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A B S T R A C T
This paper presents a two-part study on laminar hydrogen-blend flames in a micromix combustion
test rig. The first part of the study focuses on the nonlinear dynamics of the flame, which is modelled
by the G-equation. The laminar flame speed and the amplitude of convected velocity perturbations
are the key parameters. Both have a marked effect on the travel times associated with the convected
perturbations. These travel times are quantified and represented as functions of the laminar flame
speed and the perturbation amplitude. The second part of the study considers a combustion test rig
with the hydrogen-blend flame considered in the first part. A Green’s function approach is used to
calculate the complex eigenfrequencies of the complete combustion system. The key parameters are
the hydrogen concentration, equivalence ratio and amplitude of velocity fluctuations. The following
regions are identified in this 3-D parameter space: regions of thermoacoustic instability, stable limit
cycles and flame flashback. This information gives the safe operation limits.

1. Introduction
Hydrogen is a promising facilitator of energy generation

with net-zero carbon emissions. Therefore, the combustion
of hydrogen and hydrogen-enriched hydrocarbon gases has
become a hot research topic in recent years. There is poten-
tial for clean combustion in several sectors, in particular

– domestic and industrial heating systems [1–3]
– gas turbine engines [4, 5]
– industrial furnaces [6]
If a conventional hydrocarbon fuel is enriched with a

small amount of hydrogen (up to 30% by volume), the
corresponding flame behaves much like a flame without the
enrichment. This was exploited in the HyDeploy trial at
Keele University [https://hydeploy.co.uk/], which inspired
the current paper. Starting in 2019, hydrogen was added
to the private gas network of Keele University’s campus;
100 homes and 30 university buildings received the blended
gas. The results showed that up to 20% hydrogen could be
added to the gas network without any negative impact on the
existing equipment, such as boilers and cookers. Glanville
et al. [7] tested different combustion appliances by operating
them with a methane-hydrogen fuel blend containing 0 - 30%
hydrogen (by volume). All appliances worked well, as the
flame behaved much like a pure methane flame within this
range of hydrogen enrichment.

However, if hydrocarbon fuels are enriched with more
than 30% hydrogen, the resulting flames show very different
behaviours [8]. This can lead to increased pollution by higher
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NO𝑥 emissions. There is also an increased risk of hardware
damage of the combustion system. In order to avoid such
problems, it is necessary to re-design existing combustion
systems. This in turn, necessitates a clear understanding of
the behaviour of the flame as the hydrogen content in the fuel
mixture is varied.

The aim of the current paper is to advance the under-
standing of the behaviour of premixed flames fuelled with
hydrogen or a hydrogen-blend. We consider a laminar flame,
which has been extensively studied by earlier authors [9–14].
Its most important parameter is the laminar flame speed.
This speed plays a crucial role in the interaction of the
flame with the velocity field in which the flame resides; it
also determines how long or short the flame is. The fuel
type and the equivalence ratio of the fuel-air mixture are
important parameters that determine the magnitude of the
laminar flame speed.

Hydrogen flames have a considerably higher laminar
flame speed (around 10 times higher) than conventional
hydrocarbon flames. Hydrogen-enriched flames show the
same feature, but it is less extreme. This leads to a change
in the interaction between the flame and the velocity field,
and brings the risk that a feedback loop gets established
between unsteady combustion and the acoustic field in the
combustion chamber. Such a scenario is the underlying
cause of self-sustained large-amplitude periodic pressure
oscillations, termed "thermoacoustic instabilities", which
can inflict serious mechanical damage to the combustor
hardware. Another consequence of their high laminar flame
speed is that hydrogen flames are shorter. This brings the
risk of another damaging phenomenon, termed "flashback",
where the flame moves upstream into the fuel supply line and
overheats hardware components that cannot withstand high
temperatures.
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List of Symbols

𝐴 velocity amplitude
𝑐 speed of sound
𝑐𝑝 specific heat at constant pressure
 Fourier transform
𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) Green’s function
 scalar field to describe the flame surface
𝑔𝑛(𝑥, 𝑥∗) amplitude of Green’s function mode 𝑛
𝑔0, 𝑔1 constant coefficients in amplitude-dependence of

coupling coefficients
𝐻 Heaviside function
𝐻𝑓 vertical height of steady flame
ℎ(𝑡) impulse response of the flame’s heat release rate

(also : time-domain equivalent of  (𝜔))
ℎ𝜀(𝑡) time-domain equivalent of 𝜀(𝜔)
ℎ𝑝 thickness of perforated plate
i imaginary unit
𝐾 heater power per unit mass flow
 Rayleigh conductivity of perforation
𝑘 wave number
𝐿 tube length
𝐿𝑓 side length of steady flame
 perforation density, i.e. number of holes per unit

area of perforated plate
𝑛1, 𝑛2, 𝑛3 measure of peak values in impulse response of

flame
𝑝′ acoustic pressure
𝑄(𝑡) heat release rate of the flame
𝑞(𝑥, 𝑡) heat release rate per unit mass of premix
𝑅 base radius of flamelet, radius of perforation
𝑅0, 𝑅𝐿 reflection coefficients at the tube ends 𝑥 = 0 and

𝑥 = 𝐿
𝑅12, 𝑅21 forward and backward reflection coefficients at the

interface 𝑥 = 𝑥𝑞

𝑟 radial position
𝑟𝑝 radius of circular perforation
𝑆 cross-sectional area of tube
𝑆𝐿 laminar flame speed (also called laminar burning

velocity)
�̄� mean temperature
𝑇12, 𝑇21 forward and backward transmission coefficients at

the interface 𝑥 = 𝑥𝑞

 (𝜔) flame transfer function
𝜀(𝜔) flame describing function
𝑡 time
𝑢 axial velocity component
�̄� mean velocity
𝑢𝑚 complex velocity amplitude of thermoacoustic

mode 𝑚
𝑣 radial velocity component
𝑥 axial position
𝑥𝑞 axial position of matrix flame
𝛼 half-angle of steady flame
𝜀 = 𝐴∕�̄� nondimensional velocity amplitude
�̄� mean density
𝜎1, 𝜎2, 𝜎3 standard deviations of maxima and minimum in

impulse response of flame
𝜏1, 𝜏2, 𝜏3 travel times of maxima and minimum in impulse

response of flame
Φ velocity potential
𝜑0, �̇�0 initial values of velocity potential and its gradient
𝜙 equivalence ratio of premix
𝜒𝐻2

hydrogen concentration
𝜔 angular frequency
𝜔𝑛 frequency of mode 𝑛 of the tailored Green’s function
Ω𝑚 complex eigenfrequency of the thermoacoustic

mode 𝑚

Overbars denote the mean part of field quantities, primes denote the fluctuating part of field quantities in the time-domain,
and hats denote the fluctuating part of field quantities in the frequency-domain. For example, for the heat release rate, the
mean part is �̄�, and the fluctuating part is 𝑄′ in the time-domain, and �̂� in the frequency-domain.

The time dependence of a quantity oscillating with frequency 𝜔 is denoted by e−i𝜔𝑡.

A landmark experimental study was performed by Daw-
son’s group [15, 16], who measured the flame transfer func-
tion (FTF) of a bluff-body-stabilised flame for a range of
hydrogen concentrations. They found that an increase of
hydrogen in the fuel blend affects the FTF in two ways: it
increases the cutoff frequency of the FTF gain and reduces
the overall slope of the FTF phase curve. Lim et al. [17]
considered a laminar conical flame and predicted the same
effects on the FTF; they used a kinematic model for the flame
forced by a convected wave with a 2-D velocity field. They
found that the influence of the forcing amplitude diminished

with increasing hydrogen concentration. Several papers con-
sidered not just the flame dynamics, but a complete combus-
tion system, where a hydrogen-blend flame interacts ther-
moacoustically with the sound field in an acoustic resonator.
These include Karlis et al. [18], who observed dynamic
transitions while enriching methane blends with hydrogen
in a swirl-stabilised combustor. Similarly, Aguilar et al. [16]
observed a series of transitions in the bluff-body stabilised
combustor; they subsequently developed a network model,
incorporating their FTF, which successfully predicted the
transition between two limit cycles.
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All previous studies are limited to the frequency-domain
in that the flame is modelled with a transfer function. They
give no physical insight in terms of the flame dynamics, and
more specifically in terms of the disturbance amplitude, hy-
drogen concentration and equivalence ratio. A time-domain
perspective would give such insight because it reveals the
travel times of disturbances of the heat release rate; however,
this is missing from the literature.

The current paper aims to fill this gap. We will use a time-
domain approach to shed light on how the flame responds if it
is forced by a velocity field that is representative of premixed
laminar combustion test rigs. By considering a large range
of velocity amplitudes, we will be able to explain linear and
nonlinear effects in the flame dynamics. The most impor-
tant parameter of the flame dynamics is the laminar flame
speed. This is a property of the fuel-air mixture and depends
strongly on the hydrogen concentration in the fuel as well as
on the equivalence ratio of the mixture. The fundamental in-
sight gained for the flame dynamics is then applied to model
a generic combustion test rig with a natural gas - hydrogen
flame. The combustion chamber is one-dimensional, and the
flame is configured according to the "micromix combustion
principle" [19, 20], i.e. a two-dimensional array of small
flames is anchored on the downstream side of a perforated
plate. From this model, we will calculate the safe operating
limits, i.e. the operating conditions (in terms of hydrogen
concentration and the equivalence ratio) under which ther-
moacoustic instabilities and flashback do not occur.

The paper is divided into the following sections. Sec-
tion 2 describes the combustion system under consideration,
in particular the flame and the combustion chamber. Sec-
tion 3 gives details about the flame model (both in the time-
domain and frequency-domain), and predictions are made
for the nonlinear flame response. The complete combustion
system is modelled in Section 4, adopting a Green’s function
approach. This is then used in Section 5 to make predictions
for safe operating limits; numerical results are presented and
discussed. Section 6 lists the main conclusions and makes
recommendations for further research.

2. The considered combustion system
We treat the combustion system as a combination of two

key elements:
(1) combustion chamber with a steady flame
(2) flame in a time-dependent velocity field

The combustion chamber is modelled as a quarter-wave
resonator with fixed length 𝐿. The tube end at 𝑥 = 0 is
closed, and the end at 𝑥 = 𝐿 is open. At the axial position
𝑥𝑞 , there is a jump in mean temperature (due to a steady
compact flame there) from �̄�1 to �̄�2. Also at 𝑥𝑞 , there is a
perforated plate spanning the cross-section of the resonator
tube. We refer to the two regions on either side of 𝑥𝑞 as the
cold region and the hot region. A schematic illustration of
the combustion system is shown in Fig. 1.

One-dimensional acoustic waves travel forwards and
backwards in each of the two regions. The tube ends are

Figure 1: The set-up under consideration. �̄� , �̄� and 𝑐 are
the mean temperature, mean density and speed of sound,
respectively; the subscript 1 denotes the cold region, and 2
denotes the hot region.

modelled through their respective reflection coefficients, i.e.
𝑅0 = 1 at 𝑥 = 0 and 𝑅𝐿 = −1 at 𝑥 = 𝐿.

At the interface, 𝑥 = 𝑥𝑞 , the waves are partly trans-
mitted and partly reflected. We describe this by pressure
transmission and reflection coefficients. The pressure trans-
mission coefficients are denoted by 𝑇12 and 𝑇21 for a wave
approaching from the upstream and downstream section,
respectively. The corresponding reflection coefficients are
denoted by 𝑅12 and 𝑅21. These coefficients are determined
by two elements: the perforated plate and the temperature
jump. We model these as individual interfaces, spaced a
small distance apart, each with its own reflection and trans-
mission coefficients (see Appendix A). The perforated plate
has reflection and transmission coefficients that depend on
the following properties: perforation density ( ), radius
of perforations (𝑟𝑝) and plate thickness (ℎ𝑝); there is also
a dependence on frequency. At the temperature jump, the
reflection and transmission coefficients are functions of the
acoustic impedances �̄�1𝑐1 and �̄�2𝑐2. The two interfaces are
lumped together into a single interface at 𝑥 = 𝑥𝑞 by the
wave-based approach described in Appendix A.

The combustion chamber will be modelled mathemati-
cally in Section 4.2 by the tailored Green’s function; this will
take into account the perforated plate and the temperature
jump.

The flame is modelled as a matrix flame, i.e. it is made
up of a two-dimensional array of small flamelets, each
anchored at the circular downstream edge of a perforation
(see Fig. 1). The flamelets are assumed to be identical
and non-interacting. Each is laminar and conical with base
radius 𝑅. They are fed by a blend of hydrogen and natural
gas, premixed with air. The premix is characterised by its
equivalence ratio 𝜙 and by the hydrogen concentration 𝜒𝐻2

.
The matrix flame is situated in the near-field of the per-

forated plate, where the velocity field has two components:
an axial and a radial component; both vary with time and
thus distort the surface of each flamelet. This is illustrated
by the snapshot in Fig. 2. The velocity field is marked by
small black arrows, and the flame surface is marked by a
red curve. This flame will be modelled in Section 3 with a
kinematic approach (level-set method).
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Figure 2: Conical flame in a velocity field. Arrows → indicate
the velocity field; the red curve — indicates the flame surface.

3. Model for the flame
We consider only fluctuations in velocity (but not in

equivalence ratio); also the effect of the flame curvature on
the laminar flame speed 𝑆𝐿 is neglected. In Section 3.1, we
describe the response of the flame to harmonic perturbations
of a given frequency, and in Section 3.2, we take a time-
domain perspective. The model we use for flashback is
presented in Section 3.3.
3.1. Flame model in terms of the flame describing

function
We consider each flamelet as a conical laminar flame,

which forms an interface separating the unburnt mixture
from the burnt mixture. This interface, which is called the
flame front, adjusts its shape to the velocity field in such a
way that the flame-normal velocity component is equal to the
laminar flame speed𝑆𝐿. This kinematic balance is described
by the G-equation [21]

𝜕
𝜕𝑡

+ 𝑢𝜕
𝜕𝑥

+ 𝑣𝜕
𝜕𝑟

= 𝑆𝐿

√

(

𝜕
𝜕𝑥

)2
+
(

𝜕
𝜕𝑟

)2
, (1)

where  is a scalar field that defines the instantaneous
position of the flame surface:  < 0 in the unburnt mixture,
 > 0 in the burnt mixture, and  = 0 at the flame
surface. 𝑢 and 𝑣 are the (time-dependent) axial and radial
velocity components at a point on the flame surface, and 𝑆𝐿is constant. The schematic in Fig. 3 shows a perturbed flame
surface, and also the notation to describe it mathematically.

Equation (1) is a nonlinear PDE; we solve it numerically
with the level-set solver GFlame [22, 23]. For the boundary
conditions, we assume that the flame is fixed at the flame
base (i.e. at 𝑥 = 0). The flame is forced by a velocity
field, which we describe by Cuquel’s 2-D incompressible
convective velocity model [24, Chapter 4]. The axial com-
ponent of the velocity field has a mean part �̄� and a harmonic
perturbation part with frequency 𝜔 and amplitude �̄�𝜀,

𝑢(𝑥, 𝑡) = �̄� [1 + 𝜀 sin(𝜔𝑡 − 𝜔
�̄�
𝑥)], (2)

Figure 3: Schematic of a conical flame. — steady flame; —
perturbed flame. 𝛼 is the half-angle of the steady flame; it is
given by sin 𝛼 = 𝑆𝐿∕�̄�, where �̄� is the mean of 𝑢.

while the radial component of the velocity field is purely
oscillatory and given by

𝑣(𝑥, 𝑟, 𝑡) = 𝑟𝜔𝑢 𝜀 cos(𝜔𝑡 − 𝜔
�̄�
𝑥) (3)

(to satisfy the continuity equation for incompressible flow).
GFlame calculates the instantaneous flame shape, and

from that the instantaneous flame surface area. The heat
release rate is obtained by assuming that it is proportional
to the flame surface area [9]. After a sufficient number of
time steps, the time history of 𝑄′(𝑡) (fluctuating part of the
heat release rate) is obtained. This is equivalent to �̂�(𝜔),
which is the heat release rate in the frequency domain. By
performing a frequency sweep, �̂�(𝜔) is obtained for a range
of frequencies.

The matrix flame is a composite of𝑁 individual flamelets,
where 𝑁 is the number of holes in the perforated plate that
anchors the flame. Therefore, the heat release rate from the
whole matrix flame is 𝑁 times that of an individual flamelet:
𝑁𝑄′(𝑡) and 𝑁�̂�(𝜔) are the fluctuating heat release rate in
the time domain and frequency domain, respectively, and
𝑁�̄� is the mean heat release rate of the matrix flame, where
�̄� is the mean heat release rate of an individual flamelet
(calculated by GFlame).

The forced flame can be regarded as an input-output
system, where the velocity field is the input and the heat
release rate is the output. It can be described in the frequency
domain by the "flame transfer function" (FTF), which we
denote by  (𝜔). The FTF is defined by the quotient

 (𝜔) =
�̂�(𝜔)∕�̄�
�̂�(𝜔)∕�̄�

. (4)

�̂�(𝜔) is the axial component of the velocity at the flame
base in the frequency-domain; it is normalised by the mean
velocity �̄�.

For very small perturbations of the flame surface, the
FTF is assumed to be independent of the amplitude of the
imposed velocity. For larger perturbations, the FTF becomes
amplitude-dependent. In such a case the transfer function
is termed "flame describing function" (FDF) and written as
[25]

𝜀(𝜔) =
�̂�(𝜔, 𝜀)∕�̄�
�̂�(𝜔)∕�̄�

, (5)
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Table 1
Parameters describing the flame

Parameter Symbol Numerical value Units

flame base radius 𝑅 0.001 m
mean velocity �̄� 1 ms−1
laminar flame speed 𝑆𝐿 0.411 and 0.557 ms−1
amplitude of the velocity that forces the flame 𝜀 = 𝐴∕�̄� 0.02 … 0.4 -

Figure 4: FDF for a conical flame with 𝑆𝐿 = 0.411ms−1; (a) gain; (b) phase.

where 𝜀 is the nondimensional form of the amplitude 𝐴 of
the velocity fluctuations 𝑢′(𝑡),

𝐴 = �̄�𝜀. (6)
We calculate the FDF by running GFlame for a range of
excitation amplitudes. The flame parameters used in the
calculation are shown in Table 1.

A sample of results can be seen in Figs. 4 and 5 for a
small conical flame. Figure 4 shows the amplitude depen-
dence for a small flame speed (𝑆𝐿 = 0.411ms−1), and Fig. 5
shows it for a larger flame speed (𝑆𝐿 = 0.557ms−1). Parts
(a) of the two figures give the gain, |𝜀(𝜔)|, of the FDF, and
parts (b) give the phase , ∠𝜀(𝜔).Figures 4 and 5 show very clearly that the FDF depends
on the amplitude of the imposed velocity field, as well as
on the laminar flame speed. In particular, we observe that
for the higher 𝑆𝐿-value, the cut-off frequency in the gain
(|FDF|) is larger, and the slope of the phase curve (∠FDF) is
smaller at low frequencies. Both observations are consistent
with those reported in [17]. We further observe that the
phase curve levels off at higher frequencies as the forcing
amplitude increases. This is in line with the experimental
results obtained by Karimi et al. [26].
3.2. Flame model in the time-domain

The Rayleigh index, which is the time average 𝑄′(𝑡)𝑝′(𝑡),
where 𝑝′(𝑡) is the acoustic pressure at the flame, is a key
indicator for thermoacoustic instabilities [27, 28]. It depends
critically on the phase difference between 𝑄′(𝑡) and 𝑝′(𝑡),
which in turn depends strongly on any time-lags between the
heat release rate and the acoustic field. This is our motivation
for taking a time-domain perspective and transforming the
results of the previous section into the time-domain.

3.2.1. Linear flame model
The impulse response of the flame is the time history

of the heat release rate oscillations triggered by a velocity
impulse [23, Eq. (2.6)]; we denote it by ℎ(𝑡). It is the time-
domain equivalent of the FTF,  (𝜔); in fact ℎ(𝑡) and  (𝜔)
form a Fourier transform pair,

ℎ(𝑡) = −1[ (𝜔)], (7)
where −1 denotes the inverse Fourier transform. The heat
release rate 𝑄′(𝑡) can be expressed in terms of ℎ(𝑡) by

𝑄′(𝑡)
�̄�

=

𝑡

∫
𝜏=0

ℎ(𝜏)
𝑢′(𝑡 − 𝜏)

�̄�
d𝜏. (8)

The impulse response is a linear concept, so it is only valid at
very small amplitudes, such as 𝜀 = 0.02 [29]. We calculated
it for a range of 𝑆𝐿-values between 0.41 and 0.56ms−1. The
results can be seen in Fig. 6.

We observe from Fig. 6 that the impulse response has a
minor maximum in the early part of the time-history; this is
followed by a major maximum and then a minimum. Partial
insight into these features can be gained from the studies in
Blumenthal et al. [12] and Steinbacher [23]. They calculated
the analytical solution for the impulse response from the
linearised G-equation. This revealed two travel times: a
"convection time" Δ𝑡𝑐 and a "restoration time" Δ𝑡𝑟. The
convection time is the time it takes for a velocity perturbation
to travel along the flame axis from the base to the tip of the
flame; it is given by

Δ𝑡𝑐 =
𝐻𝑓

�̄�
, (9)

where 𝐻𝑓 = (𝑅∕ tan 𝛼) is the vertical height of the steady
flame.
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Figure 5: FDF for a conical flame with 𝑆𝐿 = 0.557ms−1; (a) gain; (b) phase.

Table 2
Comparison of travel times

𝑆𝐿[ms−1] 𝛼 𝐻𝑓 [𝑚] 𝐿𝑓 [m] 𝜏1[s] 𝜏2[s] Δ𝑡𝑐[s] 𝜏3[s] Δ𝑡𝑟[s]
from Fig.6 from Fig.6 from Eq.(9) from Fig.6 from Eq.(10)

0.41 0.42 0.0022 0.0025 0.0008 0.0018 0.0022 0.0026 0.0026
0.43 0.44 0.0021 0.0023 0.0007 0.0017 0.0021 0.0025 0.0026
0.46 0.48 0.0019 0.0022 0.0006 0.0016 0.0019 0.0024 0.0024
0.50 0.52 0.0017 0.0020 0.0005 0.0014 0.0017 0.0022 0.0023
0.56 0.59 0.0015 0.0018 - 0.0013 0.0015 0.0021 0.0022

Figure 6: Impulse response ℎ(𝑡) of flames with different laminar
flame speeds excited by a low-amplitude acoustic field with
𝜀 = 0.02.

The restoration time is the time it takes for the flame to
restore its unperturbed shape after a perturbation has passed;
it is given by

Δ𝑡𝑟 =
𝐿𝑓

𝑢∥
, (10)

where 𝐿𝑓 =
(

𝐻𝑓∕ cos 𝛼
) is the side length of the steady

flame, and 𝑢∥ = �̄� cos 𝛼 is the component of the mean
velocity �̄� that is parallel to the steady flame surface.

Table 2 lists these travel times, together with the posi-
tions along the time-axis of the minor maximum (𝜏1), major
maximum (𝜏2) and minimum (𝜏3) of the time histories in
Fig. 6. These positions are in sequence, i.e. 𝜏1 is the shortest
and 𝜏3 the longest travel time.

Comparison of columns 6 and 7 shows that the major
maximum at 𝜏2 corresponds to the convection time Δ𝑡𝑐 ;comparison of columns 8 and 9 shows that the minimum at
𝜏3 corresponds to the restoration time Δ𝑡𝑟. There are slight
discrepancies, but this is to be expected: Blumenthal et al.
[12] linearised the G-equation and considered a purely axial
velocity field, whereas we solved the fully nonlinear G-
equation and considered a velocity field with an axial and
radial component. Furthermore, we observe from our results
that 𝜏2 and 𝜏3 reduce as 𝑆𝐿 increases and the flame becomes
shorter.

The minor maximum in the early part of the impulse
response shown in Fig. 6 (with time-lag 𝜏1 listed in column
5 of Table 2) is not captured by the Blumenthal model.
The values of 𝜏1 reduce at a similar rate as 𝜏2 and 𝜏3when 𝑆𝐿 increases. We therefore hypothesise that the minor
maximum is due to a nonlinear effect, which occurs even
at very small velocity amplitudes, and that it is caused by
some propagation process. The minor maximum is more
prominent for long flames than for short ones.

We now proceed to quantify the changes in the impulse
response curves due to changes in 𝑆𝐿. Motivated by the
shape of these curves, we approximate them analytically by
a superposition of three Gauss curves,

ℎ(𝑡) = 𝑛1𝐷1(𝜏−𝜏1)+𝑛2𝐷2(𝜏−𝜏2)+𝑛3𝐷3(𝜏−𝜏3), (11a)
with distributions

𝐷𝑗(𝜏 − 𝜏𝑗) =
1

𝜎𝑗
√

2𝜋
exp

(

−
(𝜏 − 𝜏𝑗)2

2𝜎2𝑗

)

, 𝑗 = 1, 2, 3

(11b)
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Figure 7: Dependence of the fitting parameters on the laminar flame speed 𝑆𝐿. (a) 𝑛1, 𝑛2, 𝑛3; (b) 𝜏1, 𝜏2, 𝜏3; (c) 𝜎1, 𝜎2, 𝜎3.

𝑛1 and 𝑛2 are a measure for the peak value of the first two
maxima; 𝑛3 is associated with the minimum and is negative.
𝜏𝑗 (𝑗 = 1, 2, 3) is the central time-lag of distribution 𝑗, and
𝜎𝑗 (𝑗 = 1, 2, 3) is the standard deviation. The quantities
𝑛1, 𝑛2, 𝑛3, 𝜏1, 𝜏2, 𝜏3, 𝜎1, 𝜎2, 𝜎3 are treated as fitting param-
eters, and they are determined in the frequency-domain as
described in [30]. They depend on 𝑆𝐿 as shown in Fig. 7.
The features that can be observed from the curves in Fig. 7
are fully in line with the results in Fig. 6, and give further
insight:
(1) With increasing 𝑆𝐿, the three times 𝜏1, 𝜏2, 𝜏3 decrease

monotonically. This is expected because an increase in
𝑆𝐿 leads to a shortening of the flame and therefore to
reduced travel times.

(2) With increasing 𝑆𝐿, 𝑛1 decreases, while 𝑛2 increases.
However, the ratios 𝑛1∕𝜎1 and 𝑛2∕𝜎2, which are a mea-
sure for the peak values of the two maxima, increase
steadily – in line with the trend of the two maxima seen
in Fig. 6. The parameter 𝑛3 is negative, as expected for
the minimum. The modulus of the ratio 𝑛3∕𝜎3 reduces
with increasing 𝑆𝐿, and this reflects the trend of the
minimum in Fig. 6, which becomes shallower.

(3) The values of 𝜎1, 𝜎2, 𝜎3 are a measure for the width
of the maxima and minimum. 𝜎1 decreases with 𝑆𝐿,
indicating that the first maximum becomes narrower; 𝜎2and 𝜎3 barely change, along with the width of the second
maximum and the minimum.

3.2.2. Amplitude-dependent flame model
We now consider an amplitude-dependent flame re-

sponse described by an FDF. If we apply an inverse Fourier
transform to the FDF, we obtain a time-domain signal, but
its interpretation as "impulse response" is no longer valid
[29]. Nevertheless, the transform can be performed; we call
the resulting signal the "time-domain equivalent of the FDF"
and denote it by ℎ𝜀(𝑡). Fig. 8 shows the time-domain results
corresponding to the FDFs in Figs. 4 and 5. Figure 8(a) is
for the long flame (𝑆𝐿 = 0.411ms−1), and Fig. 8(b) is for
the short flame (𝑆𝐿 = 0.557ms−1).

We make the following observations from Fig. 8(a).
The first maximum grows as 𝜀 increases, while its position
remains largely unchanged. The second maximum reduces

in height as 𝜀 increases, and its position shifts to the left.
Eventually, it merges with the earlier maximum, which be-
comes the dominant one. The minimum becomes shallower
as 𝜀 increases, and soon disappears altogether; its position
seems to shift slightly to the left. The shorter flame shows
similar trends (see Fig. 8(b)), but these are harder to discern.

In order to quantify how the curves in Fig. 8 change
as 𝜀 increases, we represent them again by a superposition
of three Gauss curves with fitting parameters 𝑛1, 𝑛2, 𝑛3,
𝜏1, 𝜏2, 𝜏3, 𝜎1, 𝜎2, 𝜎3. Figure 9 shows the fitting parameters
for the long flame (𝑆𝐿= 0.411ms−1), and Fig. 10 shows them
for the short flame (𝑆𝐿= 0.557ms−1).

The results in Figs. 9 and 10 confirm the observations
made from Figs. 8(a) and 8(b), respectively. We start by
analysing the results in Fig. 9 with reference to Fig. 8(a). The
first maximum is described by the parameters 𝑛1, 𝜏1, 𝜎1. As 𝜀
increases beyond the value 0.2, 𝑛1 increases, while 𝜏1 and 𝜎1remain largely constant. Hence, the ratio 𝑛1∕𝜎1, which is a
measure for the peak value of the maximum, increases. The
second maximum is described by the parameters 𝑛2, 𝜏2, 𝜎2.
As 𝜀 increases beyond the value 0.2, 𝑛2 and 𝜏2 decrease,
while 𝜎2 increases at first and then levels off. The movement
of this maximum to the left along the time axis in Fig. 8(a)
corresponds to the decrease in 𝜏2. The loss of height of this
maximum is reflected by the decrease of the ratio 𝑛2∕𝜎2.
The minimum is described by the parameters 𝑛3, 𝜏3, 𝜎3. As
𝜀 increases, 𝑛3 tends monotonically to zero. This implies
that the minimum is disappearing and therefore the values
for 𝜏3 and 𝜎3 become meaningless. We conclude from the
disappearance of the minimum that the flame restoration
process fades with increasing excitation amplitude. Quali-
tatively similar observations can be made from the results
for the short flame shown in Fig. 10, and the corresponding
time histories in Fig. 8(b).

The existence of two maxima with two different travel
times, 𝜏1 and 𝜏2, implies that two different travel distances
are at play here. In order to shed more light on this, we
investigate the flame kinematics from snapshots of the flame
surface taken at different times during one oscillation cycle.
This is illustrated in the two figures below, for an excitation
with a frequency of 𝑓 = 400Hz and three different ampli-
tudes (𝜀 = 0.02, 0.10, 0.40). Figure 11 is for a long flame
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Figure 8: "Time-domain equivalents" corresponding to the FDFs in Figs. 4 and 5 for different excitation amplitudes 𝜀; (a)
𝑆𝐿 = 0.411ms−1, corresponding to Fig. 4; (b) 𝑆𝐿 = 0.557ms−1, corresponding to Fig. 5.

Figure 9: Amplitude-dependence of the fitting parameters for small 𝑆𝐿 (𝑆𝐿 = 0.411ms−1). (a) 𝑛1, 𝑛2, 𝑛3; (b) 𝜏1, 𝜏2, 𝜏3; (c)
𝜎1, 𝜎2, 𝜎3.The step size for 𝜀 is 0.02 for 𝜀 ≤ 0.1 and 0.05 for 𝜀 > 0.1.

with 𝑆𝐿= 0.411ms−1, and Fig. 12 is for a short flame with
𝑆𝐿= 0.557ms−1. In both figures, the height of the steady
flame 𝐻𝑓 is marked by a grey horizontal line.

We first consider the long flame. Figure 11(a) shows the
flame movement for the very low excitation amplitude 𝜀 =
0.02, which was considered previously (see Section 3.2.1) as
a linear case. Careful examination of the displayed snapshots
shows that the flame tip oscillates around a position, which
is below the position of the steady flame tip. The flame
response to higher excitation amplitudes is shown in the
subsequent parts of Fig. 11: the case 𝜀 = 0.10 is in part

(b), and the case 𝜀 = 0.40 is in part (c). It is evident that
the flame tip oscillates around a lower and lower mean as
𝜀 increases. Effectively, the mean flame height reduces, so
the convection time Δ𝑡𝑐 identified in the previous section
(see Eq. (9)) becomes shorter. This is the reason for the shift
to smaller 𝜏2-values as 𝜀 increases (see Fig. 9(b)). It is a
nonlinear phenomenon, which occurs even for very small
excitation amplitudes.

The snapshots for 𝜀 = 0.40 (see Fig. 11(c)) reveal that
flame pinching occurs. This leads to a substantial reduction
of the effective mean height of the flame. We hypothesise

Figure 10: Amplitude-dependence of the fitting parameters for large 𝑆𝐿 (𝑆𝐿 = 0.557ms−1). (a) 𝑛1, 𝑛2, 𝑛3; (b) 𝜏1, 𝜏2, 𝜏3; (c)
𝜎1, 𝜎2, 𝜎3.The step size for 𝜀 is 0.02 for 𝜀 ≤ 0.1 and 0.05 for 𝜀 > 0.1.
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Figure 11: Snapshots of the flame surface in cross-section at 6 time instances during one cycle for 𝑓 = 400Hz and 𝑆𝐿= 0.411ms−1.
The grey horizontal line marks the height of the corresponding steady flame. (a) 𝜀 = 0.02; (b) 𝜀 = 0.10; (c) 𝜀 = 0.40.

that this is the reason why the early maximum at 𝜏1 becomes
the dominant maximum as 𝜀 increases.

Much the same observations can be made for the short
flame (see Fig. 12), but they are harder to discern.

In summary, we can conclude that two kinematic phe-
nomena occur as 𝜀 increases:
(1) The mean height of the oscillating flame decreases pro-

gressively and is always below the height of the steady
flame (even for very small excitation amplitudes).

(2) Flame pinching is responsible for a substantial reduction
in the mean flame height. It suppresses the former phe-
nomenon and leads to an increasingly dominant maxi-
mum (at 𝜏1) early on in the time history of the impulse
response.

These phenomena cannot always be separated, especially for
short flames.
3.3. Flame flashback

Flashback is the phenomenon of the flame (or part of
the flame) moving upstream into the premix supply line. It
cannot occur if the velocity of the incoming premix exceeds
the laminar flame speed, i.e. if �̄�+ 𝑢′(𝑥, 𝑡) > 𝑆𝐿. 𝑢′(𝑥, 𝑡) has
amplitude �̄�𝜀, so the minimum of 𝑢′(𝑥, 𝑡) is−�̄�𝜀 (see Eq. (2)).
Therefore, the limiting amplitude, �̄�𝜀𝑓 , where flashback is

guaranteed to be absent is given by �̄� − �̄�𝜀𝑓 = 𝑆𝐿, or [31]

𝜀𝑓 = 1 −
𝑆𝐿
�̄�
. (12)

4. Model for the complete combustion system
We now consider the complete combustion system shown

in Fig. 1.
4.1. Model in terms of PDE, boundary conditions

and initial conditions
The 1-D acoustic analogy equation

1
𝑐2

𝜕2Φ
𝜕𝑡2

− 𝜕2Φ
𝜕𝑥2

= −
𝛾 − 1
𝑐2

𝑞(𝑥, 𝑡) (13)

is the governing equation for the acoustic field in a tube with
a distributed heat release rate [32]. Φ(𝑥, 𝑡) is the velocity
potential, and 𝑞(𝑥, 𝑡) is the heat release rate of the matrix
flame per unit mass of the premix. Any mean flow through
the tube is neglected in the acoustic waves. In addition to this
PDE, Φ(𝑥, 𝑡) also has to satisfy

– initial conditions given at 𝑡 = 0 for Φ and 𝜕Φ
𝜕𝑡

– boundary conditions at the tube ends 𝑥 = 0, 𝐿
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Figure 12: Snapshots of the flame surface in cross-section at 6 time instances during one cycle for 𝑓 = 400Hz and 𝑆𝐿= 0.557ms−1.
The grey horizontal line marks the height of the corresponding steady flame. (a) 𝜀 = 0.02; (b) 𝜀 = 0.10; (c) 𝜀 = 0.40.

– conditions at 𝑥 = 𝑥𝑞 to describe the perforated plate
and the temperature jump.

We assume that the flame is compact, and that the heat
release rate is concentrated at the axial position 𝑥𝑞 . Then we
can put

𝑞(𝑥, 𝑡) = 𝑞(𝑡)𝛿(𝑥 − 𝑥𝑞). (14)
The term 𝑞(𝑡) is a measure of the global heat release rate
𝑄′

𝑚(𝑡) of the matrix flame,

𝑄′
𝑚(𝑡) = ∫𝑉

𝑞′(𝑥, 𝑡)�̄� d𝑉 = �̄�𝑆𝑞(𝑡), (15)

where 𝑉 is a control volume surrounding the flame and 𝑆 is
the cross-sectional area of the tube.

We assume that the initial conditions act at the same
position 𝑥𝑞 (and nowhere else) and describe them by

Φ(𝑥, 𝑡) |
|𝑡=0 = 𝜑0𝛿(𝑥 − 𝑥𝑞), (16a)

𝜕Φ(𝑥, 𝑡)
𝜕𝑡

|

|𝑡=0 = �̇�0𝛿(𝑥 − 𝑥𝑞), (16b)

where 𝜑0 and �̇�0 are the initial values of the velocity
potential and its gradient. The boundary conditions are

𝜕Φ(𝑥, 𝑡)
𝜕𝑥

|

|𝑥=0 = 0 (closed end), (17a)

Φ(𝑥, 𝑡) |
|𝑥=𝐿 = 0 (open end). (17b)

The conditions at 𝑥 = 𝑥𝑞 (perforated plate and temperature
jump) were modelled with the reflection and transmission
coefficients 𝑅12, 𝑇12, 𝑅21, 𝑇21 spelled out in Appendix A.

Equations (13) to (17b), together with (A.9) and (A.10),
fully describe the acoustic field in the tube with thermoa-
coustic feedback. However, they are not easy to solve, and
therefore we resort to a more achievable, but equivalent,
approach.
4.2. Model in terms of an integral equation based

on the tailored Green’s function
The Green’s function 𝐺(𝑥, 𝑥∗, 𝑡− 𝑡∗) is the response ob-

served at position 𝑥 and time 𝑡 to a hypothetical point source
at position 𝑥∗ firing an impulse at time 𝑡∗. Its governing
equation is

1
𝑐2

𝜕2𝐺
𝜕𝑡2

− 𝜕2𝐺
𝜕𝑥2

= 𝛿(𝑥 − 𝑥∗)𝛿(𝑡 − 𝑡∗). (18)
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The tailored Green’s function [33] is the solution of Eq. (18),
which satisfies the same conditions at all boundaries and
interfaces as the acoustic field (here expressed in terms of
the velocity potential). Given that the tube is a resonator, the
tailored Green’s function is a superposition of modes,

𝐺(𝑥, 𝑥∗, 𝑡− 𝑡∗) = 𝐻(𝑡− 𝑡∗) Re

[ ∞
∑

𝑛=1
𝑔𝑛(𝑥, 𝑥∗)e−i𝜔𝑛(𝑡−𝑡∗)

]

.

(19)
𝐻(𝑡 − 𝑡∗) stands for the Heaviside function; it guarantees
causality. Mode 𝑛 has frequency 𝜔𝑛 and amplitude 𝑔𝑛. These
properties can be calculated analytically [34] (where details
of the calculation are described for a similar 1-D setup) and
the results are

𝑔𝑛(𝑥, 𝑥∗) =
i�̂�(𝑥, 𝑥∗, 𝜔𝑛)
𝜔𝑛𝐹 ′(𝜔𝑛)

(20)

where 𝐹 ′ denotes the derivative of 𝐹 with respect to 𝜔, and

�̂�(𝑥, 𝑥∗, 𝜔𝑛) =

⎧

⎪

⎨

⎪

⎩

𝐴(𝑥, 𝜔)𝐶(𝑥∗, 𝜔) for 0 ≤ 𝑥 < 𝑥𝑞
𝐶(𝑥∗, 𝜔)𝐷(𝑥, 𝜔) for 𝑥𝑞 ≤ 𝑥 ≤ 𝑥∗
𝐶(𝑥, 𝜔)𝐷(𝑥∗, 𝜔) for 𝑥∗ ≤ 𝑥 ≤ 𝐿

(21)
with

𝐴(𝑥, 𝜔) =𝑇21
[

𝑅0ei𝑘1𝑥 + e−i𝑘1𝑥
]

, (22)
𝐶(𝑥, 𝜔) =i𝑐2e

i𝑘2(𝑥𝑞−𝐿)ei𝑘2(𝑥−𝑥𝑞)

×
[

1 + 𝑅𝐿e−2i𝑘2(𝑥−𝐿)
]

, (23)
𝐷(𝑥, 𝜔) =

[

e−i𝑘1𝑥𝑞 − 𝑅0𝑅12e
i𝑘1𝑥𝑞

]

×
[

e−i𝑘2(𝑥−𝑥𝑞) + 𝑅21e
i𝑘2(𝑥−𝑥𝑞)

]

+ 𝑅0𝑇12𝑇21e
i𝑘2𝑥𝑞ei𝑘2(𝑥−𝑥𝑞). (24)

The characteristic equation for 𝜔𝑛 is
𝐹 (𝜔) = − e−i𝜔𝑏 + 𝑅𝐿𝑅21e−i𝜔𝑎 + 𝑅0𝑅12ei𝜔𝑎

− 𝑅0𝑅𝐿
(

𝑅12𝑅21 − 𝑇12𝑇21
)

ei𝜔𝑏, (25)
where

𝑎 =
𝑥𝑞
𝑐1

+
𝑥𝑞
𝑐2

− 𝐿
𝑐2

and 𝑏 =
𝑥𝑞
𝑐1

−
𝑥𝑞
𝑐2

+ 𝐿
𝑐2
. (26a,b)

The tailored Green’s function offers an alternative to
solving the mathematical problem described in Section 4.1
in that it facilitates conversion of the PDE, Eq. (13), together
with all boundary conditions and interface conditions, into
an integral equation. This involves several mathematical
steps, which can be found in [32, Section 3]. The result is

𝑢′𝑞(𝑡) = −
𝛾 − 1
𝑐2

𝑡

∫
𝑡∗=0

𝐻(𝑡 − 𝑡∗)Re

[ ∞
∑

𝑛=1
𝐺𝑛e−i𝜔𝑛(𝑡−𝑡∗)

]

𝑞(𝑡∗) d𝑡∗

− 1
𝑐2

Re

[ ∞
∑

𝑛=1
𝐺𝑛e−i𝜔𝑛𝑡

(

i𝜔𝑛𝜑0 − �̇�0
)

]

, (27)

where 𝑢′𝑞(𝑡) is the time-history of the acoustic velocity at the
point 𝑥 = 𝑥𝑞 , and 𝐺𝑛 is given by

𝐺𝑛 =
𝜕𝑔𝑛
𝜕𝑥

|

|

|

|

𝑥 = 𝑥𝑞
𝑥∗ = 𝑥𝑞

. (28)

The integral on the right-hand side of Eq. (27) gives the
velocity field generated by the thermoacoustic interaction.
The other terms on the right-hand side are due to the initial
conditions given by Eq. (16). In order to determine 𝑞(𝑡) for
a given FDF 𝜀(𝜔), we use Eq. (7) to calculate the corre-
sponding time-domain equivalent ℎ𝜀(𝑡), Eq. (8) to calculate
𝑄′

𝑚(𝑡) and finally Eq. (15) to get 𝑞(𝑡). The integral equation
Eq. (27) can be solved with a straightforward time-stepping
iteration. We choose the initial amplitude 𝜀 by adjusting the
initial value 𝜑0 in Eq. (16a), and we put �̇�0 = 0 throughout.

We supplement the time-history calculations with an-
other analytical method, which gives the complex eigen-
frequencies of the complete thermoacoustic system. In this
model, the acoustic velocity is expressed as a sum of modes
with complex amplitudes 𝑢𝑚 and complex eigenfrequencies
Ω𝑚,

𝑢′𝑞(𝑡) =
∞
∑

𝑚=1

(

𝑢𝑚e−iΩ𝑚𝑡 + �̃�𝑚eiΩ̃𝑚𝑡
)

; (29)

the tilde ∼ denotes complex conjugates. The real part of Ω𝑚represents the oscillation frequency, and the imaginary part
gives the growth rate, which is an indicator of instability.
Bigongiari and Heckl [35] derived equations for Ω𝑚 and 𝑢𝑚,
assuming a basic heat release model with a single time-lag.

We extend this approach to the heat release model pre-
sented in Section 3.2 in terms of a distribution of time lags.
Details of the calculation can be found in Appendix B. The
resulting equation for Ω𝑚 is

∞

∫
𝜏=0

ℎ𝜀(𝜏) eiΩ𝑚𝜏d𝜏
∞
∑

𝑛=1

[

𝐺𝑛
i(𝜔𝑛 − Ω𝑚)

−
�̃�𝑛

i(�̃�𝑛 + Ω𝑚)

]

= − 2𝑐2
𝐾(𝛾 − 1)

; (30)

we adopt this in the next section to make stability predic-
tions.

5. Predictions for safe operation limits
Thermoacoustic instabilities, as well as flashback, im-

pose limits on the parameter range, in which safe operation
of the combustion system is possible. Both phenomena
depend strongly on the laminar flame speed, which in turn
depends strongly on the hydrogen concentration 𝜒𝐻2

in the
fuel blend and the equivalence ratio 𝜙 of the fuel-air mix.
This dependence is described in Section 5.1. An overall
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Figure 13: Variation of the laminar flame speed with respect to (a) 𝜒𝐻2
and (b) 𝜙 [36].

stability map in the 3-D parameter space, made up of 𝜒𝐻2
,

𝜙 and the velocity amplitude 𝜀, will be given in Section 5.2.
Section 5.3 focuses on the parameters 𝜒𝐻2

and 𝜙 individu-
ally, and their influence on the stability behaviour.
5.1. The laminar flame speed for hydrogen-blend

fuels
The primary parameter of the flame that characterises

its response is the laminar flame speed 𝑆𝐿. For hydrogen-
blend flames, 𝑆𝐿 depends on the hydrogen concentration,
𝜒𝐻2

and the equivalence ratio 𝜙. This dependence is shown
in Figs. 13(a) and (b).

It is evident that 𝑆𝐿 depends very strongly on 𝜒𝐻2
: it

increases by a factor of about 10 (from 0.1 to 1 m/s) for
𝜙 = 0.6 as 𝜒𝐻2

increases from 0 to 100%. For other 𝜙-
values, the increase is in the same ball park.
5.2. Stability-flashback map in 3-D parameter

space
Our parameters of interest are
– 𝜒𝐻2

, which we vary in the range [0 … 70%], step size:
10%

– 𝜙, which we vary in the range [0.85 … 1.3], step size:
0.05

– 𝜀, for which we assume the values 0.02, 0.10, 0.15 ⋯
0.85; the step size is 0.05 for 𝜀 ≥ 0.1.

The flame is a matrix flame, i.e. it consists of a 2-D array of
small flames anchored on a perforated plate. Each of these
small flames has the same base radius and mean velocity as
the flame analysed in Section 3.1 (see Table 1). The other
system parameters, which are kept constant, are listed in
Table 3.

The temperature �̄�2 in the hot region depends on the
composition of the premix. We take �̄�2 to be equal to the
adiabatic flame temperature and determine it, using the
NASA CEA computer program [37, 38]. The mean heat
release rate �̄�𝑚 of the matrix flame is then calculated from

�̄�𝑚 = 𝑐𝑝�̄��̄�𝑆
(

�̄�2 − �̄�1
)

. (31)

Figure 14: Three-dimensional stability-flashback map in 𝜙 −
𝜒𝐻2

− 𝜀 space.

For the 𝜒𝐻2
range and 𝜙 range considered here, �̄�2 varies

in the range [2225, 2259] K. As a result, the speed of sound
𝑐2 varies in the range [892, 910] ms−1, and the frequency
𝜔1 of the first Green’s function mode varies between [172,
450]2𝜋s−1.

For the thermoacoustic stability predictions, we solved
Eq. (30) to obtain the thermoacoustic eigenfrequencies Ω𝑚,
and hence ImΩ𝑚; only the first mode, 𝑚 = 1, was con-
sidered. The function ℎ𝜀(𝑡) was a superposition of three
Gauss curves with amplitude-dependent fitting parameters
𝑛1, 𝑛2, 𝑛3, 𝜏1, 𝜏2, 𝜏3, 𝜎1, 𝜎2, 𝜎3 as described in Section 3.2.
For the flashback predictions, we used Eq. (12). The stability
predictions are shown in Fig. 14.

The region above the red surface is where there is a
risk of flashback. The blue surface separates the regions of
unstable and stable thermoacoustic oscillations. If the initial
amplitude of the oscillation is small enough to be below the
blue surface, the amplitude will grow until it reaches the
blue surface. At that point, the amplitude remains constant,
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Table 3
Parameters describing the system under consideration

Parameter Symbol Numerical value Units

length of tube 𝐿 0.5 m
axial position of perforated plate 𝑥𝑞 0.2 m
radius of perforations 𝑅 0.001 m
perforation density  1.09 × 105 holes per m2

mean flow velocity �̄� 1.0 m s−1
temperature in cold region �̄�1 300 K
speed of sound in cold region 𝑐1 345 m s−1
mean density in cold region �̄� 1.2 kgm−3

specific heat ratio 𝛾 1.4
heat capacity at constant pressure 𝑐𝑝 1010 m2s−2K−1

Figure 15: Time history of 𝑢′𝑞(𝑡) for 𝜒𝐻2
= 20% and 𝜙 = 1.0. (a) Unstable case with small initial amplitude (𝜀 = 0.025); (b) stable

case with large initial amplitude (𝜀 = 0.25).

i.e. a stable limit cycle has formed. If the thermoacoustic
oscillation has an initial amplitude above the blue surface, its
amplitude will decay until it reaches the blue surface, from
where it will enter a stable limit cycle.

These two scenarios are illustrated in Fig. 15 for 𝜒𝐻2
=

20%, 𝜙 = 1.0 and two initial 𝜀 values: one below and one
above the blue surface. Figure 15(a) shows the time history
𝑢′𝑞(𝑡) starting with 𝜀 = 0.025, and Fig. 15(b) shows 𝑢′𝑞(𝑡)starting with 𝜀 = 0.25 (both were calculated from Eq. (27)
by a time-stepping approach; for details see [33]).

The time history in Fig. 15(a) starts with a growing
amplitude and soon reaches a limit cycle with amplitude
𝜀 = 0.05. In Fig. 15(b), the oscillation decays at first until it
reaches a limit cycle with the same amplitude.

The region between the blue and red surface in Fig. 14
can be considered as the region where safe operation is
possible. We explore this in more detail in the next section.
5.3. Influence of the hydrogen concentration and

equivalence ratio
Figure 16 presents the influence of the hydrogen concen-

tration 𝜒𝐻2
. It shows contour plots in the 𝜒𝐻2

− 𝜀 plane for
ReΩ𝑚 and ImΩ𝑚 (𝑚 = 1). Results are given only for the
region where flashback does not occur; this is demarcated
by the dotted red curve.

We observe the following trends as the hydrogen fraction
𝜒𝐻2

increases:
– The thermoacoustic eigenfrequencies,ReΩ1, increase.

– The risk of instability decreases.
– The risk of flashback increases.
The reason for the increase in the eigenfrequencies is

due to the following causal chain: an increase in 𝜒𝐻2
in-

creases the adiabatic flame temperature; this increases the
temperature in the hot section of the combustion chamber,
which leads to a higher speed of sound. For example, for a
stoichiometric mixture of hydrogen and natural gas: 𝑇𝑎𝑑 =
2225K if 𝜒𝐻2

= 0%, whereas 𝑇𝑎𝑑 = 2380K if 𝜒𝐻2
= 100%

[37, 38]. Changes in 𝜒𝐻2
also affect any time-lags between

the heat release rate 𝑄′
𝑚(𝑡) and the acoustic field. According

to the Rayleigh criterion [39, Section 6.2], this leads to the
variations in the stability behaviour shown in Fig. 16(b). The
risk of flashback increases because an increase in 𝜒𝐻2

leads
to shorter flames, and these are more prone to flashback.

Figure 17 presents the influence of the equivalence ratio
𝜙 in detail, showing the results forReΩ𝑚 and ImΩ𝑚 (𝑚 = 1)
as a contour plot in the 𝜙 − 𝜀 plane.

In Fig. 17, there are three distinct sections along the
𝜙-axis: 𝜙 < 1 (lean mixture), 𝜙 = [1 … 1.15] (near-
stoichiometric mixture), and 𝜙 > 1.15 (rich mixture). We
observe the following trends as the equivalence ratio 𝜙
varies:

– The eigenfrequencies are largest in the range 𝜙 =
[1 … 1.15] and decrease for 𝜙-values on either side
of this range (see Fig. 17(a)).
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Figure 16: Results in the 𝜒𝐻2
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frequency ReΩ1∕2𝜋 (in Hz); (b) contours of the growth rate ImΩ1; the dotted grey curve marks the boundary between the stable
and unstable region, and the grey shading indicates the unstable region.
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Figure 17: Results in the 𝜙 − 𝜀 plane for 𝜒𝐻2
= 20%. The dotted red line demarcates the flashback region. (a) Contours of the

frequency ReΩ1∕2𝜋 (in Hz); (b) contours of the growth rate ImΩ1; the dotted grey curve marks the boundary between the stable
and unstable region, and the grey shading indicates the unstable region. The two red crosses x mark the initial amplitudes that
were assumed to produce the time histories shown in Fig. 15.

– The risk of instability has a minimum in the range
𝜙 = [1 … 1.15], and increases for 𝜙-values on either
side of this range (see Fig. 17(b)).

– The risk of flashback shows the opposite trend: it
occurs at amplitudes as low as 𝜀=0.6 for 𝜙-values in
the range 𝜙 = [1 … 1.15]; for 𝜙-values outside of this
range, flashback occurs only at higher amplitudes.

These behaviours can be explained in terms of the 𝑆𝐿dependence on 𝜙 shown in Fig. 13(b). The relevant curve is
that for 𝜒𝐻2

= 20%. The 𝑆𝐿-value is maximum in the range
𝜙 = [1 … 1.15], but lower for 𝜙 < 1 and 𝜙 > 1.15. As
a consequence, the flame is shorter for near-stoichiometric
mixtures than for lean or rich mixtures.

It is evident from Figs. 16 and 17 that low values of 𝜒𝐻2favour instability, while high values of 𝜒𝐻2
favour flashback.

In terms of equivalence ratio, stability as well as flashback
are favoured near stoichiometric combustion, i.e. for 𝜙 ≈ 1.

6. Conclusions and outlook
This paper presents a fundamental study on the dynamics

of a laminar hydrogen-blend flame; the results of this study
are then applied to predict the safe operating limits of a
generic combustion test rig with a hydrogen-blend flame
anchored on a perforated plate. The combustion chamber is
an acoustic resonator, and this is modelled by the tailored
Green’s function, i.e. by the impulse response of the res-
onator. The flame is modelled by the classical G-equation,
which describes the flame response to convected velocity
fluctuations; the key parameter is the laminar flame speed
𝑆𝐿.
Insights from the fundamental study (flame
dynamics)

The flame front stabilises at a location where the flame-
normal velocity component is equal to 𝑆𝐿. As such, for
a given incoming mean flow velocity, an increase in 𝑆𝐿
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will lead to shorter and flatter flames, resulting in reduced
travel distances and reduced travel times for convection and
restoration waves along the flame front. It had been expected
that for very low amplitudes of excitation (with a velocity
amplitude as low as 2% of the mean flow velocity), the flame
dynamics would be linear, i.e. the flame tip would oscillate
around the position of the steady flame tip. However, we
have observed that even at very low amplitudes, the flame
shows nonlinear behaviour: the flame tip oscillates around
a mean position that is below the position of the steady
flame tip. This effect becomes more pronounced for higher
amplitudes: the more the amplitude increases, the more the
mean position of the oscillating flame tip shifts downwards.
Hence the actual convection and restoration times are always
lower than the values that would be predicted from a linear
flame model. Additionally, a substantial reduction in the
effective mean flame height is brought about by flame pinch-
ing. This leads to a significant reduction in the convection
time (without any changes in 𝑆𝐿), and the disappearance of
restoration waves.
Insights from the applied study (complete
combustion test rig)

Since the flame dynamics depends on 𝑆𝐿, which in turn
depends on the hydrogen concentration 𝜒𝐻2

and the equiv-
alence ratio 𝜙, our stability analysis involved the following
three parameters: 𝜒𝐻2

, 𝜙 and the amplitude 𝜀. A large range
of stable operation was identified in the parameter space for
𝜀-values, especially in the mid-range. Low 𝜀-values bring
an increased risk of thermoacoustic instability, while high
𝜀-values bring a risk of flashback. Unstable oscillations
develop into limit cycles, and their amplitudes depend on
𝜒𝐻2

and 𝜙.
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Appendix A. Model for the reflection and
transmission of acoustic waves at the interface
𝑥 = 𝑥𝑞

We consider an infinitely long tube with three regions as
shown in Fig. A1. The interface between region 1 and region
0 is a perforated plate, and the interface between region 0
and region 2 is a temperature jump. The two interfaces are
spaced a small distance Δ apart.

At the interface, which separates region 1 and region
0, we call the reflection and transmission coefficients 𝑅10,
𝑇10 for forward transmission, and 𝑅01, 𝑇01 for backward
transmission. Similarly, at the interface between region 0 and

(a) incident wave coming from the upstream side

(b) incident wave coming from the downstream side
Figure A1: Waves reflected at the interfaces 𝑥 = 𝑥𝑞 (perforated
plate) and 𝑥 = 𝑥𝑞 + Δ (temperature jump).

region 2, we use 𝑅02, 𝑇02 for forward transmission and 𝑅20,
𝑇20 for backward transmission. The reflection and transmis-
sion coefficients of these interfaces, i.e. the perforated plate
and the temperature jump, are known.

For the perforated plate, they are given by [39, p. 361]

𝑅10 = 𝑅01 =
𝜔

𝜔 + 2i 𝑐1
, 𝑇10 = 𝑇01 =

2i 𝑐1
𝜔 + 2i 𝑐1

,

(A.1a,b)
where  is the number of holes per unit area, 𝑐1 is the speed
of sound, and  is the Rayleigh conductivity. For a plate of
thickness ℎ𝑝, with circular holes of radius 𝑟𝑝,  is given by
(see [39, p. 356])

 =
𝑟2𝑝𝜋

𝑟𝑝𝜋∕2 + ℎ𝑝
. (A.2)

The temperature jump has reflection and transmission
coefficients given by [40, Section 4.1]

𝑅02 =
�̄�2𝑐2 − �̄�1𝑐1
�̄�2𝑐2 + �̄�1𝑐1

, 𝑇02 =
2�̄�2𝑐2

�̄�2𝑐2 + �̄�1𝑐1
(A.3a,b)

for an incident wave coming from the upstream side. For
an incident wave coming from the downstream side, the
coefficients 𝑅20 and 𝑇20 are given by the same kind of
expressions, but with �̄�1𝑐1 and �̄�2𝑐2 swapped over.

The individual interfaces can be lumped together into a
single interface by the wave-based approach described for a
more basic configuration in [34]. We first consider the case,
shown in Fig. A1(a), where the incident wave comes from
the upstream side. The pressure field in the three regions of
the tube is

�̂�(𝑥, 𝜔) =

⎧

⎪

⎨

⎪

⎩

𝑎+e
i𝑘1(𝑥−𝑥𝑞) + 𝑎−e

−i𝑘1(𝑥−𝑥𝑞) for region 1
𝑏+e

i𝑘1(𝑥−𝑥𝑞) + 𝑏−e
−i𝑘1(𝑥−𝑥𝑞) for region 0

𝑐+e
i𝑘2(𝑥−𝑥𝑞) for region 2
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(A.4)
𝑎+, 𝑎−, 𝑏+, 𝑏−, 𝑐+ are the pressure amplitudes of the indi-
vidual waves, and 𝑘1 = 𝜔∕𝑐1, 𝑘2 = 𝜔∕𝑐2 are their wave
numbers. The reflection and transmission coefficients of the
combined interface are

𝑅12 = lim
Δ→0

𝑎−
𝑎+

and 𝑇12 = lim
Δ→0

𝑐+
𝑎+

. (A.5a,b)
In order to calculate them, we express the waves travelling
away from the individual interfaces in terms of reflected and
transmitted components.

At 𝑥 = 𝑥𝑞: 𝑎− = 𝑅10 𝑎+ + 𝑇01 𝑏− (A.6a)
𝑏+ = 𝑅01 𝑏− + 𝑇10 𝑎+ (A.6b)

At 𝑥 = 𝑥𝑞 + Δ: 𝑏−e−i𝑘1Δ = 𝑅02 𝑏+ei𝑘1Δ (A.6c)
𝑐+ei𝑘2Δ = 𝑇02 𝑏+ei𝑘1Δ (A.6d)

Eqs. (A.6a-d) can be written as a matrix equation for the
unknowns 𝑎−, 𝑏+, 𝑏−, 𝑐+ as,

⎡

⎢

⎢

⎢

⎣

−1 0 𝑇01 0
0 −1 𝑅01 0
0 𝑅02ei𝑘1Δ −e−i𝑘1Δ 0
0 𝑇02ei𝑘1Δ 0 −e−i𝑘2Δ

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑎−
𝑏+
𝑏−
𝑐+

⎤

⎥

⎥

⎥

⎦

= 𝑎+

⎡

⎢

⎢

⎢

⎣

−𝑅10
−𝑇10
0
0

⎤

⎥

⎥

⎥

⎦

(A.7)

and solved by Cramer’s rule. For the unknowns 𝑎− and 𝑐+,
one obtains

𝑎− = 𝑎+
𝑅10e−i𝑘1Δ − 𝑅10𝑅01𝑅02ei𝑘1Δ + 𝑇10𝑇01𝑅02ei𝑘1Δ

e−i𝑘1Δ − 𝑅01𝑅02ei𝑘1Δ
(A.8a)

𝑐+ = 𝑎+
𝑇10𝑇02

ei𝑘2Δ
[

e−i𝑘1Δ − 𝑅01𝑅02ei𝑘1Δ
] (A.8b)

This leads immediately to the amplitude ratios in Eqs. (A.5a,b).
After letting Δ → 0, one obtains

𝑅12 = lim
Δ→0

𝑎−
𝑎+

=
𝑅10 − 𝑅10𝑅01𝑅02 + 𝑇10𝑇01𝑅02

1 − 𝑅01𝑅02
,

(A.9a)

𝑇12 = lim
Δ→0

𝑐+
𝑎+

=
𝑇10𝑇02

1 − 𝑅01𝑅02
. (A.9b)

For transmission in the opposite direction, i.e. from region
2 to region 1 (see Fig. A1(b)), we get expressions analogous
to Eqs. (A.9a,b), with the subscripts 1 and 2 swapped over,

𝑅21 =
𝑅20 − 𝑅20𝑅02𝑅01 + 𝑇20𝑇02𝑅01

1 − 𝑅01𝑅02
, (A.10a)

𝑇21 =
𝑇20𝑇01

1 − 𝑅01𝑅02
. (A.10b)

Appendix B. Derivation of Eq. (30) for the
complex eigenfrequencies Ω𝑚

The starting point of our derivation is the integral equa-
tion Eq. (27)

𝑢′𝑞(𝑡) = −
𝛾 − 1
𝑐2

𝑡

∫
𝑡∗=0

𝐻(𝑡 − 𝑡∗)Re

[ ∞
∑

𝑛=1
𝐺𝑛e−i𝜔𝑛(𝑡−𝑡∗)

]

𝑞(𝑡∗) d𝑡∗

− 1
𝑐2

Re

[ ∞
∑

𝑛=1
𝐺𝑛e−i𝜔𝑛𝑡

(

i𝜔𝑛𝜑0 − �̇�0
)

]

. (B.1)

We use Re 𝑧 = 1
2 (𝑧 + �̃�), which holds for any complex

quantity 𝑧 and its complex conjugate �̃�, to rewrite the real
parts in the equation above. This gives

𝑢′𝑞(𝑡) =

−
𝛾 − 1
2𝑐2

𝑡

∫
𝑡∗=0

∞
∑

𝑛=1

[

𝐺𝑛e−i𝜔𝑛(𝑡−𝑡∗) + �̃�𝑛ei�̃�𝑛(𝑡−𝑡∗)
]

𝑞(𝑡∗) d𝑡∗

− 1
2𝑐2

∞
∑

𝑛=1

[

𝐺𝑛e−i𝜔𝑛𝑡
(

i𝜔𝑛𝜑0 − �̇�0
)

+�̃�𝑛ei�̃�𝑛𝑡(−i�̃�𝑛𝜑0 − �̇�0)
]

. (B.2)
For 𝑞(𝑡), we use Eq. (15),

𝑞(𝑡) =
𝑄′

𝑚(𝑡)
�̄�𝑆

= 𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏) 𝑢′𝑞(𝑡 − 𝜏) d𝜏, (B.3)

with

𝐾 =
�̄�𝑚
𝑆�̄��̄�

= 𝑐𝑝Δ𝑇 , (B.4)

where 𝑐𝑝 is the heat capacity at constant pressure, and Δ𝑇 is
the temperature difference between the hot and the cold re-
gion. ℎ𝜀(𝑡) denotes the superposition of Gauss distributions
given in Eq. (11), with 𝜀-dependent fitting parameters. For
𝑢′𝑞 (𝑡 − 𝜏), we use

𝑢′𝑞(𝑡 − 𝜏) =
∞
∑

𝑚=1

(

𝑢𝑚e−iΩ𝑚(𝑡−𝜏) + �̃�𝑚eiΩ̃𝑚(𝑡−𝜏)
)

(B.5)

(see Eq. (29)), and then 𝑞(𝑡∗) becomes

𝑞(𝑡∗) = 𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏)
∞
∑

𝑚=1

(

𝑢𝑚e−iΩ𝑚(𝑡∗−𝜏) + �̃�𝑚eiΩ̃𝑚(𝑡∗−𝜏)
)

d𝜏.

(B.6)
Substitution of Eq. (B.6) into Eq. (B.2) gives

𝑢′𝑞(𝑡) =
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−
𝛾 − 1
2𝑐2

𝑡

∫
𝑡∗=0

{ ∞
∑

𝑛=1

[

𝐺𝑛e−i𝜔𝑛(𝑡−𝑡∗) + �̃�𝑛ei�̃�𝑛(𝑡−𝑡∗)
]

×

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏)
∞
∑

𝑚=1

[

𝑢𝑚e−iΩ𝑚(𝑡∗−𝜏) + �̃�𝑚eiΩ̃𝑚(𝑡∗−𝜏)
]

d𝜏

⎫

⎪

⎬

⎪

⎭

d𝑡∗

− 1
2𝑐2

∞
∑

𝑛=1

[

𝐺𝑛e−i𝜔𝑛𝑡
(

i𝜔𝑛𝜑0 − �̇�0
)

+�̃�𝑛ei�̃�𝑛𝑡(−i�̃�𝑛𝜑0 − �̇�0)
] (B.7)

We call the first term on the right hand side of the above
equation RHS1 (the term inside the box) and manipulate it
in several steps. First, we multiply out the square brackets to
get

RHS1 =

−
𝛾 − 1
2𝑐2

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏)
∞
∑

𝑚,𝑛=1

𝑡

∫
𝑡∗=0

[

𝐺𝑛𝑢𝑚e−i𝜔𝑛(𝑡−𝑡∗)e−iΩ𝑚(𝑡∗−𝜏)

+ 𝐺𝑛�̃�𝑚e
−i𝜔𝑛(𝑡−𝑡∗)eiΩ̃𝑚(𝑡∗−𝜏)

+ �̃�𝑛𝑢𝑚ei�̃�𝑛(𝑡−𝑡∗)e−iΩ𝑚(𝑡∗−𝜏)

+ �̃�𝑛�̃�𝑚ei�̃�𝑛(𝑡−𝑡∗)eiΩ̃𝑚(𝑡∗−𝜏)
]

d𝑡∗d𝜏.
(B.8)

Next, we combine the 𝑡∗-dependent terms and integrate with
respect to 𝑡∗; this gives

RHS1 =

−
𝛾 − 1
2𝑐2

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏)
∞
∑

𝑚,𝑛=1

[

𝐺𝑛𝑢𝑚e−i𝜔𝑛𝑡eiΩ𝑚𝜏 e
i(𝜔𝑛−Ω𝑚)𝑡 − 1
i(𝜔𝑛 − Ω𝑚)

+ 𝐺𝑛�̃�𝑚e−i𝜔𝑛𝑡e−iΩ̃𝑚𝜏 e
i(𝜔𝑛+Ω̃𝑚)𝑡 − 1
i(𝜔𝑛 + Ω̃𝑚)

+ �̃�𝑛𝑢𝑚ei�̃�𝑛𝑡eiΩ𝑚𝜏 e
i(−�̃�𝑛−Ω𝑚)𝑡 − 1
i(−�̃�𝑛 − Ω𝑚)

+�̃�𝑛�̃�𝑚ei�̃�𝑛𝑡e−iΩ̃𝑚𝜏 e
i(−�̃�𝑛+Ω̃𝑚)𝑡 − 1
i(−�̃�𝑛 + Ω̃𝑚)

]

d𝜏

(B.9)
We then combine the exponential terms that have a 𝑡-
dependence to get

RHS1 =

−
𝛾 − 1
2𝑐2

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏)
∞
∑

𝑚,𝑛=1

[

𝐺𝑛𝑢𝑚eiΩ𝑚𝜏 e
−iΩ𝑚𝑡 − e−i𝜔𝑛𝑡

i(𝜔𝑛 − Ω𝑚)

+ 𝐺𝑛�̃�𝑚e−iΩ̃𝑚𝜏 e
iΩ̃𝑚𝑡 − e−i𝜔𝑛𝑡

i(𝜔𝑛 + Ω̃𝑚)

+ �̃�𝑛𝑢𝑚e
iΩ𝑚𝜏 e

−iΩ𝑚𝑡 − ei�̃�𝑛𝑡

i(−�̃�𝑛 − Ω𝑚)

+�̃�𝑛�̃�𝑚e−iΩ̃𝑚𝜏 e
iΩ̃𝑚𝑡 − ei�̃�𝑛𝑡

i(−�̃�𝑛 + Ω̃𝑚)

]

d𝜏.

(B.10)
This expression contains the following four 𝑡-dependent
terms: e−iΩ𝑚𝑡, eiΩ̃𝑚𝑡, e−i𝜔𝑛𝑡 and ei�̃�𝑛𝑡

We collect these terms and factorize with respect to them;
this gives

RHS1 = −
𝛾 − 1
2𝑐2

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏) ×

{ ∞
∑

𝑚=1
𝑢𝑚e−iΩ𝑚𝑡eiΩ𝑚𝜏

∞
∑

𝑛=1

[

𝐺𝑛
i(𝜔𝑛 − Ω𝑚)

+
�̃�𝑛

i(−�̃�𝑛 − Ω𝑚)

]

+
∞
∑

𝑚=1
�̃�𝑚eiΩ̃𝑚𝑡e−iΩ̃𝑚𝜏

∞
∑

𝑛=1

[

𝐺𝑛

i(𝜔𝑛 + Ω̃𝑚)
+

�̃�𝑛

i(−�̃�𝑛 + Ω̃𝑚)

]

+
∞
∑

𝑛=1
𝐺𝑛e−i𝜔𝑛𝑡

∞
∑

𝑚=1

[

−
𝑢𝑚eiΩ𝑚𝜏

i(𝜔𝑛 − Ω𝑚)
−

�̃�𝑚e−iΩ̃𝑚𝜏

i(𝜔𝑛 + Ω̃𝑚)

]

+
∞
∑

𝑛=1
�̃�𝑛ei�̃�𝑛𝑡

∞
∑

𝑚=1

[

−
𝑢𝑚eiΩ𝑚𝜏

i(−�̃�𝑛 − Ω𝑚)
−

�̃�𝑚e−iΩ̃𝑚𝜏

i(−�̃�𝑛 + Ω̃𝑚)

]}

d𝜏

(B.11)
We now return to Eq. (B.7), use the above result for RHS1,
and substitute for 𝑢′𝑞(𝑡) with Eq. (29). This gives
∞
∑

𝑚=1

(

𝑢𝑚 e−iΩ𝑚𝑡 + �̃�𝑚 eiΩ̃𝑚𝑡
)

= −
𝛾 − 1
2𝑐2

𝐾

∞

∫
𝜏=0

ℎ𝜀(𝜏) ×

{ ∞
∑

𝑚=1
𝑢𝑚 e−iΩ𝑚𝑡 eiΩ𝑚𝜏

∞
∑

𝑛=1

[

𝐺𝑛
i(𝜔𝑛 − Ω𝑚)

+
�̃�𝑛

i(−�̃�𝑛 − Ω𝑚)

]

+
∞
∑

𝑚=1
�̃�𝑚 eiΩ̃𝑚𝑡 e−iΩ̃𝑚𝜏

∞
∑

𝑛=1

[

𝐺𝑛

i(𝜔𝑛 + Ω̃𝑚)
+

�̃�𝑛

i(−�̃�𝑛 + Ω̃𝑚)

]

+
∞
∑

𝑛=1
𝐺𝑛 e−i𝜔𝑛𝑡

∞
∑

𝑚=1

[

−
𝑢𝑚eiΩ𝑚𝜏

i(𝜔𝑛 − Ω𝑚)
−

�̃�𝑚e−iΩ̃𝑚𝜏

i(𝜔𝑛 + Ω̃𝑚)

]

+
∞
∑

𝑛=1
�̃�𝑛 ei�̃�𝑛𝑡

∞
∑

𝑚=1

[

−
𝑢𝑚eiΩ𝑚𝜏

i(−�̃�𝑛 − Ω𝑚)
−

�̃�𝑚e−iΩ̃𝑚𝜏

i(−�̃�𝑛 + Ω̃𝑚)

]}

d𝜏

− 1
2𝑐2

∞
∑

𝑛=1

[

𝐺𝑛 e−i𝜔𝑛𝑡
(

i𝜔𝑛𝜑0 − �̇�0
)

+�̃�𝑛 ei�̃�𝑛𝑡 (−i�̃�𝑛𝜑0 − �̇�0)
]

(B.12)

The four 𝑡-dependent terms e−iΩ𝑚𝑡, eiΩ̃𝑚𝑡, e−i𝜔𝑛𝑡 and ei�̃�𝑛𝑡 are
marked in the above equation by a blue rectangle. We equate
their coefficients on either side of Eq. (B.12), and this gives
4 sets of equations. The coefficients of e−iΩ𝑚𝑡 give

∞

∫
𝜏=0

ℎ𝜀(𝜏) eiΩ𝑚𝜏d𝜏
∞
∑

𝑛=1

[

𝐺𝑛
i(𝜔𝑛 − Ω𝑚)

−
�̃�𝑛

i(�̃�𝑛 + Ω𝑚)

]

=

− 2𝑐2
𝐾(𝛾 − 1)

, 𝑚 = 1, 2,… (B.13)
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which is Eq. (30) in the main text. The second set of
equations comes from the coefficients of eiΩ̃𝑚𝑡; this turns out
to be the complex conjugate of Eq. (B.13). The coefficients
of e−i𝜔𝑛𝑡 and ei�̃�𝑛𝑡 give the third and fourth set of equations;
these turn out to be linear equations for the velocity ampli-
tudes 𝑢𝑚 and �̃�𝑚.
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