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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
This study introduces an AI-aided approach to improve the detection of mitotic figures (MFs), a crucial factor in cancer
grading, in digitized haematoxylin and eosin-stained whole slide images. Recognizing MFs is traditionally time-consuming
and prone to human error, which can lead to incorrect cancer grading and suboptimal treatment. To address these
challenges, the researchers created the largest pan-cancer dataset of MFs, combining an in-house soft tissue tumor dataset
with five open-source datasets, resulting in 74,620 MFs. They developed a two-stage framework, OMG-Net, which uses the
Segment Anything Model (SAM) for cell contouring and an adapted ResNet18 for MF classification. OMG-Net achieved an
F1-score of 0.84 in pan-cancer MF detection, significantly outperforming the previous state-of-the-art MIDOG++ model,
especially in breast cancer detection, by 16%. This approach offers superior accuracy in detecting MFs across various tumor
types and scanning methods. 

Weakness: 
1. The paper lacks an analysis of the disadvantages of current mitotic activity detection models. 
2. The work primarily focuses on methodological aspects, with insufficient discussion on the motivation of reinforcement
learning. More context on the specific topic is needed. 
3. The authors seem to have missed some relevant literature. Specifically, they don't discuss learning-based methods for
image-level tasks, missing out on several relevant citations: “Class-aware adversarial transformers for medical image
segmentation”, "Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image
segmentation", "SimCVD: Simple contrastive voxel-wise representation distillation for semi-supervised medical image
segmentation", "Incremental learning meets transfer learning: Application to multi-site prostate mri segmentation",
“Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation”, "Unsupervised
wasserstein distance guided domain adaptation for 3d multi-domain liver segmentation", “Mine your own anatomy:
Revisiting medical image segmentation with extremely limited labels”, “Rethinking Semi-Supervised Medical Image
Segmentation: A Variance-Reduction Perspective”, “ACTION++: Improving Semi-supervised Medical Image Segmentation
with Adaptive Anatomical Contrast”, and “Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic
Experts”. These methods are relevant to the method proposed in this paper. These relevant papers should be included in the
reference list. 

Reviewer #2 

(Remarks to the Author) 
Very interesting paper and good work in general. 

1) Line 99: From what I understand, you used the pHH3 as a marker to generate a training dataset. How was the staining
protocol done? From my understanding, if you first stain with H&E and then with the IHC, due to the quite heavy processing
of the tissue to apply the H&E (heating up to a high degree) and the destaining process, it leaves the tissue quite altered. 
Also, pHH3 can detect MF but it might produce "false positives" due to the fact that it detects the mitotic process quite early
even on cells that might not appear to be mitotic figures on the H&E. Did you have some classifying the pHH3 detections as
well? 



2) Figure 2: When using the SAM to do the segmentation, how do you ensure that SAM will segment structures of cell level
and not larger structures? 

3) Line 127: You mention that you benchmarked against the current state-of-the-art MIDOG++ but the MIDOG++ is a dataset
and the model presented in the paper is not state-of-the-art. It was used merely to demonstrate how the dataset varies and
the detection performance when an off-the-shelf detector is used. The state-of-the-art would be the top-3 models on the
leaderboard of the MIDOG grand challenge. 

4) line 129: typo 'hows' --> 'shows' 

5) Table 2: You chose to compare against a subset of the dataset using the leave-one-out(?)training results. Why was this
choice made? 

6) Line 146: You refer to "only RGB images" and "RGB classifier". What do you mean exactly? Is there a dataset of non-
RGB images? 

7) Line 224: You mention that decoupling the object detection and classifier steps improves the performance because the
existing models have to reject many false positives due to the imbalance of the dataset. However in your description you use
SAM to generate masks and then apply a classifier. How does that approach exactly generate less false positives? If you
were to segment all cells in a ROI, it would surely generate as many false positives as a detector I would assume. 

8) You used for the classifier a ResNet-18, did you test other models as well? 

9) I would like to see the performance of this method using the same method as that was outlined during the grand-
challenge. That means running in on the full test set, not just the human in order to have a direct comparison with the
leaderboard of the challenge. By only comparing specific tumor types, it feels like cherry-picking the results. If the method is
better, then it would perform better on the whole test dataset. After you have shown in direct comparison that the method is
better, you can further evaluate with an extensive training dataset. 

Reviewer #3 

(Remarks to the Author) 
This work first presents an annotated mitotic-figure (MF) dataset by a human-in-the-loop pipeline. Then, a cascaded pipeline
based on SAM-H model and ResNet-18 was used for MF detection. Overall, the paper is well-written and the proposed
modules in the pipeline are well-motivated. However, the clarification and experiments should be further improved to show
the effectiveness of the proposed pipeline. 

Abstract: 
The Abstract should be written for the general audience. Please avoid using too many abbreviations. 

Fig 2: ResNet-18 is relative small and old. Please compare to the SOTA classifiers (e.g., Transformer-based, ConvNeXt): 
https://huggingface.co/spaces/timm/leaderboard 

Fig 3: Please show some typical examples where OMG-Net is better than previous SOTA. 

Line 126: In this paragraph, please explain why Neuroendocrine tumor has lower performance than other cancer types. 

Line 208: “Object detection models such as Faster R-CNN [30], RetinaNet [31] and YOLO [32] have been widely used for
MF detection” 
These methods [30-32] were proposed five years ago. Many new detection models have been proposed. Please test at least
one latest detector to support your claims, e.g., RT-DETR 
https://github.com/lyuwenyu/RT-DETR 

Discussion: 
Please introtroduce the potential direction to improve the MF detection performance for neuroendocrine tumor? 
Please summarize the remaining challenges for MF detection (e.g., the top three challenges). 

Code: Please polish the readme file to add detailed guidelines on the model training and inference commands. 

Data: Since dataset is one of the most important contributions in this work, please provide a data download link in the
manuscript 

Version 1: 

Reviewer comments: 



Reviewer #1 

(Remarks to the Author) 
Thank the authors for the detailed response. It addressed some of my concerns. But I have a few remarks: 
1. In Table 2, how is cancer detected from the morphological features? What mechanism is used to cluster cells for tumor
identification? This process is also unclear from Figure 2. 
2. As echoed in R#2, I’m curious about the intermediate test results for Segment Anything — specifically, how well does the
segment mask perform? For ResNet-50, has the author explored any special mechanisms to address the feature scale
limitations? 

Reviewer #2 

(Remarks to the Author) 

Reviewer #3 

(Remarks to the Author) 
Thanks for the detailed response. All my concerns have been well addressed. 

Version 2: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
Thanks for the detailed response. All my concerns have been well addressed. 
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Reviewer #1 

Overall comment:  

This study introduces an AI-aided approach to improve the detection of mitotic figures 

(MFs), a crucial factor in cancer grading, in digitized haematoxylin and eosin-stained 

whole slide images. Recognizing MFs is traditionally time-consuming and prone to 

human error, which can lead to incorrect cancer grading and suboptimal treatment. To 

address these challenges, the researchers created the largest pan-cancer dataset of MFs, 

combining an in-house soft tissue tumor dataset with five open-source datasets, resulting 

in 74,620 MFs. They developed a two-stage framework, OMG-Net, which uses the 

Segment Anything Model (SAM) for cell contouring and an adapted ResNet18 for MF 

classification. OMG-Net achieved an F1-score of 0.84 in pan-cancer MF detection, 

significantly outperforming the previous state-of-the-art MIDOG++ model, especially in 

breast cancer detection, by 16%. This approach offers superior accuracy in detecting MFs 

across various tumor types and scanning methods. 

 

1.1. The paper lacks an analysis of the 

disadvantages of current mitotic activity 

detection models.  

 

1. Developing and validating pan-cancer 

mitotic figure detection models remains 

a significant challenge due to the 

absence of extensive pan-cancer mitotic 

figure datasets. (Line 95 - 103) 

2. The mitotic index is key for soft tissue 

tumour diagnosis. However, no studies 

have been presented on mitotic figure 

detection in human soft tissue tumours. 

(Line 103 - 110)  

3. Integrating the detection and 

classification can limit the overall 

performance of detection models.  

((Line 262 - 297, and please also refer 

the reply to comment 2.7) 

 

1.2. The work primarily focuses on 

methodological aspects, with insufficient 

discussion on the motivation of 

reinforcement learning. More context on 

the specific topic is needed.  

 

We aim to deploy reinforcement learning in 

our future study for validating the model in 

clinical settings by including pathologists to 

constantly correct the detection and give 

tumour type-specific and image-specific 

feedback to enhance the model 

performance. (Line 392 - 394) 

 

1.3. The authors seem to have missed some 

relevant literature. Specifically, they don't 

discuss learning-based methods for image-

level tasks, missing out on several relevant 

citations: “Class-aware adversarial 

transformers for medical image 

segmentation”, "Momentum contrastive 

voxel-wise representation learning for 

semi-supervised volumetric medical image 

segmentation", "SimCVD: Simple 

We thank the reviewer for bringing those 

inspiring papers to our attention. We did 

find that the papers discussing about 

fundamental concepts of deep learning for 

medical image analysis are relevant to our 

study. As a result, we cited “Incremental 

learning meets transfer learning: 

Application to multi-site prostate mri 

segmentation” (Line 337) and “Rethinking 

Semi-Supervised Medical Image 



 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewer #2  

contrastive voxel-wise representation 

distillation for semi-supervised medical 

image segmentation", "Incremental 

learning meets transfer learning: 

Application to multi-site prostate mri 

segmentation", “Bootstrapping semi-

supervised medical image segmentation 

with anatomical-aware contrastive 

distillation”, "Unsupervised wasserstein 

distance guided domain adaptation for 3d 

multi-domain liver segmentation", “Mine 

your own anatomy: Revisiting medical 

image segmentation with extremely limited 

labels”, “Rethinking Semi-Supervised 

Medical Image Segmentation: A Variance-

Reduction Perspective”, “ACTION++: 

Improving Semi-supervised Medical Image 

Segmentation with Adaptive Anatomical 

Contrast”, and “Implicit Anatomical 

Rendering for Medical Image 

Segmentation with Stochastic Experts”. 

These methods are relevant to the method 

proposed in this paper. These relevant 

papers should be included in the reference 

list. 

 

Segmentation: A Variance-Reduction 

Perspective” (Line 376) in the discussion to 

propose some potential improvements in our 

future work.  

 

However, our study specifically focused on 

detecting cells in mitosis from digitised 

pathology slides, an object detection tasks 

from large size 2D images. The aim of our 

study is automatically counting the number 

of mitotic figures to make tumour grading 

more reproducible. Although segmentation 

for nuclei is used in the model, this is not 

the focus in this paper. Therefore, we cannot 

cite the papers that are specific for semantic 

segmentation for anatomical structures. We 

appreciate the value of those papers while 

we find it will be more suitable to cite those 

papers when publishing our other studies 

related to auto-segmentation for 

radiotherapy planning in the future.  



Overall comment:  

Very interesting paper and good work in general. 

 

2.1. Line 99: From what I understand, you 

used the pHH3 as a marker to generate a 

training dataset. How was the staining 

protocol done? From my understanding, if 

you first stain with H&E and then with the 

IHC, due to the quite heavy processing of 

the tissue to apply the H&E (heating up to 

a high degree) and the destaining process, 

it leaves the tissue quite altered.  

Also, pHH3 can detect MF but it might 

produce "false positives" due to the fact 

that it detects the mitotic process quite 

early even on cells that might not appear to 

be mitotic figures on the H&E. Did you 

have some classifying the pHH3 detections 

as well? 

 

We admit that the slides could be altered 

due to the de-staining and re-staining 

process. In our study this impact was 

mediated by two approaches: (1) We first 

applied registration on both slide-level and 

patch-level to find the location of the 

mitotic figures stained by the pHH3-

antibody in the H&E-stained slides; (Line 

431 - 433) (2) We got the initial masks of 

the mitotic figures by thresholding the 

pHH3-staining for their nuclei, and then 

converted the masks to bounding boxes and 

deployed the Segment Anything Model to 

generate more precise masks using those 

bounding boxes as prompts. (Line 465 –

467) 

 

It is agreed that pHH3 detects mitoses in 

early stage. In our study, both the H&E and 

pHH3 images of the nuclei detected were 

reviewed by pathologists as a part of the 

data generation protocol to make sure the 

cells included in the dataset are in mitosis. 

(Line 433 - 435) 

  

2.2. Figure 2: When using the SAM to do 

the segmentation, how do you ensure that 

SAM will segment structures of cell level 

and not larger structures? 

 

Objects were retained based on their areas, 

which ranged from 36 pixels to 3600 pixels 

(2.25 µm2 to 225 µm2 in slides with pixel 

size of 0.25 µm/pixel). Using this range, we 

excluded objects that are significantly larger 

or smaller than typical cells, while included 

both normal and atypical mitotic figures. 

(Line 479) 

 

2.3. Line 127: You mention that you 

benchmarked against the current state-of-

the-art MIDOG++ but the MIDOG++ is a 

dataset and the model presented in the 

paper is not state-of-the-art. It was used 

merely to demonstrate how the dataset 

varies and the detection performance when 

an off-the-shelf detector is used. The state-

of-the-art would be the top-3 models on the 

leaderboard of the MIDOG grand 

challenge. 

 

The MIDOG++ is a newer version 

published after the MIDOG 2022 challenge. 

Since it is the largest and the most diverse 

mitotic figure dataset to date, we decisioned 

to use it in our study.  

 

The test set of the MIDOG 2022 challenge 

is not publicly available, for which we 

cannot compare our model to the models 

published in the final report of the 

challenge.  

 



However, we agree that comparing our 

model to the top models on the leader board 

is informative. Therefore, we included a 

new table in the manuscript (Table R2) to 

report the scores of different models on the 

subset included in both the test sets of 

MIDOG ++ and the MIDOG 2022 

challenge, namely human melanoma, and 

canine cutaneous mast cell tumour.  

 

We also extended Table 1 (Table R1) to 

show the scores of our model on the full 

MIDOG ++ test set, please refer to the reply 

to the comment 2.9. 

 

2.4. line 129: typo 'hows' --> 'shows' 

 

It has been corrected in the manuscript. 

2.5. Table 2: You chose to compare against 

a subset of the dataset using the leave-one-

out(?)training results. Why was this choice 

made?  

 

We compared the scores of our model to the 

results of the model trained using all the 

domains. In the MIDOG++ paper they 

included the results in the last row of Table 

4 (https://www.nature.com/articles/s41597-

023-02327-4/tables/4).   

 

2.6. Line 146: You refer to "only RGB 

images" and "RGB classifier". What do 

you mean exactly? Is there a dataset of 

non-RGB images? 

 

The “only RGB images” means the 

classification was done using the H&E-

stained images of the cells solely; One of 

the highlights of our paper is that we found 

using a 4-channel input, which contains the 

binary masks of the nuclei in addition to the 

RGB images can improve the classification. 

(Figure 4) 

 

2.7. Line 224: You mention that 

decoupling the object detection and 

classifier steps improves the performance 

because the existing models have to reject 

many false positives due to the imbalance 

of the dataset. However in your description 

you use SAM to generate masks and then 

apply a classifier. How does that approach 

exactly generate less false positives? If you 

were to segment all cells in a ROI, it would 

surely generate as many false positives as a 

detector I would assume. 

 

In this section we claimed that the 

performance can be restricted due to the 

imbalance of the loss function, not the 

imbalance of the dataset. In most of the 

object detection models, the detection loss 

and classification loss are summed up to 

train the model. However, in real world 

settings the two parts of loss is not always 

equally important. For example, when 

detecting the mitotic figures, we will focus 

more on the classification accuracy rather 

than the quality of the detected bounding 

boxes or masks. Therefore, we do not want 

the two parts of loss to be penalised together 

as it is challenging to determine the ideal 

weights for each loss, and it is also possible 

that the linear combination of the losses is 

https://www.nature.com/articles/s41597-023-02327-4/tables/4
https://www.nature.com/articles/s41597-023-02327-4/tables/4


not optimal. This is why a lot of studies 

used a second-stage classifier to further 

reduce the number of false positives. 

 

Our two-stage framework completely 

separated the detection loss and 

classification loss. We deployed the 

Segment Anything Model pre-trained using 

a massive amount of data to provide high-

quality masks, and used a large number of 

points as the prompts to make sure most of 

the mitotic figures will be included in the 

cells detected by the Segment Anything 

Model. The classification stage is 

independent to the detection stage, for 

which the classification scores was 

optimized fully independently.  

 

To summarise, in this session we claim that 

optimizing the classification loss 

independently can improve the overall 

performance for detecting mitotic figures. 

 

2.8. You used for the classifier a ResNet-

18, did you test other models as well? 

 

Yes, we added a new table in the 

supplementary materials showing the 

classification performance of various image 

classifiers (Table R3).  

 

We compared the ResNet18 to ResNet50, 

DenseNet121, ConvNeXt as suggested by 

Reviewer 3, and EfficientNet-B7, the 

classifier used by the top 1 team on the 

MIDOG 2022 leader board. More detailed 

discussion of the comparison has been 

added to the reply to comment 3.2. 

 

2.9. I would like to see the performance of 

this method using the same method as that 

was outlined during the grand-challenge. 

That means running in on the full test set, 

not just the human in order to have a direct 

comparison with the leaderboard of the 

challenge. By only comparing specific 

tumor types, it feels like cherry-picking the 

results. If the method is better, then it 

would perform better on the whole test 

dataset. After you have shown in direct 

comparison that the method is better, you 

can further evaluate with an extensive 

The aim of this paper is automatically 

detecting mitotic figures for human cancer 

diagnosis. Therefore, we focused on 

reporting the performance on human subsets 

rather than the canine subsets as it makes 

the model selection more suitable for 

clinical application.  

 

However, we agree that reporting the scores 

on the whole testing set could be 

informative, for which we added the results 

for the whole testing set in the result section 

(Table R1) and highlight the performance 

for human tumours in the discussion. 



training dataset. 

 

 

As mentioned in the reply to comment 2.3, 

we are not able to reproduce the exact same 

comparison using the test set of MIDOG 

2022 challenge, we compared our model to 

the top 3 models from the challenge by 

comparing the test scores on the overlapped 

subsets of MIDOG++ and MIDOG 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewer #3  
Overall comment:  

This work first presents an annotated mitotic-figure (MF) dataset by a human-in-the-loop 

pipeline. Then, a cascaded pipeline based on SAM-H model and ResNet-18 was used for 



MF detection. Overall, the paper is well-written and the proposed modules in the pipeline 

are well-motivated. However, the clarification and experiments should be further 

improved to show the effectiveness of the proposed pipeline.  

 

3.1. Abstract: The Abstract should be written 

for the general audience. Please avoid using 

too many abbreviations.  

 

The abstract has been updated: 

 

Mitotic activity is an important feature for 

grading several cancer types. However, 

counting mitotic figures (cells in division) 

is a time-consuming and laborious task 

prone to inter-observer variation. 

Inaccurate recognition of MFs can lead to 

incorrect grading and hence potential 

suboptimal treatment. This study presents 

an artificial intelligence-based approach 

to detect mitotic figures in digitised 

whole-slide images stained with 

haematoxylin and eosin. Advances in this 

area are hampered by the small size and 

variety of datasets available. To address 

this, we have created the largest dataset of 

mitotic figures (N=74,620), combining an 

in-house dataset of soft tissue tumours 

with five open-source datasets. We then 

employed a two-stage framework, named 

the Optimized Mitoses Generator 

Network (OMG-Net), to identify mitotic 

figures. This framework first deploys the 

Segment Anything Model to 

automatically outline cells, followed by 

an adapted ResNet18 that distinguishes 

mitotic figures. OMG-Net achieved an F1 

score of 0.84 in detecting pan-cancer 

mitotic figures, including human breast 

carcinoma, neuroendocrine tumours, and 

melanoma. It outperformed previous 

state-of-the-art models in hold-out test 

sets. To summarise, our study introduces 

a generalizable data creation and curation 

pipeline and a high-performance 

detection model, which can largely 

contribute to the field of computer-aided 

mitotic figure detection. 

 



3.2. Fig 2: ResNet-18 is relatively small and 

old. Please compare to the SOTA classifiers 

(e.g., Transformer-based, ConvNeXt): 

https://huggingface.co/spaces/timm/leaderboar

d 

 

Since the aim of using the classifier is to 

classify mitotic figures and other cells, 

the input size is relatively small (64 pixel 

 64 pixel). Although more advanced 

larger models show better performance 

of classifying more complex and diverse 

images, they did not bring better 

performance on our task with small input 

size for binary classification.  

 

We compared the ResNet18 to 

ResNet50, DenseNet121, ConvNeXt and 

EfficientNet-B7, the classifier used by 

the top 1 team on the MIDOG 2022 

leader board (Table R3).  

 

3.3. Fig 3: Please show some typical examples 

where OMG-Net is better than previous 

SOTA. 

 

Figure 3 has been updated with some 

examples of detection results. 

3.4. Line 126: In this paragraph, please 

explain why Neuroendocrine tumour has 

lower performance than other cancer types.  

 

1. The number of annotations for 

neuroendocrine tumour is relatively 

small (524) in the training data. All the 

annotations were from the MIDOG++ 

and the images were scanned using the 

same scanner. The small amount of data 

and the lack of diversity makes it more 

challenge to develop robust and accurate 

models. 

2. The poor performance can also be 

attributed to the biological characteristics 

of neuroendocrine tumours. Cell 

aggregation, where cells clump together, 

is often observed in neuroendocrine 

tumour specimens, for which it is 

difficult to distinguish individual cells' 

boundaries and limit the quality of the 

nuclei masks. The heterogeneity of 

aggregation also brings more diverse cell 

morphology, making it more challenging 

to recognize and classify them correctly. 

3. In our dataset, the images of 

neuroendocrine tumours frequently 

suffer from poor quality, including issues 

like blurring, uneven staining, and 

artifacts. Low-quality images can lead to 

increased false negatives or false 

positives, as the model struggles to 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2Ftimm%2Fleaderboard&data=05%7C02%7Czhuoyan.shen.18%40ucl.ac.uk%7C7947fe5345f0403a726a08dcd172c6d1%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C638615538831809833%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FiD%2FnSGoknwbL7rxvWwc6Asln4hxbjxWSl%2B73%2BmnptY%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2Ftimm%2Fleaderboard&data=05%7C02%7Czhuoyan.shen.18%40ucl.ac.uk%7C7947fe5345f0403a726a08dcd172c6d1%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C638615538831809833%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FiD%2FnSGoknwbL7rxvWwc6Asln4hxbjxWSl%2B73%2BmnptY%3D&reserved=0


interpret the compromised visual 

information. 

The interpretation of the results for 

neuroendocrine tumour is added in 

Discussion (Line 344 - 370) 

 

3.5. Line 208: “Object detection models such 

as Faster R-CNN [30], RetinaNet [31] and 

YOLO [32] have been widely used for MF 

detection” 

These methods [30-32] were proposed five 

years ago. Many new detection models have 

been proposed. Please test at least one latest 

detector to support your claims, e.g., RT-

DETR  

https://github.com/lyuwenyu/RT-DETR 

 

We retrained the RT-DETR model using 

our dataset and tested it on the same test 

set. The dataset was prepared as patches 

with size of 640 pixels  640 pixels. A 

RT-DETR-X was trained for 200 epochs 

using the default configuration. Overall, 

we observed a lower F1 score comparing 

to OMG-Net (0.764 ± 0.01 vs 0.783 ± 

0.02).  

3.6. Discussion: Please introduce the potential 

direction to improve the MF detection 

performance for neuroendocrine tumour? 

 

1. Increasing the size of the training 

datasets. By incorporating a larger 

and more diverse set of annotated 

images of neuroendocrine tumours, 

the model will be accurate and robust 

on detection mitotic figures from 

neuroendocrine tumours. We will 

constantly collect specimens from 

RNOH and collaborative institutions 

and apply the data generation and 

curation pipeline introduced in this 

paper to expand the size and 

diversity of not only neuroendocrine 

tumours but also soft tissue tumours. 

 

2. Improving the quality of the whole 

slide images used for training. This 

can be achieved through standardized 

protocols for slide preparation, 

staining and scanning. Meanwhile, 

we will implement quality control by 

pathologists before selecting images 

for developing the model. By 

ensuring the data quality, we can 

significantly enhance the detection 

performance. 

 

The discussion about the solutions is 

combined with the possible reasons in 

the Discussion (Line 344 - 370) 

 

https://github.com/lyuwenyu/RT-DETR


3.7. Please summarize the remaining 

challenges for MF detection (e.g., the top 

three challenges). 

 

1. Detecting mitotic figures in rare 

tumours. Although a large number of 

studies reported datasets or detection 

models for mitotic figures in breast 

cancer, detecting mitotic figures in 

other tumour types, especially rare 

cancers remain challenging. The 

limited number of cases but high 

degree of heterogeneity of rare 

cancers such as soft tissue sarcoma, 

complicates the acquisition of ample 

and diverse data for training robust 

AI models. In this study, we 

established the largest-to-date mitotic 

figure dataset for human soft tissue 

tumour. We are committed to 

continuously expanding this dataset 

and refining our models to enhance 

their accuracy and utility in sarcoma 

diagnosis. 

 

2. Comparing the mitotic index 

identified by AI and by pathologists. 

Clinically, the mitotic index is 

obtained by pathologists counting the 

number of mitotic figures within 10 

high-power fields. However, this 

process is subject to intra- and inter-

observer variability, which can 

significantly affect the consistency 

and reliability of the measurements, 

brining challenge to align manual 

counts to the mitotic index given by 

AI-driven whole-slide image 

analysis. Standardised protocol is 

needed for comprehensively 

assessing the accuracy and potential 

clinical impact of the AI mitotic 

index. 

 

3. Clinical implementation of AI 

models for mitotic figure detection. 

While AI-based models for detecting 

mitotic figures have demonstrated 

exceptional performance in research 

settings, translating these advances 

into clinical practice remains a 

challenge. The key issues include 

allocating sufficient computational 

resources in clinic, ensuring 



compliance with clinical data 

regulation and receiving feedback 

and new data for constant model 

improvement. Our future work also 

includes designing federated learning 

platform to facilitate the model 

refining, which allows multiple 

institutions to expand the training 

data while keeping sensitive data 

localized.  

 

A whole section to discuss the remaining 

challenges is added in Discussion (Line 

339 - 394). 

 

3.8. Code: Please polish the readme file to add 

detailed guidelines on the model training and 

inference commands. 

 

https://github.com/SZY1234567/OM
G-Net 

3.9. Data: Since dataset is one of the most 

important contributions in this work, please 

provide a data download link in the 

manuscript. 

 

https://zenodo.org/records/11521640 

 

 

 

 

 

 

Changed Tables & Figures 
Table R1. Precision, recall and F1 scores in MIDOG++ testing set of OMG-Net against the model presented 

by MIDOG++. 

*Canine Specimens. 

Tumour Types Precision Recall F1 Ensemble F1 F1(MIDOG++) 

breast carcinoma 0.82 ± 0.02 0.88 ± 0.02 0.85 ± 0.02 0.87 0.71 ± 0.02 

neuroendocrine tumour  0.64 ± 0.02 0.65 ± 0.03 0.64 ± 0.02 0.67 0.59 ± 0.02 

melanoma  0.83 ± 0.02 0.84 ± 0.03 0.83 ± 0.01 0.85 0.81 ± 0.02 

lung carcinoma* 0.69 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 0.74 0.68 ± 0.02 

lymphosarcoma*  0.76 ± 0.03 0.74 ± 0.01 0.76 ± 0.03 0.80 0.73 ± 0.01 

cutaneous mast cell tumour*  0.84 ± 0.02 0.88 ± 0.02 0.86 ± 0.01 0.87 0.82 ± 0.01 

soft tissue sarcoma* 0.74 ± 0.02 0.73 ± 0.02 0.74 ± 0.02 0.77 0.69 ± 0.01 

https://github.com/SZY1234567/OMG-Net
https://github.com/SZY1234567/OMG-Net
https://zenodo.org/records/11521640


 

Table R2. F1 scores of OMG-Net and the top 3 models from the MIDOG 2022 challenge in the overlap 

subsets between the MIDOG++ and MIDOG 2022 test sets. 

*Canine Specimens. 

 

Table R3. Classification metrics of different classifiers tested for mitotic figure classification. 

 

 

 

 

Tumour Types OMG-Net TIA Centre TCS Research  USZ/UZH Zurich 

melanoma 0.85 0.80 [0.74,0.84] 0.76 [0.66,0.80] 0.79 [0.74,0.83] 

cutaneous mast cell tumour* 0.87 0.83 [0.81,0.86] 0.76 [0.58,0.83] 0.73 [0.66,0.79] 

Classifier Precision Recall F1 Accuracy AUC 

ResNet18 0.851 0.842 0.846 0.995 0.949 

ResNet50 0.842 0.836 0.838 0.995 0.928 

DenseNet121 0.834 0.820 0.827 0.994 0.924 

ConvNeXt-tiny 0.839 0.845 0.842 0.994 0.946 

Efficient-Net-B7 0.841 0.840 0.841 0.994 0.941 



 

Figure 1: Detection performance. a The testing F1 scores in the human subsets of the proposed framework, 

where the yellow dashed lines mark the ensemble F1 scores and the red dashed lines mark the mean F1 scores 

reported by MIDOG++. b The changes in the average F1 score as more mitotic figures (MFs) are included in 

training. c. The detection results of the OMG-Net and the Retina-Net used in the MIDOG++ in example regions. 

The green, yellow and red bounding boxes represent the true positives, false positives and false negatives. 
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