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Abstract 

This study applies the Green's function method to investigate the modal interaction during thermoacoustic 

instability specifically in the afterburner. The afterburner is modelled as a cylindrical tube with a compact flame. 

Nonlinear effects are accounted for by employing the flame describing function (FDF). An integral governing 

equation for the acoustic velocity at the flame is derived. This is solved by an iteration method to obtain the time 

history of the acoustic velocity at the flame. The coupling mechanism, which is nonlinear due to the 

amplitude-dependence of the FDF, is explored using a two-mode analysis as an illustrative example. Different 

scenarios are observed when the initial amplitude is varied: the long-term behaviour of the time history may be 

dominated by one of the modes, which forms a limit cycle and squeezes out the other mode, i.e. there is a mutually 

inhibitory effect; however, it is also possible, for both modes to coexist. This dependence on the initial condition is a 

consequence of the amplitude-dependent heat release rate, and it is clearly a nonlinear effect. The time history 

calculation is supplemented by a phase analysis, which is based on the Rayleigh criterion and reveals the stability 

behaviour and limit cycles of the individual modes. In order to simulate changing operating conditions in a real 

afterburner, the coupling coefficient and the time-lag in the heat release rate are changed abruptly during the time 

history calculation. The change in coupling coefficient has no dramatic effect, while the change in time-lag can lead 

to mode switch. This is examined in detail by the phase analysis, which reveals that mode switching is also a 

nonlinear effect.    

 

Key words: thermoacoustic instability; interaction of multiple modes; nonlinearity; Green’s function; time 

domain.  

 



2 

 

List of symbols 

A: peak value in the time history of u'q 

a: radius of afterburner 

c0: sound speed 

f100: thermoacoustic frequency of mode (1,0,0) 

f101: thermoacoustic frequency of mode (1,0,1) 

( , , )G r r t t − : Green’s function 

Gmnk: gradient of the Green’s function amplitude 

gmnk: amplitude of Green’s function mode (m,n,k) 

mJ : Bessel function of first kind. 

j: imaginary unit 

K: heat power per unit mass flow 

mnk : radial wavenumber 

L: length of afterburner 

m, n, k: circumferential, radial and axial mode numbers, respectively. 

n : unit normal vector to the flame surface 

0 1,  n n : interaction indices of the flame describing function 

p : acoustic pressure 

Q : global heat release rate 

q : local heat release rate 

( , , )q q q qr r z= : position of the flame 

( , , )r r z= : observer position 

( , , )r r z   = : position of a hypothetical point source 

( )pqS f : Fourier coefficients of the cross-spectrum of ( )p t  and ( )q t  

s: variable of Laplace transform 

t: observer time 
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t : time when the source emits signal 

qu : velocity component normal to the flame surface 

1qu : acoustic velocity related to mode (1,0,0)  

2qu  : acoustic velocity related to mode (1,0,1) 

 : Dirac’s delta function 

k : a constant that takes values of either 1 or 2. 

f : elevation angle of the normal vector to the flame surface 

 : density 

 : delay time 

0 1 0 1, , ,g g  : constants that determine the flame describing function 

f : azimuth angle of the normal vector to the flame surface 

 : velocity potential 

0 : initial velocity potential at the flame 

( )pq f : relative phase angle between 𝑝′ and q' 

mnk : natural angular frequency of mode (m,n,k) 

Overbars denote the mean part of field quantities, primes denote the fluctuating part of field quantities in the 

time-domain, and hats denote the fluctuating part of field quantities in the frequency-domain. The time dependence of 

a quantity oscillating with frequency   is denoted by 
je t

. 

 

 

 

 

 

 

 



4 

 

1. Introduction 

Thermoacoustic instability is a prevalent challenge encountered in various propulsion systems [1-5]. In order to 

comply with increasingly stringent environmental regulations, particularly concerning NOx emissions, 

lean-premixed pre-vaporized (LPP) combustion has been widely implemented [6]. This combustion approach 

operates with excess air to lower the flame temperature, thus reducing NOx emissions. However, due to the 

combustion chamber operating at lean fuel-air mixtures, this shift in combustion strategy has led to an increased 

susceptibility to thermoacoustic instability [7,8]. Given that the energy density in the combustion chamber is very 

high, only a small portion of it can drive thermoacoustic oscillations [9,10]. As a consequence, the combustion 

chamber or even the entire system can experience strong vibrations, resulting in heightened noise and heat loads, 

and increased pollutant emissions. In severe cases, it can even lead to the failure of the entire combustion system.  

The phenomenon of thermoacoustic instability was first observed by Higgins in 1777, using a vertical tube with a 

hydrogen flame [11]. Subsequently, Rijke replicated thermoacoustic instability by substituting the flame with a hot 

gauze [12]. The Rijke tube and its improved versions have since become standard equipment for investigating the 

mechanisms and control techniques of thermoacoustic instability [13]. Much research has been conducted using the 

Rijke tube to investigate the instability mechanisms [14-16] and active [17-20] and passive control [21-26] of 

thermoacoustic oscillations. These studies have revealed the mechanisms causing thermoacoustic instabilities and 

proposed various strategies to effectively suppress these in the Rijke tube. However, due to the simplicity of the 

Rijke tube apparatus, the thermoacoustic oscillations observed in it differ significantly from those encountered in 

practical combustion systems. Therefore, it is not always obvious how to adapt the aforementioned control methods 

to real combustion systems. Consequently, the study of thermoacoustic instabilities in practical combustion systems 

is necessary. It needs to take into account the following characteristics in order to gain a deeper understanding and 

develop suppression techniques. Firstly, in modern aircraft engines, the circumferential scale is greater than the axial 

scale, resulting in the existence of not only axial modes but also circumferential modes, which may be the dominant 

modes [27-29]. Thus, research on thermoacoustic instability should incorporate the influence of three-dimensional 

effects. Secondly, due to the high energy density in real-world combustion systems, multiple unstable modes can be 

simultaneously excited, making the interaction between modes a topic of significant interest [30-34]. Lastly, due to 

the high amplitudes associated with thermoacoustic instabilities, a nonlinear modelling approach is required [35,36]. 
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With a linear approach, one can only predict the onset of instability of an individual mode, but not the transient 

behaviour that precedes a limit cycle, nor the (constant) oscillation amplitude once the limit cycle has been reached. 

When controlling thermoacoustic oscillations, it is not necessary to completely suppress them, but rather to limit 

their amplitudes to an acceptable range [37]. Therefore, predicting the occurrence of limit cycles has become 

increasingly important, and research has gradually shifted from linear to nonlinear approaches to investigate limit 

cycles. These three interconnected issues constitute the complex phenomenon of thermoacoustic oscillations in 

modern aircraft engines. 

  In order to study the complex phenomenon of thermoacoustic instability observed in practical aircraft engines, 

numerous methods have been developed, which can be broadly classified into three categories: experiments, 

numerical simulations, and analytical methods. Moeck et al. [38] connected twelve Rijke tubes to an annular duct to 

simulate a practical annular combustion chamber and to study azimuthal modes found in modern engines. Their 

experimental results show that two coexisting circumferential unstable modes exist in the system, alternating in 

dominance as the heating power changes. Introducing asymmetry into the system can increase stability but may also 

lead to mode degeneration. The research group at the EM2C Laboratory has developed a combustion test-rig called 

MICCA [39-43], which allows the investigation of various modes in a multiple-injector annular combustor. Yuanqi 

Fang et al. [44,45] developed a combustion chamber, called TurboCombo, based on the MICCA combustor, in order 

to study the interaction between various mode structures. They discovered an "intermittent switching behavior" 

between the quarter-wavelength longitudinal mode in the combustion chamber and the first-order azimuthal mode in 

the static pressure chamber. The system's limit cycle randomly switches between these two modes. 

Numerical simulations of combustion can be categorized into three main types based on increasing computational 

cost: Reynolds-averaged Navier-Stokes simulation (RANS) [46,47], large-eddy simulation (LES), and direct 

numerical simulation (DNS) [48,49]. Their advantage lies in their ability to accurately simulate the geometric shape 

of practical combustion systems, thereby directly incorporating the influence of three-dimensional effects. The 

challenge in numerical simulations lies in handling the coexistence of multiple length scales within the system. 

RANS requires various models for Reynolds stresses to close the equations. Although RANS may be suitable for 

time-averaged turbulent flow properties, its validity for capturing unsteady flow evolution, especially in complex 

configurations such as swirling flows with recirculation, remains uncertain. DNS, the most precise method due to its 

requirement to resolve all scales, incurs substantial computational costs, limiting its application to small 
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computational domains rather than practical engineering systems [50]. By comparison, LES is widely employed in 

researching thermoacoustic instability. Gicquel et al. [51] used LES to simulate the flame in a gas turbine's 

combustion chamber, aiming to describe the unsteady heat release through numerical simulations. The results 

indicated that all nozzles in the annular combustion chamber had identical flame transfer functions. Boudier et al. 

[52] analyzed thermoacoustic stability in a helicopter gas turbine combustor using LES, verifying the consistency 

between LES and a Helmholtz solver and identifying possible unstable modes within the combustion chamber. The 

LIMOUSINE project (Limit Cycles of Thermo-Acoustic Oscillations in Gas Turbine Combustors), funded by the 

European Union, employed LES to simulate aerodynamic coupling and combustion transients, thereby establishing 

mathematical models for liquid fuel combustion [53-55].  

Experimental investigations suffer from complexity, expense, and time requirements, while numerical simulations 

demand substantial computational resources and time. In cases where the understanding of physical mechanisms is a 

priority, or the influence of multiple parameters is to be studied, analytical models become the method of choice. 

Theoretical methods have made significant progress in this regard. Network methods, which operate in the 

frequency domain and solve for complex eigenfrequencies, play a crucial role. These methods divide the system into 

simple sub-elements and connect them through jump conditions, incorporating heat release models and boundary 

conditions, to obtain the dispersion relation equations for studying stability, limit cycles and so on. Various complex 

models have been developed based on this approach. Parmentier et al. [56] utilized a one-dimensional analytical 

theory based on the network model to study azimuthal modes, demonstrating good agreement between the complex 

eigenfrequencies obtained through this method and a full three-dimensional Helmholtz solver. They also showed 

that symmetry breaking had a beneficial effect on stability. The network model was extended to simulate more 

complex geometries, including upstream plenums, downstream chambers and multiple burners, in order to 

investigate the coupling between these elements [57]. Evesque et al. [58] developed a two-dimensional low-order 

model for mode coupling; by solving the dispersion relation equation, they were able to predict the frequencies, 

mode shapes, and stability behaviour of the combustion system. You et al. [59] established a three-dimensional 

thermoacoustic instability model based on the mode-matching method. The method can account for the 

non-uniformity of the flow velocity within the combustion chamber, thereby capturing higher-order modes that 

include circumferential and radial components, making it more representative of a real combustion chamber. Later, 

Li and Sun [60] developed a three-dimensional analytical method to investigate the effect of vorticity waves on 
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azimuthal instabilities in annular combustion chambers and demonstrated that the results for the pure azimuthal 

mode with vorticity disturbance are significantly different from those without. Guangyu Zhang [61] developed a 

three-dimensional analytical model, which includes perforated liners on both the inner and outer walls of an annular 

combustion chamber, to study the effect of acoustic liners on thermoacoustic instability. In order to investigate the 

coupling mechanisms between modes, Moeck [32] studied the interaction of modes within the framework of 

harmonic balance. The results demonstrated that the coupling between different modes had a mutually suppressing 

effect. Bigongiari and Heckl [62] utilized the Green's function method to study the interaction between modes, 

revealing that if this method was applied in the frequency domain, it failed to predict which modes are dominant. 

However, both of the aforementioned studies were conducted under the assumption of basic one-dimensional 

behavior, where only longitudinal acoustic waves were present in the system. In order to investigate the interaction 

between different modal structures in three dimensions, this study extends the Green's function method to three 

dimensions. Nonlinear flame transfer functions were also employed in the calculations to investigate the 

characteristics of limit cycles when three-dimensional multi-mode interaction occurs. The work reported in the 

current paper is unique because it focuses on the following open research questions:  

1. Incorporation of Three-Dimensional Effects: In modern aircraft engines, the circumferential scale surpasses the 

axial scale, introducing not only axial modes but also dominant circumferential modes. Our study acknowledges 

and incorporates the influence of three-dimensional effects in a cylindrical combustion chamber (the prototype 

of an afterburner), providing a more comprehensive understanding of thermoacoustic instability. 

2. Interaction Between Multiple Unstable Modes: Recognizing the high energy density in actual combustion 

systems, our research acknowledges the simultaneous excitation of multiple unstable modes. The investigation 

of the interaction between these modes sheds light on their complexity and provides insights crucial for 

suppressing thermoacoustic oscillations effectively. 

3. Focus on Limit Cycles and Nonlinear Approaches: Traditional linear analyses predict exponential growth of 

amplitude over time in thermoacoustic oscillations. However, our study emphasizes the recently heightened 

attention on limit cycles, where oscillations reach a constant amplitude due to nonlinear effects. By shifting 

from linear to nonlinear approaches, we provide novel physical insight that will aid in predicting and controlling 

thermoacoustic oscillations. 

Moreover, in contrast to most existing models, which are in the frequency domain, our model gives the time 
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history of the acoustic velocity, thereby providing a visual representation of the stability behaviour and limit cycles. 

This paper is structured as follows: Section 2 describes the methods employed in this study. The results obtained in 

the frequency domain (Section 3.1) and the time domain (Section 3.2) are presented and subsequently analyzed 

(Sections 3.2.1 and 3.2.2, respectively). Section 3.3 showcases an intriguing phenomenon called "mode switch." 

Finally, conclusions are drawn in Section 4. 

2. Method 

In order to investigate the phenomenon of multi-mode interaction of thermoacoustic oscillations occurring in gas 

turbines, specifically in the afterburner, we have developed a simplified geometric model. As illustrated in Fig. 1, the 

model consists of a circular tube with radius a and length L.  

     

Fig. 1. Idealised geometry representing an afterburner. The cylindrical tube has length L and radius a . The 

combustion takes place in a small flame surface, which is located at position ( , , )=
q q q q

r r z  and has surface 

normal n . 

The flame is assumed to be compact and represented by a small flame surface positioned at ( , , )q q q qr r z=  

within the circular tube. The normal direction of the flame surface is determined by the azimuth Фf and the elevation 

angle θf. Our model assumes a uniform temperature distribution and neglects the mean flow. 

Both the inlet boundary (connection to turbine outlet) and outlet boundary (connection to atmosphere) are treated 

as acoustically closed ends, to simulate choked flow, i.e., the condition where the gas flow through the ends reaches 

the speed of sound.  
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2.1 The tailored Green’s function for the idealised geometry 

The Green’s function describes the acoustic field produced by a hypothetical point source. ( , , )G r r t t −  denotes 

the Green’s function in this paper, where r  is the location of the point source with ( , , )r r z   = , r is the 

location of an observer with ( , , )r r z= , and t t−  is the time it takes for the sound signal to travel from r  to 

r . The governing equation for ( , , )G r r t t −  is the nonhomogeneous wave equation 

 
2

2

2 2

0

1
( ) ( ),

G
G r r t t

c t
 


 − = − −


  (1) 

where 0c  denotes the sound speed and δ denotes Dirac’s delta function. With the assumption that the ends and the 

wall of the cylindrical tube are hard, we can write the boundary condition as 

 0.
G

r


=


  (2) 

The Green's function, which also satisfies Eq. (2) is called the "tailored Green's function". It is given by 
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with 

 
0 0 ,mnk c k =  (5) 

and 

 
2

2

0 .mn

k
k k

L

 
= +  

 
 (6) 

j is the imaginary unit. m, n, k denote the circumferential, radial, and axial mode numbers, respectively. mnk  is the 

natural angular frequency of mode (m,n,k), mJ  denotes the Bessel function of the first kind and order m. kmn 

represents the radial wavenumber, which is the (n+1)-th solution of Eq. (A.35). Once the value of kmn is obtained, we 

can use Eq. (6) to determine the value of k0, and subsequently calculate mnk  from Eq. (5). The term εk is defined 

by 
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1    if    m=0

.
2    if    m>0
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

= 


 (7) 

The detailed derivation of Green’s function for the cylindrical geometry is provided in Appendix A. 

2.2 The nonlinear heat release model  

This paper is a model-based study, focusing on using a nonlinear heat release model to investigate the coupling 

mechanisms between modes under nonlinear conditions, rather than capturing the unsteady heat release in a real 

afterburner. Therefore, a simplified flame describing function (FDF) is employed to characterize the flame. It is 

assumed that the heat source is compact, located at qr , and the following relationship between the oscillating heat 

release rate, Q , and the velocity component qu  perpendicular to the flame surface [63] is adopted: 

 

1 0

j

1 0
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= −
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u uQ

uQ
n n
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 (8) 

where the overbar denotes the time-mean component, and the prime denotes the fluctuating component. The 

equivalent expressions of Eq. (8) for the local heat release rate q' and q̂ , are given by 
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where 
q

Q
K

u S
=  is the heat power per unit mass flow. The expressions for the interaction indices n1, n0 and the 

delay time τ are given by 
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1 1
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2 2q q
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 (10) 

τ0, τ1, g0, g1 are constants, which characterise the flame dynamics. This FDF has been adopted extensively in 

nonlinear research of thermoacoustic instabilities, and it has been demonstrated that it captures the phenomena of 

limit cycle and hysteresis. Additionally, this FDF has a simple form and can be easily applied to a variety of 

combustion devices by selecting appropriate parameters. We therefore use it for our research on coupling of modes. 

The values 3 3

0 1 0 15 10 ,  4.4 10 ,  1.4, .s s  0 3g g− −=  =  = =   are adopted here, following the choice in [64]. A is 
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the peak value of the total oscillating velocity qu  perpendicular to the flame surface.  

2.3 The integral governing equation 

  The velocity potential generated by the heat source can be described by the acoustic analogy equation 
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The considered cylinder has a hard wall and hard ends, therefore, the boundary condition is the same as that for the 

tailored Green's function,   

 0.
r


=


 (12) 

The following initial conditions are assumed for the convenience of calculation: 
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Eqs. (1) and (11) can be combined, and after several mathematical steps, converted into the following integral 

equation for the velocity potential, 
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The detailed derivation is shown in Appendix B. An equation for the acoustic velocity at the heat source can be 

obtained by differentiating Eq. (14) with respect to the flame surface normal n and then evaluating the result at 

qr r= , 
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where the derivative with respect to n  is given by 

1
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With the abbreviation  
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and Eq. (3), we can write the last term in Eq. (15) as  
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and Eq. (15) becomes 
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2.4 The solution of the integral governing equation 

Eq. (19) describes the evolution of the sound field inside the cylindrical tube generated by thermoacoustic 

feedback. It is an integral equation for the velocity ( )qu t , which appears on the left-hand side, and also inside the 

integral. Two different methods are introduced to solve this equation: the first is the derivation ( based on the 

Laplace transform) of an algebraic equation for the complex eigenfrequency; the second is a numerical iteration 

method that gives the time history of the acoustic velocity. 

2.4.1 Laplace transform method 

 The Laplace transform is applied to both sides of Eq. (19), yielding 
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where the abbreviation  
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has been introduced. Eq. (20) can be solved for ˆ ( )qu s  to give 
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In order to obtain the expression in the time domain, the inverse Laplace transform is applied to both sides of Eq. 

(22), and the resulting integral is evaluated with the residue theorem. The residue theorem requires the denominator 

of Eq. (22) to be zero and the following equation for the complex eigenfrequency Ω can be obtained: 
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where js =  . It can be solved by Newton's iterative method. The real part of Ω gives the thermoacoustic 

oscillation frequency, while the imaginary part of Ω gives the growth rate. When Im( ) 0  , the system is stable; 

when Im( ) 0  , the system is unstable with the time dependence 
je t

. 

2.4.2 Numerical iteration method 

The numerical iteration method described by Heckl and Howe [65] is adopted. We define two integrals as shown 

in Eq. (24) below, and divide the integration range into two parts: t'=0 … t-Δt and t'=t-Δt…t, where the second part 

is a very short time interval of duration Δt.  
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 (24) 

( )q t   is assumed to be constant in the very short time interval t , yielding 
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Substituting Eqs. (25) and (18) into Eq. (19), we get  

 
j j j j0

1 22 2
, , 0 , , 0

1 1
( ) [e ( ) e ( )] j ( e e ).
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 
− −

= =

−
 = − − − − −    (26) 

We will solve this equation in Section 3.2 by iteration (using a straightforward time-stepping procedure) to obtain 
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the time history of the acoustic velocity. During this iteration, the peak value A is updated every time a maximum 

occurs in the time history of the total velocity ( )qu t . 

3. Results 

In practical afterburners, it is common to observe multiple modes simultaneously. The interaction between these 

modes has a significant impact on the stability behavior of the system and any limit cycles that might occur. The 

methods described in Section 2 of this paper are employed to examine the coupling mechanism between modes. 

Specifically, our investigation focuses on two prominent modes, namely (1,0,0) and (1,0,1), which are known to be 

the most easily excited and unstable thermoacoustic modes in real-world applications. The first number represents 

the circumferential mode number, the second number represents the radial mode number, and the third number 

represents the axial mode number. The parameter values used for the analysis are given in Table 1.  

Table 1. Parameter values for the analysis  

L/m a/m c0/ms-1 K/W·s·kg-1 𝑟𝑞/m 𝜑𝑞 𝑧𝑞/m 𝛷𝑓 𝜃𝑓 

2 0.5 340 14500 0.25 π/4 0.465 π/4 π/3 

 

These parameters describe an idealised afterburner in terms of the cylindrical setup shown in Fig. 1. The cylinder 

has length L = 2 m and radius a = 0.5 m. The fluid inside the cylinder is air at room temperature, and the 

corresponding speed of sound is c0 = 340 ms-1. The heat source is a small surface positioned at the point rq = 0.25 m, 

φq = π/4, zq = 0.465 m, and the orientation of the surface is given by the angles 𝜃𝑓 = π/3 and 𝛷𝑓 = π/4. The thermal 

power per unit mass flow of the heat source is K = 14500 W·s·kg-1.  

3.1 Results in the frequency domain 

In this section, we present frequency-domain results obtained by solving Eq. (23). Fig. 2 presents the results for 

the complex eigenfrequencies Ω as a function of the peak value / qA u . 
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(a) (b)  

Fig. 2. Complex eigenfrequencies Ω predicted by the Laplace method; / qA u
 

is the dimensionless peak value. 

(a) real part of Ω, (b) imaginary part of Ω; the grey shading marks the region of instability.  

 

Fig. 2a illustrates the thermoacoustic oscillation frequencies Re(Ω100) and Re(Ω101), which fluctuate around the 

frequencies of the Green's function modes 1

100 1251.88s −=  and 1

101 1361.04s −= , respectively. Fig. 2b shows 

the corresponding growth rates. According to Fig. 2b, both modes are unstable when the initial velocity / qA u  is 

small (below about 0.6). Mode (1,0,1) stabilises after reaching an amplitude of 0.66, while mode (1,0,0) remains 

unstable until the amplitude reaches 0.76. These results give no information on any interaction between the modes, 

or on the long-term behaviour (such as limit cycles) of the two modes. We therefore continue our analysis in the time 

domain. 

3.2 Results in the time domain 

In this section, we present time-domain results obtained by the numerical iteration method based on Eq. (26). 

These are shown in Figs. 3, 4 and 5, for three different initial velocity amplitudes, respectively: / qA u  =0.01, 0.5 

and 1.1. 
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(a) (b)  

(c) (d)  

Fig. 3. (a) Time history of the acoustic velocity when the initial acoustic velocity is 0.01. (b) Spectrogram of the 

time history. (c) Spectrum of the time history for the time window [0-1s] of the time history. (d) Spectrum of 

the time history for the time window [9-10s] of the time history.  
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(c) (d)  

Fig. 4. (a) Time history of the acoustic velocity when the initial acoustic velocity is 0.5. (b) Spectrogram of the 

time history. (c) Spectrum of the time history for the time window [0-1s] of the time history. (d) Spectrum of 

the time history for the time window [9-10s] of the time history.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 (a)           (b) 

(c) (d)   

Fig. 5. (a) Time history of the acoustic velocity when the initial acoustic velocity is 1.1. (b) Spectrogram of the 

1000 1250 1500
0.0

0.1

0.2

0.3

0.4

0.5

am
p

li
tu

d
e

/s-1

FFT of 0-1s 1250.4s-1

1357.2s-1

1000 1250 1500
0.00

0.25

0.50

0.75

am
p

li
tu

d
e

/s-1

FFT of 9-10s 1250.4s-1

1000 1250 1500
0.0

0.2

0.4

0.6

am
p

li
tu

d
e

/s-1

 FFT of 0-1s 1250.4s-1

1363.5s-1

1000 1250 1500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

am
p

li
tu

d
e

/s-1

FFT of 9-10s

1250.4s-1

1357.2s-1



18 

 

time history. (c) Spectrum of the time history for the time window [0-1s] of the time history. (d) Spectrum of 

the time history for the time window [9-10s] of the time history.  

 

When the initial acoustic velocity is set to 0.01, the oscillation is unstable: the acoustic velocity grows until a limit 

cycle with an amplitude of 0.66 is reached (see Fig. 3a). Fig. 3b shows the frequency content of this time history. 

This is shown in more detail in Figs. 3c and 3d. A Fast Fourier Transform (FFT) was performed for two time 

windows: one during [0-1s], early in the time history (see Fig. 3c), and another one during [9-10s], at the end of the 

time history (see Fig. 3d). It can be observed that initially there are two peaks in the spectrum, representing the two 

modes. However, during the limit cycle stage, only mode (1,0,1) prevails, while mode (1,0,0) disappears.  

In Fig. 4, the initial acoustic velocity is set to 0.5. The oscillation is unstable and the acoustic velocity quickly 

reaches a limit cycle with amplitude 0.76. However, this time mode (1,0,1) disappears, and mode (1,0,0) becomes 

the dominant mode, which is the opposite of the case where the initial velocity is 0.01. A case, where both modes 

(1,0,0) and (1,0,1) are unstable and coexist throughout the entire time history, is shown in Fig. 5; here the initial 

velocity is set to 1.1.   

As Figs. 3, 4 and 5 illustrate, the limit cycle amplitude depends on the initial condition. This dependence is shown 

quantitatively in Fig. 6.  

(a) (b)  

Fig. 6. (a) Amplitude of the limit cycle for different initial acoustic velocities. (b) Frequency content of the 

limit cycle for different initial acoustic velocities. 

Fig. 6a gives the limit cycle amplitude as a function of the initial velocity. The corresponding frequency 
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the emergence of the dominant mode: when the initial acoustic velocity is between 0.01 and 0.44, the limit cycle 

amplitude is 0.66 and mode (1,0,1) is dominant; when the initial acoustic velocity is between 0.44 and 1.09, the limit 

cycle amplitude is 0.76 and mode (1,0,0) is dominant. When the initial acoustic velocity is beyond 1.1, the limit 

cycle amplitude is 1.35 and the two modes coexist. The jumps in limit cycle amplitude and frequency at the initial 

velocities 0.44 and 1.09 visible in Fig. 6a bear no resemblance to the results for the complex eigenfrequencies; these 

would suggest jumps at initial amplitudes of 0.76 (see Fig. 2b). Therefore, in situations where two modes coexist, 

the complex eigenfrequency method fails to predict the system behavior correctly. This conclusion is consistent with 

the findings of Bigongiari and Heckl [62]. 

In practical combustion systems, the acoustic velocity amplitude is smaller than the mean flow velocity. Therefore, 

the following analysis is limited to cases where the initial velocities are 0.01 and 0.5 times the mean velocity. 

3.2.1 Analysis to determine which mode will dominate 

Again, we consider only the two modes (1,0,0) and (1,0,1), and label them mode 1 and mode 2, respectively. Then 

the sum in the integral governing Eq. (19) can be truncated to include only two terms. These two terms are spelled 

out explicitly to give 
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    (27) 

The term labelled 
1qu  in Eq. (27) only contains the parameters 

1 , 
1G , which relate to mode (1,0,0), while the 

term labelled 
2qu   only contains 

2 , 
2G  and relates to mode (1,0,1). The time histories of 

1qu  and 
2qu   can 

therefore be used to analyze the coupling mechanism between these modes. At the same time, the time history of the 

acoustic velocity is given for the case where there is only one mode in the system with the same initial acoustic 

velocity as for the bimodal case. 

Results are shown in Fig. 7 for an initial velocity amplitude of 0.01, and in Fig. 8 for an initial amplitude of 0.5. 

Parts (a) of Figs. 7 and 8 show the time histories for each of the two modes in isolation: at the top is the time history 

of mode (1,0,0); at the bottom is that of mode (1,0,1). In parts (b) of these figures, both modes are present, and the 
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1qu   and 

2qu   are shown. Parts (c) and (d) of these figures show how the frequency spectra of 

1qu  and 
2qu   change over time.   
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Fig. 7. Results for the case where the initial acoustic velocity is 0.01. (a) Time history of the acoustic velocity 

when there is only one mode in the system with the same initial acoustic velocity as for the bimodal case. Top: 

mode (1,0,0),  below: mode (1,0,1); (b) acoustic velocities 
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u  and 
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u  given by Eq. (27); (c) spectrogram 
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u ; (d) spectrogram of 
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(a) (b)  

(c) (d)  

Fig. 8. Results for the case where the initial acoustic velocity is 0.5. (a) Time history of the acoustic velocity 

when there is only one mode in the system with the same initial acoustic velocity as for the bimodal case. Top: 

mode (1,0,0), below: mode (1,0,1); (b) acoustic velocities 
1q

u  and  given by Eq. (27); (c) spectrogram of 


1q

u ; (d) spectrogram of 
2q

u . 

Fig. 7b illustrates the behaviour of 
1qu  and 2qu  . 

1qu  increases slightly and then stabilizes in a limit cycle with 

a very small amplitude. 2qu   initially grows exponentially, then the growth slows down until a limit cycle with a 

considerable amplitude is reached. The spectrograms in Figs. 7c and 7d shed light on how the frequency content of 

the two time histories evolves with time. 
1qu  (see Fig. 7c) starts with the frequency of around 1250 s-1, which is 

that of mode (1,0,0), but this frequency disappears from the spectrum after about 4s; in the mean time, mode (1,0,1) 

(recognizable by the yellow band around 1360 s-1) emerges and persists until the end of the time history. It is evident 

that during the time history a transition is going on from mode (1,0,0) to mode (1,0,1). This transition is a 


2q

u
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manifestation of the nonlinear coupling between the two modes; it cannot occur for a superposition of different 

modes in a linear situation. 2qu   (see Fig. 7d) exclusively contains frequencies around the value 1360 s-1, which is 

associated with mode (1,0,1).  

Fig. 8 shows another example of mode transition, this time from mode (1,0,1) to mode (1,0,0). In isolation, each 

mode is unstable and reaches a limit cycle (with amplitude 0.76 for mode (1,0,0) and 0.66 for mode (1,0,1)), as can 

be seen from Fig. 8a. Fig. 8b shows the time histories of 
1qu  and 2qu  , with both modes included in the analysis. 

Mode (1,0,0) persists throughout, while the amplitude of mode (1,0,1) decreases and approaches zero after about 2 s. 

Fig. 8c illustrates the dominance of mode (1,0,0). Fig. 8d provides evidence of the transition in frequency, from 

mode (1,0,1) to mode (1,0,0).   

Our predictions indicate that the nonlinear interaction between modes has a mutually inhibitory effect, i.e. one 

mode tries to push out the other mode. This is significant for the development of control strategies to mitigate 

thermoacoustic instabilities. Not all unstable modes need to be suppressed; an unstable mode with a large limit cycle 

might get pushed out by a mode with a smaller limit cycle amplitude, and this would be beneficial for the 

combustion system.   

3.2.2 Phase analysis 

Thermoacoustic instabilities originate from the coupling between unsteady heat release and acoustic pressure. 

Rayleigh was the first to explain the coupling mechanism and formulated a stability criterion in terms of the 

Rayleigh index defined by [66]  

 
0

( ) ( )d .

T

Gain q t p t t =   (28) 

p'(t) is the acoustic pressure, and q'(t) is the unsteady part of the heat release rate. This Rayleigh index is a measure 

of the energy gained by the thermoacoustic coupling. In our model, there are no acoustic loss mechanisms: the inlet 

and outlet boundaries are assumed to be perfectly rigid, so no acoustic energy is radiated from the cylinder ends; 

also, we assume that there is no dissipation due to friction or heat transfer. It is therefore possible to deduce the 

stability behaviour simply from the sign of the Rayleigh index: if 0Gain  , the acoustic field gains energy from 

the unsteady heat release rate and the system is unstable; if Gain<0, the acoustic field loses energy and the system is 

stable.  
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Eq. (28) can be expressed in the frequency domain by 

 
0

2 ( ) cos ( )d ,pq pqGain S f f f


=   (29) 

where ( )pqS f  are the Fourier coefficients of the cross-spectrum of ( )p t  and ( )q t , and ( )pq f  are the relative 

phase angles. If only the two modes (1,0,0) and (1,0,1) are present, Eq. (29) can be simplified as follows: 

 ( )100 100 101 1012 (Re( )) cos (Re( )) (Re( )) cos (Re( )) ,pq pq pq pqGain S S =   +    (30) 

where the first and second terms on the right-hand side of Eq. (30) denote the energy gained by mode (1,0,0) and 

mode (1,0,1), respectively. If the relative phase angel of mode (1,0,0),
 100(Re( ))pq  , is between -π/2 and π/2 

(modulus 2π), then that mode is unstable (unless there is dissipation of acoustic energy, which we do not consider in 

this paper). The same applies to mode (1,0,1). An expression for the pressure can be derived from Eq. (14) by using 

the relationship between pressure and velocity potential, which results from the momentum equation: 
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This equation can be rewritten as explained in section 2.4.2 to give an expression for the acoustic pressure at the 

flame 
qr ,   
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 (32) 

The time history of the pressure can now be obtained with the numerical iteration method used earlier (see 

Section 2.4.2) to calculate ( )qu t . With ( )qu t  known, the time history of the unsteady heat release can be 

calculated from the time-domain version of Eq. (9). The relative phase angles of both modes are obtained from FFT 



24 

 

(with a choice of 1s for the time interval and 0.7s for the overlap).  

The relative phase angles and the amplitudes of the two modes (1,0,0) and (1,0,1) are shown as functions of time 

in the two figures below; Fig. 9 is for a low initial velocity of 0.01, while Fig. 10 is for the higher initial velocity of 

0.5. The black curves with squares in these figures are for mode (1,0,0), and the red curves with circles are for mode 

(1,0,1).  

(a) (b)  

Fig. 9. Results displayed as functions of time t for the case where the initial acoustic velocity is 0.01. (a) 

Relative phase angles of both modes; the grey shading marks the phase range –π/2 to π/2, where the energy 

gain is positive; (b) amplitude of both modes. 

(a) (b)  

Fig. 10. Results displayed as functions of time t for the case where the initial acoustic velocity is 0.5. (a) 

Relative phase angles of both modes; the grey shading marks the phase range 0 to π/2, where the energy 

gainis positive; (b) amplitude of both modes. 
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hovers around -π/2, and the amplitude does not change. Subsequently, the relative phase angle grows rapidly, 

overshoots the value π/2, then comes back down to π/2, and oscillates around this value for the remaining time 

history. As this goes on, the amplitude exhibits a slight increase, then decreases to a very low value and remains at 

this level. The behaviour of mode (1,0,1) is different. The relative phase angle of this mode is between -π/2 and π/2 

at the beginning of the time history; it increases steadily and eventually stabilizes at π/2, where it remains for the rest 

of the time history. At the same time, the amplitude of this mode increases steadily until it reaches the limit cycle, as 

shown in Fig. 9b. For both modes, the evolution of the amplitude is consistent with the findings of the phase 

analysis. 

Fig. 10 shows equivalent results for an initial disturbance of 0.5. The relative phase angle of mode (1,0,0) remains 

within the range of [-π/2, π/2] throughout, stabilizing finally on π/2. This results in a rapid increase in the amplitude 

until the limit cycle is reached. Mode (1,0,1) exhibits a very different behaviour. The relative phase angle initially 

falls within the range of [-π/2, π/2], but grows rapidly and exceeds the value π/2 significantly before decreasing back 

to π/2 and then hovering around this value. As a consequence, the amplitude experiences a slight increase, followed 

by a continuous decrease, and soon disappears completely. Again, the evolution of the amplitude is consistent with 

the findings of the phase analysis for both modes. 

The two cases displayed in Figs. 9 and 10 show that initially both modes gain energy, but only one of the modes 

appears in the limit cycle that forms as time progresses. We conclude from this that there is an inhibitory effect 

among the modes, and that the relative phase angle is the key quantity that determines which mode pushes out the 

other mode. Phase analysis has served here as a powerful tool to explain the evolution of the two modes. We 

therefore use it again in the next section to explain the phenomenon of mode switch. 

3.3 Mode switch 

In practical combustion systems, the dominant mode that governs system instability can change with variations in 

the operating conditions, a phenomenon referred to as "mode switch". In order to investigate the underlying 

mechanism of mode switch, we will use the time history method again, combined with phase analysis. We will 

simulate changes in the operating conditions by changes in the FDF given in Eq. (8). The key parameters are the 

interaction indices and the delay time; they depend on the coefficients τ0, τ1, g0, g1 in Eq. (10). By changing g0 (or g1), 

we can vary the interaction indices; by changing τ0 (or τ1), we can vary the delay time. 
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3.3.1 Influence of changes in the interaction indices   

The interaction indices represent the coupling intensity between the unsteady heat release and acoustic pressure. 

In order to investigate their influence, we change the value of g0 abruptly during the calculation of the time history, 

and then analyse the time histories before and after the abrupt change. Fig. 11 shows four examples. 

 

(a) (b)  

(c) (d)  

Fig. 11. Time history of the acoustic velocity when g0 is abruptly changed, while the other parameters in the 

heat release expression remain constant (g1 = 0.3, τ0 = 5×10-3 s, τ1 = 4.4×10-3 s). The vertical greenline marks 

the time of the change. (a) The initial acoustic velocity is 0.01; g0 is increased from 1.4 to 5 at t = 5 s. (b) The 

initial acoustic velocity is 0.5; g0 is decreased from 1.4 to 0.2 at t = 5 s. (c) The initial acoustic velocity is 0.01; 

g0 is increased from 1.4 to 5 at t = 1 s. (d) The initial acoustic velocity is 0.5; g0 is decreased from 1.4 to 0.2 at  

t = 1s. 
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In Figs. 11a (low initial velocity amplitude, g0 increases) and 11b (high initial velocity amplitude, g0 decreases), 

the change occurs at time t=5 s, when the limit cycle is fully established. In both cases, the acoustic velocity 

experiences a minor amplitude change and quickly returns to its original limit cycle. In Figs. 11c and 11d, the 

change in g0 occurs at the earlier time t=1 s, i.e., during the transient phase before the limit cycle has evolved. 

Comparison of Figs. 11a and 11c shows that the time to reach the limit cycle is considerably shortened by the 

sudden increase in g0 . A sudden decrease in g0 delays the evolution of the limit cycle, as can be seen by comparing 

Figs. 11b and 11d.   

Therefore, we can draw the conclusion that altering g0 does not affect the limit cycle amplitude or the dominant 

mode, but rather influences the time required to reach the limit cycle. This is because the interaction indices only 

affect the magnitude, but not the sign of the energy gain. Therefore they have no effect on the limit cycle itself, but 

they do significantly affect the time it takes to reach the limit cycle. This observation is consistent with the energy 

analysis presented in Eq. (29). The changes in the interaction indices alter the coupling intensity ( )pqS f  between 

the modes, but not the relative phase angles ( )pq f .  

3.3.2 Influence of changes in the delay time 

The delay time τ has a strong influence on the relative phase angle ( )pq f , so a change in τ can lead to a change 

in the sign of the energy gain. This will have a profound effect on the stability behaviour and limit cycle amplitudes. 

In order to investigate the effect of changing the delay time, we increase the value of τ0 abruptly at time t = 5 s from 

0.005 s to 0.0069 s. The resulting time history is shown in Fig. 12a, and its frequency content is displayed in Figs. 

12b, c, d. 
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(c) (d)  

Fig. 12. (a) Time history of the acoustic velocity when τ0 is abruptly changed, while the other parameters in 

the heat release expression remain constant (g0 = 1.4, g1 = 0.3, τ1 = 4.4×10
-3 s); the change of τ0 is from 0.005 s 

to 0.0069 s and occurs at time t = 5 s; this is marked by a green vertical line; the initial acoustic velocity is 0.01. 

(b) Spectrogram showing the evolution of the time history in part (a). (c) FFT of time window [4-5s] of the 

time history in part (a). (d) FFT of time window [9-10s] of the time history in part (a). 

We observe that before the change of τ0, the system is initially unstable and then reaches the limit cycle with an 

amplitude of 0.66 (consistent with Fig. 3a). After the change, the acoustic velocity experiences a rapid amplitude 

decrease, which lasts for a short time interval; subsequently, the oscillation evolves into a new limit cycle with a 

lower amplitude of 0.38. The spectrogram in Fig. 12b shows the evolution of the two modes that form the time 

history in Fig. 12a. In the initial 5 s, i.e. before the jump in τ0, the amplitude of mode (1,0,0) (about 1250 Hz) 

gradually decreases until it nearly disappears, while the amplitude of mode (1,0,1) (about 1360 Hz) increases until a 

limit cycle is reached. In the subsequent 5 s, i.e. after the jump in τ0, the situation reverses completely: the amplitude 

of mode (1,0,0) gradually increases from a small value until a new limit cycle is reached, while the amplitude of 

mode (1,0,1) decreases gradually until it nearly disappears. Accurate values for the modal frequencies can be 

ascertained from the spectra in Figs. 12c and 12d, which were calculated by FFT for two different time windows. In 

Fig. 12c, the time window is [4-5s], which is just before the jump in τ0; in Fig. 12d, the time window is [9-10s], 

which is well after the jump. It is evident that the dominant mode switches from mode (1,0,1) to mode (1,0,0) 

following the change in τ0. 

Further insight into the mode-switch phenomenon can be gained by plotting the relative phase angles and 

amplitudes of both modes over the full time interval [0-10s]. These plots are shown in Fig. 13; they were calculated 
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by applying FFT and phase analysis to the time history in Fig. 12a.  

(a) (b)  

Fig. 13. Evolution of the two modes forming the time history in Fig. 12a. (a) Relative phase angles of modes 

(1,0,0) and (1,0,1); (b) acoustic velocity amplitude of modes (1,0,0) and (1,0,1). Grey shading marks the phase 

range [-π/2, π/2], where the energy gain is positive. The time of the jump in τ0 is marked by a green vertical 

line. 

Both parts of the figure show that the mode switch becomes evident after the jump in τ0 at t = 5 s. For mode (1,0,0) 

(black curve in Fig. 13), the phase pq  is in the grey region, which indicates positive energy gain, and consequently, 

the amplitude grows until about t = 8 s. After that, both phase and amplitude remain constant, at π/2 and 

approximately 0.3, respectively; at that stage, mode (1,0,0) has reached a limit cycle. Mode (1,0,1) (red curve in Fig. 

13), on the other hand, loses energy after the jump in τ0: its phase is a little greater than π/2, and its amplitude decays 

continuously; this explains the gradual decrease and subsequent disappearance of mode (1,0,1). 

From the above analysis, we can conclude that the key parameter for the mode switch is the delay time between 

the heat release rate and the acoustic field. This delay time determines the sign of the Rayleigh index, which is a 

measure for the energy gained by the acoustic field from the flame. The relative phase angle pq  of the individual 

modes also depends on this delay time. The phenomenon of mode switch is likely to occur when one of the phase 

angles crosses the thresholds π/2 or - π/2. 

4. Conclusion 

  A Green's function approach was developed to investigate multimodal interaction in cylindrical combustion 
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systems, such as afterburners. An integral governing equation was derived for the acoustic velocity at the flame 

(which was modeled by an analytical FDF). The flame was modeled as a point source with a heat release rate given 

by a nonlinear time-lag law. Two methods were presented to solve the integral equation: a method based on the 

Laplace transform, which gives an algebraic equation for the complex eigenfrequency, and a numerical iteration 

method, which solves the integral equation directly and hence yields the time history of the acoustic velocity at the 

flame. The calculation of the complex eigenfrequencies gave reliable results for a single mode, but failed to capture 

the nonlinear interaction between modes. In contrast, the calculation of the time history provided reliable results 

across-the-board and shed light on the evolution of individual modes coexisting in the combustion chamber.  

 We focused on the two modes (1,0,0) and (1,0,1) and calculated the time history of the total acoustic velocity. 

Different scenarios were observed, depending on the initial conditions. Both modes might coexist early in the time 

history, but later on, one of the modes would becomes dominant, forms a limit cycle and squeezes out the other 

mode. Coexistence of both modes was also observed. In general, the nonlinear interaction between the modes has a 

mutually inhibitory effect. This insight provides valuable guidelines for developing control strategies for 

thermoacoustic instabilities: not all unstable modes in a combustion system need to be suppressed; modes with a low 

limit cycle amplitude may be tolerable.  

 Further understanding was gained from our "phase analysis", which indicates whether an individual mode 

gains or loses energy during the thermoacoustic oscillation. We used this method to analyse the phenomenon of 

mode switch, which can occur in a combustion system when the operating conditions change. In order to simulate 

changing operating conditions, the interaction indices and delay times in the FDF were changed abruptly during the 

calculation of the time history. Phase analysis revealed that a sudden change in the interaction indices will have an 

impact on the time required to reach the limit cycle but not on the amplitude of the limit cycle. A dramatic change in 

the stability behaviour and limit cycle amplitude of the individual modes was observed when the delay time changed 

abruptly, and again this was explained by phase analysis. We conclude that the delay time plays a crucial role in the 

phenomenon of mode switch. 
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Appendix A. The derivation of expression of Green’s function for the simplified geometry 

The governing equation of Green’s function is  

 
2

2

2 2

0

1
( ) ( ).

G
G r r t t

c t
 


 − = − −


  (A.1) 

The definition of the Fourier transform is  
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Therefore, 
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where F denotes the Fourier transform operator. Application of the Fourier transform to Eq. (A.1) yields 
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With 0

0

k
c


= , we can write 
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𝐺̂ can be represented by a sum of eigenfunctions ψi,   
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i
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Substitution of Eq. (A.7) into Eq. (A.6) yields 
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The eigenfunctions ψi, are the solutions of the three-dimensional Helmholtz equation  
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If Eqs. (A.8) and (A.9) are combined, the following equation is obtained, 
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Multiplication of Eq. (A.10) by 
*( )j r , which is the complex conjugate of ( )j r , leads to 
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This is integrated over the volume v of the cylindrical tube, and the orthogonality of the eigenfunctions, 
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(where Γj is a positive number) is then exploited to give 
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This can be solved for Aj to give 

 
*

2 2

0

( )
.

( )

j

j

j j

r
A

k k

 −
=

− 
 (A.14) 

Substitution into Eq. (A.7) then leads to 
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We solve the Helmholtz equation with a separation of variables approach by putting ( ) ( , ) ( )i i ir r f z  =  
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Both sides of this equation are divided by ( ) ( , ) ( )i i ir r f z  =  to give 
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Assuming that the z-dependent part of this equation is independent of r and φ, and therefore has to be a constant, we 

get  
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or 
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which has the following solution, 
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After applying the boundary conditions  
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we obtain the following equations for A and B,    
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We can conclude that,  
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Introducing Eq. (A.18) into Eq. (A.17) yields 
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or 

 
2 2 2( , ) ( ) ( , ) 0.i i z ix y k k x y  + − =  (A.26) 

We define the wave number kmn by 
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and spell out the Laplace operator in Eq. (A.26) in cylindrical coordinates to obtain 

 
2

2

2 2

1 1
( ) 0,mnr k

r r r r

 




  
+ + =

  
 (A.28) 
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Separating the variables further with ( , ) ( ) ( )r R r  =  , allows us to write Eq. (A.29) as 
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Division by ( , ) ( ) ( )r R r  =   leads to 
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This can be separated into two individual ODEs for the functions ( )R r  and ( )   
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Their solutions are 
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Due to the singularity of mY  at 0r = , we can conclude that 0B = , and then we get 
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An (implicit) expression for mnk  can be obtained from the boundary condition  
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Therefore,  
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The following expression for Ĝ  is then obtained, 
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Performing an inverse Fourier transform on Eq. (A.39) yields  
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This can be simplified with the residue theorem, 
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where  
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Appendix B. Derivation of the integral governing equation for the velocity potential  

This derivation begins with the governing equation for the Green's function and the acoustic analogy equation, 
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We change the independent variables from r , t  to r , t , and exploit the reciprocity of the Green's function, 
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Multiplication of Eq. (B.3) by ( , )r t    and Eq. (B.4) by ( , , )G r r t t −  yields 
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Integrating Eq. (B.5), we obtain 
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The third term on the right-hand side of Eq. (B.6) can be simplified with Green's second identity, 
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The second term on the right-hand side of Eq. (B.6) can be simplified by direct integration with respect to t' and 

subsequently applying the causality principle of the Green's function, 
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Then Eq. (B.6) can be written as 
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By introducing the initial conditions given in Eq. (13) into Eq. (B.9), we finally obtain     
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