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Version 0:
Reviewer comments:
Reviewer #1

(Remarks to the Author)

This study introduces an Al-aided approach to improve the detection of mitotic figures (MFs), a crucial factor in cancer
grading, in digitized haematoxylin and eosin-stained whole slide images. Recognizing MFs is traditionally time-consuming
and prone to human error, which can lead to incorrect cancer grading and suboptimal treatment. To address these
challenges, the researchers created the largest pan-cancer dataset of MFs, combining an in-house soft tissue tumor dataset
with five open-source datasets, resulting in 74,620 MFs. They developed a two-stage framework, OMG-Net, which uses the
Segment Anything Model (SAM) for cell contouring and an adapted ResNet18 for MF classification. OMG-Net achieved an
F1-score of 0.84 in pan-cancer MF detection, significantly outperforming the previous state-of-the-art MIDOG++ model,
especially in breast cancer detection, by 16%. This approach offers superior accuracy in detecting MFs across various tumor
types and scanning methods.

Weakness:

1. The paper lacks an analysis of the disadvantages of current mitotic activity detection models.

2. The work primarily focuses on methodological aspects, with insufficient discussion on the motivation of reinforcement
learning. More context on the specific topic is needed.

3. The authors seem to have missed some relevant literature. Specifically, they don't discuss learning-based methods for
image-level tasks, missing out on several relevant citations: “Class-aware adversarial transformers for medical image
segmentation”, "Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image
segmentation”, "SimCVD: Simple contrastive voxel-wise representation distillation for semi-supervised medical image
segmentation”, "Incremental learning meets transfer learning: Application to multi-site prostate mri segmentation”,
“Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation”, "Unsupervised
wasserstein distance guided domain adaptation for 3d multi-domain liver segmentation”, “Mine your own anatomy:
Revisiting medical image segmentation with extremely limited labels”, “Rethinking Semi-Supervised Medical Image
Segmentation: A Variance-Reduction Perspective”, “ACTION++: Improving Semi-supervised Medical Image Segmentation
with Adaptive Anatomical Contrast”, and “Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic
Experts”. These methods are relevant to the method proposed in this paper. These relevant papers should be included in the
reference list.

Reviewer #2

(Remarks to the Author)
Very interesting paper and good work in general.

1) Line 99: From what | understand, you used the pHH3 as a marker to generate a training dataset. How was the staining
protocol done? From my understanding, if you first stain with H&E and then with the IHC, due to the quite heavy processing
of the tissue to apply the H&E (heating up to a high degree) and the destaining process, it leaves the tissue quite altered.
Also, pHH3 can detect MF but it might produce "false positives" due to the fact that it detects the mitotic process quite early
even on cells that might not appear to be mitotic figures on the H&E. Did you have some classifying the pHH3 detections as
well?



2) Figure 2: When using the SAM to do the segmentation, how do you ensure that SAM will segment structures of cell level
and not larger structures?

3) Line 127: You mention that you benchmarked against the current state-of-the-art MIDOG++ but the MIDOG++ is a dataset
and the model presented in the paper is not state-of-the-art. It was used merely to demonstrate how the dataset varies and
the detection performance when an off-the-shelf detector is used. The state-of-the-art would be the top-3 models on the
leaderboard of the MIDOG grand challenge.

4) line 129: typo 'hows' --> 'shows'

5) Table 2: You chose to compare against a subset of the dataset using the leave-one-out(?)training results. Why was this
choice made?

6) Line 146: You refer to "only RGB images" and "RGB classifier". What do you mean exactly? Is there a dataset of non-
RGB images?

7) Line 224: You mention that decoupling the object detection and classifier steps improves the performance because the
existing models have to reject many false positives due to the imbalance of the dataset. However in your description you use
SAM to generate masks and then apply a classifier. How does that approach exactly generate less false positives? If you
were to segment all cells in a ROI, it would surely generate as many false positives as a detector | would assume.

8) You used for the classifier a ResNet-18, did you test other models as well?

9) I would like to see the performance of this method using the same method as that was outlined during the grand-
challenge. That means running in on the full test set, not just the human in order to have a direct comparison with the
leaderboard of the challenge. By only comparing specific tumor types, it feels like cherry-picking the results. If the method is
better, then it would perform better on the whole test dataset. After you have shown in direct comparison that the method is
better, you can further evaluate with an extensive training dataset.

Reviewer #3

(Remarks to the Author)

This work first presents an annotated mitotic-figure (MF) dataset by a human-in-the-loop pipeline. Then, a cascaded pipeline
based on SAM-H model and ResNet-18 was used for MF detection. Overall, the paper is well-written and the proposed
modules in the pipeline are well-motivated. However, the clarification and experiments should be further improved to show
the effectiveness of the proposed pipeline.

Abstract:
The Abstract should be written for the general audience. Please avoid using too many abbreviations.

Fig 2: ResNet-18 is relative small and old. Please compare to the SOTA classifiers (e.g., Transformer-based, ConvNeXt):
https://huggingface.co/spaces/timm/leaderboard

Fig 3: Please show some typical examples where OMG-Net is better than previous SOTA.

Line 126: In this paragraph, please explain why Neuroendocrine tumor has lower performance than other cancer types.

Line 208: “Object detection models such as Faster R-CNN [30], RetinaNet [31] and YOLO [32] have been widely used for
MF detection”

These methods [30-32] were proposed five years ago. Many new detection models have been proposed. Please test at least

one latest detector to support your claims, e.g., RT-DETR
https://github.com/lyuwenyu/RT-DETR

Discussion:

Please introtroduce the potential direction to improve the MF detection performance for neuroendocrine tumor?
Please summarize the remaining challenges for MF detection (e.g., the top three challenges).

Code: Please polish the readme file to add detailed guidelines on the model training and inference commands.

Data: Since dataset is one of the most important contributions in this work, please provide a data download link in the
manuscript

Version 1:

Reviewer comments:



Reviewer #1

(Remarks to the Author)

Thank the authors for the detailed response. It addressed some of my concerns. But | have a few remarks:

1.In Table 2, how is cancer detected from the morphological features? What mechanism is used to cluster cells for tumor
identification? This process is also unclear from Figure 2.

2. As echoed in R#2, I'm curious about the intermediate test results for Segment Anything — specifically, how well does the
segment mask perform? For ResNet-50, has the author explored any special mechanisms to address the feature scale
limitations?

Reviewer #2

(Remarks to the Author)

Reviewer #3

(Remarks to the Author)
Thanks for the detailed response. All my concerns have been well addressed.

Version 2:
Reviewer comments:
Reviewer #1

(Remarks to the Author)
Thanks for the detailed response. All my concerns have been well addressed.
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Reviewer #1

Overall comment:

This study introduces an Al-aided approach to improve the detection of mitotic figures
(MFs), a crucial factor in cancer grading, in digitized haematoxylin and eosin-stained
whole slide images. Recognizing MFs is traditionally time-consuming and prone to
human error, which can lead to incorrect cancer grading and suboptimal treatment. To
address these challenges, the researchers created the largest pan-cancer dataset of MFs,
combining an in-house soft tissue tumor dataset with five open-source datasets, resulting
in 74,620 MFs. They developed a two-stage framework, OMG-Net, which uses the
Segment Anything Model (SAM) for cell contouring and an adapted ResNet18 for MF
classification. OMG-Net achieved an F1-score of 0.84 in pan-cancer MF detection,
significantly outperforming the previous state-of-the-art MIDOG++ model, especially in
breast cancer detection, by 16%. This approach offers superior accuracy in detecting MFs
across various tumor types and scanning methods.

1.1. The paper lacks an analysis of the
disadvantages of current mitotic activity
detection models.

1. Developing and validating pan-cancer
mitotic figure detection models remains
a significant challenge due to the
absence of extensive pan-cancer mitotic
figure datasets. (Line 95 - 103)

2. The mitotic index is key for soft tissue
tumour diagnosis. However, no studies
have been presented on mitotic figure
detection in human soft tissue tumours.
(Line 103 - 110)

3. Integrating the detection and
classification can limit the overall
performance of detection models.
((Line 262 - 297, and please also refer
the reply to comment 2.7)

1.2. The work primarily focuses on
methodological aspects, with insufficient
discussion on the motivation of
reinforcement learning. More context on
the specific topic is needed.

We aim to deploy reinforcement learning in
our future study for validating the model in
clinical settings by including pathologists to
constantly correct the detection and give
tumour type-specific and image-specific
feedback to enhance the model
performance. (Line 392 - 394)

1.3. The authors seem to have missed some
relevant literature. Specifically, they don't
discuss learning-based methods for image-
level tasks, missing out on several relevant
citations: “Class-aware adversarial
transformers for medical image
segmentation”, "Momentum contrastive
voxel-wise representation learning for
semi-supervised volumetric medical image
segmentation”, "SimCVD: Simple

We thank the reviewer for bringing those
inspiring papers to our attention. We did
find that the papers discussing about
fundamental concepts of deep learning for
medical image analysis are relevant to our
study. As a result, we cited “Incremental
learning meets transfer learning:
Application to multi-site prostate mri
segmentation” (Line 337) and “Rethinking
Semi-Supervised Medical Image




contrastive voxel-wise representation
distillation for semi-supervised medical
image segmentation”, "Incremental
learning meets transfer learning:
Application to multi-site prostate mri
segmentation", “Bootstrapping semi-
supervised medical image segmentation
with anatomical-aware contrastive
distillation”, "Unsupervised wasserstein
distance guided domain adaptation for 3d
multi-domain liver segmentation", “Mine
your own anatomy: Revisiting medical
image segmentation with extremely limited
labels”, “Rethinking Semi-Supervised
Medical Image Segmentation: A Variance-
Reduction Perspective”, “ACTION++:
Improving Semi-supervised Medical Image
Segmentation with Adaptive Anatomical
Contrast”, and “Implicit Anatomical
Rendering for Medical Image
Segmentation with Stochastic Experts”.
These methods are relevant to the method
proposed in this paper. These relevant
papers should be included in the reference
list.

Segmentation: A Variance-Reduction
Perspective” (Line 376) in the discussion to
propose some potential improvements in our
future work.

However, our study specifically focused on
detecting cells in mitosis from digitised
pathology slides, an object detection tasks
from large size 2D images. The aim of our
study is automatically counting the number
of mitotic figures to make tumour grading
more reproducible. Although segmentation
for nuclei is used in the model, this is not
the focus in this paper. Therefore, we cannot
cite the papers that are specific for semantic
segmentation for anatomical structures. We
appreciate the value of those papers while
we find it will be more suitable to cite those
papers when publishing our other studies
related to auto-segmentation for
radiotherapy planning in the future.

Reviewer #2




Overall comment:

Very interesting paper and good work in general.

2.1. Line 99: From what | understand, you
used the pHH3 as a marker to generate a
training dataset. How was the staining
protocol done? From my understanding, if
you first stain with H&E and then with the
IHC, due to the quite heavy processing of
the tissue to apply the H&E (heating up to
a high degree) and the destaining process,
it leaves the tissue quite altered.

Also, pHH3 can detect MF but it might
produce "false positives™ due to the fact
that it detects the mitotic process quite
early even on cells that might not appear to
be mitotic figures on the H&E. Did you
have some classifying the pHH3 detections
as well?

We admit that the slides could be altered
due to the de-staining and re-staining
process. In our study this impact was
mediated by two approaches: (1) We first
applied registration on both slide-level and
patch-level to find the location of the
mitotic figures stained by the pHH3-
antibody in the H&E-stained slides; (Line
431 - 433) (2) We got the initial masks of
the mitotic figures by thresholding the
pHH3-staining for their nuclei, and then
converted the masks to bounding boxes and
deployed the Segment Anything Model to
generate more precise masks using those
bounding boxes as prompts. (Line 465 —
467)

It is agreed that pHH3 detects mitoses in
early stage. In our study, both the H&E and
pHH3 images of the nuclei detected were
reviewed by pathologists as a part of the
data generation protocol to make sure the

cells included in the dataset are in mitosis.
(Line 433 - 435)

2.2. Figure 2: When using the SAM to do
the segmentation, how do you ensure that
SAM will segment structures of cell level
and not larger structures?

Objects were retained based on their areas,
which ranged from 36 pixels to 3600 pixels
(2.25 um? to 225 pm?in slides with pixel
size of 0.25 pm/pixel). Using this range, we
excluded objects that are significantly larger
or smaller than typical cells, while included
both normal and atypical mitotic figures.
(Line 479)

2.3. Line 127: You mention that you
benchmarked against the current state-of-
the-art MIDOG++ but the MIDOG++ is a
dataset and the model presented in the
paper is not state-of-the-art. It was used
merely to demonstrate how the dataset
varies and the detection performance when
an off-the-shelf detector is used. The state-
of-the-art would be the top-3 models on the
leaderboard of the MIDOG grand
challenge.

The MIDOG++ is a newer version
published after the MIDOG 2022 challenge.
Since it is the largest and the most diverse
mitotic figure dataset to date, we decisioned
to use it in our study.

The test set of the MIDOG 2022 challenge
is not publicly available, for which we
cannot compare our model to the models
published in the final report of the
challenge.




However, we agree that comparing our
model to the top models on the leader board
is informative. Therefore, we included a
new table in the manuscript (Table R2) to
report the scores of different models on the
subset included in both the test sets of
MIDOG ++ and the MIDOG 2022
challenge, namely human melanoma, and
canine cutaneous mast cell tumour.

We also extended Table 1 (Table R1) to
show the scores of our model on the full
MIDOG ++ test set, please refer to the reply
to the comment 2.9.

2.4. line 129: typo 'hows' --> 'shows'

It has been corrected in the manuscript.

2.5. Table 2: You chose to compare against
a subset of the dataset using the leave-one-
out(?)training results. Why was this choice
made?

We compared the scores of our model to the
results of the model trained using all the
domains. In the MIDOG++ paper they
included the results in the last row of Table
4 (https://www.nature.com/articles/s41597-
023-02327-4/tables/4).

2.6. Line 146: You refer to "only RGB

images" and "RGB classifier". What do
you mean exactly? Is there a dataset of

non-RGB images?

The “only RGB images” means the
classification was done using the H&E-
stained images of the cells solely; One of
the highlights of our paper is that we found
using a 4-channel input, which contains the
binary masks of the nuclei in addition to the
RGB images can improve the classification.
(Figure 4)

2.7. Line 224: You mention that
decoupling the object detection and
classifier steps improves the performance
because the existing models have to reject
many false positives due to the imbalance
of the dataset. However in your description
you use SAM to generate masks and then
apply a classifier. How does that approach
exactly generate less false positives? If you
were to segment all cells in a ROI, it would
surely generate as many false positives as a
detector | would assume.

In this section we claimed that the
performance can be restricted due to the
imbalance of the loss function, not the
imbalance of the dataset. In most of the
object detection models, the detection loss
and classification loss are summed up to
train the model. However, in real world
settings the two parts of loss is not always
equally important. For example, when
detecting the mitotic figures, we will focus
more on the classification accuracy rather
than the quality of the detected bounding
boxes or masks. Therefore, we do not want
the two parts of loss to be penalised together
as it is challenging to determine the ideal
weights for each loss, and it is also possible
that the linear combination of the losses is



https://www.nature.com/articles/s41597-023-02327-4/tables/4
https://www.nature.com/articles/s41597-023-02327-4/tables/4

not optimal. This is why a lot of studies
used a second-stage classifier to further
reduce the number of false positives.

Our two-stage framework completely
separated the detection loss and
classification loss. We deployed the
Segment Anything Model pre-trained using
a massive amount of data to provide high-
quality masks, and used a large number of
points as the prompts to make sure most of
the mitotic figures will be included in the
cells detected by the Segment Anything
Model. The classification stage is
independent to the detection stage, for
which the classification scores was
optimized fully independently.

To summarise, in this session we claim that
optimizing the classification loss
independently can improve the overall
performance for detecting mitotic figures.

2.8. You used for the classifier a ResNet-
18, did you test other models as well?

Yes, we added a new table in the
supplementary materials showing the
classification performance of various image
classifiers (Table R3).

We compared the ResNet18 to ResNet50,
DenseNet121, ConvNeXt as suggested by
Reviewer 3, and EfficientNet-B7, the
classifier used by the top 1 team on the
MIDOG 2022 leader board. More detailed
discussion of the comparison has been
added to the reply to comment 3.2.

2.9. I would like to see the performance of
this method using the same method as that
was outlined during the grand-challenge.
That means running in on the full test set,
not just the human in order to have a direct
comparison with the leaderboard of the
challenge. By only comparing specific
tumor types, it feels like cherry-picking the
results. If the method is better, then it
would perform better on the whole test
dataset. After you have shown in direct
comparison that the method is better, you
can further evaluate with an extensive

The aim of this paper is automatically
detecting mitotic figures for human cancer
diagnosis. Therefore, we focused on
reporting the performance on human subsets
rather than the canine subsets as it makes
the model selection more suitable for
clinical application.

However, we agree that reporting the scores
on the whole testing set could be
informative, for which we added the results
for the whole testing set in the result section
(Table R1) and highlight the performance
for human tumours in the discussion.




training dataset.
As mentioned in the reply to comment 2.3,

we are not able to reproduce the exact same
comparison using the test set of MIDOG
2022 challenge, we compared our model to
the top 3 models from the challenge by
comparing the test scores on the overlapped
subsets of MIDOG++ and MIDOG 2022.

Reviewer #3

Overall comment:
This work first presents an annotated mitotic-figure (MF) dataset by a human-in-the-loop
pipeline. Then, a cascaded pipeline based on SAM-H model and ResNet-18 was used for




MF detection. Overall, the paper is well-written and the proposed modules in the pipeline
are well-motivated. However, the clarification and experiments should be further
improved to show the effectiveness of the proposed pipeline.

3.1. Abstract: The Abstract should be written
for the general audience. Please avoid using
too many abbreviations.

The abstract has been updated:

Mitotic activity is an important feature for
grading several cancer types. However,
counting mitotic figures (cells in division)
is a time-consuming and laborious task
prone to inter-observer variation.
Inaccurate recognition of MFs can lead to
incorrect grading and hence potential
suboptimal treatment. This study presents
an artificial intelligence-based approach
to detect mitotic figures in digitised
whole-slide  images  stained  with
haematoxylin and eosin. Advances in this
area are hampered by the small size and
variety of datasets available. To address
this, we have created the largest dataset of
mitotic figures (N=74,620), combining an
in-house dataset of soft tissue tumours
with five open-source datasets. We then
employed a two-stage framework, named
the Optimized Mitoses Generator
Network (OMG-Net), to identify mitotic
figures. This framework first deploys the
Segment Anything Model to
automatically outline cells, followed by
an adapted ResNetl8 that distinguishes
mitotic figures. OMG-Net achieved an F1
score of 0.84 in detecting pan-cancer
mitotic figures, including human breast
carcinoma, neuroendocrine tumours, and
melanoma. It outperformed previous
state-of-the-art models in hold-out test
sets. To summarise, our study introduces
a generalizable data creation and curation
pipeline and a  high-performance
detection model, which can largely
contribute to the field of computer-aided
mitotic figure detection.




3.2. Fig 2: ResNet-18 is relatively small and
old. Please compare to the SOTA classifiers
(e.g., Transformer-based, ConvNeXt):
https://huggingface.co/spaces/timm/leaderboar
d

Since the aim of using the classifier is to
classify mitotic figures and other cells,
the input size is relatively small (64 pixel
x 64 pixel). Although more advanced
larger models show better performance
of classifying more complex and diverse
images, they did not bring better
performance on our task with small input
size for binary classification.

We compared the ResNet18 to
ResNet50, DenseNet121, ConvNeXt and
EfficientNet-B7, the classifier used by
the top 1 team on the MIDOG 2022
leader board (Table R3).

3.3. Fig 3: Please show some typical examples
where OMG-Net is better than previous
SOTA.

Figure 3 has been updated with some
examples of detection results.

3.4. Line 126: In this paragraph, please
explain why Neuroendocrine tumour has
lower performance than other cancer types.

1. The number of annotations for
neuroendocrine tumour is relatively
small (524) in the training data. All the
annotations were from the MIDOG++
and the images were scanned using the
same scanner. The small amount of data
and the lack of diversity makes it more
challenge to develop robust and accurate
models.

2. The poor performance can also be
attributed to the biological characteristics
of neuroendocrine tumours. Cell
aggregation, where cells clump together,
is often observed in neuroendocrine
tumour specimens, for which it is
difficult to distinguish individual cells'
boundaries and limit the quality of the
nuclei masks. The heterogeneity of
aggregation also brings more diverse cell
morphology, making it more challenging
to recognize and classify them correctly.

3. In our dataset, the images of
neuroendocrine tumours frequently
suffer from poor quality, including issues
like blurring, uneven staining, and
artifacts. Low-quality images can lead to
increased false negatives or false
positives, as the model struggles to



https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2Ftimm%2Fleaderboard&data=05%7C02%7Czhuoyan.shen.18%40ucl.ac.uk%7C7947fe5345f0403a726a08dcd172c6d1%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C638615538831809833%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FiD%2FnSGoknwbL7rxvWwc6Asln4hxbjxWSl%2B73%2BmnptY%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2Ftimm%2Fleaderboard&data=05%7C02%7Czhuoyan.shen.18%40ucl.ac.uk%7C7947fe5345f0403a726a08dcd172c6d1%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C638615538831809833%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FiD%2FnSGoknwbL7rxvWwc6Asln4hxbjxWSl%2B73%2BmnptY%3D&reserved=0

interpret the compromised visual
information.

The interpretation of the results for
neuroendocrine tumour is added in
Discussion (Line 344 - 370)

3.5. Line 208: “Object detection models such
as Faster R-CNN [30], RetinaNet [31] and
YOLO [32] have been widely used for MF
detection”

These methods [30-32] were proposed five
years ago. Many new detection models have
been proposed. Please test at least one latest
detector to support your claims, e.g., RT-
DETR
https://github.com/lyuwenyu/RT-DETR

We retrained the RT-DETR model using
our dataset and tested it on the same test
set. The dataset was prepared as patches
with size of 640 pixels x 640 pixels. A
RT-DETR-X was trained for 200 epochs
using the default configuration. Overall,
we observed a lower F1 score comparing
to OMG-Net (0.764 + 0.01 vs 0.783 £
0.02).

3.6. Discussion: Please introduce the potential
direction to improve the MF detection
performance for neuroendocrine tumour?

1. Increasing the size of the training
datasets. By incorporating a larger
and more diverse set of annotated
images of neuroendocrine tumours,
the model will be accurate and robust
on detection mitotic figures from
neuroendocrine tumours. We will
constantly collect specimens from
RNOH and collaborative institutions
and apply the data generation and
curation pipeline introduced in this
paper to expand the size and
diversity of not only neuroendocrine
tumours but also soft tissue tumours.

2. Improving the quality of the whole
slide images used for training. This
can be achieved through standardized
protocols for slide preparation,
staining and scanning. Meanwhile,
we will implement quality control by
pathologists before selecting images
for developing the model. By
ensuring the data quality, we can
significantly enhance the detection
performance.

The discussion about the solutions is
combined with the possible reasons in
the Discussion (Line 344 - 370)



https://github.com/lyuwenyu/RT-DETR

3.7. Please summarize the remaining

challenges for MF detection (e.g., the top

three challenges).

Detecting mitotic figures in rare
tumours. Although a large number of
studies reported datasets or detection
models for mitotic figures in breast
cancer, detecting mitotic figures in
other tumour types, especially rare
cancers remain challenging. The
limited number of cases but high
degree of heterogeneity of rare
cancers such as soft tissue sarcoma,
complicates the acquisition of ample
and diverse data for training robust
Al models. In this study, we
established the largest-to-date mitotic
figure dataset for human soft tissue
tumour. We are committed to
continuously expanding this dataset
and refining our models to enhance
their accuracy and utility in sarcoma
diagnosis.

Comparing the mitotic index
identified by Al and by pathologists.
Clinically, the mitotic index is
obtained by pathologists counting the
number of mitotic figures within 10
high-power fields. However, this
process is subject to intra- and inter-
observer variability, which can
significantly affect the consistency
and reliability of the measurements,
brining challenge to align manual
counts to the mitotic index given by
Al-driven whole-slide image
analysis. Standardised protocol is
needed for comprehensively
assessing the accuracy and potential
clinical impact of the AI mitotic
index.

Clinical implementation of Al
models for mitotic figure detection.
While Al-based models for detecting
mitotic figures have demonstrated
exceptional performance in research
settings, translating these advances
into clinical practice remains a
challenge. The key issues include
allocating sufficient computational
resources in clinic, ensuring




compliance with clinical data
regulation and receiving feedback
and new data for constant model
improvement. Our future work also
includes designing federated learning
platform to facilitate the model
refining, which allows multiple
institutions to expand the training
data while keeping sensitive data
localized.

A whole section to discuss the remaining
challenges is added in Discussion (Line
339 - 394).

3.8. Code: Please polish the readme file to add | https://github.com/SZY 1234567/OM
detailed guidelines on the model training and | G-Net
inference commands.

3.9. Data: Since dataset is one of the most https://zenodo.org/records/11521640
important contributions in this work, please
provide a data download link in the
manuscript.

Changed Tables & Figures

Table R1. Precision, recall and F1 scores in MIDOG++ testing set of OMG-Net against the model presented
by MIDOG++.

Tumour Types Precision Recall F1 Ensemble F1  F1(MIDOG++)
breast carcinoma 0.82+0.02 0.88+0.02 0.85+0.02 0.87 0.71 +£0.02
neuroendocrine tumour 0.64+0.02 0.65+0.03 0.64+0.02 0.67 0.59 +0.02
melanoma 0.83+£0.02 0.84+0.03 0.83+£0.01 0.85 0.81 £0.02
lung carcinoma* 0.69+0.02 0.70+0.02 0.69 +£0.02 0.74 0.68+0.02
lymphosarcoma* 0.76 £0.03 0.74+0.01 0.76+0.03 0.80 0.73+0.01
cutaneous mast cell tumour* 0.84+£0.02 0.88+0.02 0.86+0.01 0.87 0.82+0.01
soft tissue sarcoma* 0.74+£0.02 0.73+£0.02 0.74+0.02 0.77 0.69+0.01

*Canine Specimens.


https://github.com/SZY1234567/OMG-Net
https://github.com/SZY1234567/OMG-Net
https://zenodo.org/records/11521640

Table R2. F1 scores of OMG-Net and the top 3 models from the MIDOG 2022 challenge in the overlap
subsets between the MIDOG++ and MIDOG 2022 test sets.

TIA Centre

TCS Research

USZ/UZH Zurich

0.80 [0.74,0.84]

0.76 [0.66,0.80]

0.79 [0.74,0.83]

Tumour Types OMG-Net
melanoma 0.85
cutaneous mast cell tumour* 0.87

0.83[0.81,0.86]

0.76 [0.58,0.83]

0.73 [0.66,0.79]

*Canine Specimens.

Table R3. Classification metrics of different classifiers tested for mitotic figure classification.

Classifier Precision Recall F1 Accuracy AUC
ResNet18 0.851 0.842 0.846 0.995 0.949
ResNet50 0.842 0.836 0.838 0.995 0.928
DenseNet121 0.834 0.820 0.827 0.994 0.924
ConvNeXt-tiny 0.839 0.845 0.842 0.994 0.946
Efficient-Net-B7 0.841 0.840 0.841 0.994 0.941
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Figure 1: Detection performance. a The testing F1 scores in the human subsets of the proposed framework,
where the yellow dashed lines mark the ensemble F1 scores and the red dashed lines mark the mean F1 scores
reported by MIDOG++. b The changes in the average F1 score as more mitotic figures (MFs) are included in
training. c. The detection results of the OMG-Net and the Retina-Net used in the MIDOG++ in example regions.
The green, yellow and red bounding boxes represent the true positives, false positives and false negatives.
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