

preference-based solution that satisfies as many preferences as possible in presence of

contention.

3.2.3 Shadows

In order to keep the cost of communication as low as possible, we need to make sure that

only the necessary information is exchanged amongst cooperative agents. The CKBS uses

the concept of shadows [DEEN96] as means of exchanging information amongst agents.

Information on what skills are available from an agent are called shadows of its skill

relations. Shadows are derived from these relations, containing all the relevant attributes

needed for the associated software function to be referenced or instantiated by a remote

agent. Similarly, they are used in inter-agent activities, held at the upper head of the agent

[DEEN97],

Shadows are quite similar to views in traditional relational databases, yet they

provide strong distributed consistency and trigger schemes. A remote agent cannot directly

32

Chapter 3: Coopearating Knowledge Based Systems

update the external relations of other agents, but it sends a message to request an update to

be done.

From the perspective of the agent, there are two types of shadows: export shadows

and import shadows. Export shadows are the means by which an agent can publish its

skills and capabilities to other agents. They are views created from external relations of the

agents to be used by other agents as import shadows [ALQA99]. An export shadow ES for

a skill K offered by agent B to A has its scheme derived from the skill relation SR (the

source table of the shadow) and is exported to remote relations in A. The agent posts its

export shadows for other agents to import. The corresponding source relation is

responsible for keeping its export shadow up-to-date.

An agent builds acquaintances by importing suitable shadows from other agents.

Agents access each other’s shadows when communicating. Shadows that the agent collects

form the partial global knowledge of the agent and can vary from time to time.

Multiple shadows, which are not necessarily identical, can be generated on a given

skill. Import shadows received from agents with the same skill could be different, it would

be the responsibility of the agent to map these shadows into one common import shadow

for that skill for the convenience of operations at that agent.

3.3 Cooperation Environment

In this section we outline in general, with some details when needed, the basic concepts in

the CKBS model, namely cooperation, coordination, inter-agent interactions, cooperation

strategy and distribution transparency.

33

Chapter 3: Coopearating Knowledge Based Systems

3.3.1 Cooperation

In [DEEN99] cooperation is defined as the process in which agents carry out dependent

activities of a joint task (global task) and negotiation is the process by which agents agree

on mutually acceptable solutions. CKBS agents are implicitly cooperative, they work

together in what is called a cooperation block, CB. A CB can be created and terminated

dynamically during the processing of the task. A basic CB has a coordinator and a set of

other agents that carry on the actual task, referred to as cohorts*. The coordinator can be

viewed as the user agent. The same agent can be a cohort in one CB and a coordinator in

another CB, and it can participate in more one CB at the same time. This leads to a

heterarchy as shown in Figure 3.2.

In this figure, agent A is the coordinator of a CB with agents B, C, and D as cohorts.

Agents C and D are in turn the coordinators of a lower two CB’s. Agent C is the

coordinator of a CB with agents E and H as cohorts. Agent D is the coordinator of a CB

with agents F, G and H as cohorts. Agents E is in turn the coordinator of a lower CB in

which H, J, and I are cohorts. Note that H appears concurrently as a cohort in two CB’s, D

act as the coordinator in one CB and C acts as a coordinator in the other. In general an

agent in a CB can be a coordinator of a lower level CB to execute a subtask with the help

of cohort agents, or a cohort agent in a CB that executes a subtask with other cohorts. An

agent can participate in more than one CB concurrently. An agent can act as a cohort in

one CB and a coordinator in a lower level CB.

This term is also widely used in distributed system processing and refer to processes that are working
together

34

Chapter 3: Coopearating Knowledge Based Systems

Fig. 3.2 A heterarchy of cooperation blocks

3.3.2 Coordination

As stated in [DEEN96] cooperation can be trivial or non-trivial. A trivial cooperation

involves a simple information retrieval, as a simple retrieval query in a database. In a

trivial cooperation the agent is committed to answer queries from other agents, even

though the answer could be noncooperative, (e.g. Can not participate in executing the

task). In a non-trivial cooperation an agent (cohort) enters, implicitly or explicitly into a

CB through a three Stage Coordination, 3SC, protocol that was proposed in [DEEN94]. As

stated in that proposal the 3SC protocol embodies the following three stages:

35

Chapter 3: Coopearating Knowledge Based Systems

1- Agreement:

In this stage, agents enter into an enforceable agreement to perform a joint task

subject to some constraints and preferences. The agreement is reached within a CB

as agents in the CKBS model participate in a CB under a coordinator to solve a joint

task. This agreement itself could be arrived through negotiation. Agents can enter

this agreement one at a time or all at the same time depending on the application

need.

2- Interactions:

The cohorts interact with each other to achieve the joint goal in accordance with the

agreement. These interactions take place within a CB.

3- Termination

The task execution terminates when cohorts complete their tasks. Then the cohorts

leave the CB one at a time, or all at the same time, depending on the application. The

coordinator leaves last and then the CB terminates.

3.3.3 Inter-Agent Interactions

Effective communication is needed for a successful cooperation between agents. In a

multi-agent research various proposals for inter-agent interactions have been made, most of

these use psychological approaches by imitating biological organisation interactions and

behaviours such as humans, insects and animals. One example is the BDI (Belief, Desire

and Intention) that was introduced as a basis for research into multi-agent architectures

[BRAT88][RAO95]. This BDI model defines the intra-agent behaviour in terms of mental

faculties for the rational selection of action plans to satisfy goals. Some researchers

36

Chapter 3: Coopearating Knowledge Based Systems

[MUEL96][FISH94][LUX97] in multi-agent systems are inspired by the Speech-Act

Theory [SEAR69]. Speech-Act treats agent interaction and communication as a type of

action to be incorporated into planning and reasoning processes. Primitives inspired by

speech act theory include propose, refuse, respond, inform, etc. During the 1990s,

DARPA introduced a LISP-based environment that integrates a Knowledge Interchange

Format (KIF) [GENE92] and a Knowledge Querying and Manipulation Language

(KQML) [FINI93]. More recently, FIPA (Foundation for Intelligent Physical Agents)

[FIPA] defined a multi agent framework and an agent communication language (ACL)

based on the Speech Act Theory and KQML. It uses modified BDI concepts and supports

the Speech-Act inspired primitives mentioned above.

The CKBS takes a different approach based on a well-tried computer science

concepts [Deen97J. A set of commands or communication primitives taken from the

database domain, similar to the set of SQL commands used in the relational database

model. The CKBS assumes the existence of six request primitives to reference inter-agent

activities:

• Retrieve : to get information from another agent.

• Perform : to request an agent to carry out an action.

• Modify : to modify parameters on the agreed action.

• Delete : to delete an agreed action.

• Confirm: to confirm an action to proceed.

• Abort’, to abort an action after its execution has started.

The MODIFY and DELETE represent error correction on a previous command.

The above commands are used in the agents’ interactions to reference the exchanged

shadows. For example, if an agent A has an import shadow Sb (section 3.2.3) of source

external relation Rb at agent B, all operations requests by A on Sb are automatically

37

Chapter 3: Coopearating Knowledge Based Systems

dispatched by the underlying communication system. In the CKBS model these

communication systems are treated as a blackbox, however Hammad in [HAMA98] shows

one way of implementing such mechanism.

3.3.4 Cooperation Strategies

A cooperation strategy, as define in [DEEN97], is a user-defined specification describing

how a task should be performed. It specifies, using a high level language, how the

coordinator and the cohorts should behave during the execution of the task. The

cooperation strategy is flexible in that it can change from time to time and not predefined,

the agent can adopt different user-defined strategies.

To explain the specification of cooperation strategy we use an example of agent

based scheduling in a manufacturing environment [FLETOOJ. Usually in this kind of

environment a number of operations (weld, screw, cut, polish, mount etc.) are required by

a number of assemblers for the assemblage of a product of a given type. We assume we

have three types of agents for manufacturing:

• Coordinator agent: coordinates the assemblage of a product type.

• Assembler agent (cohort)', responsible for the assembly operations of various

kinds

• Directory agent: provide information on assemblers’ skills.

We assume we have one Coordinator agent, a set of Assembler agents and one Directory

agent. The basic steps for scheduling a task, using a contract net protocol [SMITH80]

[DEEN97] proceeds as follows:

1. The Coordinotor invites tenders.

2. The Assemblers bid.

38

Chapter 3: Coopearating Knowledge Based Systems

3. The Coordinator evaluates the bids, decides on which one to accept and inform

the bidders of its decision.

4. The successful bidders confirm agreement.

5. The work is done and the protocol ends.

We assume that the allocation is incremental, that is allocation is requested when

needed, hence the requested Assemblers slots may not be free, as they might be already

scheduled to other subtasks. We also note that the allocation in one Assembler affects that

in others due to precedence constraints. In the case of a request for a pre-allocated slot, a

number of different options for the Assembler are available, such as:

1. send a NO, or

2. send next free slot, or

3. send all the subsequent slots

The Coordinator may choose to schedule the Assemblers one at a time or all at the same

time using the contract net protocol outlined above. These will lead to different

cooperation strategies to be defined by the Coordinator. The user may code any suitable

cooperation strategy, subject to the capabilities of the assembler. One such strategy

[DEEN97] is outlined in the steps below:

1. The Coordinator requests information from the directory agent about agents that

posses the required skill.

2. The Coordinator preselects suitable Assembler agents

3. The Coordinator requests them to schedule the task.

39

Chapter 3: Coopearating Knowledge Based Systems

4. The Coordinator receives the results of the requests, which is success or failure.

5. Based on the Assemblers’ replies, the Coordinator selects which assembler to

process the task.

6. The Coordinator informs the Assemblers of the acceptance and wait for

confirmation. It is assumed that all Assemblers accept. It also posts its rejection to

these rejected Assemblers.

We show in Figure 3.3 a scenario for allocating three subtasks, Tj, T2, and T3, in

that order, in three Assemblers. Shaded boxes indicate pre-allocated slots. We assume the

duration for each subtask is one slot. With respect to the Coordinator, Assembler 1 is

regarded as prior Assembler and Assembler 3 is regarded as next Assembler. Usually,

there will be different prior and next assemblers with respect to different Coordinators for

different assemblies. T! is allocated to the first available slot in Assembler 1, slot 3. Next

T2 is scheduled at slot 5 of Assembler 2, though slot 3 of this assembler is free, this is due

to the effect of precedent constraint mentioned above. Then T3 is allocated to slot 7 at

Assembler 3.

40

Chapter 3: Coopearating Knowledge Based Systems

Coordinator

Indicates the slot is already occupied

Fig. 3.3 Cooperative scheduling

In the above scenario, no consideration was given to the subtasks’ preferences during

scheduling the subtasks. Precedent constraints were the only pre-condition that was

considered. In the next chapters we present a model that takes preferences into

consideration during the scheduling process.

3.3.5 Distribution Transparency

The concept of distribution transparency [Deen97] is one whereby the user views the

multi-agent system as a mono-agent system, giving the illusion that the coordinator is the

41

Chapter 3: Coopearating Knowledge Based Systems

only agent in the system and is capable of performing the task locally. In the CKBS model

the task is decomposed into subtasks and processed by different cohorts. The user specifies

the cooperation strategy (section 3.3.4) at the coordinator level. The Coordinator, using a

lower-level system-software that identifies the remote agents, dynamically dispatches the

sub-cooperation strategies for the relevant cohorts. Sub-strategies are communicated as

parameters along with the subtask request. Figure 3.4 illustrates this concept.

Fig. 3.4 Distribution transparency

The end-users can benefit from the distribution transparency in a number of ways,

some of these benefits are outlined below:

1. From the user point view, the system appears to perform as a mono system,

without having to know unnecessary system details, such as communication

network, protocols and message handling is not needed.

2. The user specifies strategies as a normal program without the need to know the

operational details.

42

Chapter 3: Coopearating Knowledge Based Systems

3.4 Operational Architecture

In this section we outline the scenario for the steps taken by the different agents to process

a global task as outlined in [DEENOOJ. Initially the coordinator forms an initial cooperation

block, then it decomposes the global task into subtasks, and determines the skills needed

for each subtask. It enters the selection process for the appropriate cohort as shown in

Figure 3.5. Using the directory agent, the coordinator finds the appropriate cohorts that are

available to execute the subtasks (Figure 3.5(a)). The coordinator then enters into

negotiation to select one of these cohorts (Figure 3.5(b)). After a successful negotiation the

coordinator records and handles all communications to and from that cohort. If a

contracted cohort becomes unable to meet its commitment, prior to the start of execution,

the coordinator is informed so that rescheduling can take place. Each cohort reports its

progress to the coordinator. In the case of delays the coordinator may negotiate with

another cohort that has the same skill and thus change the membership of the CB

dynamically. In the event of a cohort's breakdown during execution, the cohort will

rollback to a recoverable point and informs the coordinator. The coordinator then aborts

the processing and advises the other affected cohorts to rollback.

Cohort to cohort communication in the same CB may be needed in some cases. This

includes messages on results, task-sharing, and resource-sharing. If the tasks of two

cohorts have common subtasks, then they may negotiate with each other on such subtasks.

Also common resources can be shared subject to some negotiation during task execution.

Such negotiation may affect the execution order of subtasks, within each cohort.

43

Chapter 3: Coopearating Knowledge Based Systems

Coordinator
Retrieve

Respond Directory

Fig. 3.5(a). Coordinator locates the appropriate cohorts

Fig. 3.5(b). Coordinator selects final cohort through negotiation

Fig. 3.5 Cohort selection process

44

Chapter 3: Coopearating Knowledge Based Systems

3.5 Summary

In this chapter we outlined the CKBS approach for solving distributed real-world

problems. The CKBS model is based on an engineering paradigm in contrast to the

DAI/MAS approach where models are based on human behavioural concepts such as

belief, intention and desire. The CKBS approach is based on well-established computer

science concepts. It uses a layered architecture where the details of distribution and inter

agent communication are hidden from the end-user. We have outlined the structure of the

CKBS agent and the cooperation environment concepts found in the CKBS model, namely,

cooperation, coordination, inter-agent interactions, cooperation strategy and distribution

transparency.

In the next chapter we present a preference model to resolve preferential conflicts

among cooperating agents.

45

Chapter 4

The Preference Model

In cooperative processing, agents work together as cohorts to solve a joint (i.e. global) task

T, subdivided to lower-level subtasks (Tj ... Tn) (see chapter 3). Each task has both its own

exclusive resources and some shared resources. Tasks have constraints and a set of

preferences. In the introduction to this thesis (chapter 1) we explained the notion of

preferences. Such preferences are expressed on resources such as machines, time, and

labour. We use preferences, specified by the task, to choose a satisfactory solution which

preserves as many preferences as possible. It is not always possible to satisfy all

preferences due to contention with those of other agents. In this chapter we present a

market-based approach for preference exchange and processing. An overview of our

approach is given in section 4.2, while the model details are presented in section 4.2, and

an algorithm for implementing the model is given in section 4.3.

4.1 Overview

The decomposition of the global task into lower-level tasks (see above) is shown in Figure

4.1. The figure shows a global task, T, decomposed into lower-level subtasks, (Ti ... Tn),

which are in turn decomposed into a lower-level subtasks. A task can have other tasks as

46

Chapter 4: The Preference Model

precedents (indicated by dotted arrows in the figure). As can be seen from the figure this

can lead to a heterarchical task dependency structure.

Fig. 4.1 Task decomposition & dependencies.

One agent might act as the task agent or the coordinator, responsible for the global

task. If a resource has already been allocated to a task, and then if a later task arrives with a

higher preference on that resource, then we may have to change the previous allocation.

This leads to conflicts which can be represented in a network model, where the allocation

to a node (task) affects all other nodes (tasks) that have preference on the same resource.

The cascading effect of pre-emption and reallocation leads to branch explosions shown in

figure 4.2. In this figure we show three subtasks, T], T2, T3, which are part of a global task

T (not shown). Each subtask is decomposed into lower level subtasks. We assume that all

subtasks are allocated. To reallocate subtask T15 requires reallocating T23 which in turn

require reallocating T32, which could require the reallocation of more subtasks.

47

Chapter 4: The Preference Model

Reallocating T15 could require
reallocation of T

I

I

1

Cascading '
effects x

More cascading effects f
----- ---------------------------------

Fig. 4.2 The cascading effect of pre-emption and reallocation.

In this chapter we show how a set of agents can cooperate together to produce a

solution that converges. This global solution space is the intersection of the local solution

spaces. It may include more than one satisfactory global solution. In this case we accept

the solution that preserves most preferences, we call this the best solution. It is often

impossible to satisfy all the preferences due to one or more of the following reasons:

(i) contention with the preferences of other agents,

(ii) processing cost, and

(iii) intractability leading to non-convergence.

48

Chapter 4: The Preference Model

We shall also be presenting a market-based approach for preference exchange and

processing, an outline of the allocation process, and an algorithm for implementing the

preference model among cooperating agents.

4.2 Market-Based Approach

In order to assign preferences we categorise resources into two types:

• discrete, such as a machine or any physical items, and

• continuous, such as end-time, distance, and quality.

In discrete resources a list of alternative resources, each with its preferences, is specified.

In contrast, in continuous resources an appropriate strategy for preference allocation is

used, for example, if a preferred end-time cannot be met, the resultant end-time should be

as close to the preferred end-time as possible. Preferences for both discrete and continuous

resources for a task can be expressed as a number (i.e. a value), the higher the value, the

higher the preference value. Since a user (through the coordinator of a task) can specify

any preference values for the resources required by a task, an additional mechanism, in the

form of what the user is prepared to pay to other agents for them to give up their

preferences is introduced. We refer to these other agents as sellers. The sellers will sell

their resources only if the price is right. An agent can accumulate such costs received and

use them to buy preference values for itself later when needed. This market-based model

also helps enforce convergence.

In some cases there could be resource type dependency. For example, task

scheduling in machines, if a task has a preference on a machine and also on end time, the

end-time will be dependent on the machine. In this case the evaluation process will have to

evaluate both the combinations. If there are r dependent resource types, then the number of

49

Chapter 4: The Preference Model

combinations will be r!. Thus resource type dependency will involve extra processing. In

our subsequent discussion we will assume the preferred resource types of a task to be

orthogonal to one another. By using this assumption we can restrict our discussion to a

single resource without any loss of generality.

4.2.1 Preference Model

We define a preference satisfaction function (PSF) that returns a value to indicate the

number of preference values that are not satisfied. If all preferences are satisfied then the

PSF returns 0, otherwise it returns a negative value. PSF is expressed as follows:

= (4.1)
,=/ j=l

where p^ is a preference loss function and can be expressed as follows:

Pv=f(Vu) (4.2)

where/is a user defined function on preference loss, Vij is the value set by the task agent T,

for a preference j, k is the number of preferences, n is the number of tasks. We choose a

positive cut-off (U) so that the acceptable PSF values are

-U <(PSF) <0

For example if U has the value of 4 then the acceptable values of PSF are these between 0

and 4.

One way of expressing preference values in the case of continuous resources (e.g.

end-time) is to use a user-defined Preference Reduction Function, p. p can be a fixed

percentage reduction of the preference value, V, for each resource instance lower than the

preferred instance. For example, if the resource type is time, and instances are hourly time

50

Chapter 4: The Preference Model

slots, then the time-slots on either side of the preferred time-slot have less preference value

expressed as follows:

V(1 - sp) (4.3)

where s is the number of slots away from the preferred time-slot. For example if a

preference value V is expressed for a 10 am time-slot, then it will be V(1 - 2p) for the 8 am

time-slot and V(1 - p) for the 11 am time-slot. We can express p in other forms, for

instance we can specify preference values separately for each resource instance of a

resource type for a given subtask.

To avoid cycles that can lead to non-convergence we use a preference cut-off, cp. A

solution is acceptable if it improves the overall preference value by (p. A smaller value of cp

leads a larger number of exchanges and a higher final preference value. A larger value of cp

leads to fewer iterations and a lower final preference value. The user sets the value of cp.

4.2.2 Cost Model

A task agent can specify very high preference values greedily. To control this greed, we

use a market based cost model. The task agent must state how much it is prepared to pay to

achieve its preference, thus a task T can be presented for T as:

T:: [(Pj/Vj/O,, P2/V2/O2,.. .. P./V/O,.]

where each triplet P/V/Cf represents preference value V) on resource Pj for which the task

agent is willing to offer price Cf. Observe that Oj is the offer price in a negotiation, which is

paid by this task agent to another agent in proportion to the percentage of V) met by that

agent (see later).

A number of alternative solutions are usually available for the task agent. Each

solution is associated with a certain cost, which is meant to be covered by the offer price.

51

Chapter 4: The Preference Model

We use two types of cost: initial cost Ci, and a refinement cost Cr. Ci is the cost of finding

a solution (acceptable PSF value) for the task without taking preferences into account.

Such a solution might have satisfied some or all the preferences. If the minimum amount of

preference values indicated by the cut-off value is not met, a refinement is needed to gain

more preference values. In the refinement process, this task may be given a preferred

resource, removing that resource from other tasks (some resources can be shared by several

tasks). The cost of finding alternative resources for those affected tasks is the refinement

cost CR. There can be a cascading effect involving successive re-allocation due to task

dependencies. The sum of CR and Ci form the total cost Ct, This cost is meant to be

covered by the offered price (Oi), as implied earlier.

Initial selection of candidate exchanges with likely preference gains and costs are

made on estimates. The actual preference gain is found when the exchanges are actually

carried out, and at that point the best result (the best gain) is selected, and payment from

the offer price is made pro-rata to [(the actual preference gained)/ (the originally desired

preference gain)], as indicated earlier. This cost is also used to terminate a branch if the

agreed cost is exceeded.

Each agent can accumulate the payment it has received to pay for its preferences in

the future. Ct can be less than the offer price, depending on the negotiation but can not

exceed it, in other words Ct <Oj. The total cost Ct is expressed as follows:

i=m

CT = C[+ Cff (4.4)
¡=1

where m is the number of refinements needed to find a solution.

52

Chapter 4: The Preference Model

4.3 Algorithm

Using the market-based approach and the concepts outlined in the preference model

described in the previous sections, we propose a scheduling algorithm that can be used by

cooperative autonomous agents to resolve contention in the preferences for the same

resource during subtasks scheduling. The following algorithm is a high level overview of

implementing the preference model. An illustrative example to describe this algorithm is

discussed in section 4.3.1, the lower level details are discussed later in section 4.3.2, and a

practical implementation is discussed in more details in chapter 6.

Get an initial solution
If(initial solution satisfies preferences cut-off)

Accept solution
else{

Seek new allocation by negotiating with
other coordinator agents.
Find the gain in preference values and costs
of new solutions.
Find a solution with maximum (PSF)Sc(PSF >
U)& (Oi < CT)
If (such solution exists)

Accept the obtained solution
else

Accept the initial solution
}

53

Chapter 4: The Preference Model

4.3.1 Example

To illustrate the concepts outline in the preference model we introduce the following

simple example. For the sake of clarity and not to lose focus, we use an example where

each task is decomposed into one level of subtasks, and show the reallocation of two tasks.

This should be adequate to illustrate the main concepts of the preference model.

In this example we assume that a task T is decomposed into three subtasks (T , T ,

and T) which are further decomposed into more subtasks, as shown in Figure 4.3. Three

resources (Ri, R2, and R3) are required by the subtasks. The duration and the resource

required by each task is shown in the figure, for example Tn requires resource Ri,and its

duration is 4 slots.

T1

| e T11(4,RI) # TI2(3,R2) # T|3(3, R3) « TI4(1,R2) * |

T2

T2[(3,R2) e T22(6,R3) # T23(2,R2) »

t3

T31(4,R,) * T32(2,R2) * T33(2,R,) 9

Legend: Task Name (duration, resource required)

Fig. 4.3 The global task decomposition used in the example

54

Chapter 4: The Preference Model

To find an initial schedule we can use any of the various scheduling technigues used

for optimal resource usage such as the Critical Path Method (CPM) [EPPEN84], As our

focus in this research is on satisfying as many task preferences as possible, it does not

matter what technique we use for initial allocation. Therefore, we allocate tasks on a first

come first serve basis. One possible schedule is as the one shown in Figure 4.4.

Ri Tn Th Tn Tn j Jllll T3) T3i

r2 t21 Tit t21 IBI Tiil Tu

r3 t22 t22 t22 t22

Th T33 T33

t22 t32 T23 T23 Tu

t22 t22 Th T>3 T13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Slots

Fig. 4.4 Initial allocation of all the tasks

Assume that the specified preference value, offer price and the preferred end-time slot for

each task is as shown in Table 4.1. For simplicity reasons the end-time preference are

stated for the global task (T1), though preferences can be given for each subtask.

Table 4.1 Tasks Attributes (Figure 4.3)

Task Preference
value

Offer
price

Preferred
end-timeslot

T1 30 40 12
T2 30 40 10
T3 70 60 8

Table 4.1: This Table shows the task attributes from Figure 4.3

During the initial allocation, as shown in Figure 4.4, T1 achieved its preferred end

time slot (slot 12); i.e. its preference value is totally satisfied, while the preferred end-time

55

Chapter 4: The Preference Model

slot for T3 is shifted three places (namely slot 11). Satisfying the total preference value of

T3 requires negotiation with T1 to give up some of its satisfied preference value by

reallocating its subtasks. Reallocation of T1, according to the preference model, can only

take place if the following conditions are satisfied:

1. Potential gain in total preference is greater or equal to the preference cut-off, cp.

2. The cost of reallocation is less than or equal to the T3 offer price.

3. T3 has enough funds to pay for the reallocation cost to T1.

Therefore, we need to calculate the cost and preference gain using the equations described

in the previous sections. Assuming the initial cost (Q) is 5 units and the reallocation cost

(CR) is 10 units, the total cost (CT) is :

5 + 10X 3 =35 Cost units (using Equation (4.4))

where 3 is the number of reallocated subtasks. Assuming the preference reduction function

(p) is 0.1, the initial preference value for T3 is:

70(1 - 0.1 X 3) = 49 Preference value units (using Equation (4.3)).

Therefore, if T3 is reallocated to slot 0 the gain in preference value will be 21 (70 - 49). To

estimate the overall gain, we need to calculate a new preference value for T1. It is difficult

to predict the new allocation of T1 precisely, as this depends on the current status of all the

tasks and the lack of the current knowledge available to the tasks. We assume that T1 will

be shifted to the right by the duration of the longest subtask (in this example, T33 is the

longest duration, so T1 is assumed to be shifted 4 slots to the right). Therefore, the

predicted new preference value for T1 is:

30(1-0.1 X 4)= 18 Preference value units (using Equation (4.3)).

The predicted preference loss for T1 is then 12 (30 - 18). Thus, the overall gain will be 9

(21 - 12) if this reallocation occurs. Assuming cp < 9, the reallocation takes place. The

resulting schedule with T3 of this reallocation is shown in Figure 4.5, (note T1 is not yet

56

Chapter 4: The Preference Model

reallocated). T3 pays the reallocation cost T1. Faulty predictions that cause drops in the

overall preference value can be corrected in the subsequent iterations.

Slots

Fig. 4.5 Reallocation of T3 (T1 not yet reallocated)

Reallocating T1 using the first available slot yields an end-time for T1 at slot 17 (Tn

finishes at slot 11, T12 finishes at slot 14, T]3 finishes at slot 17, and Tu finishes at 18). T1

then needs to negotiate with T and T to regain all or some of its preferences. Subject to

the aforementioned conditions, one option is shifting T33 two slots and shifting T23 one slot,

both to the right as shown in figure 4.6. This can occur if all the aforementioned

conditions are satisfied. T1 pays both T2 and T3 the reallocation cost of two subtasks (T23

and T33).

Ri T.-.i T-u T31 t31 Tu Tu Tn

r2 T2i t21 T:1 • 32 I 32

r3 t2- 1 1’22 T22

Tn T33 T33

t12 t12 t12 T23 T23 T14

T22 1’??. TLi 1’15 t13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Slots

Fig. 4.6 Reallocation of T1

57

Chapter 4: The Preference Model

Further negotiation can take place until no further gain in preferences can occur, then

the iterations terminate.

4.3.2 Allocation Process

Below we shall use the capital letters U for coordinators (as user agents), T for global

tasks, A for agents (i.e. cohorts), and R for the remaining preference values. The letters a,

b, c used as superscripts in U and T are used to imply the specific instances of coordinators

and global tasks, and the subscript letters i, j, k, are used to represent subtasks.

Initially the coordinator allocates preferences to its tasks, with the help of the

cohorts, via a contract net protocol (CN). It invites all cohorts to bid for the allocation of

the resource instances to all the tasks of the coordinator, which can then select the best

bids. This allocation, called initial allocation (Phase I), is made without any pre-emption of

resource instances and without using any cost or preference cut-offs, but otherwise an

attempt is made to gain as much preference values as possible. This is iteration 0, for

which no cost is paid to the cohorts, but each task gets its initial allocation. The agent that

allocates a resource to a subtask becomes the home agent of that subtask. During phase I

each subtask gets its home agent, which can change subsequently if the subtask is allocated

another resource instance by another agent. In that event, this new agent becomes the new

home agent for that subtask.

Once this Phase I is completed, each cohort takes over the reallocation of its tasks

either to itself or to other cohorts (depending on the preferences of the tasks), using the

coordinators for negotiation on cost. If a task is successfully reallocated to another cohort,

the new cohort will take it over. The following are the steps in Phase II:

58

Chapter 4: The Preference Model

Step 0: [setup]

Coordinators are sorted according to their ID. Cost parameters are set and fund F is

allocated to each coordinator. This assumes that a fund F is given for all the subtasks of

the coordinator concerned, rather than individually to each subtask.

Step 1: [start allocation process]

Select the first coordinator in the ID order, say t/a. This selection is arbitrary, any

coordinator can be selected.

Step 2: [sort subtasks of current coordinators]

All the subtasks of the current coordinator are sorted in decreasing order, using the

remaining preference values (7?ai), so that the cost available can be put to maximum

benefit. This order will be referred to below as the remainder order. The coordinator

selects the first subtask.

Step 3: [resource reallocation]

The coordinator then asks the relevant home agent A; to reallocate the resource type.

Step 4: [select a subtask]

A subtask, along with its preferred resource instance is selected in the remainder order.

Say this is T1 iu(x) wishing to acquire another instance y of resource u to gain preference

Gaiu(y)-

Step 5: [invite bidding]

The cohort invites all coordinators, including t/a, to bid.

Step 6: [tentative bids]

All coordinators having a subtask in possession of the resource instance z of u may bid.

But if it has a subtask holding instance y2 of u (not z of u) such that z > y2 > x (in

preference order), then it can bid for y2 with the potential preference gain GaiU(y2) instead

of GaU(Z). Either way, we say the sacrificial task for this seller coordinator is Ty Each

59

Chapter 4: The Preference Model

coordinator will evaluate the precedent tree of 7] , and thus calculate the expected cost

and the potential preference gain (which can be Gaiu<y2) instead of GajU(Z)), which are then

sent them to the home agent concerned. This is a tentative bid, as there is no guarantee

that the successful coordinator 77b will actually be able to deliver the bid.

Step 7: [bid failures}

If no coordinators have any bid, then this is a bid-failure (see section 4.2.4), and in that

case the processing moves to Step 12. Otherwise, the home agent forwards the bids to the

coordinator i/a.

Step 8: [effect of cost cut-off p or cost run-out}

The coordinator If accepts the best bid that it can afford and advises the home agent to

proceed with it. Say it is the task 7*^3) and preference gain GaiU(y3) for instance y3. This

GajU(y3) is now the expected gain. The coordinator Ga may use a cost cut-off p, that is, it

may decide not to pay for any bid if the expected cost is > p. Also, it may not have

enough funds left in F to pay for this bid. In either case, the bid fails and control moves

to step 12.

Step 9: [single bid pre-selection}

The home agent asks the coordinator if of subtask 7^ to proceed. This step is refered to

later as single bid pre-selection.

Step 10: [reallocation of the subtasks}

The coordinator if asks the relevant home agent, say Aj to reallocate. This cohort will

ask the home agents of the precedent tasks of to reallocate them. These will be

recursive steps, carried out from the root (7*j) down to the leaves. We do not show them,

but they have been described in the simulation (chapter 7). A further important point is

this: although has given up its resource instance y3, it may not be possible to

secure y3 for task F¡u (e.g. if some precedent subtasks of cannot be moved). In that

60

Chapter 4: The Preference Model

event T®iU might end up getting some other lower instance of u, say y < y3, with less gain

GTiu(y) < GTiu(y3). In fact GTjU(y) can be even be unacceptable to i/a (see below).

Therefore this agreement by t/a with if3 for this exchange is a gamble. It may be that

some other rejected bidders could have provided a better gain. One may wonder if is it

not possible to avoid this gamble by asking, in Step 9, for all the bidders [multiple bids

pre-selection] to go ahead with their bids and then selecting the best from the final

results. This should be possible, subject to the cost availability. However, if these bidders

work in parallel, it will not work in general, since each bidder will potentially get in the

way of the other bidders with contentions on the resources required by their respective

precedent tasks. If the bidders work serially, then it should work, except for the high

processing cost (including the time cost). The user can control the cost and exercise a

choice. Once the best bid is selected, the rest of the processing will be the same -

assuming the best bid to be the same as above, that is, if3 offering originally resource

instance y3 of 7jU(y3) with expected preference gain GTiU(y3), but finally offering resource

instance y with actual preference gain GTiU(y).

Step 11: [possible outcomes]

Three possible outcomes can occur after processing step 10:

(a) The attempt fails due to the use of the preference cut-off (p. In this case iteration

number, task and amount of the gain is recorded. The process returns to Step 12.

(b) The attempt succeeds partially, that is, instead of resource instance y3 it gets

instance y, with preference gain GaiU(y), The cost paid will be pro rata to the gain.

Further explanation of this outcome is shown below.

(c) The attempt succeeds completely, getting the resource instance y3 with gain

Gaiu(y3) •

61

Chapter 4: The Preference Model

Further explanation on outcome (b):

If GTiu(y) < (p, where GTjU(y) is the net preference gain by the whole system then we

have subcase (bl), or else (b2).

Subcase (bl):

In this case the exchange has failed, and the processing returns to Step 13. We shall

refer to this preference loss as being due to delayed effect of preference cut-off tp, or

simply delayed preference cut-off.

Subcase (b2):

In this case the exchange is acceptable. But in this exchange the coordinator

might (but not necessarily) lose any preference value; that is, GbjU(y) (i> for this

iteration I could be negative.

The exchange has gained preference value GajU(y) <i), although it was expecting to gain

GajU(y3)(i). This loss 7t = GajU(y3)(i) - GaU(y)(i), which we shall refer to as the 71 loss.

The fund Fa of i/a would lose pro rata and those of the other coordinator involved

will gain.

Step 12: [check all subtasks of the current coordinator are processed)

If all the subtasks of the current coordinator have been allocated, then the processing

moves to Step 13, else it returns to Step 3 for the next subtask of the current coordinator.

Step 13: [check all coordinators are processed]

If all the coordinators have been processed, then processing moves to Step 14, or else it

returns to Step 2 for the next coordinator.

62

Chapter 4: The Preference Model

Step 14: [check preference gain]

If there was no preference gain for any task in the system during the last iteration, then

the process stops, otherwise it increments the iteration number by one and returns to Step

1.

The flow diagram shown in figure 4.3 shows an outline of the allocation process described

above.

63

Chapter 4: The Preference Model

Fig. 4.7. Outline of the allocation process

64

Chapter 4: The Preference Model

4.3.3 Comments on the allocation process

In the allocation process steps shown in the in the previous section, the home agent (see

previous section) handles the resource allocation on behalf of the requester coordinator,

contacting other coordinators and cohorts as necessary. The requester coordinator can also

carry out this allocation directly, by inviting other coordinators to bid themselves. This will

be an acceptable alternative, except that it could arguably be more cumbersome, since a

coordinator will have to ask the cohorts for allocations, since only they can allocate and

have the direct knowledge of which resources are held by which tasks. Therefore it seems

more efficient for the home cohort to carry out the allocation directly, with the help of

other cohorts as outlined above.

Also, instead of allocating one resource at a time, it is possible to allocate all the

resources of a task at the same time (i.e. in the same loop) by inviting bids for all of the

resource types in Phase II. In that case the coordinator of the task will ask all the home

agents of the task, and each home cohort will invite the relevant coordinators, in parallel, to

bid for its resource type. Eventually the bids will be forwarded to the requestor

coordinator, which will tentatively accepts the best bid, subject to the availability of funds.

The cohorts will execute and present the actual outcome of each resource type that meets

the preference cut-off to the requester coordinator, which will pay pro-rata for each

outcome.

Preference loss

In the steps outlined above we can attribute the preference loss either to the resource

conflicts or to the lack of funds, these are discussed below.

65

Chapter 4: The Preference Model

I- Preference loss due to resource conflicts

We identify four sources of preference loss, these sources are:

(a) Bid failure (Step 7)

(b) preference cut-off (p (Step 11(a))

(c) Delayed cut-off (p (Step ll(bl))

(d) The n loss (Step ll(b2))

The bid failure (a) is purely due to the conflicts of subtasks on resources. The conflict is so

severe that no movement is possible. If there were no conflict, we would have gained all

the preference values, and if we did, then we would not have the sources b, c, and d either.

The failure to exceed the preference cut-off, in both (b) and (c), implies conflicts are severe

but not as bad as in (a). The situation in (d) is much better as the preference gain exceeds

the cut-off, but not as much as expected. Therefore the conflicts on resources are better

than in (b) and (c). These resources are not independent, the failure of a subtask to gain

preference value due to any one of these four reasons might have enabled it to make much

better gain later.

II- Preference loss due to lack of funds

This preference loss is due to cost cut-off (Step 8). There are two separate situations where

preference loss will occur due to lack of funds (i) when some exchanges are disallowed as

being too expensive, this is to force a fast termination (// cut-off) and (ii) when funds run

out at later iterations (cost run-out). It is not easy to predict which exchanges would be

considered too expensive and when the funds would actually run out, particularly since the

coordinators both gain and lose funds from each other like money in a market during the

processing.

66

Chapter 4: The Preference Model

4.4 Summary

This chapter presented a preference model to be used by cooperative agents that are

working together towards solving a global task. The preference model is used to resolve

conflicts among the cooperating agents. A preference satisfaction function (PSF) is

defined, it returns a value that indicates the total preference values that are not satisfied. A

cost model is presented. This model is used to ensure that a timely convergence, towards

an acceptable solution, can occur. An allocation process, in which tasks are allocated for

the agents according to task preferences, is shown. We presented a high level view of a

scheduling algorithm based on this preference model and the allocation process. In the next

chapter we present a mathematical formulation for this preference model, while in chapter

6 we outline an implementation of the algorithm presented in this chapter.

67

Chapter 5

Theoretical Distribution Model

Because the preference model, explained in the previous chapter, is highly nonlinear,

verification using available mathematical techniques is difficult and hence it is quite hard

to make a quantitative analysis. It is not possible to predict the preference values that can

be achieved after executing phase I of the allocation process. We cannot relate preference

values, cost elements and preference cut-offs in any mathematical formula, as these are

arbitrary user choices. However, the allocation process described in the previous chapter is

meant to improve the final global preference gradually over many iterations, with the

preference gain G decreasing per iteration as the iteration I increases. In this chapter we try

to model the qualitative behaviour of the preference gain over the iterations. We present a

formula that can roughly estimate the minimum remaining preference value. We study the

effect of the clustering of requests for the same resource instances. The effect of the

uniform distribution of these clusters on the developed formula is discussed first. Then we

show how the formula is affected by the non uniform distribution of these clusters (skewed

distribution).

5.1 Basic Formulation

During the allocation process, described in chapter 4, the final global preference gain, G

for all tasks, gradually decreases per iteration as the iteration I increases. This process will

68

Chapter5: Theoretical Distribution Model

converge to a minimal value, RT, which is the total remaining preference value. This we

can describe by an exponential distribution function of the form:

R, = A + BeXI (5.1)

where A is the height of the plateau when e 'XI tends to zero, and hence A = Rmin, the

remaining minimum preference value at e ' =0. Constant B is Rmax, which is equal to

(Ri - Rmin) and constant X gives the curvature of the distribution and is related to the rate

of preference gain. Thus the equation can be written as follows:

R i = Rmin + Rmax c 'Xl. (5.2)

A graphical presentation of equation (5.2) is shown in Figure 5.1. for arbitrary values of

Rmin, Rmin, and

80

70

60

50
P? 40

30

20

10

0

............ 4
\ i

i------------ 1------------ 1------------ i------------ 1------------ 1------------ 1------------ 1-------------1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations -------►

Fig. 5.1 A graphical presentation of the decreasing rate of preference gain

69

Chapter5: Theoretical Distribution Model

It can be seen that at 1=0, that is after the initial allocation, where allocations are

made without considering preference (see 4.2.3), Ro = Rmin + Rmax- At I = 1, R i = Rmjn

+ Rmax e Z , and as I increases, i.e. e ’ZI —> 0, R i = Rmin .

In order to estimate a value Rmin we have found that it is mainly affected by the distribution

of preferences for the same resources. Next in this section we try to formulate an

estimation for the value of Rmin- In this formulation we use two values, the distribution

density, d, and the Preference Reduction Function, p, that was described in the previous

chapter. If we have t subtasks and all have preferences over the same m(<t) preferred

resources, then the density d = t/m.

We assume we have t=2h subtasks distributed over m=2n resources (see figure 5.2).

At each resource instance, as a time-slot, preference values will decrease on either side of

the most preferred time-slot, this decrease is given by p. In order to find the preference loss

formula we need to evaluate the average movement from slot 1 at the right side of the

midpoint mi for the right half slots and hence half the subtasks (t/2).

Resource Position

Fig. 5.2 Preference distribution

70

Chapter5: Theoretical Distribution Model

The first d subtasks at slot 1 move to slots l,2,3,...d, with displacements [0, 1, 2,

d-1], then the displaced d subtasks move to slots d+1, d+2, .. 2d, with displacements [d-1,

d, d+1, .. 2(d-l)], and then the displaced d subtasks move to slots 2d+l, 2d+2, .. 3d, with

displacements [2(d-l),.. 3(d-1)], and so on. Generally speaking:

The displaced d subtasks move to slots (n-1)d+l, (n-l)d+2, .. nd, with

displacements [(n-l)(d-l), (n-l)d, (n-l)(d+l), .. n(d-l)].

The summation of the displacement of each sets of d subtasks gives:

(1) [0,1,2, .., d-1] = (d-l)d/2

(2) [d-1, d, d+1,.. 2(d-l)] = [(d-l)+2(d-l)]d/2= 3(d-l)d/2

(3) [2(d-l),.. 3(d-l)] = [2(d-l)+3(d-l)]d/2= 5(d-l)d/2

(n) [(n-l)(d-l), .. n(d-l)] = [(n-l)(d-l)+n(d-l)]d/2= (2n-l)(d-l)d/2

If we sum the right-hand side we get

(1+ 3 + 5 + 7 +.....+ (2n-l))(d-l)d/2 = [1 + 2n -l](n/2)(d-l)d/2 = nn(d-l)d/2 (1)

This also applies for the subtasks in the left half, hence the total displacement for the whole

distribution is.

Total = nn(d-l)d (2)

To get the average movement per subtask we divide by t = 2nd, and the average movement

per subtask then becomes:

nn(d- l)d / (2nd) = n(d - 1) / 2

If the preference loss per unit shift is p, then the preference loss per subtasks is:

71

Chapter5: Theoretical Distribution Model

pn(d -1)/2 (3)

which can be taken as the percentage preference loss for the subtasks in a target agent.

5.2 Skewed Distribution

In the previous section, we assumed that there are the same number of slots (h) available

on either side of the midpoint. Let us suppose there are only y slots on one side, say the left

side of the midpoint mi, where y<h. This will lead to a skewed distribution as shown in

figure 5.3.

We divide the m preferred slots into two unequal groups by a break point b, with a left

group of width n’ and a right group of width n”, such that:

ri / n" = (h - x)/(h + x) (4)

72

Chapter5: Theoretical Distribution Model

where (h - x) = (y - n + n') is the number of slots available on the left side of the break

point b. Note y < h, n' + n" = 2n = m , therefore :

n" = 2n - n'

x = h- y + n-n'

Replacing n" and x in Eqn (4)

n' / (2n - n') = (y - n + n') I (2h - y + n - n')

Solving this for n' we get:

n' = n(y - n) / (h - n) (5)

To evaluate the effect of this skewed distribution, we use eqn (1), replacing n by ri - (h -

x)/d for the left side and n by n" - (h + x)/d for the right side, then this eqn becomes:

Total = n' n'(d - 1) d/ 2 + n" n" (d - 1) d/ 2

= [(h-x)/dj2 (d-l)/d/2 + [(h+x)/d]2 (d-l)/d/2

= (d-1)d[h2 - 2hx +x2 + h2 +2hx + x2]/(2d2)

= (d-l)[h2 +x2]/d

= (d-l)[(nd)2 +x2]/d

= n2(d-l) d +x2 (d-l)/d

Dividing it by t = 2h = 2nd, we get:

n(d - l)/2 + x2(d - l)/2nd2

Therefore the average shift

p[n(d - l)/2 + x2(d - l)/2nd2] (6)

The difference between equation (3) and equation (6) is the term x2(d - l)/2nd2, and we

refer to this term as the correction term. This term disappears when x=0, which is the case

73

Chapter5: Theoretical Distribution Model

for a uniform distribution. It should be noted that when evaluating equation (6), in the case

of uneven distribution, both mj and b should be determined by counting the number of

subtasks on the left and right side, rather than from the slots they occupy.

5.3 Effect of Multiple Target Agents

In the analysis discussed in the previous sections we only considered the case where there

was one target agent, in this section we will consider the impact of having more than one

target agent. If we assume the subtasks are to be distributed over s resources, where s > t,

then the resultant distribution density D = s/m, in contrast to d = t/m.

The degree of impact of more than one target agent depends on task precedence

dependencies. To determine the overall effect over q target agents we consider the

following two cases: with no precedence dependencies and with precedence dependencies.

Case I: No precedence dependencies:

We assume here that there are no precedence dependencies among the subtasks, that is the

subtasks do not have any precedence constraints and hence can be allocated freely. In that

case we can calculate a weighted average of the total preference loss, which is the same as

the remaining preference values, as follows:

Rt (case I) = [PiLj + P2L2 +.... + PqLq]/q (7)

where Li is the preference loss (in percentage) pf agent A;, calculated from equation (6) ,

and then P, is the total preference value of agent A;. This is the minimal loss based on

density dj in each agent A; and hence is predicted to be the lowest limit.

Case II: With precedence dependencies:

In this case we take for each agent the number of slots over which the subtasks were

distributed by phase I as representing an expression of dependency for that agent. We use

74

Chapter5: Theoretical Distribution Model

this slot number to evaluate D, and we use this value of D in the preference loss evaluation

as in case I. This is assumed to be the upper limit.

The final loss should lie between case I and case II. We should note that there will also be

other factors such as preference cut-off, cost cut-off etc, which we have not taken into

account in these estimates.

5.4 Summary

A theoretical formulation for the preference model was presented in this chapter. Two

formulae were derived one for uniform distribution and one for uneven distribution, which

can be regarded as a general case. Using the assumption whether precedence dependencies

exists or not we have shown how to calculate the lower and upper limits for the remaining

preference values when more than one resource is available.

In the following chapters we show our implementation for the preference model and

the results collected from the experiments performed using this implementation. We

compare those experimental results with those predicted using the formulae derived in this

chapter. We have submitted this model and our results for publication in [DEEN03BJ.

75

Chapter 6

Design and Implementation

In the course of this research we developed a market based preference model to be used in

resolving conflicts among cooperating agents. We designed and implemented a simulator

for the preference model called the preference model simulator (PMS). We used

distributed scheduling in manufacturing as a case study for testing the preference model

characteristics. This chapter describes the software design and implementation of the PMS.

We present the case study, along with the results obtained from the simulation study that is

described in chapter 7.

6.1 Overview

The objectives for developing the PMS are as follows:

• To test the behaviour of the preference model described in Chapter 4.

• To compare the results obtained from the simulation with the theoretical

results presented in Chapter 5.

The Cooperating Knowledge Based System (CKBS) approach, discussed in detail in

Chapter 3 is used in our implementation of the simulator. As stated in Chapter 3, the CKBS

approach is an engineering paradigm as opposed to the mentalistic paradigm of DAI/MAS.

Effectiveness, reliability, performance, and usability are of great importance in CKBS.

76

Chapter 6: Design and Implementation

Agents in CKBS are autonomous and cooperative. The preference model requires agents to

be distributed and cooperative to achieve a common global goal through negotiation. For

the aforementioned reasons, the preference model lends itself naturally to the CKBS

approach.

During the design process we used the notion of classes and methods adopted by the

object-oriented approach [BOOC94J. Thus enabling us to apply abstraction in modelling

the various system components and easy transition from the design phase to the

implementation phase.

We first present an agent design in section 6.2, then we discuss agent communication

in section 6.3, and in section 6.4 we discuss the implementation of the PMS.

6.2 Agent Design

We based our agent design on the CKBS model described in section 3.2.1. While the main

concepts of the CKBS agent are retained, some features, which are not necessary for the

implementation of the preference model, are omitted. Our agent design provides the default

behaviour and structures for all the different types of agents (section 6.2.1).

The agent relations are categorised into internal relations and external relations; this

separation of relations into internal and external relations conforms to the schema layering

outlined in section 3.4. The internal relations that relate to the agent’s internal work are

found in the home model while the external relations are the agent’s interface to the

outside world. The agent structure, shown in Figure 6.1, is divided into four parts:

graphical user interface, communication components, public components and home

schema of the agent. We discuss these agent parts below.

77

Chapter 6: Design and Implementation

Interaction between the human user and the agent is performed via the graphical user

interface (GUI). The user can utilises the GUI to change certain parameters such as initial

budget, initial allocation cost, and reallocation cost, and also to monitor the agent status.

Fig. 6.1 Agent Structure

The communication layer is used by the agent to communicate with the outside

world and is discussed in section 6.3.

The home schema includes the internal structures and the intrinsic functions needed

for the execution of the subtasks. It forms part of the cohort architecture and is located at

the base of the cohort.

The public component includes agent identity, a task schema that includes a

dependency schema, and a preference schema. The identity holds the agent basic

information and can be represented as follows:

78

Chapter 6: Design and Implementation

Identity (
ID
Type
Address

)

The ID attribute is a unique key that represents the agent. The type attribute reflects the

agent type (see later) such as coordinator agent, home agent, etc. The address attribute is

needed for inter-process communications between the agents. As the agents can be

anywhere in the network, the address attribute represents the agent address in the network

and its communication details.

We assume that the task is described and decomposed by the system user during the

system execution. Each subtask has a set of attributes and can be represented as follows:

SubTask {
Task ID
Duration
Predecessors;
Successors;
Resources;
Preferences;

}

Task ID uniquely identifies each subtask held by the agent. Precedence schema is

stored in the predecessors and successors attributes. The preference schema is stored in the

preferences attribute. Subtask duration and required resources are stored in the duration

and resources attributes respectively.

79

Chapter 6: Design and Implementation

6.2.1 Agent Types

Each agent has a different function to perform in the system. In this section we describe

each of these agents and the role it carries out. The basic features of each agent are

inherited from the generic agent described above.

The Coordinator Agent

The coordinator agent is responsible for scheduling subtasks and cooperating with other

coordinators during the allocation process. The coordinator agents use the allocation

process of the preference model outlined in chapter 4 to trade preference values among

cooperating agents. A coordinator agent is assigned for each task that is decomposed into

subtasks.

The Home Agent

The home agent is responsible for executing the subtask. Each home agent can perform

more than one skill. In the system there can be more than one home agent with the same

skill. The subtask can specify a preference on a home agent to be used when carrying out

the task.

The Directory Agent

The directory agent maintains a list of the agent identities that are currently running in the

system. Also each agent keeps a local directory of those agents that it contacted recently.

This to reduce the number of communication in the system.

80

Chapter 6: Design and Implementation

6.3 Operational Structure and Agent Communication

The basic system structure consists of multiple agents connected through a communication

network (internet or a local network) as shown in Figure 6.2. A Message passing schema is

used for agent communication. The communication network must provide the following

services [HAMA98]:

• Dispatch and reception of messages among various agents that exist in different

locations in the network.

• Buffers should be available for storing incoming and outgoing messages. This is

helpful for transmitting the requests in case of failure.

• Errors and failures that occur, due to agent break-down, during transmission

should be identified and reported back to the initiating agent.

6.3.1 Agent Messages

As mentioned before agent communication is handled by a message passing schema. The

general message syntax is as follows:

81

Chapter 6: Design and Implementation

<message tagxsender identityxreceiver identityxmessage con.ten.ts>

The message tag identifies the type of the message, the identities of the senders and the

receivers are contained in the sender and the receiver parts of the message respectively,

while the message contents part carries the actual message. The message is interpreted

according to the tag. There are different message types, we classify these types according

to the communicating agents interactions as shown below:

• Agent* Directory agent.

• Coordinator agent <=> Coordinator agent.

• Home agent <=> Coordinator agent.

The different message types used in the system are shown in Figure 6.3 and outlined

below.

Fig. 6.3 Message types used in the system

By agent here we mean a home agent or a coordinator agent.

82

Chapter 6: Design and Implementation

Agent and Directory Messages

These messages are exchanged between the coordinator agents or the home agents and the

directory agent. These messages are:

add_agent\ This message is sent by the agent requesting an identity. This is sent

during the loading of the agent.

agent-added'. This message is sent by the directory agent to the agent in response

to the add-agent request. It informs the agent that its request for identity is

granted and assigns a unique identity to the agent.

get_id'. This message is sent by the agent to the directory agent requesting the

identity of another agent.

agent_id\ This message is sent by the directory to the agent in response to the

get_id request.

get_skill_id'. This message is sent by the agent to the directory agent requesting

the identity of a home agent with certain types of skills.

agent_skill_id: This message is sent by the directory agent to the agent in

response to the get_skill_id request. It contains all the home agents that are

capable of performing the requested skill.

rmv_agent\ This message is sent by the agent to the directory agent requesting

removal from the system.

agent_rmvd'. This message is sent by the directory agent to the agent in response

to the rmv_agent request.

83

Chapter 6: Design and Implementation

Coordinator and Coordinator Messages

These messages are exchanged amongst the coordinator agents. These messages are :

calc_cosf. This message is sent as a request to a coordinator to calculate the cost

of rescheduling one of its subtasks.

cost_of_resch'. This message is sent in response to a calc_cost request. It contains

the cost of rescheduling a subtask.

rdy_to_accepf. This message is sent to inform the coordinator that the proposal

for rescheduling is acceptable and requesting confirmation.

reject'. This message is sent to inform the coordinator that the proposal for

rescheduling is rejected.

conf_accept'. This message is sent to confirm acceptance of the proposal.

roll_back'. This message is sent asking all coordinators to roll back to the previous

state.

Home and Coordinator Messages

These messages are exchanged between the coordinator agents and the home agents.

These messages are :

get_init_alloc. This message is sent as a request to a home agent to assign an

initial allocation to a subtask.

init_alloc\ This message is sent in response to a get_imt_alloc request. It contains

the initial allocation of the subtask.

get_sched_cord'. This message is sent requesting a list of coordinators allocated to

given slots.

84

Chapter 6: Design and Implementation

sched_cord\ This message is sent in response to a get_sched_cord request. It

contains the list of coordinators that are allocated to the given slots.

resched'. This message is sent asking the home agent to reschedule a subtask.

resched_confirmed'. This message is sent by the home agent to confirm

rescheduling of the subtask.

6.4 Implementation

At the time we started the development of the PMS we looked at different agent

development environments. A non-exhaustive list is presented in Tables 6.1 and 6.2

[UMBCJ. These listed in Table 6.1 include academic and research agent development

platforms and the list in Table 6.2 includes commercial and industrial agent development

platforms.

Table 6.1 Academic and research platforms for agent development

Name Research Group Comments

JIAC Technical University
Berlin DAI-Lab

A Java class library for the
development of a universal
architecture of agent-oriented
systems
(ALBA99)

MAST Technical University
of Madrid

A general purpose distributed
framework for the cooperation of
multiple heterogeneous agents
(IGLE95)

OAA SRI Al Centre

A framework for integrating
heterogeneous software agents in a
distributed environment
(MART99)

Zeus British Telecom Lab
ISR Group

A library of software components
and tools that facilitate the design,
development and deployment of
agent systems
[NWAN99]

85

Chapter 6: Design and Implementation

Table 6.2 Commercial platforms for agent development

Name & URL Company Comments

Aglets
(http://www.trl.ibm.eom/a
glets/)

IBM Japan
An environment for
programming mobile Internet
agents in Java

AgentBuilder
(http : // agentbuil der. com) Reticular

Systems, Inc.

An integrated software
development tool to build
intelligent agent-based
applications

JACK
(http ://www. agent
software.com.au)

Agent
Oriented
Software
Group

An environment for building,
running and integrating
JAVA-based multi-agent
systems using a component
based approach.

At the time of writing many such platforms exist. For a more comprehensive list of

academic agent development platforms see reference [UMBCA], and for commercial

platforms see reference [UMBCB].

When considering these and other agent development platforms at the time the

simulation was being created, we excluded frameworks that are free for non-commercial or

academic use. Therefore, the candidate frameworks fulfilling our constraint are those in

Table 6.1.

For evaluation purposes we considered the following characteristics of the

frameworks, each characteristic has a weight (from 1-3) indicating its overall importance:

1. Stage of development (maturity): how long has the framework been in development?

Are all features available? Is it bug free? - weight: 3.

2. Use of the Java language. This is our primary programming language, this is

necessary to speed up the learning curve - weight: 3.

3. Good library documentation and the availability of tutorial material - weight: 3.

86

http://www.trl.ibm.eom/a
agentsoftware.com.au

Chapter 6: Design and Implementation

4. Support for Agent design and communications, this is necessary to speed up the

development of the simulator - weight: 2.

5. Good debugging tools - weight: 2.

6. Community support, important for solving any problems encountered. It is judged on

the availability of active mailing lists and discussion boards - weight: 1.

Our evaluation is shown in Table 6.3. The values in the table indicate the presence and

quality of the corresponding feature: 0 indicates its absence, 10 indicates that it is very well

implemented. This evaluation shows that the JDK appears to be the form most suited for

the development of the simulator. We therefore implemented the simulator using Java

Development Kit (JDK1.2.2) [FLAN99].

Table 6.3 Feature analysis

Framework Maturity Java Documentation Agent
Support

Debugging
Tools

Community
Support

JDK 9 10 9 5 7 8

JIAC 6 0 5 7 5 5

MAST 6 0 6 7 4 4

OAA 5 0 6 7 4 4

Zeus 7 10 7 7 5 6

87

Chapter 6: Design and Implementation

6.4.1 PMS Infrastructure

The basic PMS infrastructure consists of multiple agents connected through a

communication network (internet or a local network) as shown in Figure 6.4.

Fig. 6.4 PMS infrastructure

The Agent Message Router (AMR) handles interactions among the agents. Each

agent is assigned a unique identity by the AMR. Agents can either broadcast a message to

all agents or can send a message to a specific agent or group of agents.

For agent communication we used a modified message-passing scheme as described in

[FARL98], We chose message passing as a communication method as it is relatively

simple to implement using the java.io.package, and there are no communication overheads

as in the case of CORBA1 [ORFA97]. This message passing scheme, the basic structure of

the AMR, and the agents are described below.

' CORBA home page ((Object Management Group) http://www.omg.org

88

http://www.omg.org

_______________________________Chapter 6: Design and Implementation

6.4.2 The Message-Passing Scheme

A message is a structured piece of information sent from one agent to another over a

communication channel. These messages can be requests made to one agent by another, or

can be data or notification sent to another agent [Farl98], Based on this definition, the

following is a representation of a generic message object.

public abstract class Messageclass
{
//Attributes
protected String id;
protected Vector argList;

//Constructor
public Messageclass (String mid)

//Methods
public void addArg (String arg) {...}
public String getID (){...}
public void setId(String mid) {...}
public Vector getArg () {...}
public abstract boolean Do (){...}

}

Messages are treated as a string of tokens, a message is simply a series of tokens

followed by an end of message indicator. The first token is the message identifier and the

rest are arguments of the message. Each message object has an identifier, id, and a list of

arguments, arglist. The methods getID() and getArgO are used to get information about the

message object. The abstract method Do() is used to interpret the message arguments and

to perform whatever is required for the message depending on its type. A different

implementation of the Do() method is used in the subclasses of the MessageClass for each

type of message defined in our system.

The class MessageHandler, is implemented so that an agent can receive and send

messages over the established connection, a representation of this class is shown below:

89

Chapter 6: Design and Implementation

public abstract class MessageHandler implements Runnable
{

//Attributes
public static MessageHandler current = null;
Hashtable connections - new HashtableO;
Hashtable handlers = new Hashtable();

//Constructor
public MessageHandler(iputStream i, outputstream

o) {...}
I/Methods

synchronized public int nextAgentld () (...)
synchronized public Vector getAgentlds () (...)
synchronized public int addAgent(Inputstream i,

Outputstream o)
synchronized public int addAgent(String

name, Inputstream i, Outputstream o) (...)
synchronized public void addAgent(int id,

Inputstream i, Outputstream o) (...)
synchronized public boolean removeAgent (int id) (...)
synchronized public int getAgentld(String n) (...)
synchronized protected AgentConnection getAgent(int

id) (...)
public Message readMsg(int id) throws (...)
public boolean sendMsg(Message msg, int id) throws

IOException (...)
public boolean sendMsg(Message msg) throws

IOException (...)
public void run ()(...)
protected Message buildMessage (String msgld) (...)

)

Various methods are supplied in this class for adding, removing and getting agent

connections. Each connection is associated with an id number, such connections are stored

in a table connections, that is maintained by the MessageHandler. There are two versions

of sendMSgfg one sends a message to a specific agent and the other broadcasts the

message to all the agents. Every time an agent is added, the following events take place:

• A connection is established to hold the details of the InputStream and

Outputstream connected to the agent, this is stored in a hashtable using the

agent's id as the key.

• An AgentHandler is created and given the id number of the agent.

• A new thread is created for the AgentHandler.

• The new thread is started.

90

Chapter 6: Design and Implementation

The AgentHandler implements a runnable interface and its run() method is a loop

that continuously attempts to read messages from its agent and then acts on it as shown

below:

public void run() {
while (true) {

try {
Message m = Msghandler.readMsg(Agentld);
m.Do();

}
catch (IOException e) {}

}

Multiple connections are handled by creating a thread for each agent. The thread can

asynchronously read messages and act on them. Agents can be added to the

MesageHandler at any time. To allow asynchronous agent handling, the readMsgO,

sendMesage() and the methods for adding and removing agents are synchronised.

6.4.3 The Agent Message Router (AMR)

The AMR performs the following tasks:

• Register new agents and provide them with a unique identifier.

• Remove agents.

• Send messages.

• Broadcast messages.

We need to provide an identity for each agent in the system so that transactions

among agents can be traced and targeted to individual agents. The Identity class, shown

below, is provided to support this function.

public class Identity implements Serializable {

//Attributes
Hashtable property = new Hashtable ();

//Constructors
public Identity(int id) {..}
public IdentityOI)

91

Chapter 6: Design and Implementation

I/Methods
public boolean equals(Object o) {..}
public int getldO {}
public String getName() {. . }
public void setName(String n) {..}
public Object getProperty(Object key) {..}
public void setProperty(Object key, Object val) {..}

)

We use two properties to identify each agent. We use the name property as a

descriptive property that can be used in a user interface and the integer id is used as an

internal identifier to tag each agent. These properties and additional properties that can be

used to further define the agent are stored in the property list defined in the class. A set of

methods is provided for setting and getting these properties. In order for identity objects to

pass back and forth between agents on the network, the Identity class is made to implement

the Serializable interface.

The AMR uses the MessageHandler to route messages back and forth between

cooperating agents, a ServerSocket to accept socket connections, and a port number that it

listens to for asynchronous connections from agents. A representation of the AMR class is

shown below:

public class AMR implements Runnable {
//Attributes
MessageHandler msgHandler = new MessageHandler();
ServerSocket socket = null;
int port = 5009;// Other port number can be uses
private AMRGUIWindow window;

//Constructors
public AMR(int p) {..}
public AMR(){..}
public AMR(Serverwindow S) {..}

//Methods
protected void initHandler() {..}
public void run() {

// Make the server socket..

}
public Identity newMember() {..}
public boolean remove(Identity i) { .. }
public Vector getMembers() {..}
public boolean send(Identity to, Identity from,

String mtag, String s) throws IOException {..}

92

Chapter 6: Design and Implementation

public boolean broadcast(Identity from, String
mtag, String s) throws IOException {..}

}

The inithandler() method is called in each constructor. It is used to initialise the

MessageHandler. The run() method in the AMR class creates the ServerSocket that listens

to its designated port for connections requests from agents. Each time a new connection is

made, the agent is added to the handler by calling its addagentQ method. The AMR creates

a unique Identity for the agent by calling newMember(), then a message is sent to the agent

containing its Identity.

To create an AMR object, we implemented a CreateAMR which has a main method

in which the AMR object is created and a GUI (Graphic User Interface) that shows the

AMR status and communication messages. The main classes used (the MessageHandler,

the Identity , and the messageClass) in AMR, their main methods, and their relations are

shown in Figure 6.5.

Fig. 6.5 Main classes used in the AMR

93

Chapter 6: Design and Implementation

We can create an AMR on a given port on a host, then any client can connect to the

system by creating the client agent, using the AMR host and port number. The agent can

then engage in cooperative tasks with any other agents connected to the host using the

appropriate methods. The AMR services each connection made in a separate thread. A

screen shot of a running AMR is shown in Figure 6.6.

•znofxi

Messages:

^Server running on port 5009
Got new connection, Agent identity ===»
Got new connection, Agent identity ===>
Got new connection, Agent identity ===>
Got new connection, Agent identity ===>

0
1
2
3

Exit |

Fig. 6.6 Screen shot or running AMR

6.4.4 Agent Implementation

As the main concern of this implementation is to demonstrate the working of the

preference model and to perform experiments to verify our theoretical formulations, we

have a generic agent class (parent class). It is used to build the different types of agents,

discussed in section 6.4, and to provide the default behaviour and structures for all agents.

In this implementation each agent has the ability to be connected to the AMR and to other

agents in the system and can engage in communication with them. Also each agent can

send messages and be notified of incoming messages. A representation of our agent class is

shown below:

public class Agent
{
//Attributes

MessageHandler handler = new MessageHandler();
Identity id - null;
String name;
private AgentGUIWindow window;

//Constructors
public Agent(String host, int port,

String n) {..}

94

Chapter 6: Design and Implementation

//Methods
public Identity getldentity() { . . }
public boolean connect(Properties p) {..}
public boolean send(String tag, String msg,

Identity dst) throws IOException {..}
public boolean broadcast(String tag, String msg)

throws IOException {..}
public boolean notify(String tag, String msg,

Identity src) throws IOException {..}
}

This class provides the constructor with a name along with the host and port number

of the AMR to which it will connect. The constructors initialise the Messagehandler,

establish the appropriate connection to the AMR, and create a GUI to show agent status

and communication messages. Each agent has a unique identity defined by the Identity

class discussed in the previous section. The send() method sends a message to a particular

agent, while the broadcast) method broadcast the message to all agents in the system. The

notifyO method checks the message type or body and reacts accordingly.

The main classes used in the Agent class, that is MessageHandler and Identity, their

main methods, and where these classes are used are shown in Figure 6.7.

95

Chapter 6: Design and Implementation

Fig. 6.7 Main classes used in the Agent class

6.4.5 Implementation of Agent Types

As stated before the focus of our implementation is scheduling in a manufacturing

environment. In this environment, we need an agent for task management, which we call

the coordinator agent and an agent for machine management, which we call the home

agent. We also use a directory agent. Each agent has a different function to perform in the

system. In this section we describe each of these agents and the role it carries out. The

basic features of each agent are inherited from the basic Agent class described in section

6.4.4.

96

Chapter 6: Design and Implementation

The Coordinator Agent Implementation

A coordinator agent is assigned for each task. Each task is decomposed into subtasks

stored in a hashtable, with an initial budget. A presentation of the task is shown below:

public class Task {
//Attributes
public String taskName;
public Hashtable subTasks;
public int initailBudget;
public int currentBudget;

//Constructor
public Task(String name,Hashtable

subtasks,int intbud){..}
}

Each subtask is presented using the following class:

public class subTask {
// Attributes

public String subTaskname;
public int duration;
public Vector predecessors;
public Vector successors;
public Hashtable resources ;
public Hashtable preferences;

//Constructor
public TaskClass(String name,int duration,

Vector preds, Vector sue,
Hashtable res,' Hashtable prefs{..}

}

Preferences for each subtask is stored in a hashtable, and each preference is presented

using the following class:

public class Preference {
//Attributes

public String prefName;
public String target;
public int value;
public int offer;

97

Chapter 6: Design and Implementation

//Constructor
public Preference (String name, String

tget, int val, int offer){..}
}

Figure 6.8 shows the relationship between the coordinator agent, the task , the subTask,

and the preference classes.

Preferences

Fig. 6.8 Main classes used in the coordinator

We provided a GUI that enables the user to change certain parameters (initial budget,

initial allocation cost, and reallocation cost), and show the cost, remaining preferences and

the messages received and sent by the coordinator. A screen shot of the coordinator GUI is

shown in Figure 6.9.

Fig. 6.9 A screen shot of the coordinator GUI

The Home Agent Implementation

During the task allocation process, outlined in chapter 4, the home agent is consulted

regarding the task allocation. According to this consultation the task allocation is initiated.

Once the task allocation process has ended all affected coordinator agents send the

98

Chapter 6: Design and Implementation

appropriate home agents messages informing them of the new allocations. Subsequently

the home agents update their schedules. A graphical interface that enables the user to see

the current status of tasks scheduled and the messages received and sent by the home agent

is provided. A screen shot of this graphical interface is shown in Figure 6.10.

| Skills |s3 fj

Fig. 6.10 A screen shot of the home agent graphic interface

The Directory Agent Implementation

Upon creation the agent registers with the directory and subsequently it receives a unique

identity from the directory agent. This identity is used while communicating with other

agents. On leaving the system the agent is removed from the list and the details of this

removal are cascaded to other agents to update local directories. We should note that the

directory agent should be created first. Also the agent class maintains a default address for

the directory.

A GUI is provided to enables the user to change certain parameters (preference cut

off and the weights for the different preferences), and to show the messages received

and sent by the directory. A screen shot of the directory GUI is shown in Figure 6.11.

99

Chapter 6: Design and Implementation

Fig. 6.11 A screen shot of the directory GUI

6.5 Running PMS

To simplify the implementation and to emphasise the main concepts of the preference

model, we have limited the number of preference types to be handled to one type, namely

the end-time preference. Also we have limited the resource type to continuous resource

(see section 4.2.1). These limitations do not constrain the PMS from demonstrating the

basic concepts of the preference model, which is the main focus of the PMS as stated at the

beginning of this chapter.

In this implementation we run the AMR first, then the directory agent is loaded and

then the coordinators and the home agents can be loaded. The number of coordinators and

home agents and their attributes are read from a disk file and these can be changed from

one run to another. Though the user can remove a coordinator or a home agent during the

run, the cascading effect of this is not dealt with in this implementation. We thought that

this complicates the implementation and leaving it out does not prevent us achieving the

objectives of the PMS.

The coordinator agents load the subtasks and their attributes from disk storage and

starts the allocation process outlined in Chapter 4. The intermediate results and the end

100

Chapter 6: Design and Implementation

results are stored on disk to be analysed later. These results are discussed in the next

chapter. The main events that take place during run time are summarised in Figure 6.12.

6.6 Summary

In this chapter we discussed the design and implementation of the PMS. We designed the

PMS to demonstrate and verify the working of the preference model. We built an

infrastructure for the message passing system to be used by the various agents in the

system. We used an abstract class for the agent from which all agents in the system inherit

their properties. Message types and structures used in the demonstrator were presented.

The different type of agents and their roles in the implementation were discussed. We

discussed the assumption made in the implementation and the main events that take place

during the running of the system. In the next chapter we shall present and analyse the

results obtained from running a case study on the implemented simulator.

101

Chapter 7

Exploratory Experiments

This research is mainly driven experimentally. Therefore the operational functionality of

the preference model was developed incrementally using the several hundred experiments

we conducted using the PMS presented in chapter 6. Apart from the initial numerous test

runs to verify the programme correctness, several hundred experiments have been

conducted with many permutations and combinations, first to develop an insight and then

to determine what is or is not significant. These experiments have been carried out over a

period of three years. Due to the non-linearity of the process, initially we were not even

sure that the processes would converge, and that the final preference value would at all be

stable or that a simple theoretical model would be possible. It was always the experimental

results that guided us to our conclusions. The objectives of the experiments presented in

this chapter are as follows:

1. To show that the preference model converges to a stable value, regardless of the

number of tasks and their configuration.

2. To study the characteristics of this convergence and to determine the effect and

significance of the different parameters in the preference model on the

convergence to the final solution.

3. To investigate if the preference model behaviour can be predicted using

mathematical formulae, at least qualitatively.

102

Chapter 7: Preliminary Experiments

A group of experiments were planned to help us in achieving these objectives. A

case study, presented in section 7.1 is used throughout these experiments. The experiments,

presented in this chapter, are divided into three groups. The objective of the first group is

to demonstrate that preference model converges, for the second group it is to investigate

the effect of the different parameters on the convergence characteristics, and for the third

group it is to investigate the preference losses discussed in section 4.2.4. These

experiments are presented in sections 7.2, 7.3, and 7.4 respectively. We summarise our

findings in section 7.5.

7.1 The Simulated Case Study

For the purpose of the experiments presented in this chapter we have considered the

problem of scheduling a number of tasks T'. We have used a set of coordinators U1, U2, ..

Un, each U1 is responsible for scheduling a (global) task T1, each task T1 being further

subdivided into subtasks: Tj | {j = 1, 2, .. m}, one or more subtasks being allocated to a

home agent Ak. But in reality we have used up to n = 14, that is, up to 14 coordinators

(and hence 14), up to six subtasks (m= 6) in each task, and three home agents, each

sharing many subtasks of different coordinators. The subtasks have precedent subtasks and

their allocation to the target agents can be considered as the allocation to Assembler agents

in manufacturing. The preferred resource type used in our simulation is the end-time slot of

a subtask. Apart from resource conflicts, precedent constraints can also disallow the

allocation of some resources. We have used the algorithm outlined in section 4.3 to find a

schedule that satisfies as much preference values as possible. According to this algorithm,

103

Chapter7: Preliminary Experiments

each subtask is initially allocated the earliest possible slot that satisfies the precedence

constraints. As explained in detail in Chapter 4, the coordinator will accept a negotiation

for an exchange if its offer price O > the cost C for the expected preference gain g. After

the negotiation, an actual exchange with preference gain g' | g' < g is proposed. The

coordinator will accept it if g' > cp, but pay pro-rata to C*g'/g. If the exchange is

unsuccessful, the negotiation will continue for another possible exchange.

In the case study we used in our simulation, each subtask T j has a preference value

V; and an offer price O; that the task is willing to pay for preference satisfaction. Also the

costs Cj and Cr, are set by the task agent, and indicate the price that the task should pay for

a preferred allocation (see section 4.2.2 for the explanation of those parameters). The

preference values and offer prices are assigned randomly using the random method

available in the Java Math package. The user-defined Preference Reduction Function, p,

was used to allocate reduction on preference gain for slots away from either side of the

preferred end time slot (section 4.2.1). Observe that subtasks have precedent constraints.

The diagram in Figure 7.1 shows the coordinators, tasks, subtasks, and tasks attributes, for

n=6. To obtain more general results we have experimented with three different values of n

and with different values for the different subtask attributes (i.e. duration, resource agent,

preferred end time, preference value, offer price).

In order to generalise the results and not to be biased towards a specific configuration

of values and subtasks we used a variety of test cases. Each coordinator is assigned a

unique set of subtasks. This is done so that the only knowledge about other agents is

acquired through negotiation. The main features that were included in the test cases are as

follows:

104

Chapter 7: Preliminary Experiments

1- Variable numbers of subtasks for each coordinator. As can be from Figure 7.1,

different numbers of subtasks were assigned for the different coordinators.

2- Variable numbers of predecessor and successor subtasks, i.e. subtasks can have one or

more predecessor and successors.

3- Interdependency of subtasks so that one subtask that belongs to one coordinator is

dependent on the results of a subtask that belongs to another coordinator.

4- Though the preference values and offer prices are assigned randomly, as indicated

above, a constraint is made so that they are close to each other in order to ensure

contention for resources.

105

Chapter7: Preliminary Experiments

Parameters: (Task Name (duration, resource agent, preferred end time, preference value, offer price))

Fig. 7.1 Task Parameters.

106

Chapter 7: Preliminary Experiments

7.2 Investigation of Convergence

As stated before, the main objective of this group of experiments is to investigate if the

preference model converges to a stable solution, and to see if this stable solution remains

the same regardless of the order of initial allocation. We start by investigating the gain in

preference values when only one task (including its subtasks) is reallocated, using two

scenarios. In the first scenario the preferences of the reallocated tasks are not considered,

while these are taken into consideration in the second scenario. Then we change the order

of the initial allocation to investigate whether such variations affect the gain in preference

values. We expect that a gain in preference values should be achieved in both cases,

although the gain might be less in the second case as other task preference values are

considered. Also, we expect the cost to be affected at the points where a gain in preference

value is achieved. The order of task allocation should have less effect on the final gain in

preference value, although the intermediate gain values might be different.

7.2.1 Individual Task Reallocation (without considering other tasks preferences)

In these experiments all tasks are initially allocated to the first available slot. Tasks are

allocated according to the order Tb T2 ... T6, without considering preferences. Then one

task is subsequently reallocated to satisfy its preferences. We expect a gain in preference

value for this task, while other tasks might lose some of their preference values. The tasks

that gained preference values pay those disadvantaged tasks. As a result of this reallocation

some tasks can be reallocated. These tasks are reallocated to the first available slot without

taking their preferences into account.

Figures 7.2 shows the result of conducting this experiment for task T3 when tasks are

initially allocated according to the order Ti, T2 ... T6. Figure 7.3 shows the result of this

107

Chapter7: Preliminary Experiments

experiment for task T3 when tasks are initially allocated according to the order T6, T5 ... Tj.

These figures show how the total cost (C) and gain in preference values (G) of T3 vary

during the reallocation process. Iteration points are indicated by square symbols for the

gain in preference value, and by diamond symbols for the total cost. With respect to the G

graph, the Y-axis values indicate the percentage preference gain while in the case of the

(C3) graph, they indicate the total cost units.

The G3 graph shows that during the initial allocation (iteration 0) around 40% of the

preference value is satisfied when tasks are initially allocated according to the order Tj, T2

... Tg, while 44% of the preference value is satisfied when tasks are initially allocated

according to the order T6, T5 ... Tp A preference gain occurs at iteration 1 in both cases

and remains constant throughout the subsequent iterations, around 93% in both cases.

The C1 graph shows an increase in cost at iteration 1, 160 cost units in the first case

and 90 cost units in the second case. We think the difference between these cost values (70

cost units) is due to the fact that the negotiating tasks involved are not the same and

therefore the exchanged preferences can be different. This is expected as each gain in

preference value is associated with an increase in cost and the results conform to our

expectations.

Since only one task is competing to gain preference value, we might expect that all

preference values should be satisfied, but, as the results show, this is not the case. This is

due to the cost constraint. The cost the task is willing to pay is less than the actual cost, and

therefore not all the preference value is satisfied.

108

Chapter 7 : Preliminary Experiments

Iterations -------->

Fig. 7.2 T3 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 1,2,3,4,5,6)

Iterations ------->-

Fig. 7.3 T3 preference satisfactions & cost variation
(without considering other tasks preferences
and initial reverse allocation order 6,5,4,3,2,1)

109

Chapter7: Preliminary Experiments

Appendix A shows graph of results obtained when this experiment was conducted

using the other tasks and with different order of initial allocation. The results are similar to

the one above and conform to our expectations.

7.2.2 Individual Task Reallocation (considering other tasks preferences)

These experiments are the same as in the previous section except that preferences of the

affected tasks are taken into account during their reallocation. We expect the gain to be less

and that it might require more iterations to converge to the final value. This is because the

other tasks are now also competing to gain preference values, in contrast to the previous

experiment where only one task is allowed to compete for gain in preference values.

Iterations ------- ►

q
Fig. 7.4 T preference satisfactions & cost variation

(considering other tasks preferences)

110

Chapter 7: Preliminary Experiments

The result of this experiment for task T3 is shown in Figure 7.4. The results for the

other tasks are shown in Appendix B. Figure 7.4 shows how the total cost (C3) and gain in

preference values (G) of T3 varies during the reallocation process. Iteration points are

indicated by square symbols for the preference value gain, and by diamond symbols for the

total cost. It can be seen that the graphs in Figure 7.4 are similar to the ones obtained in the

previous experiment but differ in that the preference value in the G3 graph converges (to

approximately 74%) after iteration 14. The preference value is less than the value reached

in the previous experiment, and it took more iterations to reach this value. This is to be

expected as in this case there is contention on resources and other tasks are negotiating for

the same slot. Therefore T has to trade some of its preference value with other tasks and

this causes the drop in the preference value (T2, T4, and T6) as shown in Figure 7.5.

Fig. 7.5 Preference satisfactions for all the tasks when reallocating T3
only and considering other tasks preferences

ill

Chapter7: Preliminary Experiments

7.2.3 Reallocation of all Tasks

In this group of experiments we demonstrate the overall gain in preference value when all

tasks are reallocated. The procedure is the same as in the previous two groups of

experiments, but instead of considering the reallocation one task at a time, all tasks are

allocated concurrently. We expect this to affect the overall gain in preference value for all

tasks. This value should be higher than the value obtained when reallocation was

performed on individual basis as, in this experiment, all the tasks are cooperating to get a

better overall preference value. Also, the gain in preference values for each individual task

might be different to the one obtained during the individual reallocation.

Initially all tasks are allocated to the first available slot, tasks being allocated

according to the order Ti, T2 ... T6, without considering preferences. Then all the tasks are

reallocated concurrently. The result of this experiment is shown in Figure 7.5.

Fig. 7 .6 Preference satisfactions for all the tasks when reallocating all the tasks

112

Chapter 7: Preliminary Experiments

Figure 7.6 shows how the preference value (G1) for each task T; varies during the

reallocation process and it also shows the variation of the overall preference value. The

graphs in this figure follow the same pattern as the ones in the previous experiments,

though the final satisfied preference values are different. In this case there are more

exchanges of preference values among the tasks. Compared with the initial satisfied

preference value, the final satisfied preference values for all the tasks, apart from Ti and Tg,

have increased. This experiment shows that the preference model converges to a solution

that satisfies as many preference values as possible.

7.3 Investigation of Convergence Characteristics

To demonstrate that the preference model also works satisfactorily for different

configurations of tasks and subtasks, we repeated this experiment for different numbers of

tasks and coordinators as well as different cut-off values and different initial allocation

ordering. Sample presentations of the results of these experiments are shown in Figure 7.6,

Figure 7.7, and Figure 7.8, the rest are shown in Appendix C.

7.3.1 The Effect of Initial Order

For this experiment we used 6 coordinators and 24 subtasks. The tasks are allocated first

using initial order Tj, T2, . . , Tg. The experiment is then repeated using a reverse initial

order Tg, T5, . . , Tp This is also repeated for another two random initial orders. Figure 7.7

shows the results of these experiments. The results show that the convergence is stable as

the final preference value in the investigated cases converges to similar values (61%, 60,

and 59%). This is expected as the tasks negotiating are not the same and it takes a different

113

Chapter7: Preliminary Experiments

number of iterations, depending on the initial situation, to reach the same final preference

value. This also affects the number of iterations needed to reach convergence. Figure 7.7

shows that the iteration cycle at which this convergence is achieved differs from one case

to another. For example, for the order of allocation Ti, T2, . . , T6 convergence occurs at

iteration 8, for the reverse order of allocation convergence occurs at iteration 6, and for

random order of initial allocation convergence occurs at iteration 12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterations ------- ►

Fig. 7 .7 Effect of initial allocation order on convergence characteristics

114

Chapter 7: Preliminary Experiments

7.3.2 The Effect of Varying the Number of Coordinators and Subtasks

To investigate the effect of the number of tasks and coordinators on the convergence

characteristics, we investigated five different cases: A, B, C, D, and E. Cases A and B use

6 coordinators and 24 subtasks, C uses 7 coordinators and 29 subtasks, while D and E use

14 coordinators and 54 subtasks. Although some cases share the same number of

coordinators and subtasks, the subtask attributes (preference value, offer, and so on) are

different. The results are shown in Figure 7.8. This demonstrates that the gain in preference

value follows the same pattern in all cases. In all these cases the gained preference value

converges to a value larger than the initial value, though this gain might be small, as in

case D. These results motivated us to try to find a mathematical model that would describe

these curves and to search for the parameters that affect their characteristics. This led us to

formulate the theoretical distribution model discussed in chapter 5, and to perform more

experiments, presented in chapter 8, to validate the model and to investigate the effect of

the different parameters of the preference model.

115

Chapter7: Preliminary Experiments

Fig 7.8 Preference satisfaction for different cases

7.3.3 The Effect of Varying Cut-off Value

To investigate the effect of varying the cut-off value (<p) on the convergence

characteristics. Initially we used 10 coordinators and 45 subtasks and used different values

for cp (5, 15, 25, and 35). The results are shown in Figure 7.9. We also conducted the same

experiment using different numbers of coordinators and subtasks, the results of which are

shown in Appendix C. These diagrams shows that <p has little effect on the final preference

value (± 1%) but that it did affect the number of iterations needed to reach this final value.

From the results of these experiments we can say that the lower the value of cp the fewer

iterations were needed to reach convergence. Initially we thought the effect of (p might be

116

Chapter 7: Preliminary Experiments

much larger than this. To investigate this we undertook the experiments in section 7.4 so

that we can identify the sources of losses.

00

? 20
cu

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations

Fig 7.9 Varying the cut-off value (<p)

7.4 Sources of Preference Loss

Five sources of preference loss during the allocation process were identified in section

4.3.3. To recall, these sources are:

(a) Bid failure (see step 7 in the allocation process)

(b) The cost cut-off (see step 8 in the allocation process)

(c) Preference cut-off cp (see step 11 (a) in the allocation process)

(d) Delayed cut-off (p (see step 11 (bl) in the allocation process)

(e) The n loss (see step 1 l(b2) in the allocation process)

117

Chapter7: Preliminary Experiments

The bid failure in (a) is a result of severe conflicts on resources, so no movement is

possible. The loss due to preference cut-off (c and d) implies that the conflicts are still

severe, but not as bad as in (a). In (e), also due to resource conflict, the preference gain

exceeds the cut-off, but not as much as expected. The conflicts on resources are better than

in (c) and (d). The cost cut-off loss is due to lack of funds, either because exchanges are

too expensive as a means, or because the fund has run out.

We conducted several experiments to monitor the above losses and see if we can

derive a form of relation which would predict and control these losses

Table 7.1 shows a typical result from one of these experiments in which we used 6

coordinators, 24 subtasks, the preference cut-off value (<p) is set to 30%, and the preference

loss rate (p), see section 4.2.1, is set to 5%. Results of other cases are shown in Appendix

D. For the purpose of these experiment we treated the preference cut-off and the delayed

cut-off (c and d) as one item, referred to as the average preference cut-off loss.

Examining the results of these experiments we find it difficult to predict which

exchanges would be considered too expensive and when the funds would actually run-out,

particularly since the coordinators both gain and lose funds from each other like money in

a market during the processing. These preference losses are not independent. The failure of

a subtask to gain preference value due to any one of the above mentioned four reasons

might have enabled it to make a much better gain later and this is difficult for us to know

or predict. Therefore, monitoring the preference losses from these four sources at each

iteration would not guide us to control or predict the solution during the allocation process.

118

Chapter 7: Preliminary Experiments

Table 7.1. Sources of preference loss (24 tasks)

Subtask Average pref,
cut-off loss

Cost cut-Off
loss Average Pi loss

Til 7.3 5.0 0.0
T12 10.5 29.7 0.0
T13 8.3 0.0 0.0
T14 0.0 5.0 56.4
T21 0.0 6.6 10.0
T22 11.3 58.0 24.0
T23 8.0 0.0 27.7
T31 0.0 0.0 0.0
T32 11.8 35.4 53.1
T33 10.4 9.7 64.1
T34 7.2 9.1 71.3
T35 5.0 5.0 64.4
T41 7.3 0.0 11.1
T42 9.0 0.0 10.6
T43 0.0 0.0 3.5
T44 8.7 0.0 17.0
T45 10.0 15.2 9.8
T51 6.0 6.0 5.3
T52 9.0 0.0 7.5
T53 9.3 0.0 20.7
T54 10.0 27.0 35.1
T61 7.0 0.0 10.5
T62 10.3 10.4 15.5
T63 6.3 32.8 25.8

Total 8.6 18.2 22.6

Table 7.1: This Table shows the different sources of preference loss during the allocation
process for 24 tasks and 6 coordinators. <p=30% and p =5%.

7.5 Summary

We presented the simulation results of the initial experiments conducted on the simulator

described in Chapter 6. We used scheduling of different numbers of distributed tasks as a

case study in our simulation.

We used the first set of experiments to demonstrate that preference model converges

and to show that there is a common pattern to this convergence. These experiments

119

Chapter7: Preliminary Experiments

demonstrated that <p has little effect on the final preference value (± 1%) but that it did

affect the number of iterations needed to reach this final value. We concluded that the

lower the value of <p the fewer iterations were needed to reach convergence.

In the second group of experiments we investigated the different sources of

preference losses. We found it difficult to predict which exchanges would be considered

too expensive and when the funds would actually run-out as the coordinators both gain and

lose funds from each other like money in a market during the processing. Thus, we came to

the conclusion that monitoring the preference losses from the different four sources at each

iteration would not guide us to any way of controlling or predicting the solution during the

allocation process.

Although we can conclude from these results that the preference model provides a

convergence to a “satisfactory” global solution, these experiments do not show the effect

of task parameters on the convergence to a solution. Initially we thought we could predict

the solution by monitoring preference losses, in order to predict the solution. The

experiments in section 7.3 proved us wrong. Therefore we conducted further experiments

using different combinations and permutation of tasks and coordinators. These

experiments, which are presented in the next chapter, gave us deeper insight into the

working of the preference model.

To concentrate on the fundamental characteristics of the preference model, the

experiments presented in this chapter dealt with a single preference value. In our

discussion of the preference model in section 4.2 we made the assumption that preferred

resource types of a subtask are orthogonal to one another. Thus, to calculate the overall

gain in preference value we need to sum the individual gain in each preference value for

each source type, this involves extra programming and extra processing. This would only

have affected the number of iterations needed to reach convergence and the gain in

120

Chapter 7: Preliminary Experiments

preference value. The general characteristics would remain the same. Therefore, we

decided to concentrate on implementing a single preference value and defer the idea of

using multiple preferences for future work.

The experiments, presented in this chapter, were performed during the initial stages

of the research and led us to the mathematical formulation presented in chapter 5. Also,

these experiments motivated us to explore the effect of the distribution of preference

values and other parameters on the functionality of the preference model. In the next

chapter we present further experiments that cast more light on the behaviour of the

preference model.

121

Chapter 8

Simulation Results - Further Study

The results in the previous chapter motivated us to conduct further experiments to explore

the working behaviour of the preference model. In this chapter we aim to present results

obtained from these extended experiments. The experiments in this chapter use the same

simulation study for scheduling in a manufacturing environment as was used in the

previous chapter. The experiments that are presented in this chapter are divided into the

following two sets:

I. The experiments that are presented in the first set are those experiments that

were conducted to illustrate some of the basic desirable properties of the

preference model, namely: that the solution converges to a stable final

preference value independent of the initial order of subtask processing and that

its value is also stable against reasonable variations in the preference cut-off

value (p and the offer price.

H. The experiments that are presented in the second set are those experiments that

were conducted to show that the results conform with the predicted results

calculated by using the formulae from the theoretical model developed in

Chapter 5.

122

Chapter 8: Simulation Results

We used the PMS implementation described in Chapter 6 for the purpose of these

experiments. For the simulation study we have used a set of coordinators, each responsible

for a global task that is being further subdivided into subtasks. Our objective is to find a

schedule that satisfies as many preference values as possible, for which we have used the

algorithm outlined in Chapter 4. In section 8.1 we outline the case study and we present

our results in the subsequent sections.

8.1 The Case Study

As the experiments in this chapter are an extension of the ones described in the previous

chapter, we have used the same types of configuration. A detailed presentation of the case

study was given in section 7.1, for the sake of clarity we give a brief summary of the case

study and show a presentation of the case study in Figure 8.1 with different parameters and

configuration. This figure shows the coordinators, tasks, subtasks, and their attributes, for 6

coordinators. In this case study we used a set of coordinators U1, U2, .. Un, each U1 with a

(global) task T‘, each task T1 being further subdivided into subtasks: T'j | {j = 1, 2, .. m},

one or more subtasks being allocated to a home agent Ar. We used up to n = 14, up to six

subtasks (m= 6) in each task, and three home agents (k=3). Also we used the algorithm

outlined in section 4.3 to find a schedule that satisfies as many preference values as

possible. We used a varying number of coordinators and tasks with different attributes to

obtain a large number of results.

So that our results would not be biased we adopted the same strategy in choosing the

test cases as the one described in section 7.1.

123

Chapter8: Simulation Results

T61(2, A3,5,57,50) T62(3, A2,7,58,40) T63(2, Ab9,89,48)

Parameters: (Task Name (duration, resource agent, preferred end time, preference value, offer price))

Fig. 8.1 A presentation of the case study for n = 6

124

Chapter 8: Simulation Results

We classify the experiments into two sets. One set concerns those experiments that

were conducted to confirm some basic desirable properties, while in the second are those

experiments that were conducted to verify our theoretical model. In the next sections we

present the results of these experiments and then we discuss their findings.

8.2 Verification of Basic Properties (First Set)

The objectives of these experiments are to show that:

III. The solution converges to the same final preference value independent of

the initial order of subtask processing.

IV. That value is also stable against reasonable variations in the preference cut

off value cp.

V. That value is stable against higher offer prices by some coordinators.

In the following subsection we present the experiments we have conducted to achieve the

above objectives.

8.2.1 Variation in Subtasks Processing Order

In section 7.3.1 we presented an experiment that investigated the effect of changing the

order of the initial allocation on the convergence to the final value. We repeated that

experiment but this time the specified end-time preference value was set to be the same as

the one achieved in the initial allocation. So that if these subtasks are allocated in the

arrival order (which was the end time order) over three target agents without paying any

attention to their preferences, 100% preference values will be automatically achieved. In

order to show that the solution converges to the same final value independent of the initial

order of subtask processing, we carried out an experiment with 24 subtasks of all mixes but

with non-conflicting end times slots (preferred resource). We then allocated these tasks in

the reverse order without taking any preference into account. This yielded 30% preference

125

Chapter8: Simulation Results

gain. On this distribution we applied our model and re-allocated the subtasks, this time

(iteration 1) taking preferences into account. This first iteration achieved 100% gain. We

repeated this experiment with different initial ordering, and each case 100% gain was

achieved at the first iteration. In these experiments the value of preference cut-off, f, was

kept fixed at 5%.

We show the results of this experiment, which were performed using 6 coordinators

and 24 subtasks in Figure 8.2. This figure shows subtask allocations after the initial

allocation and for the subsequent two iterations. The order of the initial allocation was in

random order. As can be seen from the figure, the maximum gain in preference value was

achieved after the first iteration. There are no changes on the allocation after the first

iteration.

The results of this experiment and the experiments presented in 7.3.1 confirms that

our model behaves as we expected, and that it does lead to convergence. A significant

point is that this model produces results which are independent of initial allocations (i.e the

order of subtask processing), this is difficult to achieve using traditional machine

scheduling.

Init. Alloc.

Assembler 1
nli I7l5il4l^lfil7lftl9linll1 Il2l 1.9 I 14 I 13 I 1A I 17 I 19 I 1 9 I 20 I 21 I 22 I 23 I 24

■BMIM^B^M^M^^BfT22rf22[r22|T23fr23|T11 |T1 l|ri2fT12[T12
25. 27

Iteration 1 T11 |~T111T12t1"12F12p~22p22|r22fr23|T23|

Iteration 2 T1lfT11p12fri2[T12[T22|T22|T22|T23|T23|

Assembler 2

'13|T1
13|T1

loll I 2 I 3 I 4 I 5 I 6 I 7 I R I 9 I 10 11 I 12 I 13 14 15 1fi 17 18
Init. Alloc. ■P21[T21

19 20 21 22. 23. 24 2S±
T13

23.
T13

22.

T21
T2ÏI

Iteration 1 T21

Iteration 2 Î21

Assembler 3

Legend

Fig.8.2. The results of allocation of subtasks with non-conflicting end times

9R

126

Chapter 8: Simulation Results

8.2.2 Variation in Cut-Off Value q>

Our reason for using the preference cut-off (p was to reduce unnecessary processing and to

avoid cycles. The effect of a cut-off value is complex and hence needed investigation. We

were interested in answering the following questions:

I. What should be the correct value of <p?

II. Is it sensitive to some values?

In order to answer these questions we carried out experiments that varied the preference

cut-off values from 1 percent to 100 percent of each subtask preference value. Figure 8.3

shows the results of these experiments. We can see from the graph in this figure that the

resultant preference gain is largely flat up to 20 percent cut-off values, and then tapers

gently downward for higher cut-off values. This result gives us the confidence that the

final preference gain is not sensitive to any reasonable cut-off value, which is likely to be

between 1 and 10 percent.

70 -i

20 -

10 -

0----------- 1------------------------- 1-------------------------i-------------------------1------------------------- i------------------------- 1-------------------------i >

0 5 10 15 20 25 30 40 50
Cut-off Value (q) ------------>>

TFig 8.3. Effect of varying cut-off value (<p) on preference satisfaction (G).

127

Chapter8: Simulation Results

8.2.3 Variation in Offer Price

We investigated whether higher offer prices by some coordinators can distort the results

significantly. We used six coordinators, each task T' of the coordinator U1 having m

number of subtasks, m varying from 3 to 6. Initially all subtasks were allocated on the first

available (time) slots in the order T1, T2, ..., T6, at a given offer price (taken from Figure

8.1) and preference cut-off value (p, but without considering preferences.

Then a series of iterations was carried out for the same (p. At each iteration, the offer

price of one of the coordinators was raised by 5%, and its subtasks reallocated, taking only

its preferences into consideration. The results presented in Figure 8.4 shows the changes in

the preferences satisfied during the allocation of each task (T1, T2, ..., T6) in which only

preferences of that task were taken into account. So our conclusion is that higher offer

prices do not make any drastic change, and therefore our model produces a stable

preference gain.

Fig. 8.4. Preference satisfaction (GT) over iterations.

128

Chapter 8: Simulation Results

Next we examined whether the preference gain and the cost of one task is affected by

the increasing offer prices of the other coordinators. We have conducted this experiment

for each task T1, but selected arbitrarily to show it for T3 in Figure 8.5, which was typical.

It shows the preference gain and cost for T , against the accumulated offer prices of the

other coordinators. Evidently the increase in their offer prices did not affect the preference

gain of T3s in any significant way. This result is typical for all T”s.

Fig. 8.5. T3 preference satisfactions, offer & cost variation.

8.3 Verification of the theoretical model (Second Set)

Our aim from this set of experiments was to verify that the preference gain over iterations

obeys the theoretical model discussed in Chapter 5. In these experiments we used different

distributions of subtask preference values. Distributions from six experiments on

preference-based task allocations by three target agents are shown in the Figures 8.6(a) to

8.6(g). Preferences were assigned on end-times for 29 subtasks (7 coordinators) in Figure

129

Chapter8: Simulation Results

8.6(b), for 12 subtasks (3 coordinators) in Figure 8.6(c), and for 54 subtasks (14

coordinators) in the other figures. The preference cut-off value ((p) and the preference loss

rate (p), see section 4.2.1, were sometimes varied as shown in the tables later. The

distributions in the last four figures are skewed (see section 5.3). We shall use these

distributions in our analyses presented in the following subsections

Fig. 8.6(a). Skew-free distribution (54 subtasks).

130

Chapter 8: Simulation Results

Fig. 8.6(b). Skew-free Distribution (29 subtasks).

Fig. 8.6(c). Skew-free distribution (12 subtasks).

131

Chapter8: Simulation Results

Fig. 8.6(d). Skewed distribution (54 subtasks).

Fig. 8.6(e). Skewed distribution (54 subtasks).

132

Chapter 8: Simulation Results

Fig. 8.6(f). Skewed Distribution (54 subtasks)

Fig. 8.6(g). Skewed distribution (54 subtasks)

133

Chapter8: Simulation Results

We categorise the results of the experiments under the following three categories:

1. The effect of variable distribution and fixed <p value on the exponential

function of the predicted remaining preference values, R .

2. The effect of variable (p value and fixed distribution on R .

3. The effect of variables (p and p on RT.

We present the results for the experiments that fall under the first category in

subsection 8.3.1, the results for the second category in section 8.3.2, and the result for the

third category in subsection 8.3.3.

8.3.1 Fixed (p Value and varied Distribution.

In this study we used data from Figures 8.6(d), 8.6(e), 8.6(f), and 8.6(g), with the

preference cut-off value <p fixed at 5% to demonstrate that the distribution of R over the

iterations matches the exponential pattern predicted by the theory. We show the

exponential fit on the results in Fig 8.7. The graph shows that all the cases obey the

predicted exponential curve. The final value of RT is different for each case shown in the

figure.

We can conclude that this variation in RT is due to the distribution effect as this is

the only factor that changed during these experiments. Examining the distribution graphs

in Fig. 8.6 we can observe that the more dispersed the distribution of preference values the

less is the value of RT. For example for the sparse distribution of preference values shown

in Fig 8.6(g) the value of RT is around 25%, while for the more congested distribution of

preference values shown in Fig 8.6(d) the value of RT is around 60%. This behaviour

confirms to the formulation of the theoretical model discussed in section 5.2.

134

Chapter 8: Simulation Results

Fig. 8.7. Confirmation of the Exponential Pattern for RT for Fixed cp.

8.3.2 Variable <p value.

As mentioned, (p is used to avoid cycles that lead to non-convergence. To demonstrate the

effect of <p values on preference gain (inverse of the remaining preference value RT), we

have used the distribution of preference values from Figure 8.6(a), with cp = 2, 5, and 8, as

displayed in Figure 8.8. For clarity of presentation the plot for (p is 8 is not shown, as its

result is similar to the others.

As in the previous experiments the plots in Figure 8.8 fit our theoretical exponential

distribution. The two horizontal straight lines show the predicted minimum and maximum

remaining preference values RT in %. Variation of cp value has little effect on RT, as can be

135

Chapter8: Simulation Results

seen from the graphs in Figure 8.8. The greater the value of cp the more gain in the

preference value. Using high values of (p could lead to higher gain in preference values but

at the expense of more processing time. We did not investigate the effect of varying (p

values on the processing time during the course of this research as processing time was not

one of our major concerns. We hope to investigate this in future work.

Fig. 8.8. Confirmation of the Exponential Pattern for RT for Variable (p.

8.3.3 Predicted Remaining Preference Values

The objective of this set of experiments is to compare RT, the predicted remaining

preference values (inverse of the preference gain) after the final iteration, with the actual

values obtained from the simulation experiments, based on the subtask distributions given

136

Chapter 8: Simulation Results

in Figures 8.6(a) to 8.6(g). The actual values are expected to lie between the upper and

lower bounds of the predicted values for both skewed and non-skewed distributions with

variable values of (p and p, as shown in the four tables below. Tables 8.1, 8.2, and 8.3,

show results for unskewed distribution for 54, 29 and 12 subtasks respectively. Table 8.4

shows results for skewed distribution for 54 subtasks.

Table 8.1. Unskewed Distribution (Figure 8.6(a))

Case No. of
Subtasks

Pref. Loss
Rate
(P)

Cut-off
Value

(9)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

1 54 5 2 23 32.5 27

2 54 5 5 23 32.5 25

3 54 5 8 23 32.5 24

4 54 2 2 9 27 15

5 54 2 5 9 27 14

Table 8.1: This Table shows data from Figure 8.6(a) for 54 subtasks, with five pairs of
different (p and p values, referred to as the five Cases, numbered 1 to 5. All simulation
values lie within the predicted bounds.

137

Chapter8: Simulation Results

Table 8.2. Unskewed Distribution (Figure 8.6(b))

Case No. of
Subtasks

Pref. Loss
Rate
(P)

Cut-off
Value

(<P)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

6 29 5 5 9.9 23 23

7 29 5 10 9.9 23 23

9 29 7 5 13.9 32 26

9 29 10 5 19.8 46.2 37

10 29 10 10 19.8 46.2 37

Table 8.2: This Table shows data from Figure 8.6(b) for 29 subtasks, with five pairs of
different (p and p values, referred to as the five Cases, numbered 6 to 10. All simulation
values lies within the predicted bounds.

Table 8.3. Unskewed Distribution (Figure 8.6(c))

Case No. of
Subtasks

Pref. Loss
Rate
(P)

Cut-off
Value

(<p)

Remaining Pref. Values (RT)

Predicted
Actual

Lower Upper

11 12 5 5 5 12 11

12 12 5 7 5 12 9

13 12 5 12 5 12 8

14 12 10 5 10 24 22

15 12 10 7 10 24 21

16 12 10 12 10 24 15

Table 8.3: This table shows data from Figure 8(c) for 12 subtasks, with six different pairs
of (p and p values, referred to as Cases 11 to 16. Again the simulation values lie within the
bounds of the predicted values.

138

Chapter 8: Simulation Results

Table 8.4. Skewed Distribution (results summary)

Distribution
Source Case No. of

Subtasks

Remaining Pref, values %
Predicted

ActualLower Upper

Figure 8.6 (d) 16 54 57 66 59

Figure 8.6 (e) 17 54 42 51 50

Figure 8.6 (f) 18 54 22 32 30

Figure 8.6 (g) 19 54 22 32 25

Table 8.4: This Table shows data from the remaining four figures for 54 subtasks with
fixed values of at 5% and that of p also at 5%. The entries are numbered as Cases 16 to
19. Again the simulation result obeys the predictions.

From the results presented in the above tables we can see that all the experimental

results lie between the two boundaries predicted by the theoretical model, therefore we can

conclude that the simulation experiments confirm our theoretical model.

8.4 Summary

We presented the simulation results of the experiments conducted on the simulator

presented in Chapter 6. We used distributed scheduling in manufacturing as a case study in

our simulation. The experiments were classified into two categories. In the first category

are those experiments conducted to confirm some basic desirable properties of the

preference model, while in the second category are those experiments that were conducted

to verify the formulae in the theoretical model.

139

Chapter8: Simulation Results

We can conclude the following from the results of the experiments:

1. The preference model provides convergence to a “satisfactory” global

solution.

2. The initial order of allocation does not affect the final results.

3. The values calculated by the theoretical model are a good estimate of the

best preference values that can be achieved by a given set of tasks and

resources.

140

Chapter 9

Evaluation and Concluding Remarks

In this thesis we have presented an agent based cooperative preference model that can be

used to solve problems in distributed systems that are often characterised by multiple valid

solutions, a solution being considered to be valid if it meets all the constraints. In our

approach, the different choices are specified in terms of user preferences on the different

desirable aspects (i.e. resources) of the solution. Using this model, we have shown how to

derive a preference-based solution in the presence of contention on resources. In that

event, the best solution that can be achieved is the one that meets as many preferences as

possible.

One of the most important achievements of this research is the formulation of a

theoretical performance model. Using this formulation, the user can describe the

quantitative behaviour of the preference model and estimates the boundaries of the

solution, i.e. the best preference values that can be achieved (see Chapter 5). Our approach

in deriving this formulation followed the classical scientific tradition of observation

modelling-hypothesis-experiments. This model was developed after conducting trial-and-

error experimentation on a simulator designed for experimentation and testing purposes.

The results from the initial experiments conducted on the simulator (see Chapter 7) not

only showed that the preference model would converge to a solution, but also showed that

there is a pattern to this convergence. This motivated us to explore farther and investigate

141

Chapter 9: Conclusion

to see if we could model this pattern mathematically. As a result of this exploration, and

after conducting more experiments, we formulated a theoretical performance model that

describes the quantitative behaviour of the preference model and estimates the best

preference values that can be achieved (see Chapter 5). The results of the experiments that

were conducted after developing this model (see Chapter 8) are consistent with our

mathematical formulation. We have submitted this model for publication in [DEEN03B],

and our initial work was published in [DEEN02J.

We have developed a multi-agent approach for solving distributed problems where

cooperative autonomous agents work together to solve a joint task. Each autonomous agent

(task agent), under the supervision of a relevant task coordinator, solves its part of the

subtask in cooperation with other task agents. To resolve contention for the same

resources, a market-based payment scheme has been applied that allows the preferences to

be bought and sold by the contending task agents, through the medium of their

coordinators. The best solution is achieved for a task when further iterations do not

increase the task total preference value, at that point convergence is achieved.

Thus, the general preference model, which has been proposed in this thesis (see

Chapter 4) includes a preference specification strategy, a preference processing technique,

and a theoretical performance model. The preference model can produce a solution,

regarded as the best solution, for trading and satisfying preferences and enforces timely

termination in a "fairly competitive" market for cooperative agent-based systems. That

solution is independent of the order of task agent requests for the resources. Section 9.1 of

this chapter summarises the achievements of this work. We present an evaluation for this

work in section 9.2.

For the simulation study we have used the scenario of distributed scheduling in

manufacturing, where agents, (coordinators), resolve a set of global tasks into subtasks that

142

Chapter 9: Conclusion

have precedent subtasks. The coordinators perform the allocation of subtasks to the target

agents (assemblers) through cooperation and negotiation, in which preferred resources are

exchanged with payments. Agent-based systems support distributed scheduling, contrary to

traditional centralised scheduling for manufacturing systems. We based our simulation for

the multi-agent system on Cooperating Knowledge-Based Systems (CKBS) (see Chapter

3). To simplify the implementation of the simulator we imposed some limitations, these

limitations are discussed in section 9.3.

We have implemented the simulator using Java Development Kit (JDK1.2.2). Java

is popular, widely used, well supported, available freely, and comes with well-defined

interfaces to system functions, multithreading capabilities, communication protocols,

graphical tools, and is the author's primary programming language. At the time of writing,

different agent development platforms, such as JADE [JADE], FIPA-OS[FIPAOS], and

JACK[JACK], have become available. We discuss the potential use of these development

platforms in section 9.4.

Briefly, we can conclude that the results of the study show that our agent based

strategy reached convergence on the final preference value for the whole system in a form

that could be estimated using our mathematical formulation. We also emphasise the fact

that this estimated value is also independent of the initial order of subtask allocation.

Although we used scheduling in distributed manufacturing systems to illustrate this, the

potential application areas for our approach are diverse and are not restricted solely to

scheduling. We discuss these application areas in section 9.4.

143

Chapter 9: Conclusion

9.1 Achievements

In general, the work described in this thesis contributes to the field of distributed problem

solving and multi-agent systems through the introduction of a preference model that can

derive a solution that satisfies as many preferences as possible. The agent-based preference

model presented in this thesis has been developed after several years of work in agent

based systems and in the HMS project. The specific contributions of this research are as

follows:

• A preference model that can be used by cooperative autonomous agents that are

working together to solve a joint task.

• A quantitative mathematical formula that can describe the quantitative behaviour of

the preference model and estimate the boundaries of the solution, i.e. the best

preference values that can be achieved form an estimate of the minimum remaining

preference value that can be achieved for a given problem.

• Using a cost-based negotiation approach, the preference model presented provides

techniques to specify user preferences, and an algorithm that ensures that the

system can derive a preference-based solution in the presence of contention on

resources. In that event, the best solution that can be achieved is the one that meets

as many preferences as possible.

• The effects of uniform and non-uniform clustering of requests for the same resource

instances were studied and the effects of the non-uniform distribution of these

clusters (skewed distribution) on the formula were shown.

144

Chapter 9: Conclusion

9.2 Evaluation

We would have liked to evaluate our preference model by comparing the results obtained

by our implementation with those of other manufacturing scheduling systems.

Unfortunately, this has proved to be infeasible as most of the current manufacturing

scheduling systems concentrate mainly on resolving constraint conflicts and give only little

consideration to solving preferential conflicts. Thus, to evaluate our work, we have

expressed the objectives of this work (see section 1.3) in the form of a number of questions

and our evaluation of the model is expressed in the form of answers to these questions.

In view of the presence of severe non-linearity we were mainly concerned with the

following questions:

• Has the proposed model been successfully implemented?

We have run several experiments to test that the simulator behaves according to

the model rules. The results, presented in chapters 7 and 8, demonstrated that the

preference model simulator implements the proposed model successfully.

• Can the technique provide convergence to a global preference value?

The experiments demonstrated the effectiveness of the preference model and

showed that convergence can be achieved using our preference model.

• Does the initial order of allocation affect the final result?

When using the agent based preference-processing approach presented in this

thesis the initial order of allocation has no effect on the final result.

• Is a simplified theoretical performance model feasible?

145

Chapter 9: Conclusion

A theoretical performance model that models the behaviour of the system was

developed. The simulation results verify the validity of this theoretical

performance model.

• Do the global values achieved in practice agree with the values calculated by the

theoretical model?

The values calculated by the theoretical performance model are a good estimate of

the best preference values that can be achieved by a given set of tasks and

resources.

As can be seen from the answers given to the questions above, all of the objectives set

forth for this thesis have been met by this work.

9.3 Current Limitations

The present preference model and the simulator have some present limitations, as noted

below:

• Although the preference model, presented in this thesis, produces a solution that

satisfies as many preferences as possible, it does not guarantee an optimal

solution. To consider all alternative solutions is infeasible in a large set of

subtasks, as the number of possible solutions grows exponentially with the

number of subtasks.

• We assumed the resources types to be orthogonal so that a preference on one type

does not affect that on another resource type. This assumption of orthogonality

allowed us to restrict ourselves to considering only a single resource for the

purpose of the preference model formulation and implementation. In some cases

there could be resource type dependency. For example if a task has a preference

146

Chapter 9: Conclusion

on a machine and also on end time, then the end time will be dependent on a

machine. In this case we can linearise it by pairing the machine with their

available time slot as the instances of a single resource type. In cases where

linearisation is not possible, the evaluation process will have to consider all

combinations, as discussed in section 4.2. Thus resource type dependency will

involve extra processing and this should not affect our algorithm.

• In the experiments conducted we only dealt with a single preference value. Our

intention was to make the implementation as simple as possible and to concentrate

on the fundamental characteristics of the preference model. As observed above,

simulating the effect of multiple preference values would only affect the

execution time, as there will be more solutions to search for. Therefore, the issue

of dealing with multiple preference values has been left for further research. For

this purpose we designed the simulator in a way that it can be adapted to deal with

multiple preferences by including dummy routines that deal with the issue of

using multiple preferences.

• At present the simulator works in a batch mode, where tasks are specified in

external files before running the system. The results are also stored in external

files before they are migrated to other software for processing and graph drawing.

We would like to extend the GUI part of the simulator so the specification of task

parameters and result analysis are all integrated within the same package.

147

Chapter 9: Conclusion

9.4 Value to Industry and Further Work

We see the potential of applying the preference model in many application areas, not only

scheduling, but also in distributed processing where initial plans need to be merged into a

global plan, such as for distributed project management and concurrent engineering. This

research could have impact on the industry by:

• Improving schedules.

• Enhancing resource utilisation.

• Supporting cooperative relationships among the different project partners.

This research provides a foundation to develop a distributed scheduling algorithm

that can help to produce a schedule that will satisfy as many participants' preferences as

possible. It can even predict the boundaries of the solution.

We are however, aware that industrial applications are a lot more complex, and

therefore to verify the real usefulness of the model to industries, an industrial trial will be

necessary, an eventuality we would welcome.

For future work we hope to extend the implementation to include multiple

preferences so that we can investigate further how this affects the model. We hope to make

use of the agent development tools available today, such as JADE (Java Agent

Development Environment) that is regarded as a robust and efficient environment for

distributed multi-agent systems. Such tools were not available during the development

stage, we think such tools can have a positive impact on the development time.

We would also like to investigate how the model behaves in practical situations. We

hope to implement the model in such real-life applications as distributed project

148

Chapter 9: Conclusion

management, university timetabling, and meeting scheduling, and to compare our results

with the results produced by current software packages designed specifically for use in

such application domains.

Our approach can be used in applications where there is a need to combine different

schedules, subject to dependencies and shared resources with preferences on such

resources, into one single schedule. This problem is an example of a resource allocation

problem, as there is a need to allocate the shared resources effectively among involved

tasks, information about such resources and dependencies is distributed among tasks.

Using a central resource controller has serious drawbacks, including lack of robustness; if

this controller fails the whole system fails, and its computation and communication

demands on a single bottleneck process. Our approach can overcome such limitations, with

decision making being distributed among the processes controlling the separate resources.

Resource allocation is performed by agents which have the ability to make decisions

regarding the allocation of resources. Such agents need to cooperate together to find an

effective common schedule to accomplish the task set by the project.

149

References

[AARIA] URL: http://www.aaria.uc.edu/

[AKKI98] R. Akkiraju, R. Goodwin, P. Keskinocak, S. Murthy, F. Wu: "A New

Decision Support System for Paper Manufacturing", Proceedings of the 6th

International Workshop on Project Management and Scheduling, Istanbul,

Turkey, 1998.

[ALBA99] S. Albayrak and D.Wieczorek: "JIAC - a Toolkit for Telecommunication

Applications", proceedings of the third International Workshop on Intelligent

Agents for Telecommunication Applications (IATA'99), Stockholm, Sweden,

Springer-Verlag, Berlin, Germany, pp.1-18, 1999.

[AROR98] S. Arora, "The Approximability of NP-hard Problems", this survey was a

plenary lecture at ACM Symposium on Theory of Computing, 1998.

[BAKE98] A. D. Baker: "A Survey of Factory Control Algorithms that can be

Implemented in a Multi-Agent Heterarchy: Dispatching, Scheduling, and

Pull", Journal of Manufacturing Systems, Volume 17, No. 4, pp. 297-320,

1998.

[BAKE99] A.D. Baker, H. Van Dyke Parunak, K. Erol: "Agents and the Internet:

Infrastructure: Mass customisation", in IEEE Internet Computing, Volume 3,

Issue 5, Sept.-Oct. pp. 62-69,1999.

[BargainFinder] URL: http://bf.cstar.ac.com

[BASU98] C. Basu, H. Hirsh, W. Cohen: "Recommendation as Classification: Using

Social and Content-Based Information in Recommendation", Proceedings of

150

http://www.aaria.uc.edu/
http://bf.cstar.ac.com

References

the fifteenth National Conference on Artificial Intelligence, pp.714-720,

1998.

[BECK94] JC. Beck and MS. Fox: "Supply Chain Coordination via Mediated Constraint

Relaxation", Proceedings of the First Canadian Workshop on Distributed

Artificial Intelligence, Banff, AB, 1994.

[BECK94A] JC. Beck: "A schema for constraint relaxation with instantiations for partial

constraint satisfaction and schedule optimisation", Computer Science,

University of Toronto, MSc Thesis, 1994.

[BOGA94] N. R. Bogan: “ Economic Allocation of Computation Time with

Computational Markets”, Master's thesis, Department of Electrical

Engineering and Computer Science, MIT, 1994.

[BOOC94] G. Booch: "Object-Oriented Analysis and Design", published by Benjamin

Cummings, 1994.

[BONG98] L. Bongaerts: "Integration of Scheduling and Control in Holonic

Manufacturing Systems", Ph.D. thesis KU Leuven, 1998.

[BRAT88] M. E. Bratman, et al: "Plans and Resource Bounded Practical Reasoning",

Computational Intelligence, Vol. (4:4), pp349-355, Nov 1988.

[BREN02] R.W. Brennan, X. Zhang, Y. Xu, and D.H. Norrie: “A reconfigurable

concurrent function block model and its implementation in real-time Java”,

Integrated Computer-Aided Engineering, 9(3), pp. 263-279, 2002.

[BROW95] D.E Brown et.al.: "A survey of intelligent scheduling systems", Intelligent

Scheduling Systems edited by D.E. Brown and W.T. Scherer, 1995.

[BRUS98] H.V Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters:

"Reference architecture for holonic manufacturing systems: PROSA",

Computer in Industrial, Vol. 37, pp.255-274, 1998.

151

References

[BURK01]

[CHEN98]

[CHRI94]

[CHRI98]

[CONI03]

[DAM94]

[DARR94]

K. Burke and K. Aytes: "Preference for Procedural Ordering in Distributed

Groups: How Do Media and Repeated Interaction Affect Perceptions and

Procedural Structuring?", proceedings of the thirty-fourth Hawaii

International Conference on System Sciences (HICSS-34), IEEE Computer

Press, 2001.

J.Q. CHENG and M.P. WELLMAN: "The WALRAS Algorithm: A

Convergent Distributed Implementation of General Equilibrium Outcomes ",

Computational Economics 12, pp 1-24, 1998.

J.H. Christensen, "Holonic Manufacturing Systems: Initial Architecture And

Standards Directions", presented at first European Conference on Holonic

Manufacturing Systems, Hannover, Germany, 1994.

J.Christensen: "Holonic Manufacturing Systems", technical report,

ftp://hms@ifwpd7.ifw.uni-hannover.de/hms-wps/wpl-seng/html/tl/dllf.htm ,

Rockwell Automation, 1998.

V. Conitzer and T. Sandholm: "Universal Voting Protocol Tweaks to Make

Manipulation Hard", In Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003.

M. Dam, M. Zachariasen: "Tabu Search on the Geometric Travelling

Salesman Problem", Thesis for a MSc. degree at the department of computer

science at the University of Copenhagen (DIKU), 1994.

Timothy P. Darr and William P. Birmingham: "An Attribute-Space

Representation and Algorithm for Concurrent Engineering", The University

of Michigan, Department of Electrical Engineering and Computer Science

CSE-TR-221-94, October 1994.

152

ftp://hms@ifwpd7.ifw.uni-hannover.de/hms-wps/wpl-seng/html/tl/dllf.htm

References

[DARR94A] T.P. Darr and W.P. Birmingham: ”An Attribute-Space Representation and

Algorithm for Concurrent Engineering”, Artificial Intelligence for

Engineering Design, Analysis, and Manufacturing, Al EDAM 10(1) 1996.

[DAST01] M. Dastani, N. Jacobs, C.M. Jonker, and J. Treur: "Modelling user

preferences and mediating agents in electronic commerce", Lecture Notes in

Computer Science, also available at:

www.citeeer.nj.nec.com/dastani99modelling.html, (2001).

[DEDEMAS] URL: http://dedemas.ifw.uni-hannover.de.

[DEEN96] S. M. Deen: "An architectural Framework for CKBS Applications", IEEE

Transactions on Knowledge and Data Engineering, Vol. (8:4), pp 663-671,

1996.

[DEEN97] S. M. Deen: "A Database Perspective to a Cooperation Environment", CIA'97

Proceedings, edited by P. Kanzia and M. Klusch, Springer, pp 19-41, 1997.

[DEEN97A] S. M. Deen, R. Jayousi, B. Ndovie and B. Taha: "An agent-Based Approach

to Dynamic Scheduling in Traffic Control", technical report, Department of

Computer Science, University of Keele, England, 1997.

[DEEN98] S. M. Deen: "A fault tolerant cooperative distributed system", IEEE DEXA

Work-shop, R Wagner, ed., Vienna, 1998.

[DEEN99] S.M. Deen, A computational model for a cooperating agent system, technical

report, DAKE Group, Computer Science Department, Keele University,

1999.

[DEEN99A] S.M. Deen and C.A. Johnson: "Towards a Theoretical Foundation for

Cooperating Knowledge Based Systems", proceedings of the 11th

International Symposium, Methodologies for Intelligent Systems, 1999.

153

http://www.citeeer.nj.nec.com/dastani99modelling.html
http://dedemas.ifw.uni-hannover.de

References

[DEENOO] S.M. Deen :"An investigation into a Computational Model for Holonic

Manufacturing Systems", technical report, DAKE Group, Computer Science

Department, Keele University, 2000.

[DEEN02] S.M. Deen and R Jayousi: "Preference Based Task Allocation in Holonic

Manufacturing", the 13th International Conference on Database and Expert

Systems Applications (DEXA'02), published by the IEEE Computer Society

pp 573-577,2002.

[DEEN03] S.M. Deen and C.A. Johnson: "Formalizing an Engineering Approach to

Cooperating Knowledge Based Systems", IEEE Transactions on Knowledge

and Data Engineering, vol. 15, NO. 1, ppl03-117, 2003.

[DEEN03A] "Agent Based Manufacturing - Advances in the Holonic Approach", edited by

S.M. Deen, Springer-Verlag (Heidelberg, Germany), 2003.

[DEEN03B] S.M. Deen and R Jayousi: "A Preference Processing Model For Cooperative

Agents", submitted for publication to JUS, 2003.

[DOYL94] J. Doyle: “A Reasoning Economy for Planning and Replanning”, In

Technical Papers of the ARPA Planning Initiative Workshop, 1994.

[EPHR94] E. Ephrati, G. Zlotkin , J. S. Rosenschein, "Meet your destiny: a non-

manipulable meeting scheduler", Proceedings of the 1994 ACM conference

on Computer supported cooperative work, p.359-371, October 22-26, 1994.

[EPHR96] E. Ephrati, and J.S. Rosenschein: "Deriving consensus in multi-agent

systems", Artificial Intelligence, Elsevier Science BV, Amsterdam, vol. 87

(1-2), pp. 21-74, 1996.

[FARL98] J. Farley: "Java Distributed Computing", O'Reilly & Associates, ISBN: 1-

56592-206-9, 1998.

154

References

[FLET98A] M Fletcher, ed.: "Holonic Systems Architecture, technical report, DAKE

[FIELOO] A. Field, P. Hartel, and W. Mooij:."Personal DJ: An architecture for

personalised content delivery", in Proceedings of the tenth international

conference on World Wide Web, pages 1-7, also available from:

http://wwwl0.org/cdrom/papers/384/, 2001.

[FINI93] T. Finin and R. Fritszon: "KQML - A language for protocol and information

exchange", Proceedings of 13th international conference on Distributed

Artificial Intelligence, edited by M. Singh and published by Maryland

University, USA, 1993.

[FIPA] FIPA: Foundation of Intelligent Physical Agents, http://www.fipa.org.

[FIPAOS] http://www.nortelnetworks.com/products/announcements/fipa.

[FISH94] M.Fisher: "Specifying and Executing Protocols for Cooperative Action",

Proc. Second Int’l Working conf. Cooperating Knowledge-Based Systems,

pp.295-306, 1994.

[FLAN99] D. Flanagan: "Java in a Nutshell", 3rd. Edition, O'Reilly & Associates, ISBN:

1-56592-487-8, 1999.

[FLET97] M. Fletcher: " An Agent-based approach to dynamic network management"

PhD thesis, Department of Computer Science, University of Keele 1997.

[FLET98] M Fletcher: A Critique of Holonic Manufacturing Systems: Architectural

requirements and standards, technical report, DAKE Group, Computer

Science Department, Keele University, 1998.

[FLETOO]

Group, Computer Science Department, Keele University, 1998.

M. Fletcher, S.M. Deen, and P. G: "An Evaluation of Rescheduling

Techniques and Architectures in Holonic Manufacturing Systems", Technical

155

http://wwwl0.org/cdrom/papers/384/
http://www.fipa.org
http://www.nortelnetworks.com/products/announcements/fipa

References

Report, Department of Computer Science, University of Keele, England, May

2000.

[GARR96] L. Garrido and K. Sycara: "Multi-agent meeting scheduling: preliminary

results", 1996 International Conference on Multi-Agent Systems (ICMAS

'96)", pp. 95 - 102, 1996.

[GENE92] M.R. Genesereth and R.E. Fikes: "Knowledge Interchange Format Reference

Manual", Computer Science Department, Stanford University, USA, June

1992.

[GEYI99] F. Geyik and I.H. Cedimoglu: “A Review of the Production Scheduling

Approaches Based-on Artificial Intelligence and the Integration of Process

Planning and Scheduling”, Proceedings on Swiss Conference of

CAD/CAM'99, A. Belhi, P.J. Erard and A. Bouras (Ed.), Neuchâtel

University, Switzerland, pp. 167-174, 1999.

[GOLD94] D. E. Goldberg: "Genetic and Evolutionary Algorithms Come of Age",

Communications of the ACM, Vol. 37, No. 3, pp. 113-119, March 1994.

[HAMA98] M. Hamad: "Design and Implementation of a Cordinator Agent for

Cooperative Task Processing", Mphil Thesis , Department of Computer

Science, University of Keele, England, 1998.

[HAYN97] T. Haynes, S. Sen, N. Arora, and R. Nadella: "An Automated Meeting

Scheduling System that Utilizes User Preferences", in Proceedings of The

First International Conference on Autonomous Agents, February, 1997.

[HEIKO 1] T. Heikkila, M. Kollingbaum, P. Vackenaers, G.-J. Bluemink, "An agent

architecture fo manufacturing control: manAge", Computers in Industry 46,

pp 315-331, 2001.

156

References

[HERT95]

[IBM]

[IGLE 95]

[JACK]

[JADE]

[JOHN89]

[JOOOO]

[KEEN93]

[KEIN97]

A. Hertz, E. Taillard, D. de Werra, "A Tutorial on Tabu Search", Proc, of

Giomate di Lavoro AIRO'95, (Entreprise Systems: Management of

Technological and Organizational Changes), 13-24, 1995

http://www.research.ibm.com/pdtr/paper.html

C. A Iglesias, J.C González, and J.R Velasco: "MIX:A general

purposemultiagent architecture" Proceedings of the IJCAI'95 Workshop on

Agent Theories, Architectures and Languages,Montréal,Canada,ACM Press,

pp. 216-224, 1995.

http://www.agent-software.com/shared/demosNdocs/JACK_Manual_WEB.

http://sharon.cselt.it/projects/jade.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, et al: "Optimization By

Simulated Annealing: An Experimental Evaluation, Part I (Graph

Partitioning)", Operations Research, Vol. 37, No. 6, pp. 865-892, 1989.

K.H. Joo, T. Kinoshita and N. Shiratori: "Agent-based Grocery Shopping

System Based on User's Preference", Proceedings of the Seventh

International Conference on Parallel and Distributed Systems (ICPADS'OO

Workshop: Flexible Networking and Cooperative Distributed Agents, pp.499-

505, IEEE, 2000.

R. L. Keeney and H. Raiffa: "Decisions with Multiple Objectives:

Preferences & Value Tradeoffs", Cambridge University Press, ISBN: 0-521-

43883-7, 1993.

T. Keinonen: "Expected Usability and Product Preference", Proceedings of

DIS'97 Conference Designing Interactive Systems, August,1997 Amsterdam.

ACM. pp 197-204.

157

http://www.research.ibm.com/pdtr/paper.html
http://www.agent-software.com/shared/demosNdocs/JACK_Manual_WEB
http://sharon.cselt.it/projects/jade

References

[KIM01] K. Kim: “Distributed Coordination of Project Schedule Changes: An Agent-

Based Compensatory Negotiation Approach”, CIFE Technical Report #130,

Stanford University, Dec., 2001.

[KOLLOO] M. Kollingbaum, T. Heikkila, P. Peeters, J. Matson, P. Valckenaers, D.

McFarlane, G. J. Bluemink, "Emergent flow shop control based on

MASCADA agents". In Proceedings of MIM 2000, July 2000.

[KOCJ00] W, Kocjan: "Dynamic scheduling. State of the art report", technical report

T2002 -28, Computer Science Laboratory, Mälardalen University, available

from: http://citeseer.nj.nec.com/kocjan02dynamic.html, 2002.

[LEIT01] P. Leitao, J. Barata, L.M. Camarinha-Matos and R. Boissier: "Trends in Agile

and Co-operative Manufacturing", Proceedings of Low Cost Automation

Symposium, Berlin, http://www.ipb.pt/~pleitao/papers/rm2001.pdf , 2001.

[LIU98] T. H. Liu, A. Goel, C. E. Martin, K. S. Barber: “Classification and

Representation of Conflict in Multi-Agents Systems”, Technical Report

TR98-UT-LIPS-AGENTS-01, The University of Texas at Austin, 1998.

[LOCHOO] Loch, C. H., and C. Terwiesch: "Product Development and Concurrent

Engineering", in Swamidass, P. M. (ed.): Encyclopaedia of Production and

Manufacturing Management, Dordrecht: Kluwer Academic Publishing 2000,

567 - 575. Reprinted in: Swamidass, P. M. (ed.): Innovations in Competitive

Manufacturing, Dordrecht: Kluwer, pp. 263 - 274, 2000.

[LUX97] A. Lux and D. D. Steiner: "Understanding Cooperation—An Agent’s

Perspectives", Readings in Agents, M. N. Huhns and M. P. Singh, eds., pp

471-480, Morgan Kaufmann, 1997.

[MACADA] http://www.mech.kuleuven.ac.be/pma/mascada/welcome.html.

158

http://citeseer.nj.nec.com/kocjan02dynamic.html
http://www.ipb.pt/%7Epleitao/papers/rm2001.pdf
http://www.mech.kuleuven.ac.be/pma/mascada/welcome.html

References

[MART99] D.L Martin, S.J Cheyer, and D.B Moran: "Open Agent Architecture: A

framework for building distributed software systems", Applied Artificial

Intelligence, Taylor & Francis Ltd, London, 13(1-2), pp. 91-128, 1999.

[MATU96] F. Maturana and D.H. Norrie: "Multi-Agent Mediator Architecture for

Distributed Manufacturing", Journal of Intelligent Manufacturing, Vol. 7, pp.

257-270, 1996.

[MCCA98] J. F. McCarthy and T. D. Anagnost: "MUSICFX: An Arbiter of Group

Preferences for Computer Supported Collaborative Workouts", Proceedings

of the ACM 1998 Conference on Computer Supported Cooperative Work

(CSCW ’98), pp. 363-372, 1998.

[METAMORPH2] http://imsg.enme.ucalgary.ca/research.htm#Metamorph2

[MovieFinder] URL:http://www.moviefinder.com

[MUDGOO] Mudgal and J. Vassileva: "Bilateral negotiation with incomplete and

uncertain information: a decision-theoretic approach using a model of the

opponent", in Cooperative Information Agents IV: The Future of Information

Agents in Cyberspace, eds. M. Klusch and L. Kerschberg, LNAI 1860,

Springer, pp. 105-118, http://citeseer.nj.nec.com/mudgalOObilateral.html,

2000.

[MUKH01] R. Mukherjee, G. Jónsdóttir, S. Sen, and P. Sarathi: "MOVIES2GO: an online

voting based movie recommender system", Agents 2001, pp. 114-115, 2001.

[MUEL96] J.P.Mueller: "The Design of Intelligent Agents", LNAI volume 1177,

Springer, 1996.

[MURT97] S. Murthy, J. Rachlin, R. Akkiraju, and F.Wu, "Agent-Based Cooperative

Scheduling", Proceedings of AAAI Workshop on Constraint and Agents,

1997.

159

http://imsg.enme.ucalgary.ca/research.htm%2523Metamorph2
URL:http://www.moviefinder.com
http://citeseer.nj.nec.com/mudgalOObilateral.html

References

[NDOV94] Baird Ndovie: “ Simulation of a conflict management system for Air Traffic

Control”, Proceedings of the second International Working Conference on

CKBS, Keele university. Published by the DAKE centre, pp 235-254, 1999.

[NEUM44] J. Von Neuwn and O. Morgenstern: "Theory of Games and Economic

Behavior", Princeton University Press, Princeton,N.J., 1944.

[NWAN99] H.S Nwana, D.T Ndumu, L.C Lee, and J.C Collis, "ZEUS: A toolkit

forbuilding distributed multiagent systems", Applied Artificial Intelligence,

Taylor & Francis, London, 13(1-2), pp. 129-85, 1999.

[ORFA97] R. Orfali and D. Harkey, "Client/server programming with Java and

CORBA", John Wiley and Sons, ISBN: 0471-24578-X, 1997.

[PARK98] K. Park, M. Sitharam, and S. Chen, "Quality of Service Provision in

Noncooperative Networks: Heterogenous Preferences, Multi-Dimensional

QoS Vectors, and Burstiness", Proceedings of the ACM International

Conference on Information and Computation Economies, pp. 111-127, 1998.

[PARU91] H. V. D. PARUNAK: "Characterising the Manufacturing Scheduling

Problem", Journal of Manufacturing Systems, vol. 10, no. 3, pp. 241-258,

1991.

[PARU97] H. Van Dyke Parunak, A.D. Baker, and S.J. Clark, "The AARIA Agent

Architecture: An Example of Requirements-Driven Agent-Based System

Design", Agents '97 Marina del Rey, ACM, 1997.

[PENN00] David M Pennock, Eric Horvitz, and C. Lee Giles. Social choice theory and

recommender systems: Analysis of the axiomatic foundations of collaborative

filtering. AAAI, pp. 729-734, Austin, TX, 2000.

[PROSA] http://www.mech.kuleuven.ac.be/pma/project/goa/prosa.htm

160

http://www.mech.kuleuven.ac.be/pma/project/goa/prosa.htm

References

[RABE93]

[RABE94]

[RABE99]

[RA091]

[ROGE99]

[SAND99]

[SCHA95]

[SEAR69]

[SEN97]

L. Rabelo, S. Toure, and T. Velasco: "Artificial Neural Networks for Flexible

Manufacturing Systems Scheduling", Computers and Industrial Engineering,

Vol. 25, No. 1-4, pp. 385-388, 1993.

R. Rabelo, and L.M.Camarinha-Matos: "Multi-Agent based Dynamic

Scheduling", International Journal on Robotics and Computer Integrated

Manufacturing, Vol. II, No.4, pp 303-310, 1994.

R. J. Rabelo, L.M. Camarinha-Matos, H. Afsarmanesh, "Multi-agent-based

agile scheduling". Robotics and Autonomous Systems 27, pp. 15-28, 1999.

A. S. Rao and M. P. Georgeff: "Modeling Agents within a BDI architecture",

KR'91, edited by R. Fikes and E. Sandewall, pp. 473-484, published by

Morgan Kaufmann, 19991.

S. Rogers, C. Fiechter, and P. Langley: "An Adaptive Interactive Agent For

Route Advice", Proceedings of the Third International Conference on

Autonomous Agents, pp. 198-205, Seattle, ACM, 1999.

Tuomas W. Sandholm: "Distributed rational decision making", Multi-agent

Systems.A Modem Approach to Distributed Artificial Intelligenc", Gerhard

Weiss, editor, Chapter 7, pp. 201-258, MIT Press, 1999.

A.Schaerf: "A Survey of Automated Timetabling", A Technical Report,

National Research Institute for Mathematics and Computer Science, 1995.

J. R. Searle: "Speech Act", Cambridge University Press, 1969.

S. Sen, T. Haynes and N. Arora: "Satisfying user preferences while

negotiating meetings" International Journal of Human-Computer Studies,

Academic Press, London, Vol. 47, 407-427, 1997.

161

References

[SEN98] S. Sen and E.H. Durfee: "A formal study of distributed meeting scheduling",

Group Decision and Negotiation, Kluwer Academic Publishers, Dordrecht,

the Netherlands, 7, pp. 265-289, 1998.

[SEN99] S. SEN and G. Weiss: "Learning in Multiagent Systems", Multi-agent

Systems, A modem Approach to DAI, edited by G. Weiss, MIT Press, ISBN:

0-262-23203-0, pp 259-330, 1999.

[SEOOO] Y. W. Seo and B. T. Zhang: "A Reinforcement Learning Agent for

Personalized Information Filtering", Proceedings of the International

Conference on Intelligent User Interface, 2000 (IUI-2000), pp. 248-251.

[SHEN99] W. Shen, D.H. Norrie, "Agent-Based Systems for Intelligent Manufacturing:

A State-of-the-Art Survey", An extended HTML version of the paper

published in Knowledge and Information Systems (KAIS), vol. 1, no. 2, pp.

129-156, available from http://imsg.enme.ucalgary.ca/publication/abm.htm,

1999.

[SHEN02] W.Shen, Distributed Manufacturing Scheduling Using Intelligent Agents,

IEEE Intelligent Systems, pp. 88-94, Jan./Feb 2002.

[SHINOO] T. Shintani, T. Ito, and K Sycara: "Multiple Negotiations among Agents for a

Distributed Meeting Scheduler”, Proceedings of the Fourth International

Conference on Multi Agent Systems (ICMAS'2000), poster.

[SMIT80] R.G. Smith: "The contract net protocol: High-level communication and

control in a distributed problem solver", IEEE transactions on computers,

vol. 29, no. 12, pp. 1104-113, 1980.

[SOUS99] P. Sousa, C. Ramos, "A distributed architecture and negotiation protocol for

scheduling in manufacturing systems", Computers in Industry, vol. 38, no. 2,

pp. 103-113, 1999.

162

http://imsg.enme.ucalgary.ca/publication/abm.htm

References

[SOUSA99] P. Sousa, C. Ramos, and J. Neves: "Contracting Tasks between Autonomous

Resources - an Application to Scheduling of Manufacturing Orders, the

Practical Application of Intelligent Agents and Multi-Agent Technology

(PAAM-99), London, UK, 1999.

[SYCA89] K. Sycara: "Multi-Agent Compromise via Negotiation", Distributed Artificial

Intelligence (Vol. 2), Gasser, L. and Huhns, M., ed., Morgan Kaufmann, Los

Altos, CA, 1989.

[SYCA89A] Sycara, K. "Argumentation: Planning Other Agents' Plans", Proceedings of

the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-

89), Detroit, Mich., 1989.

[SYCA90] Sycara, K. "Persuasive Argumentation in Negotiation", Theory and Decision,

vol. 28, no. 3, pp. 203-242, 1990.

[SYCA91] K. Sycara, S. Roth, N. Sadeh, and M.S Fox: "Distributed Constrained

Heuristic Search", IEEE Transactions on Systems, Man and Cybernetics, vol.

21, no. 6, pp. 1446-1461, 1991.

[TOENOO] H.K. Tonshoff, I. Seilonen, G. Teunis, and P. Leitao, "A Mediator-Based

Approach for Decentralised Production Planning, Scheduling, and

Monitoring", ICME, 2000.

[UMBC] http://agents.umbc.edu/Applications_and Software/Software/.

[UMBCA] http://agents.umbc.edu/Applications_and Software/Software/Academic/.

[UMBCB] http://agents.umbc.edu/Applications_and_Software/Software/Commercial/index

[WAL1874] L.Walras: “Elements of Pure Economics”, 1874. English translation by W.

Jaffe, published by Allen and Unwin, 1954.

[WANG01] J. Wang: “Ranking Engineering Design Concepts Using a Fuzzy Outranking

Preference Model”, Fuzzy Sets and Systems 119, pp 161-170, 2001.

163

http://agents.umbc.edu/Applications_and
http://agents.umbc.edu/Applications_and
http://agents.umbc.edu/Applications_and_Software/Software/Commercial/index

References

[WATS94] L. Watson, I, and F. Marir: "Case-Based Reasoning: A Review", The

Knowledge Engineering Review, vol. 9, no. 4, pp. 355-381, 1994.

[WELL93] M.P. Wellman “A Market-Oriented Programming Environment and its

Application to Distributed Multicommodity Flow Problems”, Journal of

Artificial Intelligence Reasearch, Morgan Kaufmann publishers, San

Francisco, Vol. 1, ppl-23, 1993.

[WELL96] M.P. Wellman: “Market-oriented programming: Some early lessons”, In S.

Market-Based Control: A Paradigm for Distributed Resource Allocation.

Clearwater (ed.), World Scientific, 1996.

[WERK92] K.J. Werkman: "Multiple Agent Cooperative Design Evaluation Using

Negotiation", Artificial Intelligence in Design", Kluwer Academic Publishers,

1992.

[WONG94] S. T. C. WONG: "Preference-Based Decision Making for Cooperative

Knowledge-Based Systems", ACM Transactions on Information Systems,

Vol. 12, No. 4, pp 407-435, 1994.

[WOOL99] M. Wooldridge: "Intelligent Agents", Multi-agent Systems, A modem

Approach to DAI, edited by G. Weiss, MIT Press, ISBN: 0-262-23203-0, pp

27-77, 1999.

[WOOLOl] M.J. Wooldridge: "An Introduction to Multiagent Systems", Willey, ISBN

04714969IX, 2001.

[WREN99] A. Wren and R. Kwan: "Installing an urban transport scheduling system",

Journal of Scheduling, Vol. 2, pp 3-17,1999.

[WYNS99] J. Wyns: "Reference Architecture For Holonic Manufacturing Systems the

key to support evolution and reconfiguration", Ph.D. Thesis, K.U.Leuven,

ISBN 90-5682-164-4, 1999.

164

Appendix A

Appendix A

In this appendix we present the results of the experiments that are similar to the one

discussed in section 7.2.1. This group of experiments investigates the convergence of the

gain in preference values and cost when only one task, including its subtasks, is reallocated

without considering the preferences of the reallocated tasks. Also, we reverse the order of

the initial allocation to investigate whether such variations affect the gain in preference

values and cost.

In these experiments all tasks are initially allocated on the first available slot, tasks

are allocated according to the different order without considering preferences. Then one

task is subsequently reallocated to satisfy its preferences. As a result of this reallocation

some tasks can be reallocated. These tasks are reallocated to the first available slot without

taking their preferences into account.

Figures in this appendix show how the total cost (C1) and gain in preference values

(G1) of T; vary during the reallocation process. Iteration points are indicated by square

symbols for the gain in preference value, and by diamond symbols for the total cost. With

respect to the G1 graph, the Y-axis values indicate the percentage preference gain while in

the case of the (C1) graph, they indicate the total cost units.

Figure A.l shows the result of conducting this experiment for task Ti when tasks are

initially allocated according to the order Tp T2 ... T6. Figure A.2 shows the result of this

experiment for task Ti when tasks are initially allocated according to the order T6, T5 ... Tj.

The G1 graph shows that during the initial allocation (iteration 0) around 80% of the

preference value is satisfied when tasks are initially allocated according to the order Tp T2

... T6, while 0% of the preference value is satisfied when tasks are initially allocated

according to the order T6, T5 ... Tp This is expected, as Ti was last to be allocated and has

165

Appendix A

initially less chance of its preferences to be satisfied in the second case. A preference gain,

around 95%, occurred at iteration 1 in both cases and remained constant throughout the

subsequent iterations.

The C1 graph shows an increase in cost at iterations 1, 120 cost units in the first case

and 180 cost units in the second case. We think the difference between these cost values

(60 cost units) is due to the fact that negotiating tasks are not the same and therefore the

exchanged preferences can be different. This behaviour is similar to the experiment

discussed in section 7.2.1.

Iterations ______

Fig. A.l T1 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 1,2,3,4,5,6)

166

Appendix A

Iterations ---------b
i
I

Fig. A.2 T1 preference satisfactions & cost variation
(without considering other tasks preferences
and initial reverse allocation order 6,5,4,3,2,1)

The remaining figures in this appendix show the results of the above experiment

when repeated for tasks order T2, T4, T5, and T6. Figures A.3 and A.4 show the results of

conducting the experiment for task T2. Figures A.5 and A.6 show the results of conducting

the experiment for task T4. Figures A.7 and A.8 show the results of conducting the above

experiment for task T5. Figures A.9 and A. 10 show the results of conducting the above

experiment for task T6. The results of all these experiments are similar and confirm to the

behaviour of the preference model

167

Appendix A

Fig. A.3 T2 preference satisfactions & cost variation
(without considering other tasks preferences and

initial allocation order 1,2,3,4,5,6)

Fig. A.4 T preference satisfactions & cost variation
(without considering other tasks preferences
and initial reverse allocation order 6,5,4,3,2,1)

168

Appendix A

Iterations ---------- ►

Fig. A.5 T4 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 1,2,3,4,5,6)

Iterations --------------►

Fig. A.6 T4 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 6,5,4,3,2,1)

169

Appendix A

Iterations --------

Fig. A.7 T5 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 1,2,3,4,5,6)

Fig.A.8 T5 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 6,5,4,3,2,1)

170

Appendix A

Iterations --------

Fig. A.9 T6 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 1,2,3,4,5,6)

Iterations ----------

Fig. A.10 T6 preference satisfactions & cost variation
(without considering other tasks preferences

and initial allocation order 6,5,4,3,2,1)

171

Appendix B

Appendix B

In this appendix we present the results of the experiments that are similar to the one

discussed in section 7.2.2. This group of experiments investigates the convergence of the

gain in preference values and cost when only one task, including its subtasks, is reallocated

considering the preferences of the reallocated tasks. Also, we reverse the order of the initial

allocation in one experiment to investigate whether such variations affect the gain in

preference values and cost.

In these experiments all tasks are initially allocated on the first available slot, tasks

are allocated according to the different order without considering preferences. Then one

task is subsequently reallocated to satisfy its preferences. As a result of this reallocation

some tasks can be reallocated. These tasks are reallocated to the first available slot taking

their preferences into account.

Figures in this appendix show how the total cost (C1) and gain in preference values

(G1) of Tj vary during the reallocation process. Iteration points are indicated by square

symbols for the gain in preference value, and by diamond symbols for the total cost. With

respect to the G1 graph, the Y-axis values indicate the percentage preference gain while in

the case of the (C1) graph, they indicate the total cost units.

Figure B.l shows the result of conducting this experiment for task Ti when tasks are

initially allocated according to the order Ti, T2 ... Tg. Figure B.2 shows the result of this

experiment for task Ti when tasks are initially allocated according to the order Tg, T5... T],

Figure B.3 shows the result of conducting this experiment for task T4 when tasks are

initially allocated according to the order Ti, Tz ... Tg Figure B.4 shows the result of

172

Appendix B

conducting this experiment for task T5 when tasks are initially allocated according to the

order Ti, T2 ... T6.

These graphs are similar to the graphs in Appendix A except that the final gain in

preference value is reduced. For example in the case of T5 it converged to 100% in A.7,

while in B.4 it converged to 92% (8% reduction). This is expected, as explained in 7.2.2 is

due to the fact that other tasks are also competing to gain preference values.

Fig. B.l T1 preference satisfactions & cost variation
(considering other tasks preferences and initial allocation order 1,2,3,4,5,6)

173

Appendix B

V
al

ue
s ----».

I
V

al
ue

s

Fig. B.2 T1 preference satisfactions & cost variation
(considering other tasks preferences and initial reverse allocation order 6,5,4,3,2,1)

Iterations —>■

Fig. B.3 T4 preference satisfactions & cost variation
(considering other tasks preferences and initil allocation order 1,2,3,4,5,6)

174

Appendix B

Fig. B.4 T5 preference satisfactions & cost variation
(considering other tasks preferences and initil allocation order 1,2,3,4,5,6)

175

Appendix C

Appendix C

In this appendix we present the results of the experiments that were conducted to

investigate the impact of varying the cut-off value (<p) on the convergence characteristics.

These are similar to the experiment presented in 7.3.3. Figure C.l shows the result for

conducting the experiment using 14 coordinators and 54 subtasks. Figure C.2 shows the

result for conducting the experiment using 6 coordinators and 24 subtasks. We used

different values for (p as shown in the figures. As explained in 7.3.3 and shown in these

diagrams, cp has little effect on the final preference value (± 1%). Though, <p did affect the

number of iterations needed to reach this final value. As we stated before we can say that

the lesser the value of <p the less iterations we need to reach convergence.

40
t

30

c5oo 20
cut-off = 15 cutoff = 5 cut-off = 40

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iterations ------

Fig. C.l Varying the cut-off value (cp) (54 subtasks and 14 coordinators)

176

Appendix C

Fig. C.2 Varying the cut-off value ((p) (24 subtasks and 6 coordinators)

177

Appendix D

Appendix D

In this appendix we present the results of the experiments that are similar to the one

discussed in section 7.4. This experiment is conducted to monitor the preference losses

discussed in section 4.3.3. In these experiments we used 6 coordinators, 24 subtasks, and

varied the preference cut-off value ((p) and the preference loss rate (p), see section 4.2.1.

The results are shown in the tables D.l, D.2, and D.3. Table D.l shows the result of the

experiment when <p is set to 20% and p is set to 5%. Table D.2 shows the result when <p is

set to 20%, and p is set to 10%. Table D.3 shows the result when cp is set to 10%, and p is

set to 10%.

As stated in section 7.4, we find it difficult to predict which exchanges would be

considered too expensive and when the funds would actually run-out using these results.

This due to the fact that coordinators gain and lose funds from each other like money in a

market during the processing. These preference losses are not independent. Therefore,

monitoring the preference losses from these four sources at each iteration would not guide

us to control or predict the solution during the allocation process.

178

Appendix D

Table D.l. Sources of preference loss

Subtask Average pref,
cut-off loss

Cost cut-Off
loss Average Pi loss

Til 7.3 5.0 11.1
T12 10.3 36.3 29.5
T13 8.3 0.0 35.9
T14 0.0 0.0 32.1
T21 0.0 6.6 10.0
T22 9.7 41.0 36.9
T23 10.0 16.0 41.1
T31 0.0 0.0 0.0
T32 12.1 26.1 39.1
T33 10.9 9.9 49.0
T34 11.5 17.9 70.3
T35 5.0 5.0 49.3
T41 7.3 0.0 11.1
T42 9.0 0.0 14.2
T43 0.0 0.0 9.0
T44 11.0 0.0 27.1
T45 10.0 10.0 16.3
T51 6.0 6.0 5.3
T52 9.0 0.0 8.9
T53 10.9 0.0 24.9
T54 10.9 38.7 59.9
T61 7.0 0.0 10.5
T62 10.3 10.5 15.5
T63 0.0 39.1 47.8

Total 9.3 19.1 27.3

Table D.l: This Table shows the different sources of preference loss during the allocation
process for 24 tasks and 6 coordinators. cp=2O% and p =5%.

179

Appendix D

Table D.2. Sources of preference loss

Subtask Average pref.
cut-off loss

Cost cut-Off
loss Average Pi loss

Til 0.0 0.0 0.0
T12 11.0 36.2 13.8
T13 9.0 9.0 0.0
T14 0.0 0.0 65.2
T21 0.0 13.2 20.0
T22 14.0 50.6 23.4
T23 12.0 21.3 43.6
T31 0.0 0.0 0.0
T32 14.4 38.5 64.3
T33 0.0 0.0 74.6
T34 13.0 17.5 95.8
T35 10.0 10.0 75.3
T41 0.0 0.0 2.6
T42 13.0 22.7 40.6
T43 0.0 0.0 11.3
T44 11.8 39.0 37.6
T45 11.0 0.0 13.8
T51 11.0 11.0 10.7
T52 0.0 0.0 13.5
T53 10.0 0.0 23.8
T54 14.0 49.1 95.0
T61 0.0 0.0 2.3
T62 11.3 43.8 77.6
T63 13.5 43.9 95.0

Total 11.9 29.0 37.5

Table D.2: This Table shows the different sources of preference loss during the allocation
process for 24 tasks and 6 coordinators. cp=20% and p =10%.

180

Appendix D

Table D.3. Sources of preference loss

Subtask Average pref,
cut-off loss

Cost cut-Off
loss Average Pi loss

Til 0.0 0.0 0.8
T12 0.0 0.0 1.9
T13 0.0 0.0 11.3
T14 0.0 0.0 10.8
T21 0.0 0.0 10.4
T22 9.0 43.8 96.7
T23 0.0 0.0 96.3
T31 0.0 0.0 0.0
T32 0.0 43.9 71.4
T33 0.0 0.0 81.6
T34 8.0 13.0 98.6
T35 0.0 0.0 80.6
T41 0.0 0.0 0.8
T42 0.0 13.0 35.6
T43 0.0 0.0 3.5
T44 9.0 39.0 51.9
T45 0.0 0.0 13.8
T51 9.0 12.7 19.7
T52 0.0 0.0 11.6
T53 0.0 0.0 32.7
T54 9.0 28.1 55.6
T61 0.0 0.0 0.8
T62 8.0 46.3 94.1
T63 8.0 43.9 100.0

Total 8.6 31.5 40.8

Table D.3: This Table shows the different sources of preference loss during the allocation
process for 24 tasks and 6 coordinators. <p= 10% and p =10%.

181

	etheses coversheet 2021.pdf
	Jayousi PhD 2003.pdf

