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Mitotic activity is an important feature for grading several cancer types. However, counting mitotic
figures (cells in division) is a time-consuming and laborious task prone to inter-observer variation.
Inaccurate recognition of MFs can lead to incorrect grading and hence potential suboptimal treatment.
This study presents an artificial intelligence-based approach to detect mitotic figures in digitised
whole-slide images stained with haematoxylin and eosin. Advances in this area are hampered by the
small size and variety of datasets available. To address this, we create the largest dataset of mitotic
figures (N = 74,620), combining an in-house dataset of soft tissue tumours with five open-source
datasets. We then employ a two-stage framework, named the Optimised Mitoses Generator Network
(OMG-NEet), to identify mitotic figures. This framework first deploys the Segment Anything Model to
automatically outline cells, followed by an adapted ResNet18 that distinguishes mitotic figures. OMG-
Net achieves an F1 score of 0.84 in detecting pan-cancer mitotic figures, including human breast
carcinoma, neuroendocrine tumours, and melanoma. It outperforms previous state-of-the-art models
in hold-out test sets. To summarise, our study introduces a generalisable data creation and curation
pipeline and a high-performance detection model, which can largely contribute to the field of

computer-aided mitotic figure detection.

Mitotic activity is a crucial indicator of cellular proliferation and plays a
pivotal role in cancer diagnosis and guiding clinical management'.
Counting mitotic figures (MFs) from haematoxylin and eosin (H&E)-
stained whole slide images (WSIs) is a fundamental task in pathology,
required for the grading of some tumours. By convention, in clinical
practice, mitotic counts are performed in the 10 most mitotically active
high-power microscopic fields (HPFs) within a tumour”. As this is a time-
consuming task, and subject to significant inter-observer variability’~,
there has been considerable interest and effort in the development of

automated MF detection models, e.g. ICPR*” and TUPAC"’ initiated the
development of breast cancer MF datasets. Initially, mitotic detection
models focused on learning handcrafted features'”"?, but recently tran-
sitioned to deep-learning-based methods that show promise" ™. How-
ever, MF detection remains a challenging task'’, due to the different
appearance of MF in the four phases of mitosis, the range of features
exhibited by abnormal MFs, as well as structures that mimic MFs (mitotic-
like figures, MLFs). The above challenges are compounded by the histo-
logical heterogeneity in normal tissues and tumour types, staining
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variation between labs and differences in digital scanners used to gen-
erate WSIs.

To improve the detection of MF, the MItosis DOmain Generalisation
(MIDOG)'*" published an updated version of their multi-domain dataset,
MIDOGH+-+". This contains 503 annotated images across seven different
cancer types, representing the largest currently available published dataset of
MFs. The data utilised in the MIDOG studies contains the HPFs manually
selected by pathologists to mimic clinical practice. However, the pathologist-
led decisions may not be reproducible because of the recognised inter-
observer variation”', and discrepancies can be caused by the selection of
areas with the densest mitotic activity””. In contrast, the CMC” and
CCMCT" datasets used Al-assisted annotations to generate large-scale WSI
datasets for MFs using canine cancers. The former used 21 WSIs of canine
mammary carcinomas whereas the CCMCT dataset included 32 WSIs of
canine mast cell tumours. These studies demonstrated that annotating MFs
on a WSI improves the robustness of classifiers by removing the HPF
selection bias and leads to a significantly higher number of detected mitoses,
helping to refine further training™.

Developing and validating pan-cancer MF detection models remains a
significant challenge due to the absence of extensive pan-cancer MF data-
sets. One preferred approach to take forward this field of MF detection
would have been to increase the size of the existing datasets incorporating
multiple scanner types, staining differences across multiple sites, and
tumour types. However, the lack of standardisation in the annotation
protocol across various existing datasets limits their integration. For
example, in the ICPR, each pixel within MFs was labelled, whereas the
TUPAC only encircled MFs. MIDOG++, CCMCT and CMC utilised
bounding boxes to denote the targets. We therefore took the approach to
standardise the annotations by contouring nuclei of MFs. Another current
limitation of this field is the lack of datasets for rare diseases. The mitotic
index is important for soft tissue tumour (STT) diagnosis. Although STT

represents a rare tumour group, it comprises over 100 subtypes exhibiting a
wide variety of histological appearances, which can mimic other tumours,
including common cancers such as melanoma, carcinoma and lymphoma.
STT harbours a variable number of MFs and aids in reaching a diagnosis and
predicting disease behaviour”. To the best of our knowledge, no publicly
accessible data has been published for MFs in human STT. In this study, we
contributed a large MF dataset for human STT.

Historically, targets in cellular object detection tasks are denoted using
bounding boxes. However, several studies have reported that incorporating
a target’s mask facilitates model training and improves the overall classifi-
cation performance. For instance, the Mask-RCNN outperformed the
Faster-RCNN in a variety of object detection tasks™, including MF
detection'. The advantages of integrating nuclei contours for detection
include enhancing the definition of nuclei boundaries, mitigating the
morphological variability of the MFs” and reducing the impact of tumour
histological heterogeneity. Given the constraints of a small dataset and the
significant variability between mitotic cells, introducing a recognisable
mitotic feature into the model aids in stabilising the training process and
leads to a faster convergence.

The aim of this study was to improve the detection of MF across
multiple tumour types. First, we established a large uniform database of pan-
cancer MFs by deploying the Segment Anything Model (SAM)*, a foun-
dation object detection model, in five open-source datasets (ICPR, TUPAC,
CCMCT, CMC, MIDOG++) using a single nuclei mask format. Manual
revision of the masks was performed to maximise database quality. Then, we
contributed an in-house dataset of human STT MFs (N = 8400) (Soft-Tissue
MFs, STMF). The STMF was initiated by staining WSIs with an anti-
phosphorylated histone H3 (pHH3) antibody to target MFs which was
expanded and improved by Al-assisted annotations made by pathologists.
Figure 1 illustrates the data generation pipeline for the in-house dataset,
STMF, and the curation process for the multi-source datasets. The second
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Fig. 1 | Data preparation workflow. a Haematoxylin and eosin (H&E)-stained
whole slide images (WSIs) were de-stained after which immunohistochemistry was
performed using an anti-phosphorylated histone H3 (pHH3) antibody which labels
mitotic figures (MFs) (STMF-VO0). b An initial Mask-RCNN model trained on
STMF-VO0 was applied to new WSIs for detecting MFs, which were then labelled by

six pathologists as MF or false positives. This process facilitated the iterative
refinement and expansion of the dataset to produce STMF. ¢ The masks of the MFs
from STMF and the bounding boxes from four external datasets were refined by
Segment Anything (SAM) and integrated with ICPR to create the final dataset. The
original and refined masks are presented in yellow and blue, respectively.
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Fig. 2 | The architecture of the OMG-Net. The two-step architecture includes mask
generation and mitotic figures (MF) classification. First, the post-process cell masks
from patched WSIs are generated by Segment Anything (SAM) using an evenly

sampled point grid as a prompt. Second, the RGB image of the segmented cell and the
binary mask (presented in green) are used to classify MFs by employing an adapted
ResNet18.

Table 1 | Number of different types of objects in the integrated dataset

Dataset Tumour types Number of images Number of MFs Number of MLFs Non-MF objects
ICPR Breast carcinoma 100 654 0 10,696
TUPAC Breast carcinoma 73 1999 10,483 233,992
MIDOG++ Breast carcinoma 392 9470 11,433 559,827

Lung carcinoma®

Lymphosarcoma®

Neuroendocrine tumour®

Mast cell tumour®

Melanoma

Soft tissue sarcoma?
CMC Breast carcinoma® 21° 13,907 36,379 2,428,456
CCMCT Mast cell tumour® 32° 40,190 42,208 1,082,776
STMF Soft tissue tumour 103°° 4 226 8400 5035 395,670
Total 938 74,620 105,538 4,701,417

“Canine Specimens.

®WSiIs rather than selected regions.
°pHH3-immunohistochemistry was used for identifying MFs.
9Active learning was used for annotating MFs.

objective was to develop an improved MF detection framework, which we
named Optimised Mitoses Generator Network (OMG-Net). The structure
of OMG-Net is outlined in Fig. 2. By integrating nuclei masks into the pre-
trained classifier via a first-layer addition, we allow the model to focus on the
morphological features of MFs. We demonstrate that OMG-Net is both
more sensitive and specific at detecting objects, including MFs, throughout
the input WSI, compared to previous models.

Results and discussion

Developing a large-scale MF dataset

We established a large in-house dataset for MFs in STT and merged it
with five open-source datasets for MFs from human and canine

specimens (Table 1). The final dataset contains 74,620 MFs and 105,538
MLFs from 712 different images or WSIs with the SAM-delineated
masks for nuclei. Masks of human MFs were reviewed and modified to
ensure the quality of nuclei contours. Additionally, the dataset included
a large number of SAM-segmented objects, comprising tumour cells,
immune cells, red blood cells, artefacts and any objects at the cell scale,
collected during the data curation.

Large-scale datasets are crucial for developing AI models capable
of detecting MFs effectively in a variety of cancer types and overcoming
the challenges posed by the heterogeneity of staining and scanning
protocols. Here, we propose a workflow for creating a reliable MF
dataset:
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Table 2 | Precision, recall and F1 scores in MIDOG++ testing set of OMG-Net against the model presented by MIDOG++

Tumour types Precision Recall F1 Ensemble F1 F1(MIDOG++)
Breast carcinoma 0.82 £0.02 0.88 +£0.02 0.85+0.02 0.87 0.71+0.02
Neuroendocrine tumour 0.64 +£0.02 0.65+0.03 0.64 +0.02 0.67 0.59 +0.02
Melanoma 0.83+0.02 0.84+0.03 0.83+0.01 0.85 0.81+0.02
Lung carcinoma® 0.69 +0.02 0.70+0.02 0.69 +0.02 0.74 0.68 +0.02
Lymphosarcoma?® 0.76 +0.03 0.74 +0.01 0.76 +0.03 0.80 0.73+0.01
Cutaneous mast cell tumour® 0.84 +£0.02 0.88 +£0.02 0.86 +0.01 0.87 0.82 +0.01
Soft tissue sarcoma® 0.74 £0.02 0.73+0.02 0.74+£0.02 0.77 0.69 +0.01

#Canine Specimens.

1. H&E destaining and employing immunohistochemistry for enhanced
detection: efficient generation of a large-scale image dataset with
accurate labels by detecting a substantial number of MFs on WSIs.

2. Continuous data curation: improve data quality by employing SAM to
delineate precisely MF nuclei, followed by meticulous manual refine-
ment of the generated contours.

3. Active learning: iteratively train and refine the model using a
pathologist-in-the-loop approach, enabling efficient review of detected
MFs, and incorporating mitotic-like figures (MLFs) and non-mitotic
objects into the database for enhanced model performance.

These steps are required as it is not feasible for pathologists to annotate
MFs in the numbers and the precision required by AI models, thereby
affecting the diversity and size of the dataset and, consequently, the detection
accuracy of the trained model. Nevertheless, each of these steps encounters
limitations.

Performing immunohistochemistry following the destaining proce-
dure of H&E-stained sections allows for the rapid and largely specific
detection of MFs (specificity >99%)”. Still, it is not a perfect process as cells
in the G2 phase of the cell cycle can exhibit weak immunoreactivity™® as well
as be prone to false-negative immunoreactivity due to the age of the slide and
fixation method”. This restaining procedure also does not detect MLFs,
which is crucial to enhance the model specificity.

Active learning can help identify MLFs but a consensus view of MF/
MLF cannot always be reached by pathologists. This study highlighted the
acknowledged problem of interobserver variation of MF by pathologists*’
which is compounded when interpreting MFs on digitised slides as it is not
possible to adjust the focus plane on cells of interest. During our revision
process, a notable proportion (13.8%) of Al-detected cells were categorised
as ‘equivocal’ (Supplementary Fig. 1). A secondary review of these images
performed by at least two experienced pathologists resolved some of these
images but differences in opinion remained in 9.5% of Al-detected MFs.

Finally, despite the limitations discussed above, the integration of
immunohistochemistry for MF detection following the destaining of H&E
sections, data curation, active learning, and consensus-based review by
experienced pathologists enabled us to mitigate the challenges in creating a
large-scale database and developing an improved, pan-cancer MF detection
model. In our future work, we will also seek to improve the training strategy
to enhance the model performance when receiving data from multiple
sites™.

Performance of MF detection in various tumours
We tested our OMG-Net on the current largest pan cancer dataset MIDOG
++ containing three types of human tumours and four types of canine
tumours. Table 2 shows the mean precision, recall and F1 scores with the
standard deviation of the proposed framework trained five times using
different random seeds, along with the F1 score obtained by ensemble voting
and the F1 scores of the in-house model presented in the MIDOG++- paper.
The F1 score comparison for the three types of human tumours (breast
carcinoma, neuroendocrine tumour, and melanoma) is also displayed in
Fig. 3a. The MF detection scores of OMG-Net are significantly higher

(p=0.001) in all three types of human tumours within the testing set of
MIDOG++. Figure 3b shows the benefit of combining multi-centre data, as
the increased number of MFs for training correlated with an increase in the
holdout F1-score.

We also compared the OMG-Net to the previous benchmarking MF
detection models ranking as the top three in the MIDOG 2022 challenge™.
Table 3 reports the scores of different models*° on the subset included in
both the test sets of MIDOG ++ and the MIDOG 2022 challenge (human
melanoma and canine cutaneous mast cell tumour). The whole test set of the
MIDOG 2022 challenge is not publicly available, and therefore we cannot
compare the scores on the rest tumour types.

Object detection models such as Faster R-CNN”, RetinaNet™ and
YOLO” have been widely used for MF detection**. These models
integrate in a single model an object proposal network with a primary
classifier. However, these models suffer from the imbalanced loss pro-
blem, as the cell segmentation and classification loss have inherently
unequal magnitudes. The gradient updates that occur during back-
propagation can be dominated by the loss function with the larger
norm”, leading to suboptimal training and convergence issues. This
becomes even more prominent when dealing with small datasets or
complex objects, as the imbalance in the loss functions’ impact can sig-
nificantly hinder the model’s ability to learn effectively from the limited
available data*. The use of integrated object detection models in histo-
pathological studies has been shown to generate false positive results due
to the complex and variable nature of cell morphology. Advanced object
detection models are constantly evolving while their performance in MF
detection has not been reported. We retrained an RT-DETR model”
using our dataset and tested it on the same test set. The dataset was
prepared as patches with a size of 640 pixels x 640 pixels. An RT-DETR-
X was trained for 200 epochs using the default configuration. Overall, we
observed a lower F1 score than OMG-Net (0.764 + 0.01 vs 0.783 + 0.02).

It has been demonstrated"*** that integrating a secondary classifier,
trained on MFs and other objects such as MLFs, to review and reject false
positive cases improves a framework’s precision. This approach limits the
imbalanced loss problem, as the segmentation loss is excluded in training
the additional classifiers. However, these methods add unnecessary com-
plexity to the network since two classifiers must be trained.

To mitigate the imbalanced loss problem, we elected to separate
entirely the object detection and classification steps. This offers an inno-
vative approach that differs from those previously published. Instead of
training an object detection model for generating objects that are highly
likely to be MFs, all the objects at the cell scale are segmented by SAM from
the ROIs and classified, improving the sensitivity of our model. Other
objects, including immune cells, cells not in mitosis, and artefacts generated
during the data preparation stage, can also be used to train the classifier,
improving its capability to reject false positives. We also compared
ResNetl8 to ResNet50, DenseNetl21, ConvNeXt, a transformer-based
advanced image classifier, and EfficientNet-B7, the classifier used by the top
1 team on the MIDOG 2022 leaderboard (Supplementary Table 1). Since the
classifier is for discriminating MFs from other cells, the input size is rela-
tively small (64 pixels x 64 pixels). Although more advanced larger models
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Fig. 3 | Detection performance. a The testing F1 scores in the human subsets of the
proposed framework. The scores are presented as individual data points (n =5
independent experiments), with yellow dashed lines marking the ensemble F1 scores
and red dashed lines marking the mean F1 scores reported by MIDOG++. b The
changes in the average F1 score as more mitotic figures (MFs) are included in
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detection results of the OMG-Net and the Retina-Net used in the MIDOG++- in
example regions. The green, yellow and red bounding boxes represent the true
positives, false positives and false negatives.

Table 3| F1 scores of OMG-Net and the top 3 models from the MIDOG 2022 challenge in the overlap subsets between the MIDOG

++ and MIDOG 2022 test sets

Tumour types OMG-Net TIA centre® TCS research® USZ/UZH Zurich®®
Melanoma 0.85 0.80 [0.74,0.84] 0.76 [0.66,0.80] 0.79 [0.74,0.83]
Cutaneous mast cell tumour® 0.87 0.83 [0.81,0.86] 0.76 [0.58,0.83] 0.73 [0.66,0.79]

#Canine Specimens.

show better performance in classifying more complex and diverse images,
they did not bring better performance on our task with a small input size for
binary classification.

Nuclei contours from the Segment Anything Model enhanced the
detection performance

As shown in Fig. 4a, the appearance of MFs is highly diverse, exemplified by
atypical MFs. The segmented mask may not fully cover the MFs or may
contain background noise. To refine the training process, we reviewed the
masks in the human subset of MIDOG++ (4435 in breast carcinoma, 2075
in melanoma and 2400 in neuroendocrine tumour), and adjusted the SAM
prompt when required. The impact of this manual curation was assessed by
comparing the F1 scores of the models only with RGB images (RGB Clas-
sifier), the score of the model with zero-shot SAM mask input (RGB-MO0

Classifier) as well as the score of the model with reviewed and refined masks
(RGB-M1 Classifier), with results shown in Fig. 4b.

Compared to the model without masks (RGB), the RGB-M0 model
yielded higher F1 scores for detecting MFs from breast carcinoma
(p=0.011) and melanoma (p = 0.001) but not for neuroendocrine tumours.
Upon further analysis, we noted that the fraction of masks requiring a
second adjustment was higher in neuroendocrine tumours (16%), com-
pared to breast carcinoma (8%) and melanoma (5%). As predicted, the
RGB-M1 Classifier showed the best performance and significantly out-
performed the RGB Classifier for breast carcinoma (p = 0.00018), mela-
noma (p = 0.00032) and neuroendocrine tumours (p = 0.021). We conclude
that the low-quality masks, which may include surrounding backgrounds or
exclude part of the nuclei (Fig. 4b), can impact the performance of the RGB-
MO. Further examples of failed prompts are shown in Supplementary Fig. 2.
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M1 Classifier). The scores are presented using violin plots with individual data
points (n = 10 independent experiments).

The accuracy of our models varied considerably across different
tumour types, with neuroendocrine tumours exhibiting significantly lower
performance, which was consistent with the results of the MIDOG++
algorithm. In parallel, we observed a higher proportion of low-quality masks
in neuroendocrine tumours (16%) compared to breast carcinoma (8%) and
melanoma (5%), suggesting that the quality of the training data may have
contributed to the disparities in model performance across these cancer
types. Even then, manual curation of the masks helped improve significantly
the model detection performance.

To decide which foundational model to select as a nuclei detector, we
evaluated published fine-tuned variants of SAM against the overall mask
quality for cells in histology images. Specifically, we tested the original
SAM, CellSAM*, MicroSAM* and CellViT" on the Lizard dataset,
which is the largest pan-cancer dataset with nuclei labels. We compared
the DICE of models in Supplementary Table 2 and visualised some
example regions segmented in Supplementary Fig. 3. Overall, SAM
achieved the highest DICE score (0.76 +0.13). Since the ground truth
contours in the Lizard dataset are from manual annotations and inter-
observer variability was observed, the imperfect DICE score does not
necessarily indicate limited segmentation quality, but merely a disagree-
ment with pathologists.

The lower score of CellSAM is likely due to it being fine-tuned on the
ViT-B architecture, which has lighter weights compared to the ViT-H
architecture used by OMG-Net. CellVit reported limited performance in
detecting inflammatory cells and connective tissues”, which suggests that
lower DICE in general nuclei segmentation was expected. The worst per-
formance of MicroSAM can be attributed to its lack of fine-tuning on H&E-
stained images and its broader training on a variety of microscopy images.
Besides, their preprint paper indicates that while the model performs well
when bounding boxes are provided as prompts, the quality of segmentation
decreases significantly during automatic mask generation.

Based on this analysis, we elected to keep the original SAM as the cell
detector in our study. Future work will include refining the SAM object-
proposal method for H&E-stained specific cell types.

Canine mitotic figures help to train the detection of human mitotic
figures

The merged and uniform dataset contains a significant proportion of canine
MFs with examples from both human and canine WSI displayed in Fig. 5a.
The inclusion of the canine data significantly improved the detection of MFs
in breast carcinoma (p =0.007) and neuroendocrine tumours (p =0.015)

and the F1 score in melanoma was also marginally increased
(p=0.080) (Fig. 5b).

Including mitotic-like figures and non-mitotic objects is key to
improving model precision

Besides MFs, MLFs were also labelled in the original dataset. MLFs represent
morphological structures that resemble MFs including pyknotic nuclei,
apoptotic bodies, and neutrophil polymorph amongst others, often mis-
classified as MFs. An example is displayed in Fig. 6a. Apart from MLFs and
tumour cells, the SAM-curated dataset contains other cells, including
immune cells, red blood cells and any objects at the cell level such as arte-
facts, segmented by the SAM during data curation to present the classifier
with a heterogeneous set of data. These were used in the training step to
augment the original dataset and provide the model with a diverse repre-
sentation of segmented objects. Figure 6b shows that the model including
non-MF objects (SAM-AUG) has significantly higher precision for all three
types of tumours (p = 0.008) compared to the model trained only with MFs
and MLFs (original). As expected, the recall remains unchanged, and the
overall F1 scores are improved (p = 0.007).

The remaining challenges in deploying computer-aided MF
detection approaches

Detecting MFs in rare tumours. Although a large number of studies
reported MF datasets or detection models for breast cancer, detecting
MFs in other tumour types, especially rare cancers remains challenging.
For instance, the detection scores for neuroendocrine tumours are
notably lower compared to that of other human tumours, which can be
caused by several reasons:

The number of annotations for neuroendocrine tumours is relatively
small (524) in the training data. All the annotations were from the MIDOG
++ and the images were scanned using the same scanner. The small
amount of data and the lack of diversity make it more challenging to develop
robust and accurate models.

We will keep working on increasing the size of the training datasets by
constantly collecting specimens from RNOH and collaborative institutions
and applying the data generation and curation pipeline to expand the size
and diversity of neuroendocrine tumours. By incorporating a larger and
more diverse set of annotated images, the model will be accurate and robust
in detecting MFs from neuroendocrine tumours.

1. The poor performance can also be attributed to the biological char-
acteristics of neuroendocrine tumours. Cell aggregation, where cells
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(2) Canine Mitotic Figures

Fig. 5 | Including the canine mitotic figures (MFs) for training improves the
detection. a Example of MFs in human and canine haematoxylin and eosin (H&E)-
stained sections. b The F1 scores of the models trained with only human data and
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with both human and canine data. The scores are presented using violin plots with
individual data points (n = 5 independent experiments).
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Fig. 6 | Including mitotic-like figures (MLFs) and non-mitotic objects for
training improves the detection. a Example of patches containing a mitotic figure
(MF) (left) and an MLF (right). The MFs and MLFs are masked in green (Original
data). The surrounding cellular components segmented by Segment Anything
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(SAM) are marked in light blue and are added to the MFs and MLFs (SAM-Aug
data). b The precision, recall and F1 scores of the model trained with the Original
data and the model trained with SAM-Aug data. The scores are presented using
violin plots with individual data points (n =5 independent experiments).

clump together, is often observed in neuroendocrine tumour speci-
mens, for which it is difficult to distinguish individual cells’ boundaries
and limit the quality of the nuclei masks. The heterogeneity of aggre-
gation also brings more diverse cell morphology, making it more
challenging to recognise and classify them correctly.

2. In our dataset, the images of neuroendocrine tumours frequently suffer
from poor quality, including issues like blurring, uneven staining, and
artefacts. Low-quality images can lead to increased false negatives or
false positives, as the model struggles to interpret the compromised
visual information.

To improve the quality of the WSIs used for training, standardised
protocols for slide preparation, staining and scanning will be deployed in
our future work. Meanwhile, we will implement quality control by
pathologists before selecting images for developing the model.

The limited number of cases but high degree of heterogeneity of rare
cancers such as STT and neuroendocrine tumours, complicates the acqui-
sition of ample and diverse data for training robust AT models. In this study,
we established the largest-to-date MF dataset for human STT. We are
committed to continuously expanding this dataset and refining our models
to enhance their accuracy and utility in sarcoma diagnosis. Meanwhile, we
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will also attempt to use semi-supervised learning approaches'™ to tackle the
challenge of insufficient size and diversity of data for rare subtypes.

Comparing the mitotic index identified by Al and by pathologists.
Clinically, the mitotic index is obtained by pathologists counting the
number of MFs within 10 HPFs. However, this process is subject to intra-
and inter-observer variability, which can significantly affect the con-
sistency and reliability of the measurements, bringing challenges to
aligning manual counts to the mitotic index given by AI-driven WSI
analysis. Standardised protocol is needed for comprehensively assessing
the accuracy and potential clinical impact of the AI mitotic index.

Clinical implementation of Al models for mitotic figure detection.
While Al-based models for detecting MFs have demonstrated excep-
tional performance in research settings, translating these advances into
clinical practice remains a challenge. The key issues include allocating
sufficient computational resources in the clinic, ensuring compliance
with clinical data regulation and receiving feedback and new data for
constant model improvement. Our future work also includes designing a
federated learning platform to facilitate the model refining, which allows
multiple institutions to expand the training data while keeping sensitive
datalocalised. We also aim to deploy reinforcement learning by including
pathologists to constantly correct the detection and give tumour type-
specific and image-specific feedback to enhance the model performance.

In conclusion, we have established a large-scale MF dataset by inte-
grating five open-source datasets acquired from multiple centres including
an in-house dataset of STT. Using the SAM-enhanced dataset, we employed
a novel two-step framework, OMG-Net, where SAM served as the object
detector followed by an adapted ResNetl8 as the MF classifier. This
approach improved the accuracy of MF detection from various human
tumours including breast carcinoma, neuroendocrine tumours and mela-
noma compared to existing state-of-the-art models. Future steps include a
head-to-head prospective assessment of this model with pathologists’ scores
for MFs before introduction into safe clinical practice.

Methods

Dataset

Ethical approvals. The data involved in the STMF dataset are collected
in the Royal National Orthopaedic Hospital (RNOH) NHS Trust under
the Health Research Authority (HRA) and Health and Care Research
Wales (HCRW) Approval. Integrated Research Application System
(IRAS) project ID: 328987. Protocol number: EDGE 161548. Research
Ethics Committee (REC) reference: 23/N1/0166. Informed consent was
obtained from all human participants. All ethical regulations relevant to
human research participants were followed.

Open-source datasets. We integrated five open-source datasets (ICPR,
TUPAC, CCMCT, CMC, MIDOG++), comprising 68,687 MFs from
eight different scanners and eight types of human and canine tumours.
The types of tumours studied and scanners are listed in Supplementary
Table 3. All the images were scanned in 40x magnification with a pixel
size of ~0.25 pym.

In-house dataset. We describe a workflow for utilising an anti-pHH3
antibody to specifically detect MFs and expand the dataset by active
learning (Fig. 1). The number of MFs in each diagnosis of STT's is listed in
Supplementary Table 4.

* pHH3-assisted MF detection: the pHH3 antibody employed
specifically detects the core protein histone H3 only when
phosphorylated at serine 10 (Serl0) or serine 28 (Ser28), thereby
identifying mitotic cells within a tissue sample”. We selected 94
archived slides and tissue blocks from STTs and prepared fresh H&E
tissue sections which were then scanned for generating our dataset.
These H&E-stained tissue sections were then de-stained after which
immunohistochemistry was performed using a rabbit monoclonal

(RM) hybridoma Serl0 pHH3 [BC37] (Company: BIOCARE
MEDICAL, Catalogue Number: ACI 31304, C, Dilution 1:100)*
and then counterstained with eosin. The masks of the MFs were
extracted from pHH3-immunolabelled WSIs by setting thresholds for
the RGB values and transferred to the same location on the matching
H&E-stained WSIs. Registration between the pHH3-immunolabelled
and H&E-stained WSIs was achieved by random sample consensus
(RANSAC)™ on both a WSI level and patch level. The contours and
positions of 7952 MFs (STMF-V0), were identified and validated by
pathologists reviewing the H&E and immunolabelled sections.
However, not all mitoses were identified by pHH3-labelling indicating
that the antibody was not entirely sensitive™.

¢ Active Learning: Although the identification of cells in mitosis by pHH3
can establish a dataset with a large number of MFs, it cannot identify
MLFs, and models trained only with IHC suffer from limited precision.
Active learning is required to augment the dataset with MLFs.

During the active learning process, pathologists corrected the image
labels given by a machine learning model and fed them back to re-train the
initial model, so that the model performance for the target task can be
continuously improved during the iteration of machine-generating and
human-labelling.

To expand the STMF-VO dataset, we trained an initial Mask-RCNN
model on it and applied the model to new WSIs for detecting MFs. The AI-
detected MFs were randomly assigned to six pathologists to be indepen-
dently labelled as ‘MF’, ‘not MF’ if the pathologist could confidently make a
decision, or ‘uncertain” when the morphological features were equivocal.
These equivocal MFs were reviewed by two senior pathologists. Other
structures such as apoptotic bodies were also labelled to create the final
dataset, STMF, with 8400 MFs and 5035 MLFs.

Data curation

The MFs were annotated using bounding boxes in the CCMCT, CMC and
MIDOG-+ datasets. However, the size of the boxes varies due to the lack of
standard annotation criteria. We hypothesised that the contours of nuclei
could provide extra information for classifying MFs, as the model would be
guided to focus on the most representative pixels of the nuclei rather than
the surrounding environment.

We use the bounding boxes provided in the CCMCT, CMC and
MIDOG++ datasets as prompts to generate the masks using SAM. To
ensure the quality of the automatically generated masks, we inspected
individual masks of the MFs from three types of human tumours in MIDOG
++. The percentage of masks amended following review is 8%, 5% and 16%
out of 4435 masks in breast carcinoma, 2075 in melanoma and 2400 in
neuroendocrine tumour, respectively. In total, only 8% of the masks
required a second inference of SAM using adjusted bounding boxes. Since
the cells can be distorted during the de-staining and pHH3 labelling process,
we also applied the SAM to the STMF using the outside boxes of the pHH3-
immunolabelled masks as prompts. The numbers of MFs and MLFs from
human and canine samples are shown in Fig. 1. Quality assurance was done
for masks of all the human samples, whereas the generation of masks in
canine sections was fully automated.

OMG-Net: a two-stage detection framework
The proposed framework consists of two steps:

* The SAM was applied to patches of 1024 x 1024 pixels from the WSIs
after background removal. This process is performed by analysing a
grayscale low-resolution version of the WSIs to filter out background
areas. Assuming the edges mostly contain background, the background
threshold is estimated based on the perimeter. The tissue pixel fraction
in each tile is then calculated based on the threshold to identify tiles
with enough tissue content. In the non-background tiles, 64 points
were evenly sampled along each dimension, totalling 4096 points used
as prompts per patch. The quality of the masks was predicted by two
factors, an Al-predicted Intersection over Union (AI-IoU) and a
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stability score. The Al-predicted IoU comes from an adjacent multi-
layer perceptron in the mask decoder section of SAM. The stability
score is the IoU between the binary masks obtained by thresholding the
predicted mask logits at high and low values. Only the objects with AI-
IoU scores and stability scores higher than 0.8 and areas between
2.25 um’ and 225 um’ were kept after filtering. The filtered masks were
then ranked by their AI-IoU scores. Non-maximum suppression was
used to remove duplicated masks.

* The objects generated were then classified by the second model, a
ResNetl8 pre-trained on ImageNet, as MFs or other objects. In
addition to taking a 3-channel RGB image, the mask of the object was
encoded by a convolutional layer and summed to the first
convolutional layer of the ResNetl8. Via this process, we retained
the ability to use pre-trained models while providing extra mask
information to the model.

Model development and testing

The framework was implemented using Pytorch and Pytorch Lightning and
was trained using a single NVIDIA GeForce RTX 3090 for 30 epochs with a
batch size of 8000. The learning rate was set up at 0.001, optimised by the

56

AdamW algorithm™ and cosine annealing scheduler™.

Training and validation. We trained the ResNet18 to classify MFs while
the SAM mask generator was not retrained. The SAM was applied to all
patches in the dataset after data curation, and the other objects sur-
rounding the targets were also segmented and included in the training
and validation data. The binary classifier is trained on two classes: (1)
MFs and (2) labelled MLFs and other cells or objects segmented by SAM.
In each training process, 90% of the data was used for training the model,
while the remaining 10% was used for validation. The training was
repeated five times using different random seeds to get five models with
different data splits.

Data augmentation. Colour and spatial augmentation were applied to the
training data to reduce the impact of the staining variation and increase
the robustness of the model. To achieve colour augmentation, RGB images
are deconvolved into H&E stains using the stain vectors proposed by
Ruifrok and Johnston”. The stain concentration perturbation scheme
introduced by Tellez et al.”* was used with a uniform sampling and ¢ =
0.14 on the deconvolved H&E channels prior to reconstructing RGB
images. Random horizontal flips (p = 0.4) was also used.

Test set and performance metrics. We used the same testing set pro-
vided by MIDOG++, which contains 2467 MFs from 105 sections of
three types of human tumours and four types of canine tumours. Pre-
cision, recall and F1 score were used to evaluate the performance of our
mitotic detection framework. They were calculated by

Precision — Nop
recision = —————
Nyp + Npp
N
Recall = —— 12
Nopp+ Npy

Precision - Recall
Precision + Recall

where Nyp, Npp and Ny represent the number of true positives, false
positives and false negatives, respectively.

Statistics and reproducibility

All statistical analyses were conducted using SciPy (v1.14.1). The
Mann-Whitney U test” was employed to compare classification scores
between two independent groups of experiments. Each experiment within

the groups was performed using k-fold cross-validation with 15% data used
for validation to reduce the variability associated with a single data split. The
scores of each group were presented as mean and standard deviation. The
number of experiments in each group and the exact p-values are reported in
the results section. All the p-values are two-sided and a p-value of less than
0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

All MF images and their SAM-dilated contours are available without
restriction via the Zenodo repository (https://doi.org/10.5281/zenodo.
14246170)® in accordance with the UKRI Common principles on research
data. The original images and annotations of the open-source datasets can
be found via their repositories: ICPR*: http://ludo17.free.fr/mitos_2012/
index.html. TUPAC®: https://tupac.grand-challenge.org/. CMC™: https://
github.com/DeepMicroscopy/MITOS_WSI_CMC. CCMCT*: https://
github.com/DeepMicroscopy/MITOS_WSI_CCMCT. ~ MIDOGH++"*"
https://github.com/DeepMicroscopy/MIDOGpp. Source data for all the
figures in the manuscript is provided in Supplementary Data 1. All other
data are available from the corresponding author upon reasonable request.

Code availability

The code for data generation and model implementation is provided on the
GitHub repository. https:/github.com/SZY1234567/OMG-Net. A fixed
version of the code is also available via the Zenodo repository (https://doi.
org/10.5281/zenodo.14246170)®. The original code for the SAM can be
found via their repository: https://github.com/facebookresearch/segment-
anything.
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