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Figure S1: Three electrode CV for unmodified GFET in buffer device performance at a scan rate of 50 mV/s.

S1. Quasi-steady-state approximation based on ODEs

We apply a mathematical approach to simplify enzyme kinetics, especially under certain conditions These approxima-
tions help reduce the complexity of the differential equations governing enzyme kinetics. By differentiating (1) with

respect to time, we obtain:

as
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We denote T as the total enzyme concentration (77 = C+E) and T as the total substrate and product concentration (7, =
S+C+P). Total Quasi-Steady-State Approximation (TQSSA) can be obtained by considering total enzyme concentration

rather than free enzyme concentration, making it more accurate when the enzyme concentration is comparable to the



substrate concentration. TQSSA assumes equilibrium for the total enzyme-substrate complex and uses total substrate

T3 = S + Cinstead of S [1]. Following [2], TQSSA is given by:

dP T1+K,,,+T2—P—\/(T1+Km+T2—P)2—4T1(T2—P)
E— cat ) .
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S2. Parameter estimation based on Bayesian inversion

Bayesian inversion is a statistical approach for estimating model parameters or states by integrating prior knowledge
with observed data through Bayes’ theorem. This technique is widely used across various domains, including geo-
physics, environmental science, engineering, and economics, to improve model predictions and quantify uncertainties.
In particular, Bayesian inversion, combined with Markov Chain Monte Carlo (MCMC) methods, is highly effective for
parameter estimation in complex, high-dimensional models. MCMC methods approximate the posterior distribution of
model parameters by generating samples from it, providing the flexibility to handle non-Gaussian and nonlinear prob-

lems. Consider the following probabilistic model:
M=Q(x,0) +&, (3)

where M represents the n-dimensional measured data (in this context, enzyme production), and Q denotes the computa-
tional model (here, the MM equation, as in (S1) and (2)) influenced by MM parameters 6 within the random field ®. The
observation error ¢ is assumed to be a Gaussian independent and identically distributed (iid) error, £ ~ N (O, o2, with

variance o%. Given the measured data M = obs, the conditional density is defined as

n(obs) = f n(obs|@)my(6), db. 4)

The posterior density is the central outcome of this process, reflecting the updated beliefs about the parameters after
accounting for the data. It combines both the prior distribution and the likelihood, thereby balancing prior knowledge
with new evidence. In parameter estimation, given a specific observation m, we aim to estimate the posterior distribution

n(6lm):

[} [}
x(Olm) = ’% 5)

where 7(6) denotes the prior information (prior density). Using the statistical model (3), the likelihood function can be

estimated as

a(M|O) = L0, 72 IM) =

SSM) ©)
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where

EEM = Z M- @0, %

j=1
is the sum of squared errors. Different MCMC methods can be used to estimate the posterior densities, including
Metropolis-Hastings, adaptive Metropolis, delayed rejection, delayed Rejection Adaptive Metropolis (DRAM), MCMC
with Ensemble-Kalman Filter (EnKF-MCMC), etc. [3].
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Figure S2: The structure of the MLP-DNN-BI model used to estimate the MM parameters based on the current measurement in GFET. The shown

Bayesian inversion (given in the blue box) is DRAM. The DNN architecture is shown in Figure S3.

S3. Deep neural networks Bayesian inversion model

We introduce a new designed multi-layer perceptron deep learning Bayesian inversion algorithm to identify the MM
parameters and train the machine to predict enzyme behavior. The algorithm is shown in Figure S2. The system integrates
deep learning with Bayesian inversion to improve prediction accuracy and handle uncertainty in parameter estimation.

The algorithm details are as follows.

1. For enzymatic analysis, H;O, or ABTS** was added to the GFET reservoir. The current, converted to ABTS**

concentration, was used to determine V..

2. A calibration curve for ABTS®** versus I was plotted, mapping current (in uA) to product concentration (in uM)
to calculate reaction rates. The details of the calibration curve technique for the data conversion are given in [4],

Chapter 4.
3. Experimental rates were used to solve TQSSA for MM parameters estimation via MCMC, as described in [3].

4. Robust scaling normalized the data by removing the median and scaling according to the interquartile range (IQR),

improving training stability.
5. Data shuffling was applied to prevent overfitting and enhance model generalization.

6. A deep neural network with ReLU and sigmoid activations was designed to capture complex relationships.
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Figure S3: The architecture of the fully connected deep neural network (DNN) comprises input features (green), hidden layers (blue), and output

labels (red). The input features include enzyme components (HRP and heme), temperature, substrate concentration, and pH values. The output labels

correspond to the Michaelis-Menten (MM) parameters, Ky, and Kcat.

7. The network was trained on preprocessed data, with weights saved for future use or fine-tuning.

8. Model performance was assessed using RMSE and regression analysis, with the Adam optimizer tuning parameters

for accurate predictions.
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Figure S4: Transfer curve response corresponding to various stages of graphene surface modification: PBASE and HRP modifications in pH=7.4 (a)

and Heme modification in pH=4 (b).
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Figure S5: (a) XPS survey spectrum, (b) high-resolution Cls spectrum, and (c) high-resolution N1s spectrum for the Heme/Graphene. A cubic spline
method is employed for data fitting.
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Figure S6: High-resolution XPS spectra of the Cls core level are presented for (a) Graphene, (b) PBASE/Graphene, and (c) HRP/PBASE/Graphene,
alongside high-resolution XPS spectra of the Nls core level for (d) PBASE/Graphene and (¢) HRP/PBASE/Graphene. The Nls peak (f) provides
confirmation of the successful biofunctionalization of HRP on the PBASE/Graphene surface. Data fitting was performed using the cubic spline

method.
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Figure S7: Shift in Dirac voltage as a function of time for: (a) HRP-modified GFET in buffer (blue), in the presence of 50 uM H>O, and 75 uM

ascorbic acid (AA) (green), and in the presence of 50 uM H2O; and 500 uM AA (red). (b) Heme-modified GFET before surface modification (blue),

after Heme modification in the absence of HyO, (green), and after Heme modification in the presence of 100 uM H,O, (red).
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Figure S8: Soret band spectra corresponding to the HRP in buffer (green), HRP in the presence of 50 uM H»O; and 500 uM AA (sufficient AA) and

HRP in the presence of 50 uM H,O, and 75 uM AA (insufficient AA).
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Figure S9: Three electrode CV for unmodified GFET in buffer (red curve), Heme modified GFET in the absence of H,O; (green) and Heme modified

GFET in the presence of 100 uM (blue). The scan rate is SO mV/s.
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Figure S10: I3 measurements in response to 100 uM of H,O,, ABTS, and ABTS** were conducted for HRP-modified GFET (a) and Heme-modified
GFET (b). The devices were operated at varying V, of 100mV, 500 mV, and 900 mV, with a constant Vg = 500 mV. The results are presented with

error bars to indicate the deviations from the expected values.
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Figure S11: The HRP product rate over time for pH 7 for H>O; different substrate concentrations.
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Figure S12: Top panels display the normalized histograms of the MCMC samples for the parameters Ky (left) and Ky, (right) after the burn-in period,

illustrating their respective posterior distributions. The red line represents the fitted normal probability density function (PDF) for comparison. Bottom

panels show the corresponding MCMC chains for K¢y (left) and Ky, (right), providing insights into the sampling behavior and convergence over

iterations.
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Figure S13: The top panels present the regression plots for K¢y (left) and Ky (right) in the context of HRP with H,O; at pH 7 and a temperature

of 25°C. The bottom panel illustrates the RMSE decay over epochs for the predicted values of Ky and Kcqa, highlighting the model’s performance
improvement during training.
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Compound Substrate pH K, [mM] Kea [s71] Reference DOI

HRP H,0, 5.75 0.022 10.1021/bi034609z

HRP ABTS 5.75 0.88 890 10.1021/bi034609z

HRP ABTS 4.5 0.33 10.1 10.1074/jbc.M406374200
HRP ABTS 7 0.64 45.5 10.1021/bi001150p

HRP ABTS 5 0.73 (0.2) 1.12 (0.15) 10.1039/c7dt01144;j

HRP ABTS 7 10.4 (0.8) 0.50 (0.05) 10.1039/c7dt01144;

HRP ABTS 5 0.966 1.44 10.1002/bit.25483

HRP ABTS 5 0.464 186.2 10.1016/j.enzmictec.2015.04.012
HRP ABTS 5 0.19 10.1021/jf904431t

HRP ABTS 5 0.22 10.1021/ja00132a003
HRP H,0, 5 3.7 3.48 x 10° 10.1038/nnano.2007.260
HRP TMB 5 0.434 4.00 x 10° 10.1038/nnano.2007.260
HRP Pyrogallol 7.4 0.81 29.17 10.1002/chem.200305692
HEME Pyrogallol 7.4 0.04 10.1002/anie.201108400
HEME/ Graphene Pyrogallol 7.4 1.22 4.1 10.1002/anie.201108400
HEME/ Graphene H>,0, 4 78.1 0.48

HEME/ Graphene H,0, 7 82.2 0.78

HEME/ Graphene ABTS 4 47.5 0.26

HEME/ Graphene ABTS 7 63.6 0.39

HRP H,0, 7 52,5 0.605

Table S1: Enzymatic parameters for HRP and heme under various conditions are presented, with references indicated. Our observations are highlighted

in italic.
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