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Figure S1: Three electrode CV for unmodified GFET in buffer device performance at a scan rate of 50 mV/s.

S1. Quasi-steady-state approximation based on ODEs

We apply a mathematical approach to simplify enzyme kinetics, especially under certain conditions These approxima-

tions help reduce the complexity of the differential equations governing enzyme kinetics. By differentiating (1) with

respect to time, we obtain:

dS
dt

= −k1,SE + k2,C,

dC
dt

= k1,SE − k2,C − kcat,C,

dP
dt

= kcat,C.

We denote T1 as the total enzyme concentration (T1 = C+E) and T2 as the total substrate and product concentration (T2 =

S+C+P). Total Quasi-Steady-State Approximation (TQSSA) can be obtained by considering total enzyme concentration

rather than free enzyme concentration, making it more accurate when the enzyme concentration is comparable to the
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substrate concentration. TQSSA assumes equilibrium for the total enzyme-substrate complex and uses total substrate

T3 = S + C instead of S [1]. Following [2], TQSSA is given by:

d P
dt

= kcat
T1 + Km + T2 − P −

√
(T1 + Km + T2 − P)2 − 4T1(T2 − P)

2
. (2)

S2. Parameter estimation based on Bayesian inversion

Bayesian inversion is a statistical approach for estimating model parameters or states by integrating prior knowledge

with observed data through Bayes’ theorem. This technique is widely used across various domains, including geo-

physics, environmental science, engineering, and economics, to improve model predictions and quantify uncertainties.

In particular, Bayesian inversion, combined with Markov Chain Monte Carlo (MCMC) methods, is highly effective for

parameter estimation in complex, high-dimensional models. MCMC methods approximate the posterior distribution of

model parameters by generating samples from it, providing the flexibility to handle non-Gaussian and nonlinear prob-

lems. Consider the following probabilistic model:

M = Q(x, θ) + ε, (3)

whereM represents the n-dimensional measured data (in this context, enzyme production), and Q denotes the computa-

tional model (here, the MM equation, as in (S1) and (2)) influenced by MM parameters θ within the random field Θ. The

observation error ε is assumed to be a Gaussian independent and identically distributed (iid) error, ε ∼ N(0, σ2I), with

variance σ2. Given the measured dataM = obs, the conditional density is defined as

π(obs) =

∫
Rn
π(obs|θ)π0(θ), dθ. (4)

The posterior density is the central outcome of this process, reflecting the updated beliefs about the parameters after

accounting for the data. It combines both the prior distribution and the likelihood, thereby balancing prior knowledge

with new evidence. In parameter estimation, given a specific observation m, we aim to estimate the posterior distribution

π(θ|m):

π(θ|m) =
π(m|θ)π0(θ)

π(m)
, (5)

where π0(θ) denotes the prior information (prior density). Using the statistical model (3), the likelihood function can be

estimated as

π(M|θ) = L(θ, σ2|M) =
1

(2πσ2)n/2 exp
(
−
EEM

2σ2

)
, (6)

where

EEM =

n∑
j=1

[
M j − Q j(x, θ)

]2
, (7)

is the sum of squared errors. Different MCMC methods can be used to estimate the posterior densities, including

Metropolis-Hastings, adaptive Metropolis, delayed rejection, delayed Rejection Adaptive Metropolis (DRAM), MCMC

with Ensemble-Kalman Filter (EnKF-MCMC), etc. [3].
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Figure S2: The structure of the MLP-DNN-BI model used to estimate the MM parameters based on the current measurement in GFET. The shown

Bayesian inversion (given in the blue box) is DRAM. The DNN architecture is shown in Figure S3.

S3. Deep neural networks Bayesian inversion model

We introduce a new designed multi-layer perceptron deep learning Bayesian inversion algorithm to identify the MM

parameters and train the machine to predict enzyme behavior. The algorithm is shown in Figure S2. The system integrates

deep learning with Bayesian inversion to improve prediction accuracy and handle uncertainty in parameter estimation.

The algorithm details are as follows.

1. For enzymatic analysis, H2O2 or ABTS•+ was added to the GFET reservoir. The current, converted to ABTS•+

concentration, was used to determine Vmax.

2. A calibration curve for ABTS•+ versus Ids was plotted, mapping current (in µA) to product concentration (in µM)

to calculate reaction rates. The details of the calibration curve technique for the data conversion are given in [4],

Chapter 4.

3. Experimental rates were used to solve TQSSA for MM parameters estimation via MCMC, as described in [3].

4. Robust scaling normalized the data by removing the median and scaling according to the interquartile range (IQR),

improving training stability.

5. Data shuffling was applied to prevent overfitting and enhance model generalization.

6. A deep neural network with ReLU and sigmoid activations was designed to capture complex relationships.
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Figure S3: The architecture of the fully connected deep neural network (DNN) comprises input features (green), hidden layers (blue), and output

labels (red). The input features include enzyme components (HRP and heme), temperature, substrate concentration, and pH values. The output labels

correspond to the Michaelis-Menten (MM) parameters, Km and Kcat.

7. The network was trained on preprocessed data, with weights saved for future use or fine-tuning.

8. Model performance was assessed using RMSE and regression analysis, with the Adam optimizer tuning parameters

for accurate predictions.
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(a) (b)

Figure S4: Transfer curve response corresponding to various stages of graphene surface modification: PBASE and HRP modifications in pH=7.4 (a)

and Heme modification in pH=4 (b).
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(a) (b)

(c)

Figure S5: (a) XPS survey spectrum, (b) high-resolution C1s spectrum, and (c) high-resolution N1s spectrum for the Heme/Graphene. A cubic spline

method is employed for data fitting.
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(a) (b)

(c) (d)

(e) (f)

Figure S6: High-resolution XPS spectra of the C1s core level are presented for (a) Graphene, (b) PBASE/Graphene, and (c) HRP/PBASE/Graphene,

alongside high-resolution XPS spectra of the N1s core level for (d) PBASE/Graphene and (e) HRP/PBASE/Graphene. The N1s peak (f) provides

confirmation of the successful biofunctionalization of HRP on the PBASE/Graphene surface. Data fitting was performed using the cubic spline

method.
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(a) (b)

Figure S7: Shift in Dirac voltage as a function of time for: (a) HRP-modified GFET in buffer (blue), in the presence of 50 µM H2O2 and 75 µM

ascorbic acid (AA) (green), and in the presence of 50 µM H2O2 and 500 µM AA (red). (b) Heme-modified GFET before surface modification (blue),

after Heme modification in the absence of H2O2 (green), and after Heme modification in the presence of 100 µM H2O2 (red).

Figure S8: Soret band spectra corresponding to the HRP in buffer (green), HRP in the presence of 50 µM H2O2 and 500 µM AA (sufficient AA) and

HRP in the presence of 50 µM H2O2 and 75 µM AA (insufficient AA).

Figure S9: Three electrode CV for unmodified GFET in buffer (red curve), Heme modified GFET in the absence of H2O2 (green) and Heme modified

GFET in the presence of 100 µM (blue). The scan rate is 50 mV/s.
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(a) (b)

Figure S10: Ids measurements in response to 100 µM of H2O2, ABTS, and ABTS•+ were conducted for HRP-modified GFET (a) and Heme-modified

GFET (b). The devices were operated at varying Vg of 100 mV, 500 mV, and 900 mV, with a constant Vds = 500 mV. The results are presented with

error bars to indicate the deviations from the expected values.

Figure S11: The HRP product rate over time for pH 7 for H2O2 different substrate concentrations.
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Figure S12: Top panels display the normalized histograms of the MCMC samples for the parameters Kcat (left) and Km (right) after the burn-in period,

illustrating their respective posterior distributions. The red line represents the fitted normal probability density function (PDF) for comparison. Bottom

panels show the corresponding MCMC chains for Kcat (left) and Km (right), providing insights into the sampling behavior and convergence over

iterations.
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Figure S13: The top panels present the regression plots for Kcat (left) and KM (right) in the context of HRP with H2O2 at pH 7 and a temperature

of 25◦C. The bottom panel illustrates the RMSE decay over epochs for the predicted values of KM and Kcat, highlighting the model’s performance

improvement during training.
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Compound Substrate pH Km [mM] Kcat [s−1] Reference DOI

HRP H2O2 5.75 0.022 10.1021/bi034609z

HRP ABTS 5.75 0.88 890 10.1021/bi034609z

HRP ABTS 4.5 0.33 10.1 10.1074/jbc.M406374200

HRP ABTS 7 0.64 45.5 10.1021/bi001150p

HRP ABTS 5 0.73 (0.2) 1.12 (0.15) 10.1039/c7dt01144j

HRP ABTS 7 10.4 (0.8) 0.50 (0.05) 10.1039/c7dt01144j

HRP ABTS 5 0.966 1.44 10.1002/bit.25483

HRP ABTS 5 0.464 186.2 10.1016/j.enzmictec.2015.04.012

HRP ABTS 5 0.19 10.1021/jf904431t

HRP ABTS 5 0.22 10.1021/ja00132a003

HRP H2O2 5 3.7 3.48 × 103 10.1038/nnano.2007.260

HRP TMB 5 0.434 4.00 × 103 10.1038/nnano.2007.260

HRP Pyrogallol 7.4 0.81 29.17 10.1002/chem.200305692

HEME Pyrogallol 7.4 0.04 10.1002/anie.201108400

HEME/ Graphene Pyrogallol 7.4 1.22 4.1 10.1002/anie.201108400

HEME/ Graphene H2O2 4 78.1 0.48

HEME/ Graphene H2O2 7 82.2 0.78

HEME/ Graphene ABTS 4 47.5 0.26

HEME/ Graphene ABTS 7 63.6 0.39

HRP H2O2 7 52.5 0.605

Table S1: Enzymatic parameters for HRP and heme under various conditions are presented, with references indicated. Our observations are highlighted

in italic.
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