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Abstract 

Introduction  Ensuring examiner equivalence across distributed assessment locations is a priority within distributed 
Objective Structured Clinical Exams (OSCEs) but is challenging as examiners are typically fully nested within locations 
(i.e. no overlap in performances seen by different groups of examiners). Video-based Examiner Score Comparison 
and Adjustment (VESCA) is a recently developed method which uses video-based linking to compare and (poten-
tially) adjust for the effect of different groups of examiners within OSCEs. Whilst initial research on VESCA has been 
promising, the accuracy of the resulting adjusted scores is unknown. Given this, we aimed to investigate the accuracy 
of adjusted scores produced by VESCA under a range of plausible operational parameters.

Methods  Using statistical simulation, we investigated how: 1/proportion of participating examiners, 2/ number 
of linking videos, 3/baseline differences in examiner stringency between schools (i.e. whether examiners in School 
A are, on average, more stringent than the examiners in School B), 4/number of OSCE stations and 5/different degrees 
of random error within examiners’ judgements influenced accuracy of adjusted scores.

We generated distributions of students’ “true” performances across several stations, added examiner error, and simu-
lated linking through crossed video-scoring (as occurs in VESCA). We then used Many Facet Rasch Modelling to pro-
duce an adjusted score for each student which we compared with their corresponding original “true” performance 
score. We replicated this 1000 times for each permutation to determine average error reduction and the proportion 
of students whose scores became more accurate. Simulation parameters were derived from a real, summative, whole 
curriculum undergraduate Year 3 OSCE at Keele University School of Medicine.

Results  We found that in all conditions where no baseline difference existed between groups of examiners, score 
adjustment only minimally improved or even worsened score accuracy. Conversely, as the size of baseline differences 
between schools increased, adjustment accuracy increased, reducing error by up to 71% and making scores more 
accurate for up to 93% of students in the 20% baseline-difference condition.
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Conclusions  Score adjustment through VESCA has the potential to substantially enhance equivalence for candidates 
in distributed OSCEs in some circumstances, whilst making scores less accurate in others. These findings will support 
judgements about when score adjustment may beneficially aid OSCE equivalence.

Keywords  Equivalence, Simulation, Many Facet Rasch Modelling

Introduction
Rater-based assessments are well known to suffer from 
a range of construct-irrelevant influences, such as rater 
stringency, range restriction and bias [1]. Within simu-
lated performance testing in medical education (such as 
objective structured clinical exams (OSCSs)), a further 
problem occurs: owing to student numbers, assessments 
are typically distributed across multiple parallel tracks 
of (ostensibly) the same exam, or indeed across widely 
spaced geographical locations. This raises the potential 
that examiners in different locations may hold systemati-
cally different frames-of-reference when judging perfor-
mance [2], for example if local practice norms, resources 
[3] or conceptions of competence [4] vary. Whilst a few 
studies have illustrated this potential [5, 6] it is rarely 
studied as assessment designs are typically fully nested 
meaning these effects are confounded with student ability 
making them challenging to explore. Inter-site examiner 
variability (when present) can be considered a key threat 
to the “scoring” domain of Kane’s validity model [7] as 
it adds construct-irrelevant variance to scores. As scor-
ing is the first step in the inferential chain of this validity 
model, it would be expected to influence all subsequent 
inferences and so is critical to all further interpretation of 
assessment scores.

Examiner variability in rater-based assessments has 
typically been addressed through a mixture of assess-
ment deign [8], examiner training [9] and consideration 
of different rating formats, however neither reformulat-
ing marksheets [10–12] nor rater training [13, 14] have 
achieved large improvements in examiner variability. 
Psychometric monitoring of assessments can be per-
formed with simple estimates of reliability (e.g. Cron-
bach’s alpha [15]) or generalizability theory [16], however 
neither of these techniques is suited to detecting inter-
site differences in fully nested OSCE designs for the rea-
sons already described.

Recently Yeates et  al. [17] have developed a method 
called video-based examiner score comparison and 
adjustment (VESCA) which uses video-based linking to 
overcome this challenge, but the accuracy of the score 
adjustments it makes are unknown. VESCA employs 
three sequential phases: 1/ a sample of candidates are 
videoed on each of the tasks (known as “stations”) within 
the OSCE; 2/ all examiners, in addition to judging live 
candidates, are asked to score a small number of videos 

of student performances from the station they examined; 
3/ the partial crossing created by the video-scores is used 
to link different examiner groups (“examiner-cohorts”) 
within statistical analyses to compare and equate for 
examiner effects. Notably, therefore, whilst examiners 
from different locations all score the same videos of stu-
dent performances, the scores they allocate to videos do 
not directly contribute to the scores for those students 
but are instead used to model examiner differences which 
can (if desired) be used to calculate adjusted scores for 
students based on the measured examiner differences. 
Yeates et al. have used VESCA within a number of stud-
ies, in each case showing differences between the esti-
mates of different examiner-cohorts ranging from 5.7% 
[17], 6.9% [18] to 7.1% [19]. Resulting score adjustments 
suggested that a proportion of students would vary their 
pass/fail classification (up to 16% depending on cut score 
[19]) or their rank position [18]. Critically, as the authors 
acknowledge in each paper, these observations depend 
on a strong assumption that the adjusted scores pro-
duced by VESCA (generally through Many Facet Rasch 
Measurement) are indeed more accurate representations 
of candidates’ true performance than their raw scores. 
Yeates et  al. [20] used subset re-sampling from Yeates 
et al.’s 2021 data to explore this potential. By varying the 
number of linking videos per participating examiner and 
the proportion of examiners who scored videos, they 
showed that candidates’ score adjustments (i.e. the differ-
ence between their adjusted and raw scores) were sensi-
tive to changes in both of these parameters. The purpose 
of this current study is to extend that work, by deter-
mining the accuracy of the adjusted scores produced by 
VESCA, and to explore how that accuracy varies under a 
plausible range of different operational parameters.

Several parameters could conceivably influence the 
accuracy of score estimates produced by VESCA. As 
Yeates and McCray [20] have previously shown that 
firstly examiner participation rates and secondly the 
number of linking videos scored by each examiner can 
both influence score adjustments, these variables seem 
germane to understanding VESCA’s accuracy. Theo-
retically, we would expect that with greater amounts 
of linking (i.e. more videos per station; greater exam-
iner participation), the Many Facet Rasch model would 
develop more accurate estimates of examiner-cohort 
effects as the impact of random variability on these 
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estimates would be reduced. Third, OSCEs frequently 
vary in their number of constituent stations, which 
has a significant influence on reliability [21]. Conse-
quently, station numbers could influence VESCA’s 
accuracy. Fourth, Many Facet Rasch Modelling can 
adjust for systematic variations between examiners, but 
prior research has shown that a significant proportion 
of score variance in OSCEs is random or unexplained 
[22]. As a result, determining the impact of different 
levels of random variability on VESCA’s score adjust-
ments is important.

Lastly the express purpose of VESCA is to compare 
examiners’ influence across distributed sites where exam-
iners and students are nested together (i.e. no crosso-
ver between the candidates seen by different groups of 
examiners). Prior research has suggested that inter-site 
variations may account for up to 16–17% of score vari-
ance in some instances [5, 6]. Further work has suggested 
that examiners frame of reference relates to the typi-
cal standard of performance to which they are exposed 
[23]. Consequently, it is conceivable that location A could 
have highly capable candidates and stringent examiners, 
whereas location B could have less capable candidates 
and lenient examiners. Notably, whilst examiner equiva-
lence would be highly different between these locations, 
unadjusted OSCE scores could be very similar. We refer 
to this potential systematic difference in examiner strin-
gency between different institutions effect as “examiner 
baseline differences”. As its ability to adjust for these 
effects is critical to the intended use of VESCA, we addi-
tionally sought to understand the influence of baseline 
differences on the accuracy of VESCA score adjustments.

To operationalise “accuracy” in practical terms we con-
sidered 1/ the proportion of candidates whose scores 
became more accurate and 2/ the reduction in total error 
variance in each scenario. We then asked the following 
research questions:

1.	 How is the accuracy of score estimates produced by 
VESCA influenced by:

	 a.	 The number of linking videos per examiner (0,  
       2,4,6, or 8 linking videos)
b.	 The proportion of examiners who participate in 

scoring videos (50%, 65%, 80%, 100%)
c.	 The combination of these 2 effects

2.	 How is the accuracy of score estimates produced by 
VESCA influenced by:

	 a.	 Differing extents of baseline differences in examiner  
       stringency between different sites (0%, 5%, 10%, 20%)

b.	 The number of stations in the OSCE (6, 12, or 18 
stations)

c.	 The combination of these two effects

3.	 How is the accuracy of score estimates produced by 
VESCA influenced by reduction in the degree of ran-
dom variability in examiners’ scoring (random error 
divided by 2, by 4, and by 8)

We considered one further issue as an ancillary 
research question. Given that some degree of impreci-
sion is inevitable in all statistical modelling, it seemed 
plausible that the accuracy of adjusted scores may relate 
to the size of the adjustment being made, i.e. large adjust-
ments may be more accurate than small adjustments, 
because the ratio of size of the adjustment to the size of 
the imprecision may be greater (i.e. a greater signal to 
noise ratio). This may enable a score adjustment thresh-
old to be determined above which score adjustments 
reach greater accuracy. We examined this within all data 
produced by studies 1–2, by asking:

4.	 How does the proportion of candidates whose scores 
become more accurate vary for different sizes of 
score adjustment for each of the parameters investi-
gated within RQs 1–2.

Methodology
Simulated data generation
We simulated the operation of VESCA through three 
sequential processes (see Fig. 1), by simulating the com-
bined effect of several known influences on OSCE scores. 
All parameter estimates were empirically-derived from 
analysis of prior data from a study by Yeates et al.’s [19] in 
which VESCA had been used in a real OSCE. The OSCE 
in Yeates et  al.’s study was a 12 station, in-person, sum-
mative undergraduate OSCE for year 3 (out of 5) students 
(n = 113) who were in their first year of predominantly 
clinically-based learning at Keele University school of 
Medicine. The OSCE sampled the whole curricular con-
tent of that year of study, involving a broad-based range 
of case presentations from medicine, surgery, general 
practice, psychiatry and child health. Stations inte-
grated information gathering, clinical reasoning, physical 
examination skills, procedural skills, patient manage-
ment and communication skills and were scored via the 
GeCoS domain-based rating scale [24, 25]. Participating 
examiners additionally scored 4 videos of performances 
of students on the station which they examined (but 
not necessarily students they had encountered in the 
live exam) to produce partial crossing in the data. Video 
score data comprised 17.7% of the total data. We derived 



Page 4 of 12Yeates and McCray ﻿BMC Medical Education         (2024) 24:1466 

estimates of range of student performance from the over-
all data in Yeates et al.’s study and estimates of examiner 
variability from the crossed video score data.

Firstly, we modelled the “true” performance of a range 
of students on each station in an OSCE using a sim-
ple sum-score approach. Data were generated using the 

GeCos scale [24] which combines ratings on several 
performance domains to give a scale minimum of 6 and 
maximum of 27. To do this we randomly generated a dis-
tribution of students’ overall ability (M = 19.47 out of 27; 
SD = 1.13 (5.4% of scale)) and then generated a range of 
station difficulties (SD 1.52 (7.2% of scale)) and an idi-
osyncratic studentxstation interaction (SD = 1.71 (8.1% 
of scale)). We combined these, using a linear function to 
produce students’ simulated “true” performance on each 
station in the OSCE.

Secondly, we added examiner variability to these scores 
by creating a distribution of examiners (SD = 1.40 (6.7% 
of scale)). Examiners were randomly allocated to a sta-
tion and to 1 of 4 examiner cohorts (i.e. distinct groups 
of examiners) such that each students’ “true” scores were 
exposed to a unique group of examiners stringencies, and 
the same examiner stringency applied to all students for a 
given station within a cohort. As examiners did not change 
station, we could not model examinerxstation effects. Next, 
we simulated an additional random error term (SD = 2.35 
(11% of scale)) to capture additional unmodeled variation 
in examiners’ scoring (for example due to the time of day 
[26], contrast [27] or halo [28] effects from the previous 
candidates, examinerxstudent interactions, and any other 

unknown sources of variability). We summed the students’ 
“true” performance score on each station, with the exam-
iner stringency and the additional random term to give the 
student’s “observed score” on each station in the OSCE – 
the scores they would have actually received in the exam. 
Formally, generation of the observed students’ scores can 
be expressed as:

Where: β 0 the overall model intercept (i.e., average 
student score in the dataset), u1 station difficulty i , u2 stu-
dent ability k , u3 the interaction between student k and 
stationi, u4 examiner j stringency, and ǫ ijk is the residual 
error.

Thirdly, we mimicked the influence of the VESCA pro-
cedure by randomly selecting a specified number of stu-
dent performances on each station and nominating these 
as “video performances”. A proportion of examiners were 
then randomly selected to “participate” (see RQ 3) and 
the stringency values of these examiners + the random 
error term were applied to the relevant “video perfor-
mances” for the station they had examined. This created 
an additional set of crossed “video scores” for each sta-
tion as would be collected by using VESCA (i.e. the same 
“video performances” were scored by multiple exam-
iners from different examiner cohorts). This created a 
dataset comprised of students’ “live” observed scores on 
each station in the OSCE, and further observed video 
scores allocated to station-specific videos by examiners. 
All data generation was performed via a flexible function 
written in R [29]. The function always has four cohorts 
of examinees but allows the manipulation of i) the num-
ber of linking videos, ii) the min and max of the score 

Scoreijk = β 0+u1Stationi + u2Studentk + u3Student : Stationik+ u4Examinerj+ǫ ijk

Fig. 1  A conceptual diagram of the data simulation process
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range, iii) the numbers of stations, iv) the number of 
candidates, v) the number of cohorts, vi) the number of 
examiners, vii) the mean ability of a candidate, viii) the 
standard deviation of candidate scores, ix) the standard 
deviation of station difficulties, x) the standard deviation 
of examiner stringencies, xi) the standard deviation of 
a station by candidate interaction (i.e., the error in the 
‘performance score’) and xii) the expected proportion of 
examiners who would participate in the linking process. 
See Fig. 1 for details.

The Many‑Facet Rasch model
As in the procedures used by Yeates et al. [19], these data 
were then analysed using Many Facet Rasch Modelling, 
in FACETS [30] to produce an adjusted overall (i.e. aver-
age) score for each student (see Fig. 1). The Many-Facet 
Rasch Model (MFRM) [31] expands the simple two 
parameter Rasch model [32], which focuses on item dif-
ficulty and student ability, to include additional facets to 
model effects such as rater leniency, schools, locations, 
etc. A simple, three facet model could be expressed as:

Where, Pnijk is the probability that person n, on item i 
by judge j, is given a rating of k. Pnij(k−1) is the probability 
that person n, on item i by judge j, is given a rating of k-1, 
Bn is the ability measure of the test taker n, Di is the ‘dif-
ficulty’ of test item i, Cj is the severity of rater j, and Fk
relates to the probability of being assessed in category k 
of item I, rather than category k-1. Applying this within 
our study, the specific model used was:

Which models the probability of student n responding 
to station i, examined by an examiner in examiner cohort 
j being rater in category k on item i, rather than category 
k-1.

We ran each simulation 1000 times in order to obtain 
stable estimates. As this was computationally demand-
ing, simulations were run via 16 virtual machines on a 
16-core server each linking R to facets using the R pack-
age “immer” [33].

Simulations
Several simulations were conducted to mimicking the 
VESCA method in various contexts. Unless otherwise 
specified, simulations modelled 12 stations, 60 students 
in 4 cohorts with 48 examiners, with an assumed 80% of 
examiners participating, and 4 linking videos.

log
Pnijk

Pnij(k−1)

= Bn − Di − Cj − Fk

log

(

Pnijk

Pnij(k−1)

)

= Studentn − Stationi − Cohortj − Fk

Study 1
The first study addressed RQ1 by modifying the number 
of linking videos (0, 2, 4, 6 and 8) and the expected pro-
portion of examiners to consent to providing linking data 
(50%, 65%, 80% and 100%). This included modelling “typ-
ical” conditions (i.e. Yeates et al. 2021 [19]) which com-
prised 4 linking videos and 80% participating examiners. 
No baseline differences between schools were modelled 
in study 1. All permutations of parameter values were 
simulated for a total of 5 (range of linking videos) x 4 
(range of examiner participation rates) = 20 sets of 1000 
simulations for each unique pair of values.

Study 2
The second study addressed RQ2, by looking at the effect 
of changing the number of stations [6, 12, 18] and the 
degree of site-related baseline difference in examiner 
stringency / student leniency (0%, 5%, 10%, 20%) – see 
last paragraph of background for definition. Baseline dif-
ferences were modelled selecting 2 examiners-cohorts as 
“school A” and 2 examiner cohorts as “school B” and then 
adding or subtracting the relevant percentage score to 
the students and examiners coefficients for each school. 
We assumed that examiner stringency was completely 
negatively correlated with student ability (i.e., as students 
became more able, examiners were more stringent and 
thus the mean expected scores between sites would be 
equal). All possible combinations of parameter values 
were simulated for a total of 3 (numbers of stations) x 4 
(degrees of baseline difference) = 12 sets of 1000 simula-
tions for each unique pair of values.

Study 3
The third study examined RQ3 by reducing the size of 
the overall residual error term on the performance of 
the VESCA linking model. This was done by dividing the 
error term by 2 (error/2 – i.e. 50% of error in prior stud-
ies); by 4 (error/4, 25% of the error in prior studies) or by 
8 (error/8, 12.5% of the error in prior studies). The objec-
tive of this study was not to investigate a plausible real-life 
situation (as reducing the residual error is a very difficult 
to achieve) but to understand the impact that this residual 
score error was having on the functioning of VESCA.

Measurement of performance
Having generated data using these parameters and sub-
sequently obtained FACETS estimates of each students’ 
adjusted score, we used them to determine accuracy of 
the estimates.

To do this, we calculated three variables for each stu-
dent, for all 1000 iterations of each permutation of each 
study:
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A.	Observed Score Error: The mean absolute difference 
(MAD) of the observed score – the performance 
score. This gave the residual error of each student’s 
observed score, from their “true” score, prior to 
adjustment.

B.	 Adjusted Score Error: The mean absolute difference 
(MAD) of the adjusted score – the performance 
score. This gave the residual error of each student’s 
score, from their “true” score, after adjustment via 
the VESCA method.

	 For the VESCA method to show utility, we would 
expect the adjusted scores to be closer to the “true” 
scores than the observed scores. Lastly, we calcu-
lated:

C.	Score Adjustment: The mean absolute difference of 
the adjusted score – the observed score.

This gave the size of the adjustment made to each stu-
dent’s score using the VESCA method.

We then calculated the first of our dependent vari-
ables: the proportion of students whose adjusted score 
became more accurate than their observed score (for 
brevity, termed “pAcc”). This was defined as the pro-
portion of students for whom “adjusted score error” < 
“observed score error” (i.e. VESCA score adjustment 
had resulted in a score nearer to their “true” perfor-
mance score).

For each permutation of each study, we then calculated:

1.	 The mean of all students “observed score error”
2.	 The mean of all students “adjusted score error”
3.	 The ratio of mean “adjusted score error”: mean 

“observed score error” (i.e. 1. / 2.)

This demonstrated, on average, how much score accu-
racy changed for each permutation in each study. For 
brevity, we term this the “error ratio” (ErR), noting that 
values below 1 indicated improved accuracy and values 
above 1 indicated reduced accuracy.

To address RQ4 (how does the proportion of candi-
dates whose scores become more accurate vary for dif-
ferent sizes of score adjustment), we categorised each 
students’ data in each permutation of each study, based 
on the size of the score adjustment they received, using 
categories of score adjustment (expressed as a percent-
age of the assessment scale) of: [0–1%), [1–2%), [2–3%), 
[3–4%), [4–5%), [5–6%), [6–7%), [7–8%), [8–9%), (> 9%). 
Next, we further categorised students based on the 
extent of change in the accuracy of their adjusted scores 
compared to their observed scores (i.e. how much more 
or less accurate their adjusted score became), using cat-
egories also based on percent of the assessment scale of 
(<−6%), (−6%—4%], (−4%—−2%], (−2%—0%], [0–2%), 

[2—4%), [4—6%), (> 6%). We then tabulated these results 
for inspection. To aid categorisation of these findings, we 
used a target of 80% of students’ scores becoming more 
accurate in order to define whether a useful threshold 
could be established.

Results
Data were generated in 35 separate simulations, result-
ing in 25,200,000 “performance” scores (i.e. scores for 
2,100,000 students on an average of 12 stations).

Research question 1
How is the accuracy of VESCA score estimates influ-
enced by:

a.	 The number of linking videos per examiner (0, 2,4,6, 
or 8 linking videos)

b.	 The proportion of examiners who participate in scor-
ing videos (50%, 65%, 80%, 100%)

c.	 The combination of these 2 effects

These questions were addressed by study 1. The accu-
racy of adjusted scores across all parameters modelled 
in this study were low. Notably, this study assumed that 
there were no baseline differences between examiners 
in different sites. Error ratio (ErR) values ranged from 
a worst case 1.22 (i.e. adjusted scores contained 22% 
more error than observed scores) for 2 linking videos, 
with 50% examiner participation, to a best case of 0.94 
(i.e. score adjustment removed 6% of the error in the 
observed scores) for 8 linking videos with 100% examiner 
participation. The proportion of students whose scores 
became more accurate (pAcc) as a result of adjustment 
corresponded closely, ranging from pAcc = 0.44 (44% of 
students’ scores became more accurate; 56% of students’ 
scores became less accurate) for 2 linking videos / 50% 
examiner participation, to pAcc = 0.53 (53% of students’ 
scores became more accurate) for 8 linking videos / 100% 
examiner participation. A detailed breakdown of all per-
mutations of these parameters can be seen in Table 1.

Accuracy of the adjusted scores was independently 
influenced by both the number of linking videos and 
the proportion of participating examiners. Chang-
ing the number of linking videos per examiner (whilst 
averaging across all of the included categories of exam-
iner participation, i.e. keeping this constant) gave error 
ratios for 0 video = 1.03, 2 videos = 1.13, 4 = 1.05, 6 = 1.02, 
8 = 1.00, with corresponding proportions of students 
seeing increased score accuracy (pAcc) values of 0 vid-
eos = 0.48, 2 videos = 0.45, 4 = 0.48, 6 = 0.49, 8 = 0.50 
respectively. Notably, therefore, the accuracy of adjusted 
scores was reduced (compared to no linking) by having 
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2 linking videos per examiner, but then progressively 
slowly increased for larger number of linking videos.

Changing the proportion of participating examiners 
(whilst averaging across all of the included categories of 
linking videos, thereby keeping those constant) showed a 
more linear pattern, giving error ratios for 50% of exam-
iners = 1.11, 65% of examiners = 1.06, 80% = 1.02 and 100 
of examiners = 0.99. Corresponding proportions of stu-
dents whose scores became more accurate (pAcc) were 
50% of examiners = 0.45, 65% examiners = 0.47, 80% = 
0.49 and 100% = 0.51 respectively.

Research question 2
How is the accuracy of VESCA score estimates influ-
enced by:

a.	 Differing extents of baseline differences in examiner 
stringency between different sites (0%, 5%, 10%, 20%)

b.	 The number of stations in the OSCE (6, 12, or 18 sta-
tions)

c.	 The combination of these two effects

These questions were addressed by study 2. The 
accuracy of adjusted scores varied substantially in this 
study. Error ratio (ErR) values ranged from a worst case 
1.42 (i.e. adjusted scores contained 42% more error than 

observed scores) for 0% baseline difference in examiner 
stringency, with 18 OSCE stations, to a best case of 0.29 
(i.e. score adjustment removed 71% of the error in the 
observed scores) for 20% difference in baseline exam-
iner stringency with 12 OSCE stations. The proportion 
of students whose scores became more accurate (pAcc) 
as a result of adjustment showed a corresponding pat-
tern, ranging from pAcc = 0.37 (only 37% of students’ 
scores became more accurate for 0% baseline difference 
and 18 OSCE stations, to pAcc = 0.93 (93% of students’ 
scores became more accurate) for 20% baseline differ-
ence and 18 OSCE stations, with a very similar finding 
(pAcc = 0.92) for 20% baseline difference and 12 OSCE 
stations. A detailed breakdown of all permutations of 
these parameters can be seen in Table 2.

Accuracy of the adjusted scores showed different 
relationships with the baseline difference in examiner 
stringency and the number of OSCE stations. Changing 
the baseline difference in examiner stringency (whilst 
averaging across the 3 different numbers of OSCE sta-
tions, i.e. keeping this parameter constant) gave error 
ratios for 0% baseline difference = 1.15, 5% baseline dif-
ference = 0.93, 10% = 0.64, and 20% = 0.34 with cor-
responding proportions of students seeing increased 
scores accuracy (pAcc) values of at 0% baseline dif-
ference = 0.45, 5% = 0.54, 10% = 0.71 and 20% = 0.90 

Table 1  Influence of number of linking videos per examiner and proportion of participating examiners on adjusted score accuracy

Number of Linking 
Videos per Examiner

Proportion of 
participating 
examiners

Mean Error in 
Observed scores 
(SD)

Mean Error in 
Adjusted Scores 
(SD)

Error ratio Proportion of students’ whose scores 
became more accurate through 
adjustment

0 50 0.603 (0.46) 0.623 (0.47) 1.03 0.48

0 65 0.605 (0.46) 0.619 (0.47) 1.02 0.48

0 80 0.605 (0.46) 0.618 (0.47) 1.02 0.49

0 100 0.600 (0.45) 0.618 (0.47) 1.03 0.48

2 50 0.597 (0.45) 0.728 (0.56) 1.22 0.42

2 65 0.587 (0.45) 0.676 (0.52) 1.15 0.44

2 80 0.588 (0.45) 0.643 (0.5) 1.09 0.46

2 100 0.589 (0.45) 0.612 (0.47) 1.04 0.48

4 50 0.584 (0.45) 0.661 (0.52) 1.13 0.44

4 65 0.580 (0.45) 0.618 (0.48) 1.07 0.47

4 80 0.579 (0.45) 0.592 (0.46) 1.02 0.49

4 100 0.579 (0.45) 0.565 (0.44) 0.98 0.52

6 50 0.573 (0.44) 0.625 (0.49) 1.09 0.46

6 65 0.569 (0.44) 0.586 (0.46) 1.03 0.48

6 80 0.570 (0.45) 0.563 (0.44) 0.99 0.50

6 100 0.563 (0.45) 0.538 (0.43) 0.96 0.52

8 50 0.567 (0.44) 0.614 (0.48) 1.08 0.46

8 65 0.563 (0.45) 0.569 (0.45) 1.01 0.49

8 80 0.557 (0.44) 0.544 (0.43) 0.98 0.51

8 100 0.556 (0.45) 0.524 (0.42) 0.94 0.53
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respectively. Consequently at 0% baseline difference in 
examiner stringency, score adjustment made scores less 
accurate, whereas at 20% baseline difference in exam-
iner stringency, 66% of error was removed and 90% of 
students’ scores became more accurate.

Changing the number of stations in the OSCE (whilst 
averaging across all levels of baseline difference in exam-
iners stringency, thereby keeping those constant) gave 
error ratios for 6 OSCE stations of 0.76, 12 stations of 
0.68 and 18 stations of 0.87. Corresponding propor-
tions of students whose scores became more accurate 
(pAcc) were 6 stations = 0.64, 12 stations = 0.69, and 18 
stations = 0.62. Consequently, these different numbers 
of OSCE stations produced a U-shaped influence on 
adjusted score accuracy, with adjustments made from 
an OSCE with 12 stations showing greater accuracy than 
the score adjustments made from either a 6 or 18 station 
OSCE. Notably, however, the extent of error in observed 
scores for 18 stations (i.e. the amount of error contained 
in the unadjusted scores produced by examiners) is lower 
than for 12 stations (3rd column Table 2), so this obser-
vation may arise from an interaction of the effectiveness 
of score adjustment with the amount of error originally 
present.

Research question 3
How is the accuracy of score estimates produced by 
VESCA influenced by reduction in the degree of ran-
dom variability in examiners’ scoring (random error 
divided by 2, by 4, and by 8).

This question was addressed by study 3. As in study 
1, it was performed with an assumption of 0% baseline 
difference between sites, and used standard param-
eters (12 station, 4 linking videos and 80% examiner 

participation). Accuracy of adjusted scores increased 
progressively as the amount of random error was 
reduced. Error ratios (ErR) for the usual extent of ran-
dom examiner error = 1.02, half usual random exam-
iner error (err/2) = 0.86, one quarter random error 
(err/4) = 0.69, and one eighth usual random examiner 
error (err/8) was 0.59. corresponding proportions of 
students whose scores became more accurate were: 
usual examiner error = 0.49, err/2 = 0.56, err/4 = 0.62, 
err /8 = 0.66. Consequently, whilst reducing the degree 
of modelled random error within examiners’ scor-
ing increased accuracy, a very substantial reduction in 
examiners’ random error (one eighth its usual value) 
produced a moderate increase in accuracy (41% reduc-
tion in error; 66% of students’ scores became more 
accurate). A detailed breakdown of these data are avail-
able in Table 3.

Research question 4
How does the proportion of candidates whose scores 
become more accurate vary for different sizes of score 
adjustment for each of the parameters investigated 
within RQs 1–2.

This study produced 32 tables of tabulated results. 
These findings, along with summary text and further 
details of how they were calculated, are presented in 
appendix 1. In summary, when there was no baseline dif-
ference between sites (i.e. study 1) the findings did not 
demonstrate a threshold for any of the studied parame-
ters beyond which the target of pAcc > 0.8 was achieved. 
Notably the vast majority of adjustments made in study 
1 were comparatively small. When larger baseline dif-
ferences existed (10–20% baseline difference, see study 
2) adjustments were typically larger, with a majority 

Table 2  Influence of stations in the OSCE and degree of baseline difference in examiner stringency on adjusted score accuracy

Degree of baseline 
difference between school 
(% of scale)

Number of 
Stations in 
OSCE

Mean Error in 
Observed scores 
(SD)

Mean Error in 
Adjusted Scores 
(SD)

Error ratio Proportion of students’ whose scores 
became more accurate through 
adjustment

0 6 0.814 (0.63) 0.829 (0.64) 1.02 0.49

0 12 0.579 (0.45) 0.592 (0.46) 1.02 0.49

0 18 0.475 (0.37) 0.674 (0.52) 1.42 0.37

5 6 0.907 (0.7) 0.828 (0.64) 0.91 0.54

5 12 0.712 (0.54) 0.592 (0.46) 0.83 0.59

5 18 0.635 (0.47) 0.673 (0.52) 1.06 0.49

10 6 1.172 (0.85) 0.825 (0.64) 0.70 0.67

10 12 1.056 (0.68) 0.589 (0.46) 0.56 0.75

10 18 1.026 (0.59) 0.67 (0.52) 0.65 0.70

20 6 2.012 (1.07) 0.82 (0.64) 0.41 0.85

20 12 1.996 (0.83) 0.586 (0.45) 0.29 0.92

20 18 1.998 (0.72) 0.667 (0.52) 0.33 0.93
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exceeding 9% of the assessment scale for 20% base-
line differences. Thresholds in the region of 3–4% of 
the assessment scale could be set for scenarios where 
a baseline difference of 20% existed, to achieve a target 
of pAcc > 0.8. Notably, therefore adjustment thresholds 
depended on the degree of baseline difference rather than 
an absolute value of the adjustment threshold.

Discussion
Summary of results
This study has produced several novel insights into the 
accuracy of score adjustments produced by VESCA 
under a range of plausible OSCE conditions. As VESCA 
is an example of adjusting raters’ scores by MFRM based 
on limited linking, these findings may also have broader 
applicability to rater-based judgements more generally. 
Firstly, our study has shown that VESCA can substan-
tially increase score accuracy when there are large dif-
ferences between the average standard of examiners in 
different sites. Under typical operating conditions (i.e. 12 
stations, 4 linking videos per examiners, 80% examiner 
participation), when there was 20% baseline difference 
between the stringency of examiners at different sites, 
score adjustment became very much more accurate than 
unadjusted scores, reducing error by 59–73% and result-
ing in 85–93% of students’ scores becoming more accu-
rate. Consequently, VESCA was able to have a substantial 
benefit in this scenario.

Conversely, in the absence of systematic differences 
between parallel groups of examiners, score adjustment 
overall made scores less accurate than the observed 
scores produced by examiners, with an increase in the 
total error and only a minority of students’ scores becom-
ing more accurate. This latter finding is surprising and 
unexpected. Next, this study has shown that the accuracy 
of adjusted scores is indeed sensitive to the theorised 
parameters of the number of linking video per examiner, 
and the proportion of examiners who participate, but 
within what we expect to be reasonable limits, increas-
ing these parameters only modestly increased the accu-
racy of the resulting score adjustments. Lastly, the study 
has shown that the accuracy of adjusted scores can be 
increased by reducing examiners’ random error variabil-
ity, but that a substantial reduction in this error (i.e. 1/8th 

its usual extent) is required to produce a moderate (41%) 
reduction in error, making 66% of students’ scores more 
accurate.

Theoretical considerations
Whilst Many Facet Rasch Modelling can be used for a 
number of purposes, one of its explicit intended appli-
cations is to place disparate groups of examiners on a 
common scale (or within a single frame of reference) 
by linking and equating for their differences [31]. Con-
sequently, whilst VESCA’s processes within OSCEs are 
comparatively novel, the process of using limited linkage 
to equate for examiner differences using Many Facet Rash 
Modelling is not. Indeed, established guidance on using 
Many Facet Rasch Modelling provides consideration of 
different linking patterns, including more sparse link-
age patterns than we employed in this study [34]. None 
of this material suggests that there are circumstances in 
which adjusted scores produced by FACETS will become 
less accurate than the original scores, so some readers 
may be surprised to see that this occurred to some extent 
in all of our scenarios and was very frequent in all situa-
tions where there were no baseline differences between 
sites. This may be because the extent of random variance 
in OSCEs is comparatively large [22]. From a theoretical 
perspective, it appears that Many Facet Rasch Modelling 
becomes increasingly robust when there are progressively 
larger systematic differences to account for, and when 
there is less random error. Conversely, stronger linking 
through greater proportions of examiner participation 
or more linking videos produces on modest improve-
ments in accuracy. Essentially, Many Facet Rasch Mod-
elling (and by extension VESCA) is useful for adjusting 
when systematic differences are substantially larger than 
random variability but performs poorly when systematic 
differences are small relative to random error. Critically, 
therefore, practitioners who seek to use it to adjust scores 
need to know when there are large systematic differences 
between groups of examiners.

Practical recommendation
Establishing the extent of systematic difference between 
sites or examiner-cohorts is in most conventional dis-
tributed OSCEs is extremely difficult, as observed scores 

Table 3  Influence of reduction in examiner random error on adjusted score accuracy

Reduction in error Mean Error in Observed 
scores (SD)

Mean Error in Adjusted 
Scores (SD)

Error ratio Proportion of students’ whose scores 
became more accurate through 
adjustment

Error / 2 0.375 (0.29) 0.323 (0.25) 0.86 0.56

Error / 4 0.302 (0.24) 0.207 (0.16) 0.69 0.62

Error / 8 0.28 (0.22) 0.166 (0.13) 0.59 0.66



Page 10 of 12Yeates and McCray ﻿BMC Medical Education         (2024) 24:1466 

confound the combined influence of student ability and 
examiner stringency, meaning that observed scores may 
mask differences in examiner stringency, or conversely 
that observed differences may arise due to genuine dif-
ferences in students’ performance. By asking examiners 
to score station specific videos, VESCA provides con-
trolled comparisons of examiners’ scoring on a subset of 
the examined scores and are therefore directly applicable 
to the task in hand. Given that baseline differences may 
therefore be undetected by conventional approaches, we 
recommend that there may be benefit for organisations 
who run large distributed OSCEs to use the first 2 steps 
of VESCA in practice (1/ filming videos and 2/ asking 
examiners to score them) to monitor for baseline differ-
ences between sites. This would allow the scores allocated 
to videos by different groups of examiners to be directly 
compared as part of quality assurance procedures. The 
regularity of such monitoring could be varied depending 
on the degree of baseline examiner differences which are 
observed and the stakes of the OSCE and resources of the 
organisation. Where feasible, these comparisons should 
be made before results are released, to enable the option 
to adjust scores based on these findings. Previous uses of 
VESCA have allowed 2–3 weeks for examiners to score 
videos [19, 35], with roughly a further week required for 
data alignment and analysis. Therefore, we accept that 
this recommendation has the potential to delay release of 
results for some organisations.

Having used step 1 & 2 of VESCA to monitor inter-site 
examiner differences, where examiner score comparisons 
suggest negligible differences, faculty should be reassured 
and the analysis is expected to produce useful quality 
assurance information. Where findings suggest 5–10% 
inter-site differences, the evidence we have provided here 
suggests that rather than using adjusted scores, faculty 
should then focus faculty development efforts on sites or 
groups of examiners where scoring was discordant, but 
they should continue to use the original score. If video 
scores suggest a baseline difference between sites in the 
region of 10–20% of the assessment scale, then faculty 
may consider using the adjusted scores instead of raw 
scores as these will substantially reduce error and will 
increase score accuracy for the overwhelming majority of 
students.

Performing the VESCA procedures requires a non-
trivial investment of time and effort by faculty and our 
results suggest it is only likely to be worthwhile when 
large systematic differences occur. Concordantly, it is 
pertinent to consider how likely this situation is in prac-
tice. The simplest answer to this question may be that as 
they are rarely measured, we do not know. Sebok et  al. 
[5], however, attributed up to 17% of observed score 
variance to examiners in different sites in a national 

distributed examine, although this occurred for only 
a minority of occasions examined. Whilst comparing 
standard setting for knowledge testing, Taylor 2017 et al. 
[36] found up to 25% points difference between different 
schools who set the highest and lowest standards for the 
same items. More recently, Yeates et al., using the VESCA 
methodology, showed a 16.3% difference between the 
average standard of examiners’ judgements in a gradu-
ation-level formative OSCE which was shared between 
four UK medical schools [37]. Consequently, it is clear 
that large site-based variations can occur in assessment 
in some instances, and therefore it seems both prudent 
to monitor for their occurrence and reassuring to know 
that adjustment can be dependable when differences are 
substantial.

Limitations
We believe that our study had numerous strengths. We 
based our simulation on parameters from real data, mod-
elling plausible scenarios and using a rigours step-wise 
approach to data modelling which we assert is expected 
to have produced a plausible imitation of reality. Despite 
this, our study has some limitations. All simulation is 
limited by the parameters of the simulation. In this study, 
we modelled all known substantial influences on OSCE 
scores (candidate, station, examiner, and appropriate ran-
dom variance terms) [21, 22, 38], but omitted influences 
shown more recently to be minor such as contrast effects 
or differential rater function over time [39]. Importantly, 
we can’t comment on combinations of parameters which 
we didn’t test (for example 60% examiner participation, 
3 linking videos or 12% baseline difference) nor can we 
infer beyond the range of modelled parameters (i.e. 12 
linking videos). None the less, we assert that the mod-
elled parameters represent a realistic range of likely use.

Each simulation only modelled 60 students. This value 
was chosen for computational simplicity. Adding addi-
tional students would have required a greater number of 
examiner groups, but would not have increased their dis-
tribution beyond the specified range in each simulation, 
so is unlikely to have produced different results.

Our modelling made unidimensional assumptions. 
Multi-dimensionality in the data could theoretically 
have further attenuated accuracy. OSCE data examined 
within prior uses of VESCA have been unidimensional 
[17–19] and as data dimensionality should be checked 
before MFRM is used, we assert that this assumption was 
reasonable.

Future research
As with all modelling, these data would benefit from 
independent replication by a different group adopting 
a different approach. Further research could determine 
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VESCA’s accuracy in some of the scenarios we didn’t 
test, for example a 15% baseline difference with either 
100% or only 65% examiner participation, in order to 
extend our understanding of when it is reasonable to 
use adjusted scores in practice. Additional research 
should seek to determine whether any general rela-
tionship exists between 1/ degree of linking, 2/ size 
of baseline difference and 3/ degree of random error 
on the accuracy of score adjustment made by Many 
facet Rasch modelling. Lastly, it would be helpful to 
explore whether the potential for unmeasured inter-
site examiner differences can be predicted without the 
need for VESCA using rater x site interactions within 
Generalizability analyses. If such analysis can predict 
inter-site differences, this would guide organisations 
to decide when it may be helpful to employ the VESCA 
procedures.

Conclusion
The accuracy of score adjustment produced by VESCA 
under typical operating conditions, when there are no 
baseline differences between examiner groups, is low 
and we do not support the use of adjusted scores from 
VESCA under these circumstances. Conversely, when 
large baseline differences exist between locations, score 
adjustment becomes substantially more accurate and 
consideration could be given to using VESCA-adjusted 
scores in these scenarios. By comparing examiners’ scor-
ing of videos, VESCA provides directly relevant con-
trolled comparisons of the influence of different examiner 
groups from different locations within distributed OSCE. 
These findings offer a basis to support its use in practice 
within defined parameters.
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