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Abstract

This thesis explores methods and applications for prediction modelling in a healthcare setting,

focusing on continuous outcomes, sample size, and external validation of model performance.

It begins by discussing current practices around the dichotomisation of birthweight, along with

the issues associated with the dichotomisation of continuous outcomes prior to modelling. Methods

are proposed to retain model development on the continuous outcome scale and subsequently

generate predicted probabilities for the dichotomised outcome, if needed.

Models for continuous and dichotomised pain score are externally validated, demonstrating

large uncertainty in statistical measures of predictive performance due to the small sample size

available for validation. This motivates development of new sample size calculations to target

precise estimation of performance when externally validating a clinical prediction model with a

continuous outcome.

A further external validation shows precision in performance estimates when using individual

participant data, combining data from multiple sources to boost the sample size for validating

a prediction model for continuous birthweight. Each included cohort surpassed the minimum

recommended sample size, based on the newly proposed methods, thus high precision could be

expected. However, accounting for heterogeneity in performance across included populations

through meta-analysis led to wider confidence intervals for pooled performance statistics than in

any individual cohort.

Heterogeneity in model performance is further demonstrated in the external validation of a
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prediction model for serious falls. This validation involved utilising electronic health records to

assess model performance across a range of general practice populations. Pooled performance

estimates, though precise on average, hid the large variation in model performance across practices,

giving an unrealistic summary of how the model might perform in practice.

In summary, the thesis demonstrates the importance of methodological rigour within clinical

prediction model research, to ensure efficient and rigorous models are produced and evaluated.
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1 Chapter 1: Introduction

1.1 Key themes of prediction research

Prediction has long been a vital part of research in healthcare and has recently re-emerged as

a priority area, with a surge in public and clinician interest in the topic during the COVID-19

pandemic [1]. The increase in popularity has brought many opportunities, along with challenges

and research demands.

Prediction research in healthcare refers to the study of clinical outcomes in patients, where the

outcome of interest could be the presence of a particular disease or health condition (diagnostic

prediction) or the development of some health state in the future (prognostic prediction) [2]. It is

a broad research area, covering vital issues such as assessments of baseline risk [3], identification

of risk factors [4], development and validation of clinical prediction models [5], and assessment of

predictors of treatment effect [6]. The different areas of prediction research are often complementary,

for example, with a thorough knowledge of relevant predictors (risk factors) being a vital first-step

in developing or improving a clinical prediction model [5].

A major concern in all areas of prediction research is that research quality is often sub-standard;

for example, a recent review of COVID-19 prediction models demonstrated that 545 of 606 models

were at high risk of bias, with only 5 (0.8%) suitable for potential use in practice [1]. The use of

inappropriate or sub-optimal statistical methods is of major concern, leading to a gap between the

potential and actual impact of such research on patient outcomes, thus being an important source

of research waste. This gap has previously led to the PROGRESS partnership recommending four

key themes of prognosis research [3, 4, 5, 6], and subsequent areas for improvement within each.
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These concepts extend naturally to the field of diagnostic prediction.

1.1.1 Overall prognosis

Overall, or fundamental, prognosis research covers a variety of important healthcare questions. It

involves both describing and explaining clinically important outcomes for people with a particular

health condition, in the context of current diagnosis and treatment practices [3]. Such research can

supply evidence on how different patterns of diagnosis and treatment can impact future endpoints

on a population level, to help inform improvements in the overall quality of healthcare [7]. Assessing

overall prognosis in the absence of any clinical care is also important, as it gives vital information

towards judging the potential impact of screening programmes for asymptomatic disease, such as

breast cancer [8].

An example of an assessment of overall prognosis is seen in a 2020 study summarising changes

in years lived with disability for individuals with low back pain (LBP) between 1999 and 2017

[9]. This study concluded that LBP was a leading cause of disability worldwide, and that urgent

attention was needed to alleviate the increasing burden and associated impact on health and social

care systems, leading to calls for better methods to identify high-risk cases, so that prevention and

early intervention could be considered.

1.1.2 Risk factors

A risk factor, or predictor, refers to a characteristic or feature present among a subgroup of the

people with a particular health condition, that is predictive of the clinical endpoint of interest [4].
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This factor may or may not be causally associated with the outcome, but could separate groups of

individuals with different average prognoses to help inform treatment decisions [10]. Such factors

may be on the individual level, such as illness perceptions or pain intensity, or at an ecological

level (where the exposure of the individual is inferred), including factors such as social deprivation

status [11]. Equally, risk factors could be related to treatments received up until the point of

prediction, such as previously prescribed medications or surgical features [12]. For example, a

2021 review by Albasri et al. investigated whether antihypertensive treatment was a risk factor

for a number of different adverse events, concluding that the current literature showed important

associations between antihypertensive medications and the risks of electrolyte abnormalities, acute

kidney injury, and syncope [13].

Good quality evidence on the impact of individual risk factors is of great importance, and

could be used to refine diagnostic criteria, to inform treatment decisions, or to target preventative

interventions [4, 10]. Risk factors also form the building blocks for the development of clinical

prediction models, where multiple factors are combined to help predict the value or risk of the

clinical outcome for an individual [5].

1.1.3 Prediction models

Clinical prediction models provide individual-level predictions of outcome values or risks to inform

patient counselling and facilitate joint clinical decision making [5]. A recent example of a prediction

model influencing clinical practice is with the QCOVID model to predict the risk of hospital

admission and mortality outcomes from COVID-19 [14]. QCOVID was employed at a national

level in the UK, to identify people who may be at high risk of negative outcomes if they were to

4



catch COVID-19 (assessed using the QCOVID algorithm in their health record data) to prioritise

for vaccination and to notify about recommended shielding practices [15].

Prediction model research refers to studies involving the development, validation, and impact

assessment of such models [16]. Predicting outcomes on an individual level can allow treatment

decisions and monitoring strategies to be tailored to the patient, and their own needs and perceptions,

contributing to precision medicine and personalised care [16]. Such outcomes may relate to something

current, for example current levels of fat mass in children [17], or in the future, such as the risk

of a relapse in depression for those who are currently well [18]. Depending on the context, they

may also be referred to as clinical prediction tools, decision tools, diagnostic or prognostic models,

risk scores, or prognostic indices, amongst other names, and are in demand in all areas of health,

psychology and social care.

Statistical prediction models are typically developed using a multivariable regression framework,

which provides an equation to calculate a predicted outcome, conditional on the values of multiple

risk factors. Recent years have also seen an increase in the use of approaches attributed to Artificial

Intelligence (AI) and Machine Learning (ML), including penalised regression, tree-based methods

and deep-learning [19, 20].

1.1.4 Stratified medicine

The final area of prediction research discussed in the PROGRESS framework concerns predictors of

treatment effect [6]. Heterogeneity in treatment effects is seen as variation in either the magnitude

or direction of the treatment effect across different values for a covariate [21]. Stratified medicine
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aims to account for such heterogeneity by tailoring treatment decisions for patients based on

their individual-level attributes, to maximise the benefits of treatment while reducing unnecessary

costs, both monetary and in terms of harms or potential side-effects from the different treatment

paths [22]. Targeting interventions at those most likely to benefit is more important for some

treatment-covariate combinations than for others, especially where there is a strong biological

rationale for differential treatment effect, and requires good quality evidence of clinically important

differences in prognosis across different patient groups [6].

1.2 Need for improved clinical prediction models

A key recommendation of the PROGRESS partnership is for better choice and implementation of

statistical methods within prognosis research, especially in regards to both the development and

validation of prediction models. Despite this recommendation being published over 10 years ago,

recent reviews of prediction modelling studies have concluded that methodological conduct is still

poor [20], with a lack of sample size consideration [23] and high risk of bias [1, 24]. Adherence

to reporting guidelines has also been shown to be lacking [25], with little improvement after peer

review [26], meaning assessment of methodological conduct can be difficult.

With this in mind, this thesis aims to apply and develop high quality methods in the field of

prediction modelling. While all areas of prediction research have the potential to offer considerable

clinical benefit (or indeed harm, if misused or misunderstood), clinical prediction models in particular

offer the opportunity to enhance shared decision making, with increased opportunities for personalised

care. Thus, it is vital that high quality methods are used in this area.
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This thesis will focus on examples of prediction for clinically important continuous outcomes

(such as birthweight, pain intensity, and fat mass), for which the prediction model should ideally

give some estimate of the value on its continuous scale. Such models can then be used to predict an

individual’s expected outcome value (as opposed to the probability of a binary “yes/no” outcome)

and provide a basis on which doctors and patients could jointly base their decisions regarding clinical

management, if the model was sufficiently accurate. The focus will be how the statistical methods

employed while developing and validating clinical prediction models with continuous outcomes could

affect the model’s performance, and thus it’s usefulness or impact as a guide for clinical decision

making. Therefore, in the remainder of this Introduction, core methods for prediction modelling

with be introduced, and the remainder of the thesis will be signposted.

1.3 Statistical methods for prediction model development

Researchers are faced with many options for modelling approaches when developing a prediction

model, many of which are based on a regression framework. Which regression model is most

appropriate will generally depend on the format of the outcome to be predicted and the presence of

other complexities in data, including incomplete observation of outcomes (censoring) or competing

risks. For example, a continuous outcome such as birthweight would be best modelled using a linear

regression approach, given all assumptions of the linear regression approach were met. Some of the

most commonly used regression models for clinical risk prediction are introduced below.

Non-regression-based methods for prediction modelling are also rising in popularity, including

methods attributed to machine learning such as random forests, gradient boosting, and support

vector machines (SVM) [19, 20]. Although this thesis is primarily focussed on examples using
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regression based methods, findings and recommendations regarding the importance of outcome

treatment, sample size requirements, and thorough validation processes extend to all types of

prediction models, regardless of underlying modelling approach. The following sections introduce

statistical methods for developing prognostic models, in particular for continuous, binary and

time-to-event outcomes, all of which will be included in the analyses for the following chapters.

1.3.1 Linear regression for a continuous outcome

When modelling to predict a continuous outcome value, regression analyses are generally based on

model equations of the form

E(Yi) = α+ β1X1i + β2X2i + β3X3i + ..

where α donotes a fixed constant corresponding to the mean outcome value, and the βs are the

predictor effects associated with each of the covariates, Xj . The key value of interest for researchers

developing a model to predict the continuous outcome, Yi, is E(Yi); which gives the expected (or

predicted) outcome value for individual i (hereafter referred to as YPREDi).

While the format of the covariates, Xj , and the methods used to model their predictor effects

may vary and thus increase in complexity (as described in the following sections), the standard

approach to predicting an outcome on a continuous scale remains unchanged. This is to estimate

the parameter values needed to populate a linear regression model in the above form, from data on

patients for whom the true (observed) outcome value is already known. Such data is referred to as

a model development dataset. Thus the calculated linear regression model would then contain an

intercept value (α) and predictor effects (β1, β2, β3, . . . ), estimated using the observed outcome

values, the mean outcome value, and the strengths of the associations between the outcome and
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each of the predictor variables (X1i, X2i, X3i, . . . ) in the model development data.

A simple example of a linear regression model with just one predictor variable would be:

YPREDi = α+ β1X1i

Here YPREDi gives a prediction for the value of the outcome Yi in individual i. Thus the expected

value (YPREDNew
) of the outcome for a new observation, YNew, can be calculated using the estimated

values of the constants α and β1, and the value of X1New for the new individual.

Given the estimated parameters in the linear regression model are derived from a subset of the

population, they are subject to error in their estimation. Equally, not all variation in the outcome

will necessarily be explained by the covariates that have been included in the modelling process.

Thus, the final prediction for the value of the outcome YPREDi in an individual i will likely be

different from the observed outcome value, even within the development data, thus:

Yi = YPREDi + ei

where ei ∼ N (0, σ2).

This normal distribution of the error term is a key assumption of linear regression modelling,

being especially important for prediction modelling. Thus, the approach may not be appropriate

if the error terms follow a different distribution.
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Figure 1.1: Demonstration of the error in estimation from a linear regression model

For a simple linear regression model, it is assumed that the mean value for the outcome, Yi,

is a linear function of the predictor variable Xj , or a combination of multiple Xjs. In reality, this

linear assumption does not always give a very good approximation of the true relationship, given

how complex biological processes and relationships may be. It may be necessary, therefore, to

transform the outcome values, the predictor values, or both to a more appropriate scale before this

linear assumption is met. Thus the right-hand side of the prediction equation (otherwise known

as the linear predictor) can be considerably more complex in reality than is demonstrated above,

often with more than just a single predictor (multivariable models), with the potential for non-linear

relationships and interactions between predictors once more patient characteristics are included.

Linear regression models to predict the continuous outcomes of pain intensity and birthweight are

shown in the applied examples of Chapters 3 and 6, respectively.
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Example prediction model developed using linear regression

In 2019, Hudda et al. developed a linear regression model to predict fat-free mass on the

continuous kilogram (kg) scale, to indicate a child’s adiposity and body composition [17]. This

clinical prediction model was to assess fat-free mass in children and adolescents, aged 4 to 15 years,

using a combination of five risk factors: the child’s height, weight, age, sex and ethnicity. In this

example, the continuous outcome was transformed to the natural logarithm scale to better meet

the assumptions of the linear regression model. The published model equation is as follows:

ln fat-free mass =2.8055 + 0.3073(height2)− 10.0155(weight−1) + 0.004571(weight)

+ 0.01408(if Black ethnicity)− 0.06509(if South Asian ethnicity)

− 0.02624(if other Asian ethnicty)− 0.01745(if other ethnicty)

− 0.9180(ln(age)) + 0.6488(age0.5) + 0.04723(if male)

where predictor variables of Black, South Asian, other Asian, or other ethnic origins are binary,

with value of 1 if individual has the particular origin and 0 otherwise. The child’s height, weight

and age are all continuous predictors, with height measured in metres, weight in kilograms, and

age in years.

1.3.2 Logistic regression for a binary outcome

In practice, clinical prediction models are often used to model a binary outcome: an outcome that

can take one of only two possible values. Examples include those that are truly binary, including
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mortality or live-birth following In Vitro Fertilisation (IVF) treatment, or those that have been

formed by dichotomising outcomes that were originally measured on a continuous scale, such as

high pain intensity or low birthweight. Where the follow-up is complete (without censoring, see

below) and the length of follow-up is consistent among participants, or where the time until the

outcome occurs is not of interest, a common approach for modelling a binary outcome is to use a

logistic regression.

While the right hand side of the equation (the linear predictor) is of the same general format

as with a linear regression model, the dependant variable (the left hand side) in the equation is

instead the logit transformation of the event probability for individual i:

logit (pi) = α+ βXi

where pi = P (Yi = 1), the probability that Yi = 1 for the binary outcome Yi, and Yi can equal

either 0 (to indicate no outcome of interest), or 1 (indicating the outcome of interest ocurred). As

previously, the estimated model intercept is denoted by α, Xi = (X1i, X2i, X3i, ...)
T is the vector

of values of the predictor variables for individual i, and β = (β1, β2, β3, ...)
T is the corresponding

vector of coefficients for the model, such that

βXi = β1X1i + β2X2i + β3X3i + ...

The use of the logit function restricts the values of predicted probabilities to the range of 0 to 1,

following a sigmoid shape. To obtain predicted probabilities for individual patients, the inverse-logit

transformation is applied to the estimated linear predictor value for that patient, giving:

pi =
exp(LP i)

1 + exp(LP i)
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where LPi = α+ βXi
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Figure 1.2: The distribution of the outcome probability, pi, from the range of values of the linear

predictor, LPi.

Example prediction model developed using logistic regression

The MRC CRASH trial used multivariable logistic regression to produce a prediction model to

assess the risk of an “unfavourable outcome”, defined as death or severe disability, within the six

months following traumatic brain injury [27]. Their model was developed on a cohort of 10,008

adults, who were recruited within eight hours of injury and were followed up for six months to

establish who experienced the binary outcome of interest. The prediction model incorporated

demographic and clinical variables to generate the predicted probability of the “unfavourable

outcome”, as shown below.
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Regression coefficient Odds ratio

Age (per 10 year increase) 0.548 1.73

GCS (per one unit decrease) 0.199 1.22

Pupil reactivity

Both 0 1

One 0.888 2.43

None 1.188 3.28

Major extracranial injury

No 0 1

Yes 0.482 1.62

Table 1.1: Regression coefficients and odds ratios from an example logistic regression model to

predict unfavourable outcomes at 6 months, following traumatic brain injury. GCS = Glasgow

coma scale

As with many logistic regression models, the study authors reported Odds Ratios (OR) for the

predictor effects instead of the regression coefficients for each variable. The coefficient values can

easily be obtained, however, from the reported ORs, as exp(βj) = ORj for all variables j included

in the model (see Table 1.1).

1.3.3 Survival analysis for a time-to-event outcome

Often in prediction modelling, the outcome of interest is not just whether an event occurs or not,

as is the case for a logistic regression model, but the time taken until the event takes place. In

particular, the time-to-event might be of interest when it is known that an event will not occur for

all patients during the study time frame. This may be due to the rarity of an event, or the follow up

for a study being too short to observe the event for all participants. For example, when considering
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the outcome of live-birth following IVF treatment, some women may never become pregnant. A

study would need to follow patients up for many rounds of treatment to get sufficient numbers of

live-birth events to reliably build a prognostic model, and many women may not give birth to a

live baby within the study time frame.

Censoring

Censoring is a phenomenon often seen in prognostic research, which refers to the situation where

the exact time that the event took place is unknown for some participants. This could be due

to the study follow up period ending prior to the event taking place for an individual; a separate

event occurring prior to the event of interest, preventing it from being able to happen, such as

a participant dying in a road traffic accident; or a subject becoming lost to follow up before the

research team can observe any event taking place.

There are three main types of censoring (right, left and interval censoring), with right censoring

being the most common. Right censoring occurs when the event of interest takes place after the

end of follow up (if, indeed, it takes place at all). This means that the true survival time for the

participant is larger than what is observed.

Cti < Ti

with Ti denoting the true event time for patient i, and Cti referring to the known censoring

time. Prognostic modelling in the presence of left or interval censored data is beyond the scope of

this thesis.
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Figure 1.3: Demonstration of right censoring for six patients during study follow up (for a study

duration of 10 years), where filled circles indicate the event of interest being observed and hollow

circles indicate a right censored observation.

Right censored observations are what make prognostic models for survival data more complex

than those with a continuous or binary outcome, as it is highly unlikely that linear or logistic

regression models would be suitable. Survival times (the time until the event occurs) are rarely

appropriately distributed to meet the requirements of a linear regression model, but even if sufficiently

transformed, using a linear regression to predict the continuous time until an event would only be

feasible where all participant’s event times were known. A linear regression could not model the

time to an event that had not yet happened, and thus would be inappropriate for modelling in

censored data. Equally, using a logistic regression to model the probability of the event occurring
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prior to a particular time point of interest would only be appropriate if all participants who had

not experienced the event during follow up were known never to have had the event. Otherwise,

those who had not experienced the outcome by the time point of interest would be assumed to be

the same as those who would go on never to experience an event: an assumption that is unlikely

to hold in practice.

Functions in survival data

Thus, rather than aiming to model the time directly, survival analysis instead focuses on the

modelling of important functions of time. The primary function of interest in time-to-event analysis

is the survival function, S(t), which defines the probability of an individual surviving up to time t.

This can be written as

S(t) = P (T > t)

where T is the survival time and 0 < t < ∞. Parametric distributions used to model the

underlying shape of the survival function are most commonly of exponential (exp (−λt)) or Weibull

(exp (−(λt)k)) form, and are difficult to estimate in real-life data. In practice, survival functions

are often estimated using non-parametric methods, such as using Kaplan-Meier (KM) estimates.

These estimates are calculated based on the survival probabilities at each distinct event time: points

at which the function drops, creating the step function characteristic of non-parametric survival

functions. This is in contrast to the smooth functions achieved when using parametric estimates.

The hazard function, h(t), is also frequently used in survival analysis and refers to the instantaneous

failure rate at time t, or the probability that the event occurs in the time interval immediately
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following time t given the subject has survived up until that time. It is defined by

h(t) = lim
δ→0

P (t ≤ T < t+ δ|t ≤ T )

δ

where δ is some small interval of time, with length tending to zero.

Different shapes of the underlying hazard function (as demonstrated in Figure 1.4) are indicative

of different survival distributions over time, and are associated with different types of clinical event

or time frame. For example, a hazard function that increases over time implies an increased risk of

the event as time passes, such as an increased risk of death in an ageing population. The survival

function associated with such a hazard would drop more steeply as time progressed, as a higher

proportion of the surviving population died at each time point.

Time

h
(t
)

Constant hazard
Decreasing hazard
Increasing hazard
U-shaped hazard

Figure 1.4: Theoretical hazard functions over time, showing how the risk of an event occurring may

differ at different times over the course of follow up
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Indeed, the hazard and survival functions are closely related and can be obtained from one another

mathematically, as

S(t) = e−
∫ t
0 h(u) du

Figure 1.5 shows a simple theoretical survival curve associated with a constant hazard function

(the risk of an event does not change over time), with a h(t) = 1
6 chance of the event occurring at

any given time point. The corresponding smooth survival function is S(t) = e−
1
6
t, which is shown

alongside non-parametric Kaplan-Meier [28] estimates from simulated data following this hazard

distribution, for comparison.
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Figure 1.5: Theoretical survival curve compared to Kaplan-Meier estimates for a simple simulated

example
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Cox proportional hazard model

When comparing survival in two groups of individuals, where the hazards in the groups are

proportional (i.e., the difference in hazards between the two groups is constant over time), Cox

proposed a regression model can be formulated such that

h1(t) = h0(t)exp(βX)

where, h1(t) and h0(t) are the hazard functions for the groups, X is a binary indicator for group

membership, and exp(β) gives an estimate of the relative difference in hazard between the two

groups [29].

A fully parametric approach to modelling this relationship would need to specify the distributional

form of h0(t), which can be difficult in practice, just as specifying the form of S(t) is complex.

Cox proportional hazards regression offers a semi-parametric approach to modelling survival data,

where the baseline hazard (h0(t)) is left unspecified [29, 30]. Alternatively, parametric or flexible

parametric approaches might be adopted where some distribution of the baseline hazard of the

event over time can be assumed [31, 32]. Flexible parametric approaches to modelling survival are

beyond the scope of this thesis.

Competing risks

In standard survival analysis, for example when using the Cox proportional hazard model

(described above), patients are assumed to experience only one type of event. In practice, follow

up may end with the occurrence of one of many possible events, some of which preclude the event

of interest. When some alternative event could occur prior to the event of interest and, in doing

so, prevent the event of interest from happening, it is known as a competing risk.
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For example, when a patient dies during follow up from a cause unrelated to the event of interest,

the event of interest has not occurred, nor can it ever take place. This is different to ordinary

right censoring, where it is still possible that an event could occur (unobserved) after follow up

has ended. The concept of competing risks is highly relevant in prognostic modelling with a long

prediction-horizon, for example in older populations where death from unrelated causes is more

likely, as in the applied example in Chapter 7. Further discussion of methods to account for

competing risks in survival analysis is included in Chapter 7.

1.4 Modelling complex predictors

1.4.1 Non-linear trends in covariates

Continuous variables such as age, weight or blood pressure, are regularly included as covariates when

developing a prognostic model, regardless of outcome type. While standard regression approaches

would assume a linear relationship (discussed above, in Section 1.3.1), the observed relationship

between these continuous predictors and the outcome of interest is often in fact non-linear [33].

There are many options for addressing the non-linearity of predictor-outcome associations, for

example a simple transformation of the predictor may be sufficient to achieve linearity. A common

approach to combat non-linearity in practice is to categorise continuous measurements into two or

more categories and to model the predictor as a categorical measurement. This approach is widely

discouraged as it is inefficient and often biologically implausible [34], thus alternative methods for

modelling non-linear trends using transformations, fractional polynomials or restricted cubic splines

are preferred [33, 35, 36].

21



0 1

2

4

6

8

10

X1D

O
u
tc
o
m
e

Dichotomised

1 2 3

2

4

6

8

10

X1

O
u
tc
om

e

Linear

1 2 3

X1

Quadratic

Figure 1.6: A visual comparison of modelling a continuous covariate in its dichotomised, linear and

quadratic forms

Fractional polynomials

Relationships between continuous covariates and the outcome may be complicated, and are often

of an unknown form in experimental data. A key feature of these underlying relationships is that

they are smooth, or are subject to very little noise, meaning that they can be well represented by a
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functional approximation. Fractional polynomials in regression modelling allow for far more flexible

curve shapes in the modelling of non-linear relationships, over simple non-linear transformations

of the covariate [35, 37, 38, 39]. This is achieved by using a combination of positive, negative and

non-integer powers, with continuous predictors transformed using up to m different powers from a

predefined set:

{−2,−1,−0.5, 0, 0.5, 1, 2, ...,max(3,m)}

where the power 0 refers to the natural logarithm, such that X1
(0) = lnX1.

In the field of medical statistics, it is rare that the true underlying relationship between a continuous

predictor and the outcome will require more than three fractional polynomial terms, thus the

maximum power included in the predefined set is three [35]. As such, possible fractional polynomial

transformations for a continuous predictor X1 include combinations of the following:

{ 1

X1
2 ,

1

X1
,

1√
X1

, lnX1,
√

X1, X1, X1
2, X1

3}

Restricted cubic splines

Cubic splines can be used to generate flexible functions that are able to better fit more

complicated curved relationships between a predictor and the outcome [30, 36]. To achieve this,

a series of cubic functions are fit along the range of the predictor, joined at points referred to as

“knots”. To ensure that the overall function is smooth over the full range of predictor values,

cubic functions are required to join smoothly at each of the knot positions. This is achieved by

specifying that the first and second derivatives of the functions are equal at the knot points. To

ensure the cubic splines remain stable at the extremes, where there is often limited data with
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which to derive estimates, the functions are also constrained to be linear in the tails, hence the

term “restricted”.

While increased complexity in the modelling of continuous predictors can vastly improve model fit

in the development data, these modelling approaches can also increase the chance of overfitting

to the development data, reducing the generalisability of the model to new data (a vital trait

for a prediction model to be used in new patients). This overfitting occurs when the prediction

model includes some modelling of the noise within the model development data. For example, a

curved predictor-outcome relationship may be included in the model that is, in fact, more complex

than the true underlying relationship, as the model also includes the shape of chance variations

in the predictor (or outcome) measurement. Thus choosing the level of complexity required when

modelling non-linear trends involves a fine balance between allowing just enough complexity to

match the underlying relationship, without also inadvertently modelling noise.

1.4.2 Interactions

Where there are multiple covariates in a model, the effect of a combination of two or more of these

covariates, above and beyond what would be expected for each of the factors alone, is known as

an interaction effect [30]. A two-way interaction is said to be present where the change in the

mean outcome value for two levels of a covariate, X1, is different for different levels or values of a

second covariate, X2. This notion extends to three-way interactions and beyond, although higher

order interactions may require very large amounts of data to assess. Adding interaction terms to a

multivariable regression model can help to account for the complex, real-world relationships that

exist between predictor variables and allows for more accurate modelling of the outcome.
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Of particular interest in prediction research is the way that treatments may interact with patient

demographics, such that a patient’s traits might be expected to impact the effectiveness of a

treatment or intervention (also known as “treatment-covariate interactions”) [40, 41, 42]. Research

involving such interactions may inform the targeted use of certain treatments in particular patient

groups, allowing tailored treatment for maximum patient benefit. Accounting for such interactions

in a prognostic model allows for much more accurate risk prediction than when only including

the treatment and demographic predictors independently, without also allowing for the additional

prognostic effect of their interaction.
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Figure 1.7: Demonstration of an interaction between a continuous (X1) and a binary (X2) covariate,

in comparison to the case where no interaction is present

1.4.3 Time-varying predictor variables

While some predictor values, and their association with the outcome, are assumed to remain

constant over time, for others this assumption is unlikely to hold in practice. Often prediction is
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based on patient characteristics that are known at a single baseline time point, whereas patients will

often have repeated contact with healthcare services. For example, they may then have multiple

measurements of features such as biomarker levels in the blood, differing treatments received

over time, or clinical histories of relapse/recurrence events. Predictions including time-varying

predictors should include the measurement recorded at the time of intended model application

[43].

Where changes in a predictor’s value over time are expected to be informative, these changes can be

incorporated into the prediction model in a number of different ways [44]. Calculating predictions

to account for new or changing predictor information over time include more complicated analysis

techniques, and require rich sources of data with detailed histories of changes in predictor values

[45]. Further details on the consideration of time-varying predictors is included in the discussion

of Chapter 6.

1.5 Assessing predictive performance

1.5.1 Internal validation

Once a model has been developed, its predictive performance must be thoroughly evaluated to

ensure that it is fit for purpose, prior to recommending it for use in clinical practice. Internal

validation processes aim to quantify a model’s predictive performance in data from the same

underlying population as was used to develop it [46, 47]. A model which performs poorly in its

own development data is unlikely to perform well externally (in new patients), and thus internal

validation is an important step in a model’s validation process, to avoid research waste at the

external validation or impact assessment stages.
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The “apparent” performance of a prediction model refers to how well the model performs in the

same data as was used in its development. The performance of a model it its own development

data will usually be better than its performance in any other dataset, even where the new data

contains patients from an identical population. As such, any performance measure calculated

for a model in the development data is likely to be optimistic, giving an unrealistically high

expectation of the model’s accuracy [48]. The difference between apparent performance in

the model development data and performance in new individuals is expected to be smaller

where extremely large sample sizes are used in model development, or when adjustments for

overfitting were made during the modelling process, as with penalised regression approaches [49, 50].

It is common to see researchers opting to randomly split their data into a model development

(or “training”) dataset, and a hold-out, unseen validation (or “test”) dataset, where the latter is

used to estimate the performance of the model developed in the former [51, 47]. In general, this

approach is known to be inefficient and sub-optimal use of data, resulting in a smaller sample size

and thus less information for model development [52, 53]. Given the random split is expected

to result in two samples from identical populations, the model performance in this hold-out

sample is also expected to be, on average, the same as in the development sample, and so does

not give a good representation of how generalisable the model is to a new setting [51]. A better

approach is to use all data for model development, with some form of internal validation to assess

the level of optimism in predictive performance present in the apparent validation statistics [51, 52].

Such internal validation methods can give an indication of the extent to which a model performs

better in its own development data than it would be expected to perform in new patients. This
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knowledge allows for calculation of optimism-adjusted performance estimates to give a more

realistic indication of how well the model might perform in new data [48]. Internal validation also

allows for assessment and correction for overfitting of a model to the development data, which

would likely lead to poor external performance of a model if uncorrected by appropriate shrinkage

[54, 55, 50]. Recommended methods of internal validation include the following [30]:

Cross-validation

During the internal validation stage, data are split into two sub-samples, similar to the

split-sample method mentioned above. A small portion of the data is reserved for the validation of

an example model developed on the remaining data, using the same modelling procedures as were

used in the full model development. Following development of this example model in the “training”

data, the example model’s performance can be estimated in this remaining validation sample (the

“test” data), to give an indication of how the model might perform externally, in new data from

the same underlying population. This splitting process should be repeated numerous times (for

example, with 10-fold cross validation, splitting the data 10 times), with a different model being

developed and validated for each data split. Performance across all data splits is then summarised,

providing an estimate of how well the final model, developed on the full development data (without

splitting) would perform externally [30, 56].

Bootstrapping

A new sample of participants is obtained by sampling, with replacement, from the original

dataset, giving a sample of the same size as the original development data [30]. This new

sample may contain some of the original participants multiple times, while other participants are

omitted altogether, thus this new sample is fundamentally comprised of individuals representing
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the underlying development population. The full model development process is repeated within

each bootstrap sample, including all modelling procedures and decision making processes, such

as multiple imputation, variable selection, and assessment of non-linear trends [48]. Predictive

performance for this new model is then tested in both the bootstrap sample and in the original

dataset. Performance in the two are compared to give an estimate of the optimism for each

performance statistic for that bootstrap model. This process is repeated multiple times, with

the average optimism for each performance statistic being taken across all bootstrap samples to

give an estimate of the optimism expected to have been present in the assessment of the original

model. Performance statistic values for the original model can then be adjusted for this optimism,

to better reflect the expected performance in external data.

1.5.2 External validation

Prior to implementation, it is important to evaluate a model’s predictive performance in new data,

independent to that used to develop the model [57, 58, 59]. This process is known as external

validation and is essential to the uptake of a model in practice, especially where the sample

size for model development was small or perhaps unrepresentative of the general population of

interest [58, 60]. Specifically, external validation indicates how the model performs in new data

representative of the population to which the model is intended to be applied in practice. This new

data may be from a population that is very similar to the model development, or equally could

stem from an entirely new population where the model’s expected performance is unknown [59].

External validation can be used to assess two different attributes of the model [61, 46], depending

on which of these types of population is used for the validation:
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Reproducibility refers to whether a model performs sufficiently well in new individuals from

the same target population. If the observed relationships between the model predictors and the

outcome of interest were true (rather than being observed by chance in the model development

data), the same relationships would be present in other individuals from that population, and thus

the model would be expected to perform well across new samples. Reproducibility can also be

assessed through resampling techniques in the development data, such as internal validation via

bootstrapping [61].

Transportability refers to whether the performance of the model is consistent in new samples

from a different but related population [62]. For example, a model may have been developed for

a particular outcome in an adult only population, while researchers are interested in whether the

model can be used to identify that same outcome in children. Model transportability can only be

assessed with external validation [61].

External validation involves applying the developed model to every individual in the new dataset,

to generate a predicted outcome value or risk for everyone [59]. For this, the external data must

include all predictor variables needed to calculate predictions as well as a measurement of the

outcome of interest. The equation of the prediction model is also required in full, including

all coefficients (or predictor effects) as well as an estimate of baseline risk in the development

population (the model intercept or baseline hazard, depending on model type).

Preferably a model would be assessed in multiple datasets, to give some idea of how well it performs

in different settings or patient groups. Such new settings could include different geographical

areas or different medical settings. Often electronic health records (EHR) will include patient
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information from multiple centres (for example different General Practitioner (GP) practices),

giving the opportunity to assess how well a model performs in multiple locations, with different

case-mixes, from just one data source [63, 56].

Where multiple external validation assessments have been conducted, meta-analysis methods can

be used to estimate average model performance [64, 65, 66]. Assessing model performance across

different datasets or populations in this way gives an indication of the spread of model performance

over different patient groups, which is of particular importance when individual external validation

populations are small [67]. What constitutes an adequate sample size for external validation of a

prediction model is discussed further in Chapter 4.

1.5.3 Calibration

The calibration of a prediction model refers to the agreement between the predicted value or

risk of the outcome (YPREDi, pi) and the observed outcome value (Yi) across individuals. The

model’s calibration performance should be estimated during both internal and external validation

of a prediction model and is most clearly demonstrated graphically through a calibration plot,

where the predicted outcomes are plotted on the horizontal axis, against observed outcomes on

the vertical axis, as shown in Figure 1.8. A smoothed calibration curve can be fitted through all

of the data-points and presented on the plot to give a view of calibration performance across the

full range of the data.
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Figure 1.8: Generic calibration plot format, showing predicted against observed outcome (values

or probabilities). Ideal calibration is indicated by the 45◦ reference line where predicted outcomes

exactly equal observed outcomes.

Ideally, predicted outcomes should show close agreement with observed outcomes for all individuals,

across the full range of predicted values, and should not be systematically over- or under-estimated.

Where a specific range of outcome values are of particular clinical importance, good calibration

in that range alone may be sufficient for the model to supply clinical benefit, even if some

miscalibration is evident elsewhere. For example, a model to predict birthweight might be

intended to identify any abnormal fetal growth, in which case the model calibration in the

extremes (for those with particularly high or particularly low predicted birthweight) would be

of most clinical importance, and miscalibration in these regions of the plot would be of most concern.
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Calibration slope

To quantify the calibration performance of a prediction model, a calibration model should

be fitted to the validation data (whether this be a sample of the development data during

internal validation, or an independent dataset during external validation) using standard estimation

methods for the appropriate regression model, for example using restricted maximum likelihood

estimation to perform a linear regression, where the outcome is continuous. This calibration model

should be of the form:

Yi = αcal + λcal(YPREDi) + ecali

ecali ∼ N (0, σ2
cal)

The parameter λcal represents the calibration slope, which measures the agreement between the

predicted and observed outcome values across the whole range of predicted values. This value can

be interpreted in the same way as any other regression coefficient, namely it is the increase in the

observed outcome value, for each one unit increase in the predicted outcome. Thus, the ideal value

for λcal is one. A λcal below one indicates that predictions are too extreme (predictions above

the mean are too high, while predictions below the mean are too low) and a λcal greater than

one suggests that the range of predictions is too narrow (predictions above the mean are too low,

while predictions below the mean are too high). The term σ2
cal gives the residual variance of the

calibration model.

Calibration-in-the-large

Systematic over- or under-prediction of a model is possible even when the calibration slope is

perfect (equal to one). Therefore, the calibration slope should always be considered alongside

calibration plots and calibration-in-the-large (CITL). The CITL measures the agreement between

the predicted and observed outcomes on average. For example, with a continuous outcome, this is
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a comparison of the mean predicted outcome value (ȲPRED) and the mean observed outcome value

(Ȳ ), and can be measured in the validation data simply by calculating

CITLval = Ȳ − ȲPRED

More generally, CITL is equivalent to estimating the intercept term, αcal, in a calibration model

where the slope, λcal, is forced to equal one. The ideal value for CITLval is therefore zero, where

the mean predicted and observed outcomes are exactly equal.

Ratio of Observed to Expected values

An alternative measure of calibration-in-the-large is the Observed to Expected ratio, O/E, which

is the ratio of the total observed outcomes (O) in the data, against the total predicted outcomes

when using the prediction model (E). For a binary outcome, this is equivalent to the observed

risk of having the outcome in the validation data (O/N) divided by the average predicted risk

from the model (
∑N

i=1 pi
N ). The ideal value of O/E is therefore also one, with values greater than

one implying that observed outcomes are bigger than expected, so the model is under-predicting

outcome probabilities, while values less than one indicate that observed outcomes are smaller than

expected, so the model is over-predicting on average.

1.5.4 Discrimination

A prediction model for some event of interest is said to discriminate well if it separates well

between those who go on to have the event and those who do not. To achieve such separation, a

model should assign higher predicted risks to individuals who go on to experience the event. A

popular measure of discrimination for prediction models is the Concordance (C)-statistic.

34



C-statistic

The C-statistic (or C-index) can be interpreted as the proportion of concordant pairs out of the

total number of possible patient pairings where one went on to experience the event and the other

did not [30]. A patient pair is described as concordant if the patient experiencing the event has

the higher predicted probability of the two. For a binary outcome, the C-statistic is the equivalent

to the area under the Receiver Operating Characteristic (ROC) curve [68]. The maximum value of

one indicates perfect discriminative ability (for all relevant pairings, the patient with the outcome

had the higher predicted probability from the model), while a value of 0.5 indicates the model

works no better than chance.

1.5.5 Clinical utility

While measures of calibration and discrimination are vital in understanding how well the model

predicts, they give no indication of the likely impact of using the model in clinical practice, in

terms of the proportions of patients expected to directly benefit from the model’s use. It is possible

that a model could show excellent calibration and discrimination performance, but still offer no

clinical benefit above the current treatment strategy. Equally, a model that shows relatively

poor calibration or discrimination could still be clinically useful. When the intended use of a

prediction model is to complement clinical decision making, the model should also be assessed for

the overall clinical consequences of its use, for patients and for healthcare services [59]. This is

known as the model’s clinical utility, and can be quantified using net benefit, among other measures.

Net benefit

The Net Benefit of a prediction model gives a measure of the benefits arising from the model’s
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use (such as improved patient outcomes), weighed against potential harms (for example, a risk of

adverse reactions) [69, 70, 71]. This comes from the difference between the number of true-positive

(TP) and false-positive (FP) results that arise from using the model to make treatment allocations,

where the latter is weighted by a factor representing the “cost” of a false-positive result relative to a

true-positive. This weighting (known as the “exchange rate”) is based on the threshold probability

used to assign treatment, which reflects a clinician’s willingness to accept a certain number of

false-positives for each true-positive the model identifies.

NBpt =
TP

n
− FP

n

(
pt

1− pt

)

where pt is the threshold probability from the model, used to indicate a change in treatment

pathway, NBpt is the net benefit at a given pt, and n is the total sample size.

The net benefit across a range of different threshold probabilities is often visualised through a

decision curve analysis (DCA), where the net benefit associated with using the model is plotted

across a range of clinically relevant threshold probabilities and compared to the net benefit

that would arise from other treatment strategies. These alternative strategies may include

other prediction models, or approaches at the extremes, where either everyone or no one in the

population is treated as though they were at high risk of the outcome (known as “treat all” and

“treat none” scenarios respectively, see Figure 1.9).
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Figure 1.9: Decision curve plotting net benefit against threshold probability for two competing

prediction models. Both models show net benefit over-and-above the “treat all” strategy over the

full range of threshold probabilities, while Model 2 becomes less favourable than the “treat none”

strategy for higher values of pt

Regarding the “treat none” approach, all patients are treated as though they were at low risk

of the outcome, so none are given the treatment reserved for high risk cases. All patients are

assumed to be “negative”, thus the numbers of true-positives and false-positives are both equal to

zero. Thus the net benefit of the “treat none” approach is equal to zero across the full range of

probability thresholds, regardless of the weighting attributed to a false-positive (the exchange rate).

When “treating all”, every patient is treated as though they were at high risk, thus all truely

“positive” patients are correctly treated per this strategy, and so are a true-positive in terms of net
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benefit calculation. Every other patient (those who are truly “negative”) is also treated as though

they are at high risk and so are then included as false-positives, thus FP = n − TP . For fair

comparison to the model, these false-positives are weighted by the exchange rate, as above, thus

the “treat all” strategy only supplies a positive net benefit where the threshold probability (pt) is

lower than the true outcome prevalence in the sample (TP
n ):

NBpt > 0

TP

n
− FP

n

(
pt

1− pt

)
> 0

TP

n
>

FP

n

(
pt

1− pt

)
TP > (n− TP )

(
pt

1− pt

)
TP

(
1 +

pt
1− pt

)
> n

(
pt

1− pt

)
TP

(
1

1− pt

)
> n

(
pt

1− pt

)
TP

n
> pt

A higher net benefit indicates a higher level of benefit from the treatment decision approach, net

of harm from false-positives. Therefore, a model should ideally show net benefit over and above

all other strategies in the range of threshold probabilities that are most clinically relevant, with

these clinically relevant thresholds chosen a priori through consultation with patients, clinicians,

and other stakeholders.

1.6 Prediction modelling research involving meta-analysis

The availability of multiple datasets from different studies, brings many opportunities in prediction

modelling research. Combining patient-level data across multiple studies can allow for model

development and assessment of model performance in a wide variety of locations and settings, and
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allow for larger sample sizes for analyses [64, 67].

As mentioned previously, it is widely recommended that a prediction model should be externally

validated to assess its predictive performance. While one external validation gives useful

information on out-of-sample performance, multiple external validations across many studies can

give an estimate of the range of likely model performance across different populations [63, 56].

Model calibration and discrimination, in particular, are highly dependant on the patient spectrum,

and as such their estimates are likely to vary across different validation populations. Where

Individual Participant Data (IPD) is available from multiple studies for model validations,

meta-analysis of calibration and discrimination [65, 72], or clinical utility measures [73] can be

used to summarise overall performance, giving estimates of heterogeneity in model performance

across multiple settings and possibly identifying populations or sub-populations where the model

performs inadequately [63].

All applied chapters in this thesis incorporate IPD meta-analysis techniques in their methods,

as all examples include clustered data of some form. These include examples where data from

multiple studies was combined for model development (Chapter 3), or external validation (Chapter

5), and use of Electronic Health Records (EHR), where data are naturally clustered by GP practice

(Chapter 6).

1.7 Current challenges and limitations in prediction modelling research

A recent flurry of systematic reviews into the methodological practices and reporting of prediction

modelling studies has shown little improvement in quality since the publication of the PROGRESS
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recommendations in 2013. Many prediction modelling studies still suffer from shortcomings in

their statistical analyses, resulting in models that are at a high risk of bias [1, 74, 20]. In particular,

factors contributing to risk of bias include small study size, poor handling of missing data, and

failure to deal with overfitting [74, 1]. Indeed, sample size is still rarely considered in practice,

with little justification of the sample size used for developing a clinical prediction model [23, 24]

despite widely available guidance [75, 76, 77, 78].

Model evaluation practices are also poor, often with an inappropriate focus on discrimination

performance alone and little consideration of model calibration [1], despite model calibration’s

direct relevance for shared decision-making and patient counselling [79, 80]. For example, a review

of prediction modelling studies in oncology found that 78% of papers used only discrimination

measures to make comparisons between developed models (32/36 studies reporting comparisons in

their discussion) [81].

In addition to these poor methodological practices, findings from such studies are vulnerable to

overinterpretation [82, 81], with authors often making unfounded recommendations for a model’s

use. For example, a 2023 review of prediction model studies in oncology found that more than half

(74/133, 55.6%) of included studies made recommendations for clinical use without any external

validation [81]. Similarly, a 2023 review of prediction models using supervised machine learning

techniques found that 95.2% (20/21) abstracts that recommended model use in daily practice

did so without external validation of the developed models [82]. Given the regularity of this

issue in the prediction modelling literature, and the concern of resultant harm to patients if poor

models were implemented, recent guidelines have been published to help identify and evaluate spin

practices in studies on prediction models [83].

40



Guidelines for the Transparent Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) [84, 85] were introduced in 2015 to promote the complete,

accurate, and transparent reporting of studies that develop a prediction model or evaluate its

performance. Recent extensions have since been published, with tailoring specific to clustered

data [86], systematic reviews and meta-analysis [87], and machine learning (or regression-based)

methods [88], the latter of which supersedes the 2015 checklist. Despite this, both the use of and

adherence to reporting guidelines has also been shown to be lacking [25, 26, 89, 90], hindering

assessment of methodological quality.

Overall, there is still an urgent need to improve the quality of conduct and reporting of prediction

modelling research.

1.8 Aims and overview of thesis

The broad objective of this thesis is to apply, evaluate and extend statistical methods for research

involving clinical prediction models, particularly in the context of primary care applications.

Specific aims are to:

1. identify methodological shortcomings in existing prediction research involving diagnostic and

prognostic models of continuous outcomes;

2. ensure robust methods are used in current prediction-based projects funded at Keele

University, including primary studies and Individual Participant Data meta-analyses;

3. extend existing statistical approaches for prediction research that could be used by other

researchers in the prediction modelling field, to improve the quality of their research.
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This thesis contains seven chapters, exploring a range of methodological issues and demonstrating

statistical techniques through various clinical applied examples. An outline of the chapters is given

below.

Chapter 2 contains a methodology review of recently published models for predicting Fetal

Growth Restriction (FGR), either through prediction of birthweight on its continuous scale or

through prediction of dichotomised birthweight, with or without the inclusion of specific birth

complications (such as stillbirth, or neonatal death). The main aims of this review were to

identify (a) how FGR and birthweight are being modelled in the current medical literature, (b) the

justification given for any outcome dichotomisation in this setting, and (c) whether the treatment

of this continuous outcome is recognised by study authors as a strength or a limitation of the model

building process.

Chapter 3 develops illustrative prediction models for pain outcomes in individuals consulting

their GP with non-specific Neck and/or Low Back Pain (NLBP). Pain score outcomes at 6-months

were modelled as both continuous and when dichotomised (to define ‘poor’ prognosis), with models

then compared for predictive accuracy on internal and external validation. This chapter further

demonstrates how to use the model with continuous pain to make subsequent predictions of the

probability of high pain, and compares these to predictions from the model where high pain was

modelled directly. The applied research described in this chapter has been published in Physical

Therapy [91].
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Chapter 4 develops and proposes closed-form solutions to calculate a sample size that ensures

sufficient precision around key performance statistics when externally validating a clinical prediction

model with a continuous outcome. The approach is demonstrated in a case-study predicting

fat-free mass in children and adolescents. The methods proposed in this chapter were subsequently

published in Statistics in Medicine [92], and has lead to related research as a part of a wider research

team into sample size calculations for external validation of a clinical prediction models for different

outcome types [93, 94, 95, 96].

Chapter 5 describes the external validation of published prognostic models to predict continuous

birthweight or the risk of delivering a growth restricted baby (FGR defined as birthweight < 10th

centile adjusted for gestational age, with severe complications: stillbirth, neonatal death or delivery

before 32 weeks), using IPD meta-analysis methods to combine model performance estimates across

multiple cohorts, allowing for a larger sample for external validation of these existing models. This

clinical application discussed in this chapter forms part of a Health Technology Assessment (HTA)

report, which has been accepted by the HTA for publication.

Chapter 6 discusses the use of EHR data to externally validate a model to predict the risk

of a serious fall (resulting in hospitalisation or death), in those eligible for antihypertensive

treatment in a primary care population. IPD meta-analysis methods included in Chapters 5 are

further implemented to demonstrate the variability in model performance across different settings,

investigating where precise overall estimates of model performance (given the large sample size for

external validation) may have masked poor performance in GP practices with differing case-mix.

This applied work has been published in BMJ [97], and has led to further research investigating

other adverse events in those with an indication for antihypertensives [98], and for predicting falls

risk in a wider population [99]
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Chapter 7 summarises key findings and recommendations arising from the thesis, explains how

this body of work adds value to the prediction research field, and outlines the limitations of this

work. It concludes with a discussion of the next steps regarding further research in prediction

modelling.
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CHAPTER 2

Dichotomisation of continuous outcomes in prediction model

research: a review of current practice in the prediction of Fetal

Growth Restriction (FGR)
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2 Chapter 2: Dichotomisation of continuous outcomes in

prediction model research: a review of current practice in the

prediction of Fetal Growth Restriction (FGR)

2.1 Introduction and objectives

Chapter 1 introduced the general concepts of prediction modelling, as well as the different

modelling methods often employed in the development of prediction models with outcomes of

different types. Prediction model research in primary care often involves the prediction of outcomes

such as future blood pressure, pain scores, or depression levels, that are measured on a continuous

scale. When developing a prediction model for such outcomes, researchers must decide on how

best to treat them in their analyses. Historically, many researchers have opted to dichotomise

their continuous outcome variable to form a binary outcome, which could then be modelled using

a logistic regression framework. This allows for a model that produces predicted probabilities of

an outcome for an individual, with clinical action then taken accordingly.

An example of this would be in the prediction of future pain intensity, where a pain score (on

a scale of 0 to 100) is deemed “high” for a value exceeding 50 points, or some other clinically

relevant cut off. A prediction model could be developed to give the probability that a patient will

be experiencing high pain (above 50/100) at follow up, with such patients being referred for more

intensive physiotherapy at first presentation in an attempt to prevent the anticipated negative

outcome.

Dichotomisation of continuous outcome variables is often conducted in an attempt to facilitate

model interpretation, to support the model’s uptake and use in practice [33]. Modelling on a binary
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scale allows for calculation of predicted probabilities for a particular outcome, which may be easier

to communicate to patients, although in a shared decision-making context a continuous estimate

is more useful than risk stratification [100]. The choice of threshold is often arbitrary, without

consultation of patients to inform the appropriate threshold value. Furthermore, by dichotomising

prior to modelling, researchers lose the opportunity to choose alternative, context-dependent

threshold values after the analysis [100].

Dichotomising continuous outcome values risks losing valuable information needed to accurately

estimate predictor-outcome relationships [101, 34, 102, 103]. Given that current studies developing

a clinical prediction model often suffer from small sample sizes [104], this loss of information could

have a detrimental impact on model performance and usefulness in practice, by affecting both the

model’s generalisability and its transportability to a new population [46]. As an example, a 2001

randomised-controlled trial comparing the efficacy of antidepressant drugs and counselling needed

a sample size of only 88 participants to analyse their outcome (Beck depression inventory score)

on its continuous scale, while 800 were needed to assess the impact of different treatments on the

dichotomised outcome [105, 106].

Categorisation of continuous predictors prior to model development (regardless of outcome form) is

widely regarded as unnecessary and inefficient, leading to a loss of information and a reduction in

statistical power to identify any true relationship between the predictor variables and the outcome

[34, 33]. Thus far, however, limited quantitative assessment has been conducted into the impact

that categorisation of the outcome variable might have on a model’s predictive performance. Of

particular importance for a prediction model is how well it performs in external data, separate

to that used for model development, to give an indication of how well the model will predict
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outcomes for new patients in clinical practice [62]. It is therefore vital that predictor-outcome

relationships are modelled appropriately and accurately to improve the chances of the model

performing sufficiently well in data from new populations.

2.1.1 Clinical scenario

Before further research into the implications of varying modelling approaches, it is important

to first investigate how continuous outcomes are currently treated in practice. The aim of this

chapter is, therefore, to discuss the justification offered by authors (of prediction model research

with continuous outcomes) for their choice of modelling approach, to identify clinical motivations

for such choices to assess areas where outcome dichotomisation may be warranted. In particular,

this review focuses on the prediction of birthweight (a continuous outcome) as a proxy for fetal

growth restriction (FGR).

Babies who are born in the smallest 10% by birthweight are classified as being

small-for-gestational-age (SGA), and are at an increased risk of perinatal complications as a

result of restricted growth within the womb [107]. In these babies, the number of stillbirths

and neonatal deaths is much higher than in those of normal growth [108]. Increased monitoring

of growth restricted babies, gives the opportunity to identify and intervene early to improve

outcomes. Thus efforts to anticipate adverse outcomes using risk prediction modelling techniques

are commonplace in the literature.

Birthweight is often used as a proxy for FGR in prediction research, although may be modelled

in a number of ways: on its continuous scale; using an arbitrary cut-point for dichotomisation;
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using an informed cut-point for dichotomisation; or combining dichotomised birthweight with the

occurrence of complications, to form a composite FGR outcome. Birthweight prediction, therefore,

is a good clinical area in which to investigate current attitudes to outcome dichotomisation

in prediction modelling. Throughout this chapter “birthweight” will be used to refer to the

continuous outcome, while FGR will refer to a binary alternative (however defined).

2.1.2 Objectives

The primary objective of this chapter is to review published journal articles developing prediction

models for birthweight, and thus to obtain and discuss:

1. how continuous outcomes are being modelled in the development of prediction models in

practice;

2. what justification is given by researchers for dichotomisation of outcome variables, where such

dichotomisation has taken place.

3. to assess whether dichotomisation of continuous outcomes is recognised as a strength or a

limitation in articles’ discussion sections;

The findings of this review will reveal current practice around handling of continuous outcomes

in prediction of birthweight (as an indicator of FGR), as an example of prediction modelling

research across all clinical areas, and will help to identify areas of good practice or where clearer

recommendations may be necessary. The review will further motivate subsequent chapters in this

thesis where continuous outcomes are modelled and recommendations are made for their inclusion

in research.
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2.2 Methods

2.2.1 Inclusion and exclusion criteria

There were no restrictions on study design, as long as the study was aiming to develop a clinical

prediction model. Studies solely validating an existing model were excluded, as these were not

relevant to the review question. Any primary studies identified during the searches or through

links with collaborative groups were included if they provided details on the development of a

prediction model for either FGR (binary) or birthweight (continuous). A summary of inclusion

and exclusion criteria is given in Table 2.1.

Table 2.1: Inclusion and exclusion criteria

Inclusion criteria

Development of a clinical prediction model for either FGR (binary) or birthweight (continuous)

Population of pregnant women

Predictors including maternal clinical characteristics, biomarkers, and ultrasound measures

Prediction model including three or more predictors

Exclusion criteria

Only one predictor included in the “model” (univariable analyses)

Fewer than three variables in the prediction model

Full model not reported (e.g., missing intercept or baseline risk terms)

Reports only on external validation, without model updating

FGR or birthweight modelled only as a part of a composite outcome
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Here, the term ’development’ has been used to refer to the derivation of a prediction model,

whether newly created or as an update of an existing model. All studies that reported the

development of a multivariable model (containing at least three variables) to predict birthweight

or the risk of FGR for use at any time in pregnancy, regardless of modelling approach. Studies

that predicted FGR or birthweight only as part of a composite adverse outcome were excluded.

2.2.2 Search methods

Electronic searches

Published journal articles for this methodology review were identified through a systematic

search for clinical prediction models for either FGR or birthweight, as a part of the International

Prediction of Pregnancy Complications collaboration [109].

The following databases were searched, between July 2012 and December 2017, to identify articles

containing relevant prediction models, for either FGR or birthweight in low risk pregnancies:

� MEDLINE

� EMBASE

� BIOSIS

� LILACS

� Pascal

� Science Citation Index

� Cochrane Database of Systematic Reviews (CDSR)
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� Cochrane Central Register of Controlled Trials (CENTRAL)

� National Institute of Child and Human Development Data and Specimen Hub

(NICHD-DASH)

� Database of Abstracts of Reviews of Effects (DARE)

� Health Technology Assessment Database (HTA)

MEDLINE and EMBASE were further searched with the same search strategy between December

2017 and January 2020 to update the original search. No language restriction was applied to the

electronic searches.

Other searches

Prediction models reported solely in the grey literature were sought by searching relevant

databases including Inside Conferences, Systems for Information in Grey Literature (SIGLE),

dissertation abstracts and clinicaltrials.gov. Internet searches were further conducted in specialist

gateways (JISC), general search engines (Google) and meta-search engines (Copernic).

Selection of studies

Titles and abstracts of all studies identified through searches were screened in duplicate by

members of the IPPIC collaboration team, with discrepancies resolved through discussion and

mutual consent.
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2.2.3 Data collection and analysis

Data extraction and management

Data extraction was conducted using a pre-designed and piloted extraction form, with data

stored in a spreadsheet in Microsoft Excel 2016. Extraction was completed by one reviewer.

Where a paper presented multiple models for relevant outcomes (either binary or continuous),

data was extracted for all models reported. The details of items to be extracted are summarised

and described in Table 2.2. Information was extracted wherever reported.
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Assessment of risk of bias in included studies

As this review was concerned with a particular methodology and its use in practice, no effect

estimates were extracted from the included studies. No formal risk of bias assessment was

conducted, as biases assessed by tools such as PROBAST [110, 111] would not influence the use of

the statistical methods this review concerns. Although no formal quality assessment took place,

the narrative summary of review items gives some insight into the quality of the included research.

Assessment of heterogeneity

Data extracted from the included studies has been presented using descriptive methods and

narrative summary. Data was also presented in a tabular format. No formal assessment of

heterogeneity took place, as measures of effect were not extracted or combined.
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2.3 Results

2.3.1 Identification of relevant articles

N = 749 studies

identified through

database searching

N = 14 studies

identified through

other sources

N = 55 studies after

title and abstract

screening, including

119 prediction models

55 studies, 119

prediction models

screened for eligibility

Excluded models (n=20):

a) Univariable analyses only (n=14)

b) Fewer than 3 predictors (n=6)

48 studies,

99 models for

qualitative synthesis

Figure 2.1: PRISMA flowchart showing numbers of studies identified, screened and included in

the review

Searching of databases and other sources yielded a total of 55 studies, after duplicates were

removed and title and abstract screening. These contained 119 different prediction models for

outcomes of either FGR or birthweight. Twenty of these models were excluded as they contained

fewer than three predictor variables, of which 14 referred to only univariable analyses rather than

full models. Figure 2.1 shows the selection process for studies in this review.
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2.3.2 Summary of articles included in the review

The majority of eligible publications were published in the past ten years, with 33 of the 48

publications (69%) published since 2012 (see Figure 2.2). Overall, the number of eligible studies

appears to be increasing over time, while the number of eligible publications featuring the

prediction of a continuous birthweight outcome was consistently low.

1985 1990 1995 2000 2005 2010 2015 2020
0
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20

Publication year

F
re
q
u
en

cy

Figure 2.2: Stacked histogram showing the number of eligible publications over time. Red bars

show studies developing models to predict continuous birthweight, while blue bars show studies

predicting binary FGR.

The included studies represented research from across the globe, with Africa and Antarctica being

the only continents not represented, as shown in Figure 2.3. Most studies arose from European,
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Asian, or North American institutions. Almost half the total number of studies were conducted in

the UK (23, 48%), predominantly arising from within the same few research groups, thus outcome

handling decisions within these studies is likely to be more consistent than across other research

teams.

Figure 2.3: World map showing countries where studies included in this review were conducted.

Darker blue indicates a higher number of publications from research teams in that country.

Prospective recruitment was seen in 37 (77%) studies, with seven (15%) developing models in

retrospectively recruited cohorts. Other study designs represented were cross-sectional [112] and

RCTs [113, 114]. Recruitment processes in the remaining study were unclear.

Sample sizes for model development tended to be reasonable, with a median total sample size
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across studies of 2,125 (LQ to UQ: 761 to 12,190). Most studies saw reasonable numbers of events,

although these were only defined in those studies modelling FGR as a binary outcome. Numbers

of FGR events ranged from 22 [115] up to 5003 [116], with a median of 219 (LQ to UQ: 72 to 665).

Correspondingly, numbers of predictors included in each model were relatively low, with a median

of 5 (LQ to UQ: 4 to 8).

Table 2.4 gives a summary of characteristics across included studies, with a breakdown of features

by outcome handling, while Table 2.5 summarises key characteristics across models, with models

ordered by publication year. The validation option “External validation” refers to external

validations included in the same report as the model development study. Further details on

included studies and models is given in the appendix to this chapter.
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2.3.3 Model development methods

99 prediction

models assessed

87 (88%) binary

outcomes (various

definitions)

12 (12%) continuous

outcome (birthweight)

0 survival models

(any specification)

87 logistic

regression models

12 linear

regression models

Figure 2.4: Summary of outcome handling and analysis discussed for included models

Of the 99 prediction models identified, 87 (88%) were to predict the probability of FGR as a binary

outcome, while only 12 (12%) aimed to predict birthweight on a continuous scale (see Figure 2.4).

All binary outcome models used logistic regression, while birthweight was solely modelled using

linear regression. In three cases, birthweight was transformed to the log scale prior to modelling.

No studies modelled the time-to-FGR as a survival outcome.

2.3.4 Binary FGR definitions

Of the 41 papers reporting on models for binary FGR outcomes, 11 (27%) gave no information

about the source of the cut-point used for dichotomisation, as shown in Figure 2.5. A further

four papers (10%) gave some information, but the source for their cut-point was unclear. Where

sufficient detail was given, cut-points were derived from previously published information (14,

34%), from local standards (9, 22%), or in sample (3, 7%).
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1434.1%Previously published

922.0%Local standards

37.3%In sample

49.8%Unclear

1126.8%No information

0 2 4 6 8 10 12 14
Frequency

Figure 2.5: Bar chart showing the frequency of each source of cut-point for dichotomising

birthweight to define FGR, as reported in the literature

Figure 2.6 and Table 2.7 summarise information given about the FGR outcome definition, across

studies and by study respectively, for those that gave any information on their dichotomy source.

Most often, birthweight was dichotomised at the tenth percentile, with 14 of the 30 studies (47%)

reporting this cut-point. In four of these studies, the cut-point value was adjusted for gestational

age at delivery (GA) and in one case was adjusted for both GA and maternal characteristics.

The second most common cut-point was at the fifth percentile value (11, 37%), a choice that was

referenced to previously published information in all-but-one cases. Fifth percentile values were

adjusted for GA in nine of the 11 studies using this cut-point. Other definitions of FGR were

formed using: composite measures, including birthweight percentile values with other outcome

components [125, 131, 132]; single cut-point value of 2,500g (referencing the previous literature)

[112]; and derived in-sample, after scaling birthweight by crown-to-heel length [115].
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Figure 2.6: Bar chart showing the frequency of different combinations of cut-point value, dichotomy

source, and adjustment factors in the dichotomy

The most common FGR definition seen was a cut-point at the fifth percentile, adjusting only for

GA, referenced to previously published literature. This combination was seen in 9 of the 30 studies

(30%), all of which were published from the same research group (based in the UK) over a 13 year

range.

The second most common combination, seen in five (17%) of the publications, was a cut-point

at the tenth percentile with no adjustment, referenced to local standards. Unlike the above, this

definition was seen across independent research groups, with researchers based in five different

countries (Australia, Greece, Netherlands, Spain, and United States) between 2002 and 2019.
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Table 2.7: Summary of cut-point value, dichotomy source, and any adjustment factors in the

dichotomy, for publications that gave information on how they dichotomised their birthweight

outcome.

Cut-point value Dichotomy source Adjustment

Publication

10
th

p
er
ce
n
ti
le

5t
h
p
er
ce
n
ti
le

O
th
er

P
re
v
io
u
sl
y
p
u
b
li
sh
ed

L
o
ca
l
st
an

d
ar
d
s

In
sa
m
p
le

U
n
cl
ea
r

N
o
ad

ju
st
m
en
t

G
A

o
n
ly

G
A

an
d
m
a
te
rn
a
l

Ciobanu 2019a [117] ✓ ✓ ✓
Ciobanu 2019b [118] ✓ ✓ ✓
Sotiriadis 2019 [119] ✓ ✓ ✓
Sharp 2019 [114] ✓ ✓ ✓
Hendrix 2018 [123] ✓ ✓ ✓
Kim 2017 [128] ✓ ✓ ✓
Miranda 2017 [125] ✓ ✓ ✓
McCowan 2017 [127] ✓ ✓ ✓
González González 2017 [130] ✓ ✓ ✓
Crovetto 2016 [131] ✓ ✓ ✓
Crovetto 2016a [132] ✓ ✓ ✓
Lesmes 2015a [133] ✓ ✓ ✓
Lesmes 2015b [134] ✓ ✓ ✓
Fadigas 2015a [135] ✓ ✓ ✓
Fadigas 2015c [136] ✓ ✓ ✓
Bakalis 2015a [137] ✓ ✓ ✓
Bakalis 2015b [138] ✓ ✓ ✓
MacdonaldWallis 2015 [140] ✓ ✓ ✓
Lesmes 2015c [116] ✓ ✓ ✓
Bakalis 2015d [139] ✓ ✓ ✓
Schwartz 2014 [144] ✓ ✓ ✓
Seravalli 2014a [142] ✓ ✓ ✓
Seravalli 2014b [143] ✓ ✓ ✓
Yadav 2013 [112] ✓ ✓ ✓
Poon 2011 [149] ✓ ✓ ✓
Onwudiwe 2008 [152] ✓ ✓ ✓
Plasencia 2007 [154] ✓ ✓ ✓
Pilalis 2007 [155] ✓ ✓ ✓
Bachman 2003 [115] ✓ ✓ ✓
Doherty 2002 [113] ✓ ✓ ✓

14 11 5 14 9 3 4 14 13 3
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2.3.5 Justification for dichotomisation

Only two papers gave any justification for their choice in cut-point value. The first, Bachman

et al 2003 [115], derived their dichotomisation definition in-sample, using the 25th percentile of

birthweight scaled by the crown-to-heel length to define neonates as having FGR. In their methods

section, their decision is described thus:

“These cut-off values were chosen because they identify only a small proportion of

the low-risk population as being growth-restricted and as such are likely to represent

true growth restriction.” (Bachman 2003 [115])

In their discussion, Bachman et al further state that their inclusion of crown-to-heel length in their

outcome definition as an outcome over birthweight alone was due to previously shown associations

between neonatal anthropometry and subsequent infant outcomes. They did not reflect on their

decision to dichotomise their scaled birthweight measure.

Sotiriadis et al 2019 [119] used a composite outcome definition, where FGR was considered present

for those with either a birthweight (or estimated fetal weight (EFW) prior to birth) below the 10th

percentile if accompanied by ultrasound abnormalities, or below the 3rd percentile, regardless of

abnormalities. In their methods section, Sotiriadis et al justified their FGR definition as follows:

“This is a modification of the recently published consensus definition of FGR”

(Sotiriadis 2019 [119])
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On discussion, they confirmed that this definition identified a clinically relevant high-risk group,

with reference to Neonatal Intensive Care Unit (NICU) admission rates. They further commented

on the heterogeneity seen in published definitions for (late-presenting) FGR. They did not discuss

their dichotomisation choice as either a strength or a limitation of their approach.

No report included any further consideration of dichotomisation of the continuous birthweight

value, as either a positive or negative aspect of their study design.
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2.4 Discussion

2.4.1 Summary of main findings

This review has found that outcome dichotomisation is common in the prediction of birthweight

as a proxy for FGR, with 87% of the identified models (87, from a total of 99) predicting some

binary version of the birthweight outcome. No studies were identified modelling time-to-FGR as

a survival outcome, thus the most common statistical modelling method used was logistic regression.

Birthweight cut-points were most often referenced to previously published literature or local

standards, a far more appropriate approach than derivation in sample, but still lacked consistency

across studies. A high proportion of the studies predicting a binary outcome (11, 27%) gave no

information on their definition or cut-point choice. Where details were given, varying definitions

were used across the identified studies, with cut-points based on tenth (14, 47%) or fifth (11, 37%)

percentile values being most common.

Justification of definitions was rare in either the methods or discussion sections of reports.

Where discussions of the outcome definition were included, these were invariably referenced to

the outcome’s association with subsequent infant outcomes (such as developmental delays, or

NICU admission) rather than statistical or clinical benefits regarding maximum use of available

information, facilitating interpretation, or ease of use. Thus, categorisation of birthweight outcomes

is generally not considered as a limitation or a strength in the discussion section of studies. This

may be due to a current lack of evidence around the impact of outcome dichotomisation in a

clinical setting, thus this is not an issue currently being considered important by researchers.
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2.4.2 Strengths and weaknesses of the review

Identification of prediction modelling studies for systematic reviews in prognosis research is

known to be difficult, generally due to a lack of standard indexing terms and paper descriptors

[158, 159, 160]. The search strategies used here were intended to have high sensitivity in identifying

prediction model studies, focussing on ruling out clearly irrelevant papers prior to screening. It is

still possible that some relevant publications were missed by these strategies. Given this review

involved an overview of statistical methods, and not a comprehensive summary of models in the

FGR field, it is unlikely that missed papers would have a substantial affect on the conclusions

drawn. The search used in this review is therefore likely to have given a representative view of the

current methods being used in the FGR prediction modelling literature.

Extraction of items for this methods review was conducted by a single researcher, thus some items

may have been missed that could have been picked up by second review. Given the presence or

absence of reporting is objective, it is unlikely that any systematic bias in extraction was present.

Thus, where no justification for outcome handling has been reported here, this can be interpreted

as no clear justification was given. Regardless, extraction and discussion with a second reviewer

would have improved the validity of the conclusions from this review, and may have identified

some reported items that were missed on single assessment.

Multiple papers within this review were conducted and reported from within the same research

teams, thus outcome choice and reporting levels were not independent between observed studies

and models. This can be seen, with some authors being lead on up to three different papers

under review. Further, research published from the Harris Birthright Research Centre for Fetal

Medicine (King’s College Hospital, UK) contributed 15 of the papers identified for this review,
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accounting for 37% of papers reporting a binary outcome prediction model. Consistent modelling

and reporting choices within this team’s work may not be representative of the wider literature,

and may have given more extreme results than if only independent publications were considered.

Similarly, if one such research group had discussed their decisions well, and published prolifically,

this would have an extreme positive impact on the literature in the clinical area. Thus, whether

a limitation of the review or of the literature itself, it should be noted that conclusions here are

reported with the caveat of publications and their approaches not being entirely independent from

one another.

2.4.3 Applicability of findings to the review question

Given this review of methods was confined to only one clinical area, that of birthweight and FGR

risk, it is possible that findings here may not be generalisable to wider clinical areas. The area

under review was chosen as it gave a somewhat unique example where dichotomisation of the

continuous birthweight outcome might be clinically useful when combined with pregnancy and

birth complications to give a composite outcome definition. This is relevant as FGR is not simply

a case of low birthweight, but some restriction in growth. As such, it is likely that this review

gives an optimistic view of the current level of justification for outcome dichotomisation in the

literature. This is an area where justification and explanation was particularly warranted, and yet

was still lacking.
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2.4.4 Conclusions and next steps

Outcome dichotomisation is common in the prediction of birthweight as a proxy for FGR, with

a lack of consistent cut-points and definitions across studies. Reporting the reasoning behind

dichotomisation decision justification is rare, with no discussion of possible strengths or weaknesses

of the authors’ chosen approach. Further consideration should be given to whether outcome

dichotomisation is necessary in individual studies.

In this case, predictions on the continuous scale could give a clear indication of the expected

extent of any growth restriction, allowing identification of clinically meaningful, smaller changes

in expected birthweight that would be missed by a solely binary outcome. Predicting birthweight

outcomes on the continuous scale also maximises the available information for detecting

predictor-outcome associations during model development. In particular, prediction models with

continuous birthweight outcomes would have greater flexibility for use in different contexts or

geographical locations, where a different birthweight dichotomy might better reflect restricted

growth. This is especially relevant for those studies basing their dichotomisation cut-point on local

birthweight standards.

The following chapters will expand on the concepts of outcome handling in prediction modelling

research, delving further into the impact and implications of dichotomising continuous outcome

variables, with applied examples in both model development and validation. There will be further

discussion of prediction modelling applications in FGR prediction in Chapter 5. Chapter 3 will

now demonstrate a more straightforward clinical example, in the prediction of future pain intensity

for those with neck and/or lower back pain, illustrating differences in predictive performance for

models developed with or without outcome dichotomisation.
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CHAPTER 3

Development, evaluation and comparison of continuous and

binary outcome prediction models for pain outcomes following

primary care consultation for neck and/or low back pain
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3 Chapter 3: Development, internal and external validation of

prediction models for pain outcomes following primary care

consultation for neck and/or low back pain

3.1 Introduction and objectives

The literature review in the previous chapter highlighted how the continuous outcome of

birthweight is commonly dichotomised in practice, and demonstrated the lack of any justification

offered by authors for their choice of outcome type. The clinical example discussed in Chapter

2 was a scenario where there was a possible clinical benefit to a binary outcome model for FGR

over-and-above a simple dichotomisation of continuous birthweight, in that binary definitions

could be used to include important clinical complications in a composite outcome definition. Thus,

dichotomisation might have been reasonably justified in this case.

Chapter 2 focussed purely on how often birthweight was dichotomised in prediction model

development studies, along with authors’ justification of their outcome handling choice. It did

not discuss the impact of this choice on the resulting prediction models. To delve further, this

chapter now investigates how outcome dichotomisation might influence the performance of a

prediction model, with reference to prediction distributions and statistical measures of predictive

performance. Such measures contribute towards assessment of a model’s appropriateness for use

in practice, and so are highly relevant to the clinical utility of a prediction model.

The focus will now be in a more straightforward clinical setting, where the binary outcome is

purely a dichotomised version of the continuous outcome. Thus, the binary outcome here has

no clinical benefit above a continuous outcome at implementation. This chapter, therefore, aims
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to give a fair comparison of both model performance and usefulness for continuous and binary

outcome models.

The methods section of this chapter will be broken into two parts. Part (i) will introduce the

methods used to calculate predictions from models for both outcome types. It will further discuss

a proposed approach to gain predicted probabilities from the output of a linear regression model,

in order to assess the risk of a dichotomised outcome variable, after modelling on the continuous

scale. Part (ii) will describe a clinical example in which this approach is applied. The results

section then demonstrates these proposed methods and compares the results of modelling on the

different scales in terms of predictive performance. In the included clinical setting, the outcome

was discrete pain intensity, a score ranging from zero to ten, where an increased value implies a

more severe pain outcome. In practice, such scores are commonly modelled after dichotomisation

(into high and low pain) to facilitate interpretation for both doctors and patients. Pain intensity

equally could be modelled on a continuous scale to retain the maximum information available for

the analyses.

3.1.1 Clinical scenario

The aim of the clinical research project associated with Chapter 3 is to develop prediction models

for patients’ pain intensity outcomes following initial consultation in primary care, to identify

patients presenting with neck and/or low back pain (NLBP) who might benefit from an altered

treatment pathway [91]. This project builds on previous research that showed an increase in the

number of people progressing to disabling NLBP internationally [161], and demonstrated how the

transition from acute to persistent pain can be predicted [162, 163].
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This research forms a part of a body of work, aiming to develop varied digital health technologies

to support first-contact decision making for consulters with NLBP [164]. Thus, predictions in

both the continuous and binary form are desired to facilitate communication of expected disease

trajectory, with intended side-by-side visualisations of both outcome predictions for an individual.

3.1.2 Objectives

To further investigate the impact of outcome dichotomisation on model performance and clinical

usefulness, this chapter focuses on the development and, importantly, the validation of prediction

models for pain intensity at six months, for those consulting in primary care with an NLBP

problem. The particular focus was on comparing the models’ predictive performance when

modelling pain intensity as a continuous versus a binary outcome variable. The objectives of this

chapter, therefore, were to:

1. Demonstrate methods of calculating predicted values and probabilities from a linear regression

model, and probabilities from a logistic regression model;

2. Develop prediction models to estimate six-month pain intensity outcomes, on both the

continuous and dichotomised scales;

3. Evaluate the predictive performance of the developed prediction models on internal validation,

in the model development data; and to

4. Evaluate the predictive performance of the developed prediction models on external

validation, in new data.
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3.2 Methods, part (i): proposal for calculating predicted probabilities from a

linear regression model

Following development, clinical prediction models need to be applied to calculate individual-level

predictions, whether this be an expected outcome value or expected probability of an outcome

event. Methods to generate these predictions have common elements across model types (for

example, calculation of a linear predictor value), but fundamentally predictions are in the form of

the outcome being modelled.

Methods to calculate predictions from both linear and logistic regression models, for example for

predicted pain intensity scores and probabilities of high pain, respectively, are shown below. Also

demonstrated is a proposed transformation of the output from the linear regression model, to

further gain a predicted probability of an individual having a high risk of the dichotomised pain

outcome, after having modelled pain intensity in its continuous form.

3.2.1 Generating predicted values from a linear regression model

Following model development by linear regression, the resulting model equation can be applied

to participants to generate individual-level predictions of their six-month pain intensity score, as

follows.

YPREDi = αCont + βContXi = αCont + βCont1 ∗X1i + βCont2 ∗X2i + ...

Here YPREDi denotes the predicted pain intensity score for individual i, αCont gives the intercept
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term from the linear regression model, and βContj gives the coefficient (predictor effect estimate)

from the linear regression model for predictor variable Xj .

The predicted outcome value YPREDi is then obtained for an individual (i) by applying the

right-hand side of the equation, which utilises the intercept value (αCont), the individual’s reported

values for the included predictors (X1i, X2i, X3i, etc.) and their corresponding predictor effects

from the linear regression model (βCont1, βCont2, βCont3, etc.).

3.2.2 Generating predicted probabilities from a linear regression model

While the performance of linear and logistic regression models can be compared to a certain

extent, being able to gain estimates of predicted probabilities using the above equation from a

linear regression would allow a much fairer comparison, as predictions would then be on the same

scale. If this were possible, it would allow contrast of predictions stemming from dichotomisation

before or after the modelling stage. Thus, methods were investigated to calculate a predicted

probability of high pain using only the output from the linear regression.

For any given clinical prediction scenario, given some cut-point value C, the probability

pi = P (Yi < C) or P (Yi > C), where Yi denotes the observed outcome value on the continuous

scale, may be of particular interest to help inform treatment decisions. This C might be context

dependent, so may be different in different locations or for different people. For example, in the

applied example included in this chaper, predicted probabilities of pain intensity scores greater

than or equal to five were of particular interest to the clinical team (see below), though in a

different setting a higher or lower cut-point, anywhere on the 0-10 scale, might be preferable.
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YPREDi = αCont + βContXi

ei = Yi − YPREDi

Sampling distribution for YPREDi

x = Xi

Cut-point C

YPREDi

Yi (Unknown)

x

y

Figure 3.1: Demonstration of the distribution of a predicted outcome from the linear regression

model YPREDi = αCont + βContXi, where Xi = (X1i, X2i, X3i, ...)
T are the values of the

predictor variables for individual i, and βCont = (βCont1, βCont2, βCont3, ...)
T are the corresponding

coefficients from the linear regression model

Predicted outcomes from a linear regression model are subject to some uncertainty, the magnitude

of which depends on the sample size used for model development, among other things. Thus, while

the prediction itself is on the continuous scale, we can also consider the sampling distribution for

YPREDi given the particular combination of attributes Xi for individual i. Figure 3.1 shows such a

distribution for the predicted outcome value (YPREDi) from a hypothetical linear regression model.

The proportion of the distribution to the left (or right) of the cut-point equals the estimated

probability that the individual’s observed value is above (or below) the cut-point.
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Considering the distribution of the predicted value, YPREDi

We consider the distribution of the predicted outcome value from the linear regression model.

YPREDi = E(Yi | x = Xi) = µYi|x=Xi

where µYi|x=Xi
is a normally distributed random variable, as it is a linear combination of the

observations in the model development data. The value of YPREDi is, therefore, dependant on a

sample of the population (those in which the model was developed) rather than the population

itself. As such, YPREDi follows a sampling distribution, in the same way that the values for αCont

and the βContj do.

The predicted value, YPREDi, is, in fact, known to follow a student’s t distribution with n −

p − 1 degrees of freedom, where p is the number of predictor parameters, and n is the number of

participants contributing to the model development. The t distribution is generally used to estimate

population-level parameters when the population variance itself is unknown, or the sample size is too

small for a normal approximation to be appropriate. Values of the t distribution (or “t-statistics”)

are given by:

t =
x̄− µ

s√
n

where x̄ is a sample mean, µ is the population mean, s is the standard deviation in the sample,

and n is the sample size.

When applying this to our context, the probability of interest is that of the unknown value (observed

outcome value) Yi being as extreme as (or more extreme than) the desired cut-off value, C.

Assuming the variance of the individual YPREDi is equal to the residual variance of the linear
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regression model (σ2
model), the probability P (Yi < C) can be calculated from the probability tables

from the sampling distribution with:

t =
C − YPREDi

σmodel

This t-statistic is associated with a specific cumulative probability, representing the likelihood of

gaining a sample (predicted outcome) value less than or equal to x̄ = C, with a population value

assumed to be µ = µYi|x=Xi
= YPREDi.

Thus the desired probabilities can be estimated from the t-distribution as:

P (Yi < C) = P

(
Z <

C − YPREDi

σmodel

)

Given a sufficiently large sample size (n ≥ 30, say), this sampling distribution will converge with

the normal distribution, thus either distribution would be appropriate for estimating the required

probability.

Note that the above discusses a situation where the question is of Yi lying below the cut-off,

pi = P (Yi < C). The above extends logically to pi = P (Yi > C), given the symmetrical nature of

the t and normal distributions, and to pi = P (Yi ≤ C), given P (Yi = C) = 0 (by definition).

Thus, in this clinical example, the predicted probability of individual i being in high pain six months

after their consultation can be derived from the linear regression model as

pi = 1− P

(
Z <

5− YPREDi

σmodel

)
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3.2.3 Generating predicted probabilities from a logistic regression model

Given an outcome that has been dichotomised prior to modelling, the individual-level outcome

probabilities pi = P (Yi < C), or similarly P (Yi > C), can be gained from the logistic regression

equation. The dependant variable in the logistic regression equation is the logit transformation of

the event probability for each individual i, as follows:

logit (pi) = LP i = αBin + βBinXi

where pi = P (Yi < C) for the pre-defined cut-point of interest, αBin is the estimated intercept from

the logistic regression model, Xi = (X1i, X2i, X3i, ...)
T are the values of the predictor variables

for individual i, and βBin = (βBin1, βBin2, βBin3, ...)
T are the corresponding coefficients from the

logistic regression model.

The probability of individual i being in high pain at six months, then, is given by

pi =
expLP i

1 + expLP i

.
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3.3 Methods, part (ii): development and validation of clinical prediction models

for pain outcomes

3.3.1 Data source

Data were available from two existing datasets for model development and internal validation: the

Keele Aches and Pains Study (KAPS) [165] and the STarT-MSK pilot study (STarT-MSK-pilot)

[166]. External validation was conducted in data from a third dataset, containing participants

from a similar population as the model development data, that was not available at the time

of development: the STarT-MSK main trial (STarT-MSK-MT) [167]. Eligible patients for these

analyses were defined the same way in all three datasets: adults (aged 18 and over) consulting at

a participating GP practice with NLBP.

Model development data

Keele Aches and Pains Study (KAPS) [165] A prospective cohort study, recruiting between

2014 and 2016, in which patients who consulted one of 14 participating GP practices with common

MSK pain presentations (back, knee, shoulder, neck or multi-site), were invited to participate.

Patients were sent an invitation letter and survey pack following their initial GP consultation.

Return of the completed questionnaire, which was typically 3-6 weeks after the GP consultation,

included consent to participate, and patient-reported information on demographics and candidate

predictor values. Follow-up questionnaires were mailed to participants six months after baseline.

The STarT-MSK trial pilot study (STarT-MSK-pilot) [166] A two-parallel-arm, cluster

randomised controlled trial (cRCT) in 8 general practices, pilot-testing the feasibility of using the

Keele STarT-MSK Tool [165] to stratify care, through matching treatment options to risk groups
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for adults with one of the above five MSK pain presentations. Recruitment took place between

November 2016 and May 2017. Four practices were randomly assigned to continue usual care,

while the remaining four stratified care based on the Keele STarT-MSK Tool [165]. Following

eligibility screening, consulters were invited to take part in monthly data collection over 6 months,

regardless of practice allocation.

Only patients from the KAPS and STarT-MSK-pilot studies who consulted specifically for NLBP

(reported as their primary pain site) were included in the present analyses. These patients were

defined in slightly different ways for each study. Within KAPS, pain site was a self-reported

patient response to the question “When you recently visited your GP practice, which part of your

body did you consult about?” (patients who responded with “neck” or “back” were included). In

the STarT-MSK-pilot, GPs were asked at the point of consultation via an automated electronic

pop-up template: “Please confirm the primary pain site the patient is consulting with today”

(patients were included if the GP confirmed “neck” or “back” pain ).

External validation data

The STarT-MSK main trial (STarT-MSK-MT) [167] A two-armed cRCT aiming to

assess whether stratified care, based on Keele STarT-MSK Tool [165] risk group allocation,

resulted in improved pain outcomes for adults consulting their GP for MSK pain. Recruitment

began in May 2018 and ended in July 2019. Trial results showed no significant differences in

pain outcomes between treatment arms. Data collection was identical to the STarT-MSK-pilot

methods, described above, with only patients who’s GP confirmed “neck” or “back” pain included

in the external validation data.

88



Predictors in the STarT-MSK-MT data were available for two distinct time-points: (i) at

consultation, and (ii) by postal questionnaire two weeks after consultation. Information from

the consultation was only available for participants in the intervention arm of the trial, due

to implementation of the Keele STarT MSK Tool at consultation being the intervention under

investigation. For this chapter, only data recorded through the postal questionnaires will be

discussed, due to the similarity in recording method to the data used for model development. In

the published paper relating to this chapter (Appendix IIa), predictor information collected at

the time of GP consultation in patients in the intervention arm was used for additional validation

analyses.

3.3.2 Outcome definition for continuous and binary outcomes

The outcome of interest was the patient’s pain intensity at six-month follow-up, defined through

participants’ self-reported response to the question “How intense was your pain, on average, over

the last 2 weeks? [Responses on a 0-10 scale, where 0 is “no pain” and 10 is “worst pain ever”]”.

The binary pain intensity outcome was formed from a dichotomisation at a pre-defined cut-point

of five on the 0-10 pain scale. This cut-point has been previously reported as corresponding to at

least moderate pain [168, 169]), and was considered clinically meaningful by the physiotherapists

in the research team. Thus, binary pain intensity was modelled with scores of 0-4 corresponding

to “low pain” (a good prognosis), and 5-10 being “high pain” (a poor prognosis).
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3.3.3 Candidate predictors

The ten items of the Keele STarT MSK Tool were chosen a priori to be predictors in both

models, due to their expected clinical importance in predicting MSK pain intensity outcomes. No

statistical variable selection was performed. Predictor variables were baseline pain intensity (on a

scale from 0-10), self-management of pain condition, pain impact, walking short distances only,

pain elsewhere, long-term expectations, other important health problems, emotional well-being,

fear of harm and pain duration [165]. The additional predictor of primary pain site (back or neck)

was also included in both models for face validity, and to allow for differences in expected prognosis

for these clinically distinct groups. Further detail on all predictors included in the models is given

in Table 3.1.

Predictor information for all cohorts was collected through a postal questionnaire sent to patients

within a few days of their GP consultation.
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3.3.4 Sample size

The sample size for all analyses was fixed due to the size of the available datasets. Therefore,

comparisons were performed between the number of available participants and current minimum

sample size recommendations (see Table 3.2) to assess whether the available data were likely to

have been sufficient for developing [170, 76, 78] and externally validating [92, 94] these prediction

models. These calculations did not account for the clustering of participants within the two

datasets used for model development, or within individual GP practices, as (at the time of

writing) there was no guidance for sample size requirements for model development or validation

in clustered data settings.

Table 3.2: Numbers of participants and events required (per sample size recommendations) and

available (complete outcome data) for each analysis. Values are number, or number (percentage)

Available Required

Participants Events (%) Participants Events* (%)

Model development

Continuous outcome 545 - 311 -

Binary outcome 545 240 (44.0%) 824 412 (50%)

External validation

Continuous outcome 586 - 892 -

Binary outcome 485 275 (56.7%) 1946 1071 (55%)

*Based on the expected prevalence before data analysis

The sample size for model development should ensure precise estimates of the mean outcome value

or overall risk, whilst minimising overfitting in the model’s linear predictor and overall fit [78].

Based on the inclusion of 11 pre-defined predictor parameters (one continuous predictor, modelled

linearly, and 10 binary predictors), 311 participants were required for the development of the
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model for continuous pain score (assumed R2 = 0.22 [165], mean pain score 5.3 with standard

deviation 2.2 [171]), and at least 824 participants (with 412 “high pain” events, assuming an

outcome prevalence of 50% and a default Nagelkerke’s R2 = 0.15 [76]) for binary pain outcomes.

Thus, the available data exceeded the requirements for the continuous pain score model but was

not sufficient for developing the model with the binary pain outcome.

Minimum sample size recommendations for precise estimation of model performance for prediction

models with continuous outcomes were not available at the time of analysis, and will be discussed

further in Chapter 4. Calculations will not be included in detail here, but, basing estimates on the

model performance on internal validation, the minimum sample size required to meet criteria for

the continuous outcome model was 892 (assuming an R2 = 0.39) [92].

To meet the Collins et al rule-of-thumb recommendations [172] a minimum of 200 events (defined

here as high pain intensity) and non-events were required to externally validate the binary

outcome model. To meet the Riley et al tailored sample size criteria for external validation of

the binary outcome model [94], at least 1946 (1071 events) were required. This requirement

was driven by the criterion to precisely estimate the calibration slope, though also ensured

precise estimation of the Observed to Expected ratio (O/E) and the c-statistic, and involved

the following assumptions, taken from each model’s performance on internal validation: high

pain proportion of 55%, C-statistic of 0.81, linear predictor following a skew-normal distribution

with a mean of –0.45, a variance of 2.17, a skewness parameter of –0.5, and a kurtosis parameter of 3.

Notably, according to current recommendations, the binary outcome model required more

participants to minimise overfitting to the development data, and more participants to ensure
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precise estimation of model performance measures on external validation, than the continuous

outcome model.

3.3.5 Missing data

Missing data were seen in both predictor and outcome measurements for all three cohorts.

Preliminary checks for associations between missingness and predictor or outcome values were

conducted to test the validity of the assumption that data were missing at random (MAR) [173].

No obvious associations were seen, so multiple imputation by chained equations was used to

account for missing data in both predictor and outcome variables, under the MAR assumption

[174]. Imputation was conducted separately by cohort, rather than for the combined individual

participant data (IPD), to allow for clustering of patients within each dataset in the imputed

values. The imputed datasets for model development were combined by imputation prior to

analysis (KAPSi + STarTMSKpiloti = Imputationi, for each imputation i).

Forty-six imputed datasets were generated in both cohorts of the development data, equal to

the maximum percentage of incomplete cases across the two [173]. Sixty-seven imputations were

generated in the external validation data, by the same reasoning.

All candidate predictors were included in the imputation model, along with a number of auxiliary

variables that were expected (based on clinical input from the wider research team) to be highly

correlated with predictor variables with high proportions of missing values. The aim of including

these extra variables when estimating the imputed values was to increase precision and decrease

bias in the resulting prediction model estimates [175]. Auxiliary variables included: self-rated
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health, intensity of least painful pain, EuroQol 5 Dimension (EQ5D) mobility domain, EQ5D

anxiety/depression domain, co-morbidities (diabetes, breathing problems, heart problems, chronic

fatigue, anxiety/depression and other), how often help was needed to read written materials, and

kinesiophobia (fear of movement). These variables were included in the imputation models only,

and were not considered as candidate predictors in the prediction models.

Continuous pain intensity outcome values were included in the imputation of predictor variables,

being included in their continuous forms to maximise the available information included in

the imputation model. Outcome values were imputed for individuals with missing outcome

measurements as a part of the imputation process, with participants who had originally (prior to

imputation) had missing data for the outcome being dropped prior to model development analyses

[176].

Imputed values for all variables were checked through visual inspection of histograms (continuous

variables) and frequency tables (categorical variables) to examine whether values were realistic

and consistent across imputed datasets.

Results of analyses involving multiply imputed data were combined across imputations using

Rubin’s rules where appropriate [177, 174], and described through summary statistics (median,

lower quartile (LQ), upper quartile (UQ), range) where Rubin’s rules did not hold [178].

Calibration plots were checked for consistency across imputations and, where appropriate, a single

representative example is shown.

95



3.3.6 Model development

Outcomes were modelled using multilevel mixed-effects regression to account for the combination

of two distinct cohorts forming the development data [60]. The continuous outcome, pain intensity

score, was modelled using linear regression (using the mixed command in Stata 16). The score

was modelled as if it were a truly continuous variable, as is often the case with pain score data,

for computational efficiency and ease of interpretation over an 11-category ordinal regression.

The binary outcome of high pain was modelled using logistic regression (using the xtmelogit

command in Stata 16). Models were fitted using restricted maximum likelihood (REML) and

maximum likelihood estimation for the continuous and binary outcome models respectively, with

an unstructured variance-covariance matrix for a random effect on the intercept term to account

for clustering in the two model development datasets [64]. The continuous predictor of baseline

pain score was modelled linearly and all predictors were forced into both models (with no statistical

selection), as previously stated [34, 179].

3.3.7 Predictive performance measures and apparent performance

Following model development, outcome predictions were calculated for all individuals in the model

development data, as described below. The predictive performance of the models was assessed

through calibration and overall model fit for the continuous pain intensity outcome, and through

calibration, overall model fit, and discrimination for the binary outcome [57]. The apparent

performance of each model was calculated as the performance of the prediction models when

applied directly in model development data.

Calibration was assessed using the calibration slope, calibration-in-the-large (CITL), and the

96



ratio of Observed to Expected cases (O/E, for the binary outcome predictions only). Calibration

plots were produced for visual assessment of calibration performance, comparing predicted to

observed pain intensity score for the continuous outcome, and proportion of high pain events for

the binary outcome. Calibration curves were overlaid on calibration plots, produced using a loess

non-parametric smoother. Discrimination was assessed using the c-statistic for the binary outcome

predictions only. Overall model fit was assessed as the proportion of the variance in the outcome

explained by the model predictions, using the adjusted R2, for continuous pain intensity score.

Pseudo R2 values were calculated for binary outcome predictions, using Nagelkerke and Cox-Snell

approaches.

3.3.8 Internal validation and shrinkage

Internal validation was conducted using bootstrapping with 1,000 samples, sampling with

replacement, from the original data [60]. The full modelling process was repeated within each

bootstrap sample, including multiple imputation [174]. The predictive performance of the models

developed within each bootstrap sample was evaluated within the (imputed) bootstrap sample

itself, as well as in the original (imputed) data. In both cases, performance measures were pooled

across imputations using Rubin’s Rules, on the log-scale for O/E, the logit-scale for the c-statistic,

and their usual scales for the c-slope and CITL [72, 178].

The optimism in each performance measure was calculated as the average of the differences

between the performance (in the original data) of the bootstrap and original models. Each

optimism estimate was subtracted from the associated apparent performance measure, to provide

optimism-adjusted estimates of predictive performance [180].
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The optimism-adjusted calibration slope was also used as the estimate of the uniform shrinkage

factor for each regression model. The regression coefficients were multiplied by this shrinkage

factor to correct for overfitting to the model development data (a consequence of having a low

number of participants or outcomes relative to the number of predictor parameters) [60, 54]. After

shrinkage was applied to the coefficients, the intercept term (with random effect) was re-estimated

for each model whilst holding the shrunken predictor effects fixed, to ensure predictions remained

correct on average. The models with shrunken coefficients and re-estimated intercepts give the

final prediction models, which were taken forward to external validation [180].

A visual representation of the sequence of analysis steps for the internal validation is given in

Figure 3.2.
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3.3.9 Model stability checks

Separate to the internal validation process, the prediction models were also checked for stability

in the developed model across different development samples of the same size from the same

population [181, 182]. Modelling procedures were repeated, as specified above, in 200 new samples

of participants obtained by bootstrapping (sampling, with replacement, from the original dataset).

Stability in individual-level predicted risks from the two modelling approaches was assessed and

compared using prediction instability plots (showing the spread of predicted risks across bootstrap

models, plotted against predicted risk values from the original model), instability indices (the mean

absolute difference between the predicted risks for an individual, as calculated from the original

and bootstrap models, plotted and summarised across all bootstrap samples), and classification

indices (the proportion of bootstrap models that give a different outcome classification than the

original model, given a pre-defined, clinically relevant threshold probability (e.g., 10% outcome

risk), plotted for each individual). Consistency in smoothed calibration curves across bootstrap

models was also assessed.

3.3.10 External validation

Model equations for both models were applied to the participants in the STarT-MSK-MT

data to calculate individual-level predictions for each included patient. Predictive performance

measures were calculated as described for the apparent and internal validation, including measures

of calibration (calibration slope, CITL, O/E ratio, calibration plots with calibration curves)

discrimination (c-statistic), and measures of overall model fit (R2 or Nagelkerke’s pseudo R2

for binary outcomes), in each imputed dataset separately, and combined across imputations as

described above.
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3.4 Results

3.4.1 Study populations

Table 3.3 summarises the numbers of participants available for each analysis, being those with

complete outcome data recorded at six months. In the model development data, pain intensity

score was recorded at six months in a total of 545 participants, with 240 (44%) in high pain at that

time. The external validation data included 586 NLBP patients overall, 485 of whom had complete

outcome data, with just over half of these experiencing high pain at six months, at 56.7% (n=275).

Table 3.3: Numbers of participants and events available for each analysis, for participants with

complete outcome data. Values are number (percentage) unless otherwise stated.

Participants Events (%)

Model development

STarT-MSK-pilot 196 78 (39.8%)

KAPS 349 162 (46.4%)

Total (outcomes measured) 545 240 (44.0%)

External validation

STarT-MSK-MT 485 275 (56.7%)

Development data

The KAPS cohort contained 465 eligible NLBP participants. A further 214 participants were

available from the STarT-MSK-pilot data. This gave a total of 679 individuals across the two

datasets, for the model development and internal validation analysis. Of these, 545 (80.3%)

had pain outcome measurements at 6 months. The majority of people presented with back

pain (n=563, 83%), had troublesome MSK pain in more than one part of their bodies (n=451,
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67.2%), and expressed the expectation that their condition would be long-lasting (“Do you think

your condition will last a long time?”, n=469, 71.1%). The median pain intensity score at first

assessment was 7 (LQ to UQ: 5 to 8) out of 10. Six months after initial assessment, median pain

intensity had reduced to 4 (LQ to UQ: 2 to 7).

Few predictor variables showed substantial differences (larger than 10%) in distribution between

the STarT-MSK-pilot and KAPS datasets, as can be seen in Table 3.4. Notable differences in

predictor variable distributions include those for pain self-management (STarT-MSK-pilot having

67.3% “unsure about how to manage [their] pain condition”; KAPS only 50%); and for pain impact

(TAPS with 53.1% “bothered a lot by [their] pain” in the preceding 2 weeks, KAPS with 72.7%).

External validation data

Data to generate predictions for pain score and probability of high pain were available for 586

patients in the external validation data, with outcome data recorded in 485 (82.8%) of these.

Patients predominantly presented with back pain (78%) and had a median baseline pain score of 7

(IQR 5 to 8) out of 10. A comparison of summary values for predictor information in the external

validation data and the model development data is given in Table 3.4.

Though median baseline pain intensity across the development and validation data matched at

7 (IQR 5 to 8) out of 10, pain impact (“Over the last two weeks, have you been bothered a lot

by your pain?”) was more severe in the external validation data, affecting 79.7%, compared to

65.2% of the development population. Items regarding long-term expectations (“Do you think

your condition will last a long time?”) and fear of harm (“Do you feel it is unsafe for a person
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with a condition like yours to be physically active?”) were both more commonly answered as “yes”

in STarT-MSK-MT, at 82.1% and 55.4% respectively, than in the model development data (69.1%

and 27.8%).

103



Table 3.4: Predictor measurements and outcome summaries for participants in each of the model

development datasets, across both development datasets combined, and in the external validation

data. Numbers are n (%) responding “Yes” unless otherwise stated)

Model development External validation

STarT-MSK KAPS Total STarT-MSK-MT

-pilot (n=214) (n=465) (n=679) (n=586)

Baseline

Primary pain site: “Neck” 59 (27.6) 57 (12.3) 116 (17.1) 129 (22.0)

Pain intensity, median (LQ-UQ) 7 (5 to 8) 7 (4 to 8) 7 (5 to 8) 7 (5 to 8)

Pain self-management 144 (67.3) 225 (48.4) 369 (54.3) 279 (47.6)

Pain impact 113 (52.8) 330 (71.0) 443 (65.2) 462 (78.8)

Walking short distances only 117 (54.7) 248 (53.3) 365 (53.8) 344 (58.7)

Pain elsewhere 147 (68.7) 304 (65.4) 451 (66.4) 398 (67.9)

Long-term expectations 154 (72.0) 315 (67.7) 469 (69.1) 477 (81.4)

Other important health problems 81 (37.9) 183 (39.4) 264 (38.9) 242 (41.3)

Emotional well-being 132 (61.7) 284 (61.1) 416 (61.3) 388 (66.2)

Fear of harm 56 (26.2) 133 (28.6) 189 (27.8) 322 (55.0)

Pain duration 114 (53.3) 219 (47.1) 333 (49.0) 345 (58.9)

Outcome

Missing 18 (8.4) 116 (24.9) 134 (19.7) 101 (17.2)

Complete 196 (91.6) 349 (75.1) 545 (80.3) 485 (82.8)

Pain intensity, median (LQ-UQ) 3 (1 to 6) 4 (2 to 7) 4 (2 to 7) 4 (1 to 7)

Event (high pain) 78 (39.8) 162 (46.4) 240 (44.0) 275 (56.7)

No event 118 (60.2) 187 (53.6) 305 (56) 210 (43.3)

LQ - Lower Quartile, UQ - Upper Quartile.
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3.4.2 Prediction models equations for continuous and binary outcomes

Table 3.5: Final prediction models for 6-month pain, after optimism adjustment. Numbers are

intercepts (α) and coefficients (β) and for continuous outcome models, intercepts (α) and odds

ratios (exp(β)) and for binary outcome models. Uniform shrinkage factors for each model were

obtained through bootstrapping with 1000 replications.

Linear regression: Logistic regression:

Pain score (coefficient) High pain (odds ratio)

Pain intensity 0.269 1.26

Pain self-management 0.212 1.20

Pain impact 0.632 1.40

Walking short distances only 0.934 2.37

Pain elsewhere 0.278 1.33

Long-term expectations 1.673 3.61

Other important health problems 0.578 1.38

Emotional well-being -0.002 1.28

Fear of harm -0.434 0.63

Pain duration 1.129 2.19

Pain site 0.515 1.02

Constant -1.153 -4.324

Var(constant) 0.132 0.041

Shrinkage factor 0.982 0.938

Model coefficients after shrinkage and re-estimated intercept terms for each pain intensity model

are presented in Table 3.5.

Conditional on other variables in the model, a patient’s baseline pain intensity and their long-term

expectations (thinking their condition would last a long time) contributed most to predictions of

pain intensity for both the continuous and binary outcome models, with a higher baseline pain
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intensity score and expecting their condition to last a long time being associated with both higher

expected pain intensity scores and higher predicted probabilities of high pain at six months.

The direction of effect was generally consistent across the two model types, with fear of harm

being the only predictor associated with a protective effect for both the continuous and binary

outcomes, after adjusting for other covariates. Direction of effect differed between the two models

for emotional wellbeing, although the estimated effect size in the linear regression was negligible.

Within the logistic regression model, after adjusting for other variables, the effect of primary pain

site (back vs neck) was negligible, while the linear model predicted six-month pain scores that were

around half a unit higher for those with the back as their primary pain site. The importance of

this difference in expected pain score is likely to be patient and clinician dependant, but would be

relevant to patients across the full range of pain intensities. Information on the effect of primary

pain site is apparently lost with the early dichotomisation of the pain intensity outcome variable.
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Generating predictions for an individual

Example (a): Demonstration of using linear regression equation to predict six-month

pain score in an individual patient

For a back pain patient X with a pain intensity of 7, pain elsewhere, who thinks their condition

will last a long time and has pain that has lasted for more than 6 months, pain score in 6 months

time would be estimated as follows.

Predicted pain score = – 1.153 + 0.269 x (Pain intensity) + 0.212 x (Pain self-efficacy)

+ 0.632 x (Pain impact) + 0.934 x (Walking short distances only)

+ 0.278 x (Pain elsewhere) + 1.673 x (Thinking their condition will last a long time)

+ 0.578 x (Other important health problems) – 0.002 x (Emotional well-being)

– 0.434 x (fear of pain-related movement) + 1.129 x (Pain duration)

+ 0.515 x (Primary pain site)

Where:

Pain intensity is scored from 0 to 10, where 0 is “no pain” and 10 is “pain as bad as it could be”

Primary pain site is scored as 1 for patients with pain in their back, and 0 for neck

Other variables are scored 1 if the patient answered “yes” to that question, and 0 otherwise

So for patient X,

Predicted pain score = – 1.153 + 0.269 x (7) + 0.212 x (0) + 0.632 x (0) + 0.934 x (0)

+ 0.278 x (1) +1.673 x (1) + 0.578 x (0) – 0.002 x (0) – 0.434 x (0)

+ 1.129 x (1) + 0.515 x (1)

= – 1.153 + (0.269 x 7) + 0.278 + 1.673 + 1.129 + 0.515

= 5.5 out of 10
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Example (b): Demonstration of using linear regression equation to predict the

probability of high pain at six months in an individual patient

For a back pain patient X with a pain intensity of 7, pain elsewhere, who thinks their condition

will last a long time and has pain that has lasted for more than 6 months, pain score in 6 months

time would be estimated as follows.

Predicted pain score = 5.5 out of 10, as seen in the previous box, therefore:

Probability of high pain in 6 months = 1− P
(
Z < C−YPREDi

σmodel

)

= 1− P
(
Z < 5−5.5

2.293

)
= 1− P (Z < −0.218)

= 1− 0.414

Probability of high pain in 6 months = 59%
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Example (c): Demonstration of using logistic regression equation to predict the

probability of high pain at six months in an individual patient

For a back pain patient X with a pain intensity of 7, pain elsewhere, who thinks their condition

will last a long time and has pain that has lasted for more than 6 months, the probability of high

pain in 6 months time would be estimated as follows.

Probability of high pain in 6 months = exp (LP )
1+exp (LP )

LP = -4.324 + 0.231 x (Pain intensity) + 0.182 x (Pain self-efficacy)

+ 0.336 x (Pain impact) + 0.863 x (Walking short distances only)

+ 0.285 x (Pain elsewhere) + 1.284 x (Thinking their condition will last a long time)

+ 0.322 x (Other important health problems) + 0.247 x (Emotional well-being)

– 0.462 x (fear of pain-related movement) + 0.784 x (Pain duration)

+ 0.020 x (Primary pain site)

Where:

exp is the exponential function

Pain intensity is scored from 0 to 10, where 0 is “no pain” and 10 is “pain as bad as it could be”

Primary pain site is scored as 1 for patients with pain in their back, and 0 for neck

Other variables are scored 1 if the patient answered “yes” to that question, and 0 otherwise

So for patient X,

LP = -4.324 + 0.231 x (7) + 0.182 x (0) + 0.336 x (0) + 0.863 x (0)

+ 0.285 x (1) + 1.284 x (1) + 0.322 x (0) + 0.247 x (0)

– 0.462 x (0) + 0.784 x (1) + 0.020 x (1)

= -4.324 + (0.231 x 7) + 0.285 + 1.284 + 0.784 + 0.020

= - 0.33

Probability of high pain in 6 months = exp (−0.33)
1+exp (−0.33) = 42%
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3.4.3 Model stability checks

Prediction instability plots, plotting the predicted risk of being in high pain at six months based

on the example model (developed in the original sample) against risk estimates for that same

individual from models developed across 200 bootstrap samples, are shown for both the linear and

logistic regression models in Figure 3.3. Dashed lines denote the region where 95% of the predicted

risks across bootstrap models lie.

(a) Linear model (b) Logistic model

Figure 3.3: Prediction instability plots, for expected risks of high pain at six months generated

with pain score dichotomised before or after modelling

Predicted outcome risks from the linear regression approach were relatively stable, with a narrow

spread of values across bootstrap models for each individual. This was evident across the full

range of possible predicted risks (from 0 to 1). The probability estimates from the linear regression

model were notably more stable than those from the logistic regression, where the spread of

predicted probabilities across bootstrap samples is slightly wider. This can be seen both through

the spread of individual markers, and by the width of the 95% uncertainty bands (dashed lines).
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While the logistic model was relatively stable at the extremes, suggesting more certainty in

predictions for those at especially high or low risk of high pain, for those with less extreme

predicted risks had higher instability in their predictions across bootstrap models. For example,

given a predicted risk of around 0.5 from the original logistic model, 95% of the bootstrap models

gave predictions between 0.36 and 0.65. The corresponding bootstrap interval for probabilities

from the linear regression model spans from 0.39 to 0.60.

Figure 3.4 shows the absolute difference between predicted risks from the original model and each

of the bootstrap models, as a scatter against the value of the predicted risk from the original

model. Highlighted points (in navy) show the mean difference between these risk estimates across

all bootstrap models, for each individual (known as the instability index).

(a) Linear model (b) Logistic model

Figure 3.4: Instability index plots, for expected risks of high pain at six months generated with

pain score dichotomised before or after modelling

Mean absolute differences between predicted risks from the original and bootstrap models was

lower for the linear model when summarised across all bootstrap models, with a median instability

index across all individuals of 0.026 (0.020 to 0.031), compared to 0.036 (LQ to UQ: 0.025 to
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0.045) for the logistic model. This is demonstrated in Figure 3.4, where the mean values for

individuals are lower for the linear model, and the spread of values across bootstrap models is

visibly narrower.

The predicted risks from a model may be used to classify patients as high or low risk of high pain

at six months, to then inform an alteration in treatment course for those who are most likely

to benefit from it. Where a patient’s predicted risk of high pain varies across bootstrap models,

so might their classification to either high or low risk, especially where their predicted risk from

the original model lies close to the threshold being used to assign groups. Figure 3.5 shows the

proportion of bootstrap models from which an individual is assigned a different classification that

was given by the original model, plotted against their predicted risk from the original model, for

an example threshold probability of 0.1 (i.e., when using a 10% threshold for categorising “high

risk”).

(a) Linear model (b) Logistic model

Figure 3.5: Classification instability plots, for expected risks of high pain at six months generated

with pain score dichotomised before or after modelling
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When considering a threshold of 0.1, consistency in classification was similar across bootstrap

models for both the linear and logistic regression approaches. Those very close to the threshold

(those most vulnerable to changes in classification) based the linear model had slightly higher

probabilities of a different classification across bootstrap models, peaking at 58% (compared to

57.5% from the logistic model), though the range of individuals affected by classification changes

was slightly narrower for the linear model. Figure 3.5 demonstrates how classification changes

were seen for those with predicted risks close to the threshold (0.1) for both the linear and the

logistic model.

While individual-level predictions were slightly more stable across bootstrap models for predicted

probabilities from the linear regression model (Figure 3.3), this was not reflected in increased

stability in the model calibration curve (Figure 3.6). Smoothed calibration curves are similarly

consistent across bootstrap models for both the linear and logistic regression approaches.

(a) Linear model (b) Logistic model

Figure 3.6: Calibration instability plots, for expected risks of high pain at six months generated

with pain score dichotomised before or after modelling

As was seen in the calibration curve for the original model (Figure 3.10), some miscalibration was
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evident in the predicted risks from the linear model across bootstrap models. In contrast, the

logistic model appeared to be well-calibrated across the full range of predicted risks, with stability

in calibration across bootstrap models similar to that of the less well calibrated linear model.

3.4.4 Comparing prediction distributions

Distributions of the predictions from the two model types are summarised in Table 3.6, for values

when the models were applied to individuals in the development and external validation datasets

separately. Histograms of predicted pain scores and probabilities of high pain (calculated from both

the linear and logistic regression models) are shown in Figure 3.7, with consistent distributions

for each prediction type across the model development and validation datasets on visual inspection.

Notably, there is a tendency towards lower predicted probabilities from the linear regression

model on average, when compared to those from the logistic regression, as can be seen when

comparing the mean and median values, and the minimum and maximum prediction values, shown

in Table 3.6. However, on visual inspection (Figure 3.7) the shapes of the distributions were similar.

Probabilities of high pain calculated from the linear and logistic regression models were highly

correlated across individuals, as can be seen in Figure 3.8. Probabilities across the two modelling

types are most consistent at the extremes (for those with particularly high or particularly low

probabilities of high pain), and are notably less consistent around the centre of the distributions.

Where differences occurred, predicted probabilities from the linear regression model were generally

lower than those from the logistic regression, suggesting this modelling method gives more
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conservative estimates of risk. For example, for those with a predicted probability of around 0.5

from the logistic regression model, linear regression estimates varied between 0.3 and 0.5.
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Table 3.6: Prediction distribution summary for models predicting six-month pain outcomes, after

application of shrinkage, when applied in the model development and external validation data.

Linear regression model Logistic regression model

Pain score Probability of high pain Probability of high pain

Model development data

Mean 4.02 0.38 0.435

Standard deviation 1.868 0.239 0.261

Median 4.15 0.355 0.421

LQ to UQ 2.835 to 5.495 0.173 to 0.585 0.212 to 0.678

Minimum to maximum -1.387* to 7.486 0.003 to 0.861 0.007 to 0.91

Skew -0.524 0.118 0.02

Kurtosis 2.665 1.809 1.74

External validation data

Mean 4.404 0.427 0.483

Standard deviation 1.687 0.226 0.246

Median 4.586 0.428 0.512

LQ to UQ 3.383 to 5.658 0.24 to 0.613 0.285 to 0.697

Minimum to maximum -0.672* to 8.119 0.007 to 0.913 0.017 to 0.946

Skew -0.734 -0.133 -0.255

Kurtosis 3.159 1.959 1.917

*note: outside the valid range of pain intensity scores (0 to 10)
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(a) Model development data

(b) External validation data

Figure 3.8: A comparison of individuals’ probabilities of high pain when calculated using the logistic

and linear regression models in the (a) model development and (b) external validation data
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3.4.5 Predictive performance on internal validation

Predictive performance measures from the internal validation of the linear regression model for

pain score and the logistic regression model for high pain, before and after optimism adjustment,

are presented in Table 3.7.

On internal validation through bootstrapping, models for predicting pain outcomes showed

reasonable calibration, as would be expected. The optimism-adjusted calibration slope for the

continuous and binary outcome models were 0.982 and 0.944 respectively, indicating overfitting

was more of a concern for the model predicting high pain as a binary outcome, though was small

in both models. For the continuous outcome model, the shrinkage factor close to one suggests

minimal overfitting to the development data, while slightly more adjustment for overfitting is

required for the binary outcome model - potentially a result of the information lost on outcome

dichotomisation and thus the smaller effective sample size available for analysis.

For predicted probabilities of high pain from the logistic model, discriminative ability was

reasonable. The optimism-adjusted C-statistic of 0.810 indicates approximately an 81%

probability that a randomly selected individual with high pain at six months would receive a

higher predicted probability from the model than a randomly selected individual without high

pain would.
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Table 3.7: Predictive performance of prediction models on internal validation using bootstrapping,

before and after optimism adjustment

Measure Linear regression model Logistic regression model

Continuous outcome Binary outcome

Calibration slope Apparent 1.000 (0.895 to 1.105) 1.000 (0.811 to 1.177)

Average optimism 0.018 (0.017 to 0.018) 0.056 (0.055 to 0.057)

Optimism adjusted 0.982 0.944

CITL Apparent 0.000 (-0.193 to 0.193) 0.000 (-0.165 to 0.237)

Average optimism -0.547 (-0.551 to -0.544) 0.329 (0.323 to 0.334)

Optimism adjusted 0.547 -0.329

O/E Apparent 1.000 (1.000 to 1.000)) 1.000 (0.997 to 1.003)

Average optimism 0.133 (0.132 to 0.134) 0.014 (0.012 to 0.016)

Optimism adjusted 1.133 1.014

C-statistic Apparent - 0.811 (0.775 to 0.847)

Average optimism - 0.01 (0.01 to 0.01)

Optimism adjusted - 0.810

R2/Pseudo R2 Apparent 39.1% (38.8% to 39.2%) 37.5% (37.3% to 37.7%)

Optimism adjusted 0.37 0.33

Good calibration would be concluded for the linear regression model to predict the continuous

outcome when considering only the calibration slope value, though the calibration plot (Figure 3.9)

shows that model calibration varied considerably across individuals for the continuous outcome

predictions. For example, for people with a predicted six-month pain intensity score of 4 (on the

0-10 scale), observed scores ranged from 0 to 10.
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Figure 3.9: Apparent calibration of the model to predict six-month pain intensity score, after

shrinkage

When assessing predicted probabilities generated from the linear model (after shrinkage) some

miscalibration was evident, with expected risks consistently too low (when compared to observed

risks) across the whole range of predicted probabilities, as shown in Figure 3.10. This miscalibration

was not present in the logistic model, where predicted probabilities were generally higher than

their corresponding values from the linear model (see Figure 3.8, above).

121



(a) Linear model - probability

(b) Logistic model - probability

Figure 3.10: Apparent calibration of predicted probabilities for high pain at six months, after

shrinkage, with predictions generated for pain score dichotomised before or after modelling
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3.4.6 Predictive performance on external validation

Table 3.8: Performance of prediction models for continuous and binary pain intensity outcomes

on external validation

Measure Linear regression model Linear regression model Logistic regression model

Continuous outcome Binary outcome Binary outcome

Calibration

Calibration slope 0.735 (0.656 to 0.815) 0.854 (0.665 to 1.043) 0.710 (0.598 to 0.823)

CITL -1.262 (-1.408 to -1.116) 0.027 (-0.157 to 0.211) -0.307 (-0.438 to -0.176)

O/E* - 1.012 (0.983 to 1.043) 0.880 (0.854 to 0.908)

Discrimination

C-statistic* - 0.734 (0.691 to 0.771) 0.721 (0.692 to 0.749)

Overall model fit

R2/Pseudo R2** 20.8% (20.2% to 21.3%) 23.3% (22.0% to 24.2%) 22.1% (21.1% to 23.1%)

*For binary outcome assessments only

**Not summarised using Rubin’s rules: values are median (LQ to UQ) across imputations

Pain intensity score at six months

The predictions for pain intensity score on its continuous scale showed poor calibration on

average across the validation population, with the calibration plot (shown in Figure 3.11)

suggesting predicted scores were too high on average, with a lot of individual-level variation

in accuracy. The CITL value confirmed that the continuous outcome model systematically

over-predicted pain intensity score at six months by an average of 1.2 points. The calibration slope

value of 0.74 (0.66 to 0.82) further suggests that the model does not fit the external validation

data well, perhaps due to population or temporal differences, despite the application of shrinkage

at the model development stage.
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Figure 3.11: Calibration plot for the model to predict six-month pain intensity score on external

validation

Probability of high pain at six months

Calibration performance was reasonable in both the linear and logistic models to predict the

binary outcome of high pain at six months, as can be seen in Figure 3.12, where calibration curves

indicate good calibration on average across the external validation population. The calibration

slope values of 0.854 (0.665 to 1.043) and 0.710 (0.598 to 0.823) for predicted probabilities from

the linear and logistic regression models respectively suggest both models gave predictions that

were slightly too low for those at low risk, and slightly too high for those at high risk.

The observed/expected ratio for the linear model, 1.012 (0.983 to 1.043), implied minimal

miscalibration-in-the-large, while the corresponding value for the logistic model, 0.880 (0.854 to

0.908), was indicative of an over-prediction of risk, on average, in the external calibration data.
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Given the under-prediction of risk from the linear model in the model development data, it is

unclear whether this better performance on external validation is due to the tendency of the linear

model to predict lower risks than the logistic model, and an external validation in a population

that coincidently had a lower baseline falls risk that the development population.

Discrimination performance was very similar across model types (see Table 3.8). C-statistics of

0.73 (0.69 to 0.77) and 0.72 (0.69 to 0.75) from the linear and logistic regression models respectively

suggest that around 73% and 72% of concordant pairs were correctly identified by these models.

Confidence intervals for these values were also highly consistent across model types, with a very

slightly wider confidence interval for the value from the linear regression model (an artefact of the

use of the delta method in the estimation of the standard errors for the C-statistic).

A slightly higher value of Nagelkerke’s R2
N for predicted probabilities generated using the linear

regression model (median 23.3%, LQ to UQ 22.0% to 24.2%) compared to the logistic regression

model (22.1%, 21.1% to 23.1%) indicates a higher proportion of the variance in the outcome is

explained by the model when applied in the external validation data. While Nagelkerke’s R2
N

values for the predicted probabilities are on the same 0-1 scale as the R2 for the continuous model,

caution should be taken when comparing the two, as their calculation methods clearly differ.

Nevertheless, a tentative comparison suggests that the overall model performance of the binary

outcome models was reasonably consistent with, if not slightly better than, that of the continuous

outcome model.
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(a) Linear model - probability

(b) Logistic model - probability

Figure 3.12: Calibration performance on external validation for models to predict the probability

of high pain at six months, when generated from linear and logistic regression models

126



3.5 Discussion

This chapter discussed the impact of outcome dichotomisation on the development and external

validation of clinical prediction models. The comparison focussed on an applied example aiming

to improve communication and treatment matching for patients consulting with NLBP, and aimed

to develop models based on pre-defined, clinically important predictor variables. These prediction

models were to estimate an individual’s predicted pain intensity score, on a continuous scale, and

the probability that they will be experiencing high pain (defined by a simple dichotomisation of

this same pain score), six months after their initial consultation in primary care. The development

and external validation of these models were published in Physical Therapy [91].

3.5.1 Summary of key findings

The first part of the methods for the chapter demonstrated a proposal for how predicted

probabilities, if desired to facilitate clinical decision making, can easily be generated based on the

output from a linear regression model. These calculations can be applied post-modelling, meaning

there is no need to dichotomise a continuous outcome variable beforehand. In the applied NLBP

example, predicted probabilities generated from a linear regression model, using the methods

demonstrated here, were highly correlated with those stemming from a logistic regression model

for the same outcome, though the weighting and importance of predictors varied slightly across

model types.

Assessments of stability at model development suggested that modelling the continuous outcomes

on its continuous scale and dichotomising after the modelling stage results in more stable

predictions than a logistic model developed on the pre-dichotomised outcome. This is likely due
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to the more efficient use of the data when modelling on the continuous scale, resulting in a larger

effective sample size for model development. This increase in stability was seen in individual-level

predictions, with lower instability index values for risk predictions from the linear regression

model. Increased stability was also seen for risk group classification, when using a probability

threshold of 10% to determine those at high risk.

Crucially, internal validation analyses suggested a higher level of overfitting in the logistic

regression model, as shown by an optimism-adjusted calibration slope that was further from

the ideal value of one. This is likely due to the loss of information when the continuous pain

score outcome was dichotomised prior to modelling. Some miscalibration was evident on visual

inspection of calibration plots for the predicted risks from the linear model, both when considering

the apparent performance of the shrunken model and on calibration stability assessment. Though

methods to recalibrate predicted probabilities from the linear regression model might result in

better calibration in the model development data, this would require fixing the cut-off value

to a single point, as with the logistic model on the pre-dichotomised outcome, thus isn’t ideal.

Instability in the calibration curve for predicted probabilities from the linear regression model was

similar to that of the better calibrated logistic model, where predicted risks better matched the

observed outcomes in the model development data.

Predictive performance of the continuous and binary outcome models was reasonably consistent

on external validation, though the continuous outcome model gave values closest to the ideal

for all measures of calibration. Predicted probabilities from the linear regression model were

better calibrated in the external validation data than the logistic regression model, with some

over-prediction of falls risk evident in predictions from the logistic model. However, this may be

128



related to a combination of more conservative estimates of risk from the linear model seen in the

model development population, and a slightly lower risk population used for external validation.

Further assessment of the two modelling types over a wide range of scenarios, in different clinical

contexts and in simulated data, are needed before firm conclusions can be made surrounding the

improved calibration performance on external validation.

A tentative comparison of R2 values from the continuous model to the Nagelkerke’s R2 values

from corresponding binary model suggested similar overall model fit for both outcome types, with

the binary outcome model showing a slightly higher (pseudo) R2. These measures, however, are

calculated differently for the two modelling types, so caution should be taken in the comparison

and interpretation of these results. When making the more valid comparison of Nagelkerke’s

R2 values for predictions from the linear and logistic regression models to predict high pain

probabilities, the linear regression model performed better.

3.5.2 Strengths and limitations

Despite differences in outcome definitions, predictors of poor prognosis in both linear and logistic

regression models were consistent with what has previously been reported. In particular, baseline

pain intensity [183] and long-term expectations (“Do you think your condition will last a long

time?”) [184] were the strongest predictors in both of the models developed in this chapter, after

adjusting for other covariates, and have previously been reported as important for the prediction of

NLBP progression. The differing direction of effect seen for emotional wellbeing (“Has pain made

you feel down or depressed in the last two weeks?”) between the linear and logistic models, along

with the negligible effect size in the linear model, is in contrast to previously reported associations
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of of both depression [183] and low mood [185] with NLBP prognosis. This difference, however,

may be related to adjustment for other covariates, which were consistent between the two models

developed here, as no statistical selection of predictors was conducted. Thus the impact of mood

may have been absorbed into the coefficients of other predictors, such as bothersomeness or pain

intensity.

The available data used in the applied example for this chapter provided a sufficient sample size

for the model development analyses, per current guidance. To predict the continuous outcome of

pain intensity score, data comfortably exceeded the recommended 354 participants recommended

for model development [75]. For the binary outcome analyses, patients with high pain were

insufficiently common to exceed the requirement for 412 events and non-events based on an

assumed prevalence of 50% (the observed high pain proportion was 44% at six months) [76].

The demonstrated differences in model stability and performance have not been assessed in data

that was also sufficient for the binary outcome model, though the requirement for more data to

minimise overfitting (and possibly increase stability) in the logistic regression model is in itself of

interest.

The sample size available for external validation was far below what is currently recommended

for the external validation of a prediction model with a binary outcome. To meet rule-of-thumb

recommendations [172] at the time of analysis, a minimum of 200 high pain events (and non-events)

were required to externally validate the binary outcome model. Though this was exceeded in the

external validation sample, rules of thumb are now not recommended in sample size calculations

for the validation or clinical prediction models. When considering tailored sample size calculations

for the external validation in this clinical example, at least 1946 (1071 events) were required [94].
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The external validation in a UK population, one very similar to that used for model development,

showed systematic over-prediction of pain intensity score at six months. Given the small sample

size and poor calibration on external validation, albeit with reasonable discrimination performance

for prediction of the dichotomised outcome, this chapter can not demonstrate how well conclusions

might extend to situations where the external validation sample is large, and continuous outcome

is well predicted in the external population.

In this example, the modelling methods used were relatively uncomplicated, thus findings may

not extend to scenarios involving more complicated analysis methods, such as variable selection,

assessment of non-linear trends, or differing outcome distributions. Future work, including more

generalisable simulation studies, will investigate stability and performance of clinical prediction

models for dichotomised continuous outcomes when using these more complex modelling strategies,

though this research will not form a part of this thesis.

3.5.3 Conclusions and next steps

This chapter has illustrated the development of prediction models when modelling discrete

outcomes in continuous and binary forms, and how this choice of outcome can effect predictive

performance statistics and model usability on external validation. Prediction models that fail

to keep continuous outcomes on their continuous scale may suffer from loss of information and

reduced power to detect predictor effects, with this applied example demonstrating a larger degree

of overfitting in a logistic model compared to the linear regression model for the same outcome.

This difference in overfitting to the development data is possibly due to the loss of information

that arose when the continuous outcome was split.
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Further, this chapter demonstrated how predicted probabilities, if desired, can be generated

post-modelling from the outputs of a linear regression model. Thus, in most cases, dichotomisation

prior to modelling is unlikely to be necessary. However, the methods used to gain predicted

probabilities from the linear regression model were highly dependent on this model’s underlying

assumptions: namely the requirement for normally distributed residuals, and for constant error

terms across different values of observed outcome (homoscedasticity). Further research should

investigate methods to generate such probabilities from a continuous outcome prediction, where

data do not meet these modelling assumptions and thus linear regression may not be appropriate.

This extension is beyond the scope of this thesis.

As mentioned above, both model development and external validation analyses in this chapter

took place in pre-existing datasets of fixed size. While published recommendations were available

to assess whether the model development data contained enough participants (continuous

outcome models) and enough high pain and poor function events (binary event models), only

rules of thumb were available to assess the appropriateness of the size the external validation

sample for accurate assessment of model predictive performance. The literature was lacking

in close-form or simulation-based methods to calculate the minimum sample size required to

ensure precise estimation of the model calibration (calibration slope, calibration-in-the-large),

discrimination (c-statistic), and overall model fit (R2, pseudo R2) on external validation. Without

sufficient external participants on whom to test the model performance, validation may lead to

imprecise estimates with wide confidence intervals, giving researchers very little confidence in the

generalisability or transportability of the prediction model.
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The next chapter, therefore, discusses the requirements of a suitably sized sample to externally

validate a clinical prediction model with a continuous outcome. Sample size guidance is developed

to ensure sufficiently precise estimation of those key performance statistics when predicting

a continuous outcome, including proposed new, closed-form calculation methods to facilitate

easy application. These sample size recommendations are applicable, regardless of clinical area,

whenever researchers might need to identify the minimal sample size to ensure a desired precision

in predictive performance estimates.
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CHAPTER 4

Minimum sample size for external validation of a clinical

prediction model with a continuous outcome
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4 Chapter 4: Minimum sample size for external validation of a

clinical prediction model with a continuous outcome

4.1 Introduction and objectives

Research involving clinical prediction models uses data from a sample of the population to develop

or validate methods to provide individualised outcome predictions to help inform clinical decision

making and patient counselling [186]. Recent methodological work has focussed on estimating

the necessary size of the sample needed to develop a prediction model, to achieve a minimum

level of precision in the estimation of model parameters and performance metrics [78]. Chapter

3 demonstrated an example where pre-existing datasets contained information on sufficient

participants to meet minimum recommendations for the development of models to predict the

outcome of pain intensity score on both a continuous [75] and dichotomised [76] scale.

Once a model has been developed, evaluation of its predictive performance in new data is often

crucial, in a process known as external validation [57, 58]. A model’s predictive performance upon

external validation can indicate how well the model performs in new individuals from the target

population for use of the model in practice. The sample size and techniques used to develop

the model are of little importance if it is shown that the model performs well in new data [186].

Despite being widely encouraged, with clear evidence of its importance, external validation of

published prediction models is rare in practice [58, 5]. Even where external validation is performed,

the sample size is often too small to provide reliable conclusions and key measures of predictive

performance, such as calibration, are often neglected [187].

The sample size required to suitably evaluate a prediction model during external validation is not
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yet known. The previous chapter demonstrated an external validation of the developed models,

conducted as a secondary analysis of a pre-existing dataset recruited for a different purpose. At

the time of the Chapter 3 analysis, no methods existed to determine a priori whether the number

of participants in this dataset was sufficient to ensure precise estimation of performance measures,

though confidence intervals for these measures were notably wide in some cases.

Therefore, in this chapter, I discuss criteria that could be used to inform the minimum sample

size needed for external validation of a clinical prediction model, to gain precise estimates of key

performance measures. The focus is on evaluating predictions of continuous outcomes (such as

birthweight or pain score, as discussed in Chapters 2 and 3 respectively), for which the modelling

approach typically follows a linear regression framework. Such models provide an equation to

predict the continuous outcome value, either on its original scale or following some transformation,

conditional on the values of one or more predictor variables. The outcome may relate to something

current, such as current levels of fat mass (an example that will be discussed further throughout

this chapter) or in the future, such as pain scores six months after a consultation for NLBP (as in

the previous chapter).

In the case of a continuous outcome prediction, the sample size needs to be large enough to

precisely estimate calibration and overall model fit. Three key measures of predictive performance

are targeted: calibration slope (agreement between predicted and observed values across the range

of predicted values), calibration-in-the-large (agreement between predicted and observed outcome

values on average), and R2 (the proportion of variance explained). These performance measures

are first introduced, and then closed-form solutions are derived for the sample size required to

estimate each one of them precisely. As all of these solutions depend on an estimate of the variance

137



of observed outcome values, a fourth criterion is also suggested, aiming to ensure this variance is

estimated precisely.

Thus, the final sample size calculation proposed in this chapter comprises checking four criteria,

and concluding the minimum required for the external validation (to meet all four criteria) as

the largest sample size calculated across the four approaches. Demonstrations of the calculation

approach are shown in an applied example using a model to predict fat-mass in children and

adolescents. This sample size proposal, along with the applied example in predicting fat-free mass,

have been published in Statistics in Medicine [92].
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4.2 Key measures of predictive performance

Suppose that a clinical prediction model for a continuous outcome (Yi) has been developed,

presented as a linear regression equation:

YPREDi = α+ β1X1i + β2X2i + β3X3i + . . . . (1)

A model of this form allows predicted values to be generated for new individuals, outside of

the development dataset. That is, the predicted (expected) outcome value YPREDi can be

obtained for a new individual, i, by calculating the right-hand side of the equation, which

utilises an intercept term (α), individual i’s values for the included predictors (X1i, X2i, X3i,

etc.), and the corresponding predictor effect estimates (β1, β2, β3, ...). For example, if X1i were

a continuous predictor (such as age or blood pressure) with a simple linear association with

the outcome, then β1 represents the change in YPREDi for each 1-unit (year, mmHg) increase

in the value of X1i, after adjusted for other predictors in the model. Equally, if X2i were a

binary predictor (such as treatment group), denoted by 0 for category A (placebo) and 1 for

category B (drug), then β2 represents the expected change in YPREDi for those in category B

compared to category A (drug compared to placebo), having adjusted for other included predictors.

This chapter focuses on a situation where a prediction model such as that given in Equation 1 is

already fully defined, based on a previous model development study, and an external validation

is required to evaluate the accuracy of the model’s predicted values (YPREDi) in new individuals.

External validation studies must obtain a dataset of new individuals from the population of

interest, with each individual providing values for all necessary predictors (X1i, X2i, X3i, . . . )

included in the model. The new data must also contain each individual’s observed outcome value

(Yi). The former allows YPREDi to be calculated for each individual by applying the prediction

139



model equation, and the latter means that the model’s predictive performance can be quantified,

by comparing the predicted YPREDi to the observed outcome values, Yi.

There are three key statistics to quantify the predictive performance of a model with a continuous

outcome upon external validation, which focus on the model’s calibration and overall fit.

R-squared R2 is the proportion of variation in the observed Yi values that is explained by the

prediction model (the fitted linear regression model), and represents a measure of overall model fit.

Let R2
val denote the R2 of an existing prediction model when examined in an external validation

dataset. R2
val gives a measure of the proportion of variation in Yi values in the external validation

dataset that is explained by the model’s predictions (YPREDi).

Let var(Yi) denote the variance of Yi values, and var(Yi − YPREDi) denote the variance of the

Yi − YPREDi values (i.e., the variance of ei, the errors in the predictions). The proportion of

outcome variation explained by the predicted values from the prediction model, R2
val, is calculated

by:

R2
val = 1− var(Yi − YPREDi)

var(Yi)
, (2)

where values of R2
val closer to 1 indicate a better fit of the YPREDi from the prediction model.

Calibration slope and calibration-in-the-large Calibration measures the agreement between

predicted (YPREDi) and observed (Yi) outcome values [80]. It is best shown graphically on a

calibration plot, with YPREDi on the horizontal x-axis plotted against Yi on the vertical y-axis, as

shown in the previous chapters. For a continuous outcome, every individual provides a single data

140



point, comparing their personal prediction value to their observed outcome. A loess-smoothed

calibration curve can be fitted through all of these individual points and, when presented on the

calibration plot, gives a summary of the calibration performance on average across the validation

population [30, 79, 188]. Ideally, the predicted outcome values should not be systematically under-

or over-estimated across the range of predicted values. Points should be scattered randomly

around the 45 degree line of ideal calibration (corresponding to a calibration slope of 1, and a

CITL of 0), with little variation around the line and with close agreement between predicted and

observed values across the entire range of predicted values.

To formally quantify calibration performance in an external validation dataset, a calibration model

can be fitted of the form,

Yi = αcal + λcal(YPREDi) + ecali

ecali ∼ N (0, σ2
cal),

(3)

where cal is used to denote that parameters are from the calibration model, rather than the

prediction model itself.

The calibration model is fitted using the standard estimation methods for a linear regression,

for example using restricted maximum likelihood estimation. The parameter λcal represents the

calibration slope, which measures agreement between predicted and observed outcomes across

the whole range of predicted values.[30, 60] As mentioned, the ideal λcal value is 1. A λcal < 1

indicates that some predictions are too extreme (predictions above the mean are too high, and

predictions below the mean are too low) and a slope > 1 indicates that the range of predictions

is too narrow. A calibration slope < 1 is often observed in external validation studies, as clinical
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prediction models tend to be developed in small datasets without adjustment for overfitting to

that development data. This leads to extreme predictions, or miscalibration, in new individuals

[55, 50, 189, 190]. The term σ2
cal refers to the residual variance in the calibration model.

Note that the calibration slope can also be expressed as, [191]

λcal =

√
R2

calvar(Yi)

var(YPREDi)
, (4)

where R2
cal is the proportion of variance of Yi values explained by the calibration model 3.

Systematic under- or over-prediction is still possible even when the calibration slope is equal to 1.

Thus the calibration slope should always be considered alongside calibration-in-the-large (CITL),

which measures the agreement between mean predicted (YPRED) and mean observed (Ȳ ) outcome

values:

CITLval = Ȳ − YPRED. (5)

Estimating CITLval from applying equation 5 in an external validation dataset is equivalent to

estimating αcal by fitting model 3 with the addition of a constraint that λcal should be equal to 1

(see Section 4.3.2).
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4.3 Sample size to target precise estimates of predictive performance

This section introduces the four proposed criteria, mentioned above, that could be used by

researchers to determine the minimum sample size required for an external validation of an

existing prediction model. The first three criteria aim to ensure the sample size is large enough to

estimate R2
val, CITLval, andλcal with a small margin of error. Closed-form solutions are presented

for this purpose, suitable for calculation without requiring access to specialist software. As these

expressions depend on an estimate of the residual variance of the prediction model in the validation

population, a fourth criterion also aims to ensure precise estimation of this variance.

4.3.1 Criterion (i): Precise estimate of R2
val

The first criterion targets a precise estimate for R2
val, such that the confidence interval for R2

val is

sufficiently narrow. There are many suggestions for deriving confidence intervals for R2 [192], and

the following utilises the approach suggested by Wishart [193], which approximates the standard

error (SE) of R̂2
val as:

SER̂2
val

=

√
(
(4R2

val(1−R2
val)

2
)

n
. (6)

This approximation works well when the sample size (n) is reasonably large (> 50) [192], which is

likely to be the case when externally validating a clinical prediction model, given the requirements

of the other criteria (for example, see criterion (iv)). Rearranging equation (6) gives a closed-form

calculation for the required minimum sample size of:

n =
4R2

val(1−R2
val)

2

SE2
R̂2

val

. (7)

Thus, equation 7 can be used to calculate the sample size (n) required to meet criterion (i), by
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specifying a desired precision through the value for SE2
R̂2

val

and by setting R2
val at the anticipated

value for R2 in the external validation population.

For example, consider an existing prediction model with an adjusted R2 value of 0.5 in the model

development data, with this adjusted R2 giving an unbiased estimate of expected performance

in new data from the same population (as opposed to the apparent R2, which would be overly

optimistic). Then, if we assume the validation sample is from a similar target population to the

development sample, such that the proportion of variance explained is likely to be similar, a simple

starting point would be to anticipate R2
val upon external validation is the same as the adjusted R̂2

reported in the model development study. To target a 95% confidence interval for R2
val that has a

narrow width of about 0.1, a SER̂2
val

of 0.0255 is needed. This stems from the assumption that the

95% confidence interval for R2
val can be derived as approximately R̂2

val ± (1.96 ∗ SER̂2
val

). Applying

equation 7 gives

n =
4R2

val(1−R2
val)

2

SE2
R̂2

val

=
4 ∗ 0.5 ∗ (1− 0.5)2

0.02552
= 768.9,

and so 769 participants would be the minimum required to meet criterion (i).

To achieve the same margin of error, with the same confidence interval width, 905 participants

would be required to externally validate the model, assuming a lower R2
val of 0.3, and 197

participants would be required when assuming a better overall model fit in the validation data with

a R2
val of 0.8. These values are close to examples gained using more exact (but not closed-form)

approaches to confidence interval derivation for R2, such as intervals based on a scaled, non-central

F approximation [194] The ss.aipe.R2 function within Kelley’s MBESS package for R software

identifies the sample size required to ensure this approximate confidence interval for R2
val is
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sufficiently narrow,[195, 196] and so is an alternative to using equation 7, though requires sufficient

knowledge of R to implement.

Figure 4.1 shows how the required sample size changes for R2
val values between 0.1 and 0.9 based

on equation 7 and assuming SE2
R̂2

val

is 0.0255, to target a confidence interval width of 0.1 as shown

above. The required sample size to achieve the desired precision is lower when allowing for wider

target confidence intervals (less precise), and higher when aiming for narrower target confidence

intervals (more precise), as can be seen in Figure 4.1. Targetting a SE2
R̂2

val

≤ 0.0225 is likely a

sensible compromise, as it aims for a precise estimate (with a margin of error of 0.05 or less,

compared to the true value) and still gives a required sample size that will be realistic to obtain in

practice.

It is worth noting that the observed R2
val upon external validation may be lower or higher than

the adjusted R̂2 reported for model development. Therefore, although the adjusted R̂2 from the

development study is a useful starting point, it is beneficial to also calculate the sample size that

would be required for external validation when assuming a range of different values for the true

R2
val. For example, researchers might apply equation 7 assuming R2

val values ±0.1 of the adjusted

R̂2 reported from the development study, and note the largest sample size across this range as

being their minimum.
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Figure 4.1: Sample size (number of participants, n) needed in an external validation dataset to

target a confidence interval for R2
val of a particular width (either 0.05, 0.1, or 0.2) for different

assumed R2
val values between 0.1 and 0.9. Sample size calculated using equation 7.
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4.3.2 Criterion (ii): Precise estimate of CITL

In order to target an accurate assessment of the level of systematic under- or over-prediction in the

external validation set, this second criterion targets a precise estimate of CITLval. Here CITLval

is estimated using Ȳ − ȲPRED (from equation 5), which is equivalent to estimating the intercept

term when fitting model 3 in the external validation dataset, with the predicted values used as an

offset term:

Yi = CITLval + 1(YPREDi) + eCITLi

eCITLi ∼ N (0, σ2
CITL)

(8)

Therefore the standard error (SE) of this ˆCITL is estimated from the residual errors when the

prediction model is applied in the validation population, as follows:

SE2
ˆCITL

= var(Ȳ − YPRED) = var


n∑

i=1
(Yi − YPREDi)

n

 =
σ2
CITL

n
=

var(Yi)(1−R2
CITL)

n
(9)

Rearranging equation 9 gives an expression in terms of n, for the required sample size subject to a

desired precision in CITL, SE ˆCITL:

n =
var(Yi)(1−R2

CITL)

SE2
ˆCITL

(10)
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Hence, the sample size required to meet criterion (ii) can be derived using equation 10, for which

the researcher must pre-specify R2
CITL (the anticipated proportion of variance explained by the

predictions in the external validation population), along with var(Yi) (the anticipated variance of

Yi in the target population), and the desired SE ˆCITL to achieve their target precision in CITL.

A sensible starting point is to assume CITL is zero. In this case, R2
CITL is simply equal to R2

val

(the anticipated proportion of variance explained by the predictions upon validation), and so

n =
var(Yi)(1−R2

val)

SE2
ˆCITL

(11)

with R2
val assumed to be the same as the adjusted R̂2 reported from the development study.

If CITL is non-zero then R2
CITL will not equal R2

val. Therefore, it is also sensible to consider a

realistic range of values for R2
CITL when applying equation 10, such as ±0.1 of the adjusted R̂2

reported from the development study, and to note the largest sample size across this range, as was

the case for criterion (i).

A value to define a suitably precise SE ˆCITL is clearly context specific, as it depends on the scale

of the continuous outcome values. For example, for a model predicting systolic blood pressure

(SBP), a standard error of about 2.5mmHg for CITL may indicate an appropriately high precision.

If considering the pain intensity score example from Chapter 3, a SE ˆCITL of 2.5 units on the 0-10

pain scale would be extremely imprecise, thus a much smaller target standard error would be

required.

Consider further the external validation of a prediction model for SBP. Suppose this model had an
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adjusted R2 of 0.5 in the development study, and the variance of the observed Yi values in the target

population for the validation study is anticipated to be around 400mmHg. Targetting a SE ˆCITL

of 2.5mmHg gives a 95% confidence interval for CITLval with a narrow width of about 10mmHg,

when deriving an approximate 95% confidence interval for CITLval as ˆCITL ± (1.96 ∗ SER̂2
val

).

Assuming R2
CITL = R2

val = 0.5, then applying equation 11 gives,

n =
var(Yi)(1−R2

val)

SE2
ˆCITL

=
400(1− 0.5)

2.552
= 30.76

and so a minimum of only 31 participants would be required for the external validation to meet

criterion (ii).

More cautiously assuming that R2
CITL = 0.4, the required sample size would be

n =
var(Yi)(1−R2

val)

SE2
ˆCITL

=
400(1− 0.4)

2.552
= 36.91

and so 37 participants would instead be required.

Clearly, these minimum values to precisely estimate the CITL on external validation are very

low. It is likely that the sample size to precisely estimate CITL is smaller than that required

to precisely estimate the measures outlined in criteria (i), (iii) and (iv) in most cases, and so

criterion (ii) is unlikely to drive the overall sample size requirement for the external validation study.
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4.3.3 Criterion (iii): Precise estimate of calibration slope

The third suggested criterion also aims for accurate estimation of calibration performance, now by

targetting a precise estimate of λcal, the calibration slope obtained from fitting a calibration model

3 in the external validation dataset. As λ̂cal is essentially the slope from a simple linear regression

model, the standard error of λ̂cal can be estimated by, [197]

SE2
λ̂cal

=
σ2
cal

n∑
i=1

(YPREDi − ȲPRED)2

where σ2
cal is the residual variance from model 3.

Recognising that σ2
cal = var(Yi)(1−R2

cal), and given
n∑

i=1
(YPREDi− ȲPRED)

2 = (n−1)var(YPREDi),

we can rewrite this as

SE2
λ̂cal

=
σ2
cal

n∑
i=1

(YPREDi − ȲPRED)2

=
var(Yi)(1−R2

cal)

(n− 1)var(YPREDi)

=
var(Yi)

(n− 1)var(YPREDi)
−

var(Yi)R
2
cal

(n− 1)var(YPREDi)

(12)

Further, by utilising equation 4, we can write SE2
λ̂cal

in terms of λ2
cal and R2

cal values [191], as

follows:
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SE2
λ̂cal

=
var(Yi)

(n− 1)var(YPREDi)
−

var(Yi)R
2
cal

(n− 1)var(YPREDi)

=
1

(n− 1)R2
cal

√ R2
calvar(Yi)

var(YPREDi)

2

− 1

(n− 1)

√ R2
calvar(Yi)

var(YPREDi)

2

=
λ2
cal

(n− 1)R2
cal

−
λ2
cal

(n− 1)

=
λ2
cal

(n− 1)R2
cal

−
λ2
calR

2
cal

(n− 1)R2
cal

=
λ2
cal(1−R2

cal)

(n− 1)R2
cal

(13)

As with previous criteria, rearranging this gives the sample size, n, that corresponds with a given

SE2
λ̂cal

:

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1 (14)

Equation 14 therefore allows calculation of the required sample size for a desired SEλ̂cal
, conditional

on specifying the anticipated calibration slope across the range of predicted values, λcal, and

the anticipated proportion of variance in observed Yi values explained by the calibration model, R2
cal.

When choosing a suitable level of precision, the value SEλ̂cal
= 0.051 is proposed, to target

a 95% confidence interval for λcal with a narrow width (≤ 0.2). Using this value, if the

calibration slope was 1 for example, the resulting confidence interval would be 0.9 to 1.1, assuming

confidence intervals derived by λ̂cal ± 1.96SEλ̂cal
. It is worth noting that λcal is known to follow

a student’s t-distribution [197], thus in small samples, critical values from this distribution would
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replace 1.96 in the confidence interval calculation. Given sample sizes will not be small in practice,

however, the normal approximation to the t-distribution is suitable (by the Central Limit Theorem).

As an appropriate value for λcal, a simple starting point is to assume good calibration, such that

λcal = 1 and αcal = 0 in model 3. In this case, R2
cal can be approximated by R2

val, introduced

in criteria (i). Thus R2
cal can be assumed to be the same as the adjusted R2 value in the model

development study.

For example, in an external validation of a prediction model that had an estimated adjusted R2

of 0.5 in the development dataset, a simple and logical starting point would be to anticipate the

same value for R2
val. Then, assuming the model’s predictions will be well calibrated in the external

validation dataset, such that fitting model 3 would give α̂cal of zero and an λ̂cal of one, using

equation 14 gives,

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1 =
1(1− 0.5)

0.051 ∗ 0.051 ∗ 0.5
+ 1 = 385.47

and thus 386 participants are required to target a confidence interval width of 0.1 for the calibration

slope, under the assumption of good calibration.

In practice, the value of λ̂cal is unlikely to exactly equal one, thus the sample size should also

be sufficient to precisely estimate some miscalibration. Often during an external validation

the calibration slope is less than one, with extreme predictions due to overfitting during model

development. In such situations R2
cal can still be assumed to be equal to the adjusted R2 presented

for model development, as this adjusted value will have allowed for optimism due to overfitting.

When fixing R2
cal and SE2

λ̂cal
values, applying equation 14 for lower assumed λ̂cal (values below
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one) gives lower required sample sizes than when assuming the prediction model is well calibrated

(see Figure 4.2). Thus, assuming λ̂cal is equal to one gives a more conservative estimate of the

minimum sample size required.

Figure 4.2: Sample size (number of participants, n) needed in an external validation dataset to

target a confidence interval for λ̂cal of width of 0.2, for different assumed λ̂cal values between 0.5

and 2, and for R2
cal values between 0.1 and 0.9. Sample size calculated using equation 14.

Further combinations of λ̂cal and R2
cal values could be tested if desired, such as those shown in

Figure 4.2. Choosing appropriate combinations is likely to be more complex than with previous

criteria, however, as the values of λ̂cal and R2
cal are not independent. Equation 4 shows that

λ̂cal depends on R2
cal (along with var(Yi) and var(YPREDi)), thus testing values while changing

assumed λ̂cal has implications for what the assumed value of R2
cal should be. Allowing for this
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interaction is likely too intricate for this sample size calculation, and is not necessary in cases

where overfitting is expected to result in a calibration slope less than one.

It is possible for a prediction model to be underfit to the development data, resulting in a range

of predictions that is too narrow on external validation and a λ̂cal > 1. Such situations result

in considerably larger required sample sizes for precise estimation of λ̂cal, especially for lower

anticipated values for R2
cal. In practice, such situations are very rare, with overfitting being more

common, thus it is unlikely to be necessary to consider this eventuality as a part of the sample size

calculation. In general, applying equation 14 assuming good calibration (λ̂cal = 1) will be sufficient.
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4.3.4 Criterion (iv): Precise estimates of the residual variance

This final criterion targets precise estimates of the residual variances of the calibration models,

σ̂2
CITL and σ̂2

cal. Although these residual variances are not direct measures of predictive performance

themselves, precision is essential as their estimated values are used toward parameter estimates

and, crucially, toward values of SE ˆCITLval
and SEλ̂cal

.

Given the format of the calibration model in equation 8, to ensure precision in σ̂2
CITL, we consider

the residual variance in a linear regression model with only an intercept term (see model 8). In

such situations, Harrell suggests calculating the sample size to ensure the lower and upper bounds

of the 95% confidence interval for the residual variance has a small multiplicative margin of error

(MMOE) around the true value [198], using

MMOE =

√√√√max

(
χ2
1−α

2
,n−1

n− 1
,
n− 1

χ2
α
2
,n−1

)
(15)

where χ2
1−α

2
,n−1 and χ2

α
2
,n−1 are the critical values of the χ2 distribution with n-1 degrees of

freedom for which there are probabilities of 1 − α
2 and α

2 of being less than the critical value,

respectively. The largest MMOE typically results from the second term in the bracket of equation

15.

A margin of error of within 10% of the true value (1.0 ≤ MMOE ≤ 1.1) is sufficient in practice.

Using equation 15 to target this margin reveals that a sample size of at least 234 participants is

needed to ensure a MMOE ≤ 1.1 for σ̂2
CITL.

For precise estimation of σ̂2
cal, the sample size for precise estimation of σ̂2

CITL simply needs to be

adjusted for the additional slope parameter being estimated in model 3. As outlined by Riley et

155



al.,[75] this is achieved as just 234 + 1, and thus 235 participants are required to ensure a MMOE

≤ 1.1 for σ̂2
cal. Thus, the minimum sample size required to meet criterion (iv) is driven by the

required precision in σ̂2
cal, and at least 235 participants are needed for any external validation of

a prediction model for a continuous outcome, regardless of context. This minimum is prior to the

consideration of criteria (i), (ii) or (iii).

4.3.5 Summary of the proposed criteria

The above sample size criteria aim to ensure that the external validation dataset is sufficiently

sized to precisely estimate key performance measures (R2
val, CITL, calibration slope) and residual

variances. The approach requires a separate sample size assessment for each criterion, with the

largest required sample size across criteria providing the minimum needed to meet all requirements

simultaneously. A step-by-step summary of the proposed sample size calculation follows in Figure

4.3.
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Figure 4.3: Summary of the steps involved in the proposed sample size calculation, for the external

validation of a clinical prediction model with a continuous outcome

STEP 1: Calculate the sample size needed to precisely estimate R2
val (criterion (i))

Apply equation 7,

n =
4R2

val(1−R2
val)

2

SE2
R̂2

val

after specifying suitable values for SER̂2
val

and R2
val. Using SER̂2

val
≤ 0.0255 (to target a 0.1 confidence interval width)

is recommended, and initially choosing R2
val to equal the adjusted R̂2 reported for the model development study. Other

values for R2
val might also be considered, including values ±0.1 the adjusted R̂2 reported from the development study.

STEP 2: Calculate the sample size needed to precisely estimate calibration-in-the-large (criterion (ii))

Apply equation 10,

n =
var(Yi)(1−R2

CITL)

SE2
ˆCITL

after specifying suitable values for R2
CITL (akin to those used for R2

val in step 1), SE ˆCITL and var(Yi). The latter

represents the variance of outcome values in the population of interest, and should be based on other existing knowledge

(e.g. from previous studies). The value of SE ˆCITL should aim to ensure that (Ȳ−ȲPRED)±(1.96∗SE ˆCITL) is sufficiently

narrow, and so needs to be chosen in context of what constitutes a precise estimate of the mean prediction error in the

clinical setting of interest.

STEP 3: Calculate the sample size needed to precisely estimate calibration slope (criterion (iii))

Apply equation 14,

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1

after specifying suitable values for λcal, R
2
cal and SEλ̂cal

. SEλ̂cal
≤ 0.051 is recommended, to target a confidence interval

width ≤ 0.2, as is choosing R2
cal to be the same as that chosen for R2

val (i.e., the adjusted R2 reported from the model

development study; see step 1). Assuming λcal = 1 (good calibration) is also recommended.

STEP 4: Calculate the sample size for precisely estimating residual variances (criterion (iv))

To target residual variance estimates in the calibration models that have a margin of error of ≤ 10%, at least 235

participants are required, regardless of clinical area, based on equation 15

STEP 5: Calculate the final sample size

Identify the minimum sample size required as the maximum value from steps 1 to 4, to ensure that each of criteria (i)

to (iv) are met.
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4.4 Applied example: sample size required to externally validate a model for

predicting fat-free mass in children

To demonstrate the proposed sample size calculation outlined in Figure 4.3, the suggested criteria

are now applied in an illustrative example for a model to predict fat-free mass on the continuous

kilogram (kg) scale [17]. In 2019, Hudda et al. developed a prediction model for the natural

logarithm of fat-free mass in children and adolescents, aged 4 to 15 years, from five predictors

(including ten predictor parameters): the child’s height, weight, age, sex and ethnicity. The

apparent calibration of the model in the development dataset was reported in the original

publication and is shown in Figure 4.4a. In the development dataset, the estimated adjusted

R2 was reported to be very good, at 0.948. The published model equation is as follows:

ln fat-free mass =2.8055 + 0.3073(height2)− 10.0155(weight−1) + 0.004571(weight)

+ 0.01408(if Black ethnicity)− 0.06509(if South Asian ethnicity)

− 0.02624(if other Asian ethnicty)− 0.01745(if other ethnicty)

− 0.9180(ln(age)) + 0.6488(age0.5) + 0.04723(if male)

where predictor variables of Black, South Asian, other Asian, or other ethnic origins are binary,

with value of 1 if individual has the particular origin and 0 otherwise. The child’s height, weight and

age are all continuous predictors, with height measured in metres, weight in kilograms, age in years.

Hudda presented an initial external validation, undertaken in a sample of 176 children aged 11-12

years from the UK Avon Longitudinal Study of Parents and Children (ALSPAC) study [199, 200],

where the model had an estimated R2
val of 0.90 (Figure 4.4b). However, as acknowledged by the
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study authors, further external validation was also warranted in a broader population, for example

with a wider age range. A sample size calculation for a new external validation of this prediction

model can be undertaken using the above proposed methods, assuming that the performance of

the model in the validation population would be similar to that seen in the development and

original external validation populations.

159



F
ig
u
re

4.
4:

C
al
ib
ra
ti
on

p
er
fo
rm

an
ce
:
p
an

el
A

–
in

th
e
d
ev
el
op

m
en
t
d
at
as
et
;
an

d
p
an

el
B
–
on

ex
te
rn
al

va
li
d
at
io
n
o
f
th
e
p
re
d
ic
ti
o
n
m
o
d
el

fo
r
ln
(f
at
-f
re
e
m
as
s)

in
ch
il
d
re
n
,
as

p
ro
p
os
ed

b
y
H
u
d
d
a
et

al
.
T
h
e
45

d
eg
re
e
li
n
e
sh
ow

s
p
er
fe
ct

ca
li
b
ra
ti
on

on
b
o
th

p
lo
ts
.

(a
)
D
ev
el
op

m
en
t
d
at
as
et

(b
)
V
a
li
d
a
ti
o
n
d
at
a
se
t

160



4.4.1 STEP 1: Calculate the sample size needed to precisely estimate R2
val

(criterion (i))

As shown in Figure 4.3, the first stage of the calculation requires the application of equation 7.

Based on assuming an R̂2
val = 0.90, as in the initial published external validation of the model, and

using a SER̂2
val

of 0.0255 to target a confidence interval width of 0.1:

n =
4R2

val(1−R2
val)

2

SE2
R̂2

val

=
4 ∗ 0.9 ∗ (1− 0.9)2

0.02552

= 55.4

Thus, a sample size of only 56 children is required to target the desired precision around the

expected R̂2
val.

As it is sensible to also consider the possibility that the model could perform worse upon further

external validation, it would be beneficial to consider the sample size needed for similarly precise

estimation of a lower R̂2
val value. If we were to consider a 0.1 reduction in R̂2

val to 0.80, then the

required sample size to meet criteria (i) increases to 197 children, thus this value could be taken

as a more conservative estimate of the required number of children needed in a new external

validation sample.

The sample size values above were calculated through application of equation 7, but could equally

have been obtained from a visual inspection of the curve for a target confidence interval width of

0.1, shown in Figure 4.1.
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4.4.2 STEP 2: Calculate the sample size needed to precisely estimate

calibration-in-the-large (criterion (ii))

The second step in the calculation requires the application of equation 10. Thus, this step needs

specification of a value for ˆvar(Yi), the anticipated variance of outcome values in the target

population for external validation. In their paper, Hudda did not report the variance of ln(fat-free

mass) in their population, thus to apply equation 10, we must derive an estimate from the

published information.

Given their outcome of interest on its pre-transformed scale was skewed, Hudda summarise the

distribution of fat-free mass in their development dataset using the median, lower quartile (LQ)

and upper quartile (UQ) values. They report a LQ of 20.8kg and a UQ of 30.6kg, for fat-free mass

on the kg scale. By transforming this to the ln(kg) scale, and assuming that, following the natural

log transformation, ln(fat-free mass) values are approximately normally distributed, an estimate of

the standard deviation of the ln(fat-free mass) in the development population can be derived using

[201]:

√
ˆvar(Yi) ≈

lnUQ− lnLQ

1.35
=

ln 30.6− ln 20.8

1.35
= 0.29

Therefore, based on the published information ˆvar(Yi) ≈ 0.292 = 0.082. Interestingly, when

contacting the study authors directly for this information, they calculated the observed value

to be similar, at ˆvar(Yi) = 0.089. The value given by the study authors will be used in the

calculation going forward, though the concept would equally apply with the estimation from

published information, if study authors we not contactable.
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To apply the equation, the expected value for R2
CITL must also be specified. As suggested

above, this is assumed to be the same as the expected R̂2
val in the previous step, such that

R̂2
CITL = R̂2

val = 0.90, as in Hudda’s initial external validation of the model.

The desired precision in calibration-in-the-large needs to be placed in context of the mean outcome

value in the population if interest, which, in this case, is the mean fat-free mass in a population

of children and adolescents. Hudda reported a median baseline fat-free mass of 24.8kg in their

population, thus assuming that the median and mean values on the natural log scale are similar,

we have:

Ȳ ≈ ln 24.8 = 3.21

Considering the original untransformed scale, an accuracy of approximately ±1kg around Ȳ was

considered to be reasonably precise. A 95% confidence interval from 23.8 to 25.8 on the kg scale

would correspond to an interval of about 3.17 to 3.25 around Ȳ on the ln(kg) scale, implying a

target SE ˆCITL of about 0.02.

Incorporating the above information, equation 10 can be applied to obtain a required sample size

of at least:
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n =
var(Yi)(1−R2

CITL)

SE2
ˆCITL

=
0.089 ∗ (1− 0.9)

0.022

= 22.3

for a sufficiently precise estimation of CITL on external validation. Thus a minimum of 23

participants would be required to meet criterion (ii).

As in the previous step, it is sensible to also consider a situation with worse model performance on

further validation. To be conservative, instead assume a decrease in R̂2
CITL by 0.1 compared to the

initial validation data, to 0.80. Then, the required sample size to meet criteria (ii) would increase

to 45 children.

n =
var(Yi)(1−R2

CITL)

SE2
ˆCITL

=
0.089 ∗ (1− 0.8)

0.022

= 44.5
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4.4.3 STEP 3: Calculate the sample size needed to precisely estimate calibration

slope (criterion (iii))

This third step requires the application of equation 14, after choosing appropriate values for

SEλ̂cal
, R̂2

cal and λ̂2
cal. As mentioned above, assuming an SEλ̂cal

of 0.051 targets a confidence

interval width for the calibration slope of at most 0.2. Further, we can assume R̂2
cal = R̂2

val and

take the value of 0.90 as reported by the initial validation study of Hudda. With the further

assumption of good calibration, such that λ̂2
cal is one, equation 14 can be applied to give,

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1

=
1 ∗ (1− 0.9)

0.0512 ∗ 0.9

= 43.72

and so a minimum of 44 participants would be required to gain a sufficiently precise estimate of

the calibration slope in the new external validation population.
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4.4.4 STEP 4: Calculate the sample size for precisely estimating residual variances

(criterion (iv))

To fulfil the final criterion, to ensure a 10% margin of error in residual variance estimates from the

calibration models, at least 235 participants are required regardless of clinical context, as discussed

in Section 4.3.4 above. Thus, a minimum of 235 participants are needed to ensure precision in the

residual variances of the calibration models for Hudda’s fat-free mass example.

4.4.5 STEP 5: Calculate the final sample size

Assuming Hudda’s fat-free mass model will be validated in a population where it performs to

a similar level of accuracy as was seen in the initial external validation data, steps one to four

have provided four sample size requirements to ensure that each of criterion (i) to (iv) are met.

These requirements are summarised in Table 4.1, below. Based on the largest of these values, the

minimum sample size required to meet all four criteria simultaneously is simply 235 participants.

This is driven by criterion (iv), to target sufficient precision around σ̂2
CITL and σ̂2

cal.
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4.5 Expected precision when sample size for external validation is fixed

The previous section discussed how to target precise estimates of predictive performance by

recruiting an appropriate number of participants to the external validation study. As is often the

case in model evaluation, the initial external validation of the Hudda fat-free mass model was

conducted in a previously collected dataset (from the ALSPAC study [199, 200]), recruited for a

different purpose. Where there are limited resources for prospective recruitment of the external

validation cohort, researchers might seek an existing dataset from the population of interest and

so they (along with other stakeholders such as funders and patient representatives) will need to

assess whether the sample is large enough for a reliable external validation.

Where the size of an existing dataset is fixed, the number of participants available could simply be

compared to the results of the above calculations. This would identify whether or not the available

data meet each of the above criteria, but would not give any indication of how precise estimates of

performance measures might be expected to be. To assess this expected precision, the calculations

in for criteria (i) to (iv) can be re-expressed to calculate the expected SE2
R̂2

val

, SE2
ˆCITL

, SE2
λ̂cal

,

and MMOE conditional on the known sample size. As before, assumed values of R2
val, var(Yi),

R2
CITL, R

2
cal, and λcal should be specified, which can be based on the model’s known performance

(preferably optimism-adjusted) on internal validation.

Steps one to four, below, demonstrate the application of the re-expressed equations to assess

the expected precision Hudda could expect in values of R2
val, CITL, the calibration slope, and

the residual errors of the calibration models, based on their available sample of 176 children for

external validation.
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4.5.1 STEP 1: Expected precision in R2
val

To assess how accurately one could estimate the overall model fit to their existing external validation

dataset, the expected value of SE2
R̂2

val

can be obtained by rearranging equation 7 from criterion

(i). To apply this adaptation of criterion (i), an expected value of R̂2
val must be specified. As

previously, a good starting point would be to assume model performance on external validation

will be consistent with that seen in the model development data. Prior to Hudda’s initial

external validation, their best estimate of the anticipated R̂2
val came from internal validation using

bootstrapping, which gave an adjusted R2 value of 0.948. Thus, assuming R̂2
val = 0.948,

n =
4 ∗ R̂2

val ∗ (1− R̂2
val)

2

SE2
R̂2

val

176 =
4 ∗ 0.948 ∗ (1− 0.948)2

SE2
R̂2

val

Rearranging gives,

SE2
R̂2

val

=
4 ∗ 0.948 ∗ (1− 0.948)2

176

= 0.000058

Therefore, if R̂2
val = 0.948 in the validation data, we would expect SER̂2

val
= 0.0076 and,

correspondingly, a 95% confidence interval with width of 0.0299 around the estimate of R̂2
val, with

an expected interval from 0.933 to 0.963. In this case, the anticipated estimate of R̂2
val would be

very precise, given a sample size of 176 for external validation.

If we were to assume worse overall model fit in the external validation data, as discussed previously,

we might instead expect a R̂2
val = 0.9 or 0.8,

169



R̂2
val = 0.9 R̂2

val = 0.8

SE2
R̂2

val

= 4∗0.9∗(1−0.9)2

176 = 4∗0.8∗(1−0.8)2

176

= 0.0002 = 0.0007

95% confidence interval width 0.0561 0.1057

Expected 95% confidence interval: 0.872 to 0.928 0.747 to 0.853

The observed R̂2
val in Hudda’s external validation was in fact 0.9 (as noted above), with a 95%

confidence interval width of around 0.056, from 0.872 to 0.928. Clearly, where an accurate estimate

of the expected R̂2
val is used, exact confidence intervals for the overall model fit could be derived a

priori.

Given the true value for R̂2
val will not be known at the time of sample size assessment, we focus

on the result that the expected 95% confidence interval width for R̂2
val would be between 0.0299

and 0.1057, depending on the R̂2
val value used. As discussed in the derivation of criterion (i), a

reasonable target confidence interval width would be 0.1 (corresponding to a SER̂2
val

of 0.0255),

thus the validation sample size of 176 would only be sufficient to provide a suitably precise estimate

of R̂2
val where R̂2

val > 0.8.
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4.5.2 STEP 2: Expected precision in calibration-in-the-large

Similarly, anticipated precision in the estimate of CITL can be assessed from equation 10, after some

rearrangement. First, assuming R̂2
CITL = R̂2

val = 0.948, from the estimate on internal validation,

and with an expected ˆvar(Yi) = 0.089 as was seen in the development data, equation 10 can be

rearranged to reveal,

n =
var(Yi)(1− R̂2

CITL)

SE2
ˆCITL

176 =
0.089 ∗ (1− 0.948)

SE2
ˆCITL

Rearranging gives,

SE2
ˆCITL

=
0.089 ∗ (1− 0.948)

176

= 0.000026

Meaning an expected SE ˆCITL = 0.005 and a 95% confidence interval around ˆCITLval with a

width of approximately 0.020 ln kg. This corresponds to an anticipated 95% confidence interval

width of 1.020kg, on the more clinically interpretable kilogram scale.

Assuming a lower value of R̂2
CITL = R̂2

val the external validation data, as in step one, gives

anticipated confidence interval widths as follows.

R̂2
CITL = 0.9 R̂2

CITL = 0.8

SE2
ˆCITL

= 0.089∗(1−0.9)
176 = 0.089∗(1−0.8)

176

= 0.00005 = 0.00010

95% confidence interval width, ln(kg) 0.028 0.039

95% confidence interval width, kg 1.028 1.040
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On external validation in the ALSPAC study data [199, 200], Hudda reported a CITL value of

-1.58kg (-2.29kg to -0.86kg), giving a 95% confidence interval width of 1.43kg. The observed

precision in the estimate of CITL was in fact lower than that suggested by the above calculation,

implying the above assumptions did not well match the external validation data. A key difference

may have been been in the distribution of the observed fat-free mass levels in the validation

population, perhaps due to population differences.

The children in the external validation population were older on average, weighed more, and followed

a different distribution of ethnic origins to the model development data. The reported median (LQ

to UQ) fat-free mass in the validation data did differ from that in the model development data,

with a higher median and a narrower interquartile range at 33.8kg (29.8kg to 37.4kg) compared to

24.8kg (20.8kg to 30.6kg).
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4.5.3 STEP 3: Expected precision in the calibration slope

Assuming the model would be well calibrated in the new dataset, such that λ2
cal = 1, and that

R̂2
cal = R̂2

CITL = R̂2
val = 0.948 allows the estimation of SEλ̂cal

from equation 14 from criterion

(iii). Rearranging equation criterion iii here would give a conservative estimate of the expected

SEλ̂cal
in the validation population, as mentioned above, given the assumption of good calibration

(λ2
cal = 1) would result in the a higher required sample size, corresponding to a higher expected

SEλ̂cal
for a fixed sample size, when compared to the more common situation of overfitting of the

model to the development data (with λ2
cal < 1).

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1

176 =
1 ∗ (1− 0.948)

0.9SE2
λ̂cal

+ 1

Rearranging gives,

SE2
λ̂cal

=
1 ∗ (1− 0.948)

0.948 ∗ 175

= 0.0003

This would suggest an expected SEλ̂cal
of 0.018, corresponding to a narrow 95% confidence

interval around the calibration slope of width 0.069 (from 0.965 to 1.035, given the assumption

that λ2
cal = 1 ).

Expanding this to accommodate lower values for R̂2
cal of 0.9 and 0.8, as above, suggests slightly

wider confidence intervals, but still acceptable levels of precision when compared to the maximum
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interval width of 0.2 suggested in Section 4.3.3.

R̂2
cal = 0.9 R̂2

cal = 0.8

SE2
λ̂cal

= 1∗(1−0.9)
0.9∗175 = 1∗(1−0.8)

0.8∗175

= 0.0006 = 0.0014

95% confidence interval width 0.0988 0.1482

Expected 95% confidence interval: 0.951 to 1.049 0.926 to 1.074

The observed calibration slope in Hudda’s external validation was 1.02, with a 95% confidence

interval from 0.97 to 1.07, with a width of 0.10. This closely matches the expected precision in the

estimate of λ̂cal when assuming an R̂2
cal of 0.9, matching the R̂2

val value that was observed in the

external validation data.

4.5.4 STEP 4: Expected precision in σ2
CITL and σ2

cal

The final criterion is needed to assess the expected precision around the residual variances of the

calibration model and for the calibration-in-the-large, which in turn affect the expected precision

around estimates of CITL and the calibration slope. The sample size available for external

validation was lower than the 235 recommended for precise estimation of σ2
CITL and σ2

cal, and

so the MMOE for these estimates is expected to be > 10%. Referring back to equation 15 allows

the exact calculation of the MMOE of the residual variances, to infer how much less precision we

would expect:

MMOE =

√√√√max

(
χ2
1−α

2
,n−1

n− 1
,
n− 1

χ2
α
2
,n−1

)

MMOE =

√√√√max

(
χ2
1−α

2
,175

175
,

175

χ2
α
2
,175

)
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where χ2
1−α

2
,175 and χ2

α
2
,175 are the critical values of a χ2 distribution with 175 degrees of freedom.

This equates to

MMOE =

√
max

(
214

175
,
175

140

)
=

√
1.25 = 1.12

Thus the error is expected to be 12%, only just over the 10% recommendation.

4.5.5 STEP 5: Summary of expected precision

A summary of the expected precision for each criteria, based on assessment in a dataset of 176

children, is given in Table 4.2. Given the relevant assumptions, the existing dataset appears to

have a reasonable sample size for precisely estimating model calibration measures on external

validation, though the MMOE for σ2
CITL and σ2

cal was higher than recommended, at 12%.

Estimated confidence interval widths for the CITL are narrower than the previously stated

acceptable level of ± 1kg, though it is worth noting that the observed confidence interval for

CITL in the external validation data was wider than expected. This suggests that some of the

assumptions made, most likely relating to the distribution of fat-free mass in the validation

population, did not hold. While the observed confidence interval was still sufficiently narrow, this

difference in expected and observed widths demonstrates the importance of gaining a realistic

estimates for the anticipated variance of the outcome variable, Yi, in the target population,

especially where the validation population differs from the model development population.
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Furthermore, while 176 participants would achieve the recommended precision in estimating R2
val

where the R2
val is large (as in the model development data), confidence interval width exceeded

the recommend 0.1 when R2
val was assumed to be 0.8. While this width was only just wider than

recommended, it is likely the 176 children would not have been sufficient to achieve the desired

precision in populations where the proportion of the outcome variance explained by the model is

lower.
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4.6 Discussion

4.6.1 Summary of key findings

This chapter discussed the development and possible applications of closed-form sample size

calculations, aiming to target precise estimates of predictive performance for studies externally

validating a prediction model with a continuous outcome. These calculations aim to ensure the

sample size is large enough to precisely estimate key measures of predictive performance (R2,

CITL, and calibration slope), as well as precise estimation of the residual variances in calibration

models. These requirements led to four criteria, with the largest sample size required across

all four criteria being the recommended minimum sample size needed in the external validation

dataset. This work builds on minimum sample size calculations for development of a prediction

model with a continuous outcome [75].

As with any sample size calculation, assumptions are required to implement the proposed

approach, without prior knowledge of what observed values will be. In particular, researchers

must specify the values of R̂2
val,

ˆvar(Yi), and ˆλcal expected in the external validation dataset.

A simple starting point for these values is to assume similar performance to what was seen in

the original model development study, thus using the same value as those reported for internal

validation (after optimism-adjustment). This is likely to give an accurate assessment of the sample

size needed if the target population for the external validation is similar to that used in the model

development study, with similar predictive performance, though. Where populations and expected

model performance differ, the researcher then might also consider required sample sizes based on

adjustments to these expected values. In particular, adjustments to these assumed values must be

made to allow for worse performance in the validation dataset, as is often the case in practice, and
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for key differences in expected outcome distributions.

Lower values of performance measures, implying worse calibration and overall model fit in the

external validation population, are important to consider where the model development dataset was

small (where the reported predictive performance statistics were estimated with large uncertainty);

the model development process did not include adjustment for overfitting (for example, using

penalisation and shrinkage techniques), resulting in reported performance statistics are likely to be

optimistic; and in situations where the intention is to validate the model in a different population

or setting from that used in the development study. Larger sample sizes may also be needed if

missing data are expected, or if the model’s predictive performance in key subgroups (such as

age groups, or in those of different ethnic origins) is of interest during assessments of algorithmic

fairness.

The proposed calculations can also be used to estimate the expected precision in performance

measures when aiming to externally validate the given model in an existing dataset of a

fixed sample size. This would allow the researcher (and other key stakeholders) to gauge

the expected precision of estimates conditional on the sample size available. Similarly, this

approach could be used to identify the precision expected in predictive performance estimates

within clinically relevant subgroups, if demographic details of the participants in the existing

dataset are known. Ideally the dataset should be large enough to ensure precise estimates, as then

more robust conclusions about predictive performance in the population of interest will be possible.
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4.6.2 Strengths and limitations

Although the proposed sample size calculation targets precise estimates of calibration statistics

(calibration slope, CITL), these values are summaries across the whole population, thus large

variability in calibration curves across all individuals may still arise. Larger sample sizes may be

needed to ensure that there is not excessive variability in this curve. Ideally calibration curves

should be precise across the whole range of predicted values, though at a minimum should be

precisely estimated across the range of values that is important for clinical decision making. For

example, in a model concerned with identifying babies who are most likely to be born at a low

birthweight, precise estimates of the calibration curve would be most important in the lower range.

A notable limitation of the approach currently proposed in this chapter is the difficulty in

specifying appropriate values for the standard errors on external validation, especially for the

model calibration statistics. The values of the standard error in the calibration slope, SEλcal
,

and CITL, SECITL, that are needed to ensure precision in the calibration curve itself is hard

to determine. This precision would be better assessed through visual assessment of simulated

calibration curves for a given sample size.

Though these methods have not been considered here, future extensions to this work should

involve consideration of precision in the calibration curve, in addition to precision in calibration

statistics [96].
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4.6.3 Conclusions and next steps

The sample size proposal presented in this chapter has been published in Statistics in Medicine

[92]. Important extensions of this work include assessment of the necessary sample size for

external validations of prediction models with non-continuous outcomes, building on the work

of others [76, 172]. Simulation-based extensions to binary [95] and time-to-event [93] outcome

settings were beyond the scope of this thesis, but have been investigated as a part of a wider

research team and published subsequent to the work described in this chapter. Closed-form sample

size calculations, as proposed here, are transparent and quick to implement, when compared

to simulation-based approaches, but are more difficult to derive for binary and time-to-event

outcomes. Approximate closed-form solutions for a binary outcome have been proposed [94],

though closed-form alternatives to the calculation for external validation of a time-to-event model

are not yet available. Future work might also consider an extension of the proposed criteria to

include precise estimation of calibration curves in the validation of models to predict any outcome

type, which was not considered in this chapter, nor in subsequent publications for binary or

time-to-event outcomes [79, 188].

Is it important to note that a large sample size alone does not overcome issues in quality and

applicability, and so meeting the proposed criteria in this chapter does not mean that the

external validation alone can be used to recommend model use [65, 202, 111]. To draw valid

conclusions about model performance, it is also important that model evaluations are high quality

and applicable to the target population and setting where the model might be implemented in

practice. Further, the criteria proposed in this chapter focus only on certain statistical measures

of predictive performance, and not on clinical utility or the expected impact of using a model to

inform healthcare decisions (for example, the initiation of treatment).
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Furthermore, just as large sample sizes are no guarantee of validity, assessment of model

performance in datasets that do not meet the criteria proposed here are not futile. Even when

available validation datasets are small, obtaining estimates of predictive performance can still

be highly useful. In particular, estimates could be combined in a future meta-analysis of model

performance estimates on external validation: a situation that will be the focus of the next chapter

of this thesis [65, 203].
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CHAPTER 5

External validation of prediction models for birthweight and Fetal

Growth Restriction (FGR) with complications: Individual

Participant Data (IPD) meta-analysis
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5 Chapter 5: External validation of prediction models for

birthweight and Fetal Growth Restriction (FGR) with

complications:

Individual Participant Data (IPD) meta-analysis

5.1 Introduction and objectives

Chapter 4 discussed the importance of the sample used to externally validate a clinical prediction

model with a continuous outcome, demonstrating how the number of participants included in a

validation directly influences the precision then seen in estimates of key performance statistics.

Many external validations are conducted in a relatively small dataset from a single setting,

which, while giving useful information on out-of-sample performance, may mean a high level

of uncertainty in that observed performance. For example, the external validation of the pain

intensity score model in Chapter 3 was conducted in a small sample from a single, previously

recruited randomised trial [91], and Hudda’s initial external validation of their fat-free mass model,

discussed in Chapter 4, took place in a pre-existing dataset of a modest, fixed size [17]. In both

of these cases, the available data gave confidence intervals for at least one of the performance

statistics that was wider than the recommended level, that was too wide to make clear conclusions

about the model’s predictive performance.

However, as mentioned in Chapter 4, estimates of predictive performance can still be highly useful

even when validation datasets are small, if information across multiple validations can then be

combined. Indeed, this was the next step for Hudda et al, who followed up their model development

and initial external validation with an assessment of their model’s performance across a variety
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of different populations, from 19 existing datasets worldwide [203]. The new external validation

datasets range in size from just 42 individuals (less than a fifth of the recommended minimum),

up to 1010 (over seven times higher than the minimum required to gain precise estimates of

performance measures).

Figure 5.1 demonstrates how the majority (12/19, 63%) of the available datasets contained sample

sizes smaller than the recommended minimum, though 95% (18/19) met at least one of the proposed

criteria. Clearly, when data were combined across populations, the information available was

well over the required 235 participants for external validation, though it is worth noting that the

criteria in Chapter 4 target only precise estimates of within study performance and do not include

allowance for variations in performance between studies. To account for this additional variance,

the methods used to meta-analyse performance measures and their associated standard errors

across studies must be considered when considering what constitutes a precise estimate [65, 63, 204].

External validations in data from a single pre-existing source often have limited ability to assess

the transportability of the model in question. Indeed, for the examples in Chapters 3 and 4, the

external validation data was generally of a very similar demographic composition to that of model

development. There are many potential causes for heterogeneity in model performance across

populations, thus promising results in an external validation in one population might not imply

the model works well elsewhere. Just as Hudda was able to assess model performance on external

validation across 19 different datasets, comprising children from very different populations, this

chapter will employ appropriate meta-analysis methods to examine the performance of clinical

prediction models across different settings.
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Within this chapter, models for predicting birthweight or FGR risk (identified in Chapter 2) will

be externally validated using data from multiple cohorts, to demonstrate how confidence in the

calculated performance estimates varies with sample size, and to discuss the level of precision seen

when combining performance estimates from external validations across differing populations.
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235)

Figure 5.1: Bar chart showing the sample size in each of Hudda’s datasets, relative to the minimum

recommended for a single external validation. Colours indicate those with a sample size greater

(blue) and lower (red) than the recommended minimum from Chapter 4.
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5.1.1 Clinical scenario

The HTA funded IPPIC (International Prediction of Pregnancy Complications) collaborative

network consists of Individual Participant Data (IPD) from 14 UK and 66 international datasets,

including information on around 3 million pregnancies in total. These data contain information on

many important predictors of birthweight, and of FGR with associated complications, along with

measurements of those two outcomes, so were ideal for the external validation of models to predict

FGR that were identified and discussed in Chapter 2 [109].

Models that aim to predict rare outcomes, such as serious pregnancy complications including

FGR, require large sample sizes for external validation, which may not be possible in just one

dataset. Robust external validation across multiple populations and settings is of great importance

in settings such as these, meaning this is an ideal clinical setting in which to explore the potential

benefits of increasing sample size for external validation through use of IPD from multiple existing

studies.

The external validation discussed below formed part of an Health Technology Assessment (HTA)

report “External validation and development of prediction models for fetal growth restriction

(FGR) and birthweight: an Individual Participant Data (IPD) meta-analysis and cost-effectiveness

analysis”, along with subsequent research involving model development and internal-external

cross-validation (summarised in the Appendices to this chapter). This report is due for publication

in 2024.
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5.1.2 Objectives

Broadly, this chapter discusses the external validation of all applicable published models for

predicting birthweight, or FGR with severe complications (birthweight less than 10th percentile

adjusted for gestational age at delivery, complicated by stillbirth or neonatal death or delivery

before 32 weeks). Model performance was assessed in datasets included in the IPPIC collaboration

data collection, where relevant predictors and outcomes were measured.

Thus, this chapter has a number of applied and methodological aims, as follows:

1. assess predictive performance of published models for predicting birthweight or FGR with

severe complications, using measures of calibration, discrimination, and clinical utility.

2. demonstrate how external validation of a prediction model in multiple IPD datasets can be

used to determine both the generalisability and the transportability of the model

3. show how analysing the information across multiple validations as an IPD meta-analysis can

boost the available sample size for model validation.

The sample size of individual datasets and the combined data as a whole were compared to

sample size recommendations for external validation of continuous outcome models, proposed in

Chapter 4, and how this is reflected in the precision of the model performance estimates is discussed.

The method described in Chapter 3, for gaining predicted probabilities from a model for predicting

a continuous outcome, are further utilised. This chapter includes a demonstration of how this

method can be combined with traditional decision curve analysis to explore the net benefit of
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using birthweight prediction models in the management of patients at high risk of FGR.
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5.2 Methods

5.2.1 Identifying existing models to predict birthweight or FGR

Details of the literature search and eligibility criteria for the identification of models to predict

birthweight and FGR with complications are given in Chapter 2. The models identified in the

review from Chapter 2 were further restricted, so that those eligible for external validation were

only those which predicted either birthweight on its continuous scale, or FGR outcomes adhering

to a definition agreed by consensus among the clinical members of the research team. This

definition was as follows: birthweight less than 10th percentile adjusted for gestational age at

delivery, complicated by stillbirth, or neonatal death, or delivery before 32 weeks. No existing

models met this definition of FGR, therefore this chapter reports only on the external validation

of models for predicting continuous values of birthweight.

5.2.2 Identifying available datasets for external validation of existing models

All eligible models were externally validated, where possible, using IPD from studies included

in the IPPIC collaboration data collection, that was provided for the purposes of this research

project. In the formation of this data collection, primary studies identified during the review

discussed in Chapter 2, among others, were invited to share their data. Invitations were also

extended to investigators of primary studies and population-based cohorts not included in review,

but identified through links within the wider collaborative group. The IPPIC collaboration data

collection has previously been used in the external validation of models to predict other pregnancy

complications, such as pre-eclampsia [205] and stillbirth [206]. For the analyses discussed in this

chapter, no restrictions were placed on the type of study design that would be eligible.
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Identified models could only be externally validated in datasets where the available information

included all necessary model variables needed to calculate predictions, and information regarding

the relevant outcome (birthweight). For the assessment of birthweight prediction as a proxy for

FGR, validation datasets were also required to contain the necessary information to determine the

presence of FGR with complications, namely gestational age at delivery, presence of stillbirth, or

neonatal death.

5.2.3 Calibration performance measures

To assess the performance of each model using the IPD for each study cohort, each model equation

was applied to each participant to calculate the predicted birthweight value for that individual,

conditional on their predictor values, as described in previous chapters. The calibration statistics,

discussed previously and recapped below, were calculated within each cohort separately and for

each model separately. Performance for each model was then summarised across studies using the

meta-analysis methods described in Section 5.2.6.

Calibration-in-the-large

This measure indicates the extent to which the predicted birthweight values calculated

from the model are systematically too high or too low (on average, across all individuals).

The estimate of CITL and its standard error were calculated by fitting the calibration model

Birthweighti = α + β(YPREDi) where Birthweighti is the observed birthweight for individual i,

YPREDi is the predicted birthweight from the model, and α is the estimate of CITL when β is

constrained to equal one (fitted using a regression constraint). The ideal value of CITL is zero,

which would imply that the predicted birthweight values were on average no higher or lower than
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the observed values.

Calibration slope

The calibration slope indicates whether there is agreement between observed and predicted

birthweight outcome values across the range of predicted risks. The calibration model,

Birthweighti = α + β(YPREDi) was fitted, this time with no constraint on the value of β. This β

value gave the estimate of the calibration slope. Ideally, the calibration slope should be equal or

very close to one for good calibration across the full range of predicted probabilities, implying that

for every 1g increase in predicted birthweight we expect a corresponding 1g increase in observed

birthweight. A slope < 1 suggests predicted birthweight values are too extreme (predicted

birthweight values that are high are too high, while those that are low are too low) and may

indicate overfitting of the original model to the development data. A slope value > 1 indicates the

range of predicted birthweight values is too narrow, when compared to the observed values for the

same individuals.

Calibration plots

These plots, as seen in previous chapters, show a scatter of the observed to expected birthweight

values for each participant. A lowess smoother was calculated across all participants, and shown

on the same axes as the scatter, to demonstrate the shape of the overall calibration curve across

the full range of possible predicted birthweight values.

Calibration plots (with calibration curves) were generated in each cohort separately, for

each imputation. Where prediction distributions and calibration plots were consistent across
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imputations, it was concluded that predictions were similar enough for pooling across imputations

to be appropriate, for visualisation purposes. Where plots were not similar across imputations,

a selection of example plots were to be displayed, though this was not necessary in practice as

imputations were sufficiently consistent on visual inspection to allow pooling in all cases.

5.2.4 Decision curve analysis

Decision curve analysis (DCA) was introduced in Chapter 1, and is an approach used to evaluate

and compare prediction models in terms of clinical utility [70, 69, 71]. DCA identifies whether

there is an overall benefit of using a prediction model to guide treatment decisions within clinical

practice, based on various decision thresholds of predicted outcome risk. This potential benefit is

considered net of any harm arising from misclassification of individuals as being at high risk where

no outcome event was then observed. Prediction models are evaluated across a range of different

probability thresholds, where those with predicted outcome risks above the given threshold would

receive an altered treatment pathway.

The net benefit of using birthweight prediction model to identify pregnancies at high risk of being

Small for Gestational Age (SGA, defined as being in the lowest 10% birthweights for their observed

gestational age at delivery), a proxy for FGR, at given threshold probabilities was calculated. To

obtain the decision curve, the prediction model is evaluated over a range of different probability

thresholds, where the threshold is taken as a point above which a patient would be treated for

being at high SGA risk, and below which a patient would receive usual care. Decision curves

for the model were then compared to the net benefit expected to arise from using alternative

“treat all” and “treat none” strategies to allocate treatment [207]. These alternative strategies
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corresponded to hypothetical situations where every pregnancy was treated as though it were at

high risk of being SGA (“treat all”), or where no one was treated as though they were at high

SGA risk (“treat none”). Similarly, decision curves can also be plotted for multiple models on the

same axes to facilitate comparison, and to help decide which model offers the most clinical benefit.

As noted, traditional DCA methods incorporate the use of threshold probabilities to assign

treatment group, and thus require an outcome on a binary scale to allow for probability

calculation. Predicted probabilities of being SGA were gained from the continuous predicted

birthweight value (obtained from the prediction model being evaluated) following the methods

described in Chapter 3. Given gestational age at delivery was a key factor in determining SGA

based on birthweight, but in practice would be unknown at the time of model implementation,

two different methods were considered for assessing model benefit. When determining SGA risk

from continuous birthweight predictions, the following definitions were assessed:

1. Lower than the 10th percentile for 40 weeks gestation: Predictions were standardised with

respect to gestational age at delivery, with all individuals having their predicted birthweight

calculated at 40 weeks’ gestation. The predicted individual-level probabilities were calculated

and compared to whether the observed birthweight was lower than the 10th birthweight

percentile value for their observed gestational age at delivery, recorded in completed weeks.

2. Lower than the 10th percentile for observed gestational age at delivery: Predicted birthweight

was based on observed gestational age at delivery, a value that would not be available when

the model would be used to make a prediction in practice. The probability of the predicted

birthweight being lower than the 10th percentile for the true gestational age at delivery

was calculated and compared to whether the observed birthweight was lower than the 10th
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percentile value for their observed gestational age at delivery, recorded in completed weeks.

The comparison to relevant percentile values was conducted with reference to a normal range of

birth weights for gestational age reported by Poon et al in 2016 [208], from 92,018 live births

across two UK-based hospitals. The relevant percentile values used in determining FGR in the

external validation populations are shown in Table 5.1.
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Table 5.1: Normal range of birthweights (in grams) according to gestational age (GA) at delivery

in 92,018 live births, reported by Poon et al 2016. Values are reported for 1st, 3rd, 5th and 10th

percentiles, representing varying degrees of smallness

Percentile

GA at delivery (weeks) 1st 3rd 5th 10th

24 508 551 574 609

25 521 566 590 626

26 556 606 633 674

27 612 671 701 749

28 689 757 793 849

29 783 863 906 971

30 896 988 1038 1113

31 1024 1130 1186 1273

32 1167 1286 1349 1447

33 1322 1454 1524 1632

34 1488 1631 1707 1825

35 1660 1815 1896 2022

36 1837 2001 2087 2221

37 2014 2185 2276 2416

38 2187 2365 2459 2604

39 2351 2534 2631 2780

40 2501 2688 2787 2939

41 2633 2822 2922 3077

42 2740 2931 3033 3188

43 2818 3010 3112 3269
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5.2.5 Missing data

The numbers of missing values for each required predictor variable in each cohort were summarised,

and preliminary checks for associations between missingness and predictor values were conducted

to check for obvious violations of the missing-at-random assumption. Where a variable required for

calculating model predictions was not present within an individual cohort, or was present in fewer

than 10% of participants, this variable was considered to be systematically missing. Although

methods have been proposed to impute values for systematically missing variables based on the

IPD from other studies [209, 210], for practical reasons, imputation was not performed for such

systematically missing information in this case. Thus, only studies that recorded information

(for at least 10% participants) on all required predictors were used in the validation of any given

prediction model.

Multiple imputation by chained equations was used to estimate values for partially missing

predictor and outcome variables within individual cohort separately, to maintain the clustering of

participants within studies and to preserve heterogeneity between cohorts [211]. Missing values

for continuous variables were imputed using linear regression, for binary variables using logistic

regression, and for categorical variables using predictive mean matching [173]. Other variables were

included in the imputation models as auxiliary variables, such that the imputation model included

all candidate predictors, along with both birthweight and FGR outcome variables. Observations

with imputed outcomes were then deleted prior to analysis [176, 212].

To ensure that the number of imputed datasets would be at least equal to the percentage of

incomplete observations, 100 imputations were generated in all cohorts to exceed the largest

percentage of incomplete observations in any individual cohort [173]. Imputations were assessed for
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consistency by comparing density plots, histograms, and summary statistics across imputations and

back to the complete values, within and across studies. Performance statistics were summarised

across imputations using Rubin’s rules [177], where appropriate, to obtain one estimate and

standard error (SE) for each performance statistic in each cohort, prior to meta-analysis of

performance estimates across cohorts [213].

Complete case analysis, assessing model performance only in individuals with complete information

on all predictors and outcome, was conducted for completeness, as a sensitivity analysis. The main

results from the complete-case analyses are included as an appendix to this chapter.

5.2.6 Data synthesis

Meta-analysis methods were used to summarise a model’s performance across all IPD datasets used

for the external validation. Random-effects meta-analysis was used to allow for differing true model

performance (heterogeneity) across cohort populations, for example, due to differing case-mix and

overall risk [65, 63]. Heterogeneity in model performance across studies was summarised using

the estimates of τ2, with approximate 95% prediction intervals calculated using Higgins’ approach

[214], giving an indication of likely model performance in a new cohort from a similar setting [215].

Predictive performance measures were summarised across the IPD datasets using a two-stage

IPD meta-analysis approach: performance measures and their variances were first estimated for

each cohort separately and then pooled using restricted maximum likelihood estimation of the

aforementioned random-effects meta-analysis model, which weights cohort contributions by a

combination of the within-study and between-study variances [216]. The calibration slope and
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calibration-in-the large were pooled on their original scales [204], giving the average and 95%

confidence interval for the average of each performance statistic. These confidence intervals were

derived using a Hartung-Knapp-Sidik-Jonkman variance correction, to account for uncertainty

in variance and heterogeneity estimates due to relatively few studies being present in the

meta-analysis [217].

Model performance across cohorts is shown graphically using forest plots for each performance

statistic and through scatter plots to show both measures of calibration in combination,to give a

view of the overall calibration performance of the model.

5.2.7 Other considerations

Participants may have been included in a dataset multiple times if they had more than one

pregnancy during the study period. For the purpose of external validation, models were validated

for each pregnancy of each participant separately. Although two or more pregnancy outcomes

from the same women are likely to be correlated in reality, the number of multiple pregnancies

was expected to be very small relative to the total number of pregnancies. Considering each

pregnancy as a distinct observation meant that no allowance was made for correlation between

multiple pregnancies of the same woman in neither the model performance statistics, nor the

contribution of such pregnancies to the validation sample size (given correlated pregnancies within

the validation data would impact the observed precision).
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5.3 Results

5.3.1 Identified models for external validation

N = 749 studies of

potential existing models

identified through

database searching

N = 14 studies of

potential existing

models identified

through other sources

55 studies after

title and abstract

screening, including

119 prediction models

55 studies, 119

prediction models

screened for eligibility

Excluded models (n=107):

a) Univariable analyses only (n=14)

b) Fewer than 3 predictors (n=6)

c) FGR definition requirements not met (n=87)

12 models eligible for

external validation

Models not applicable in the IPPIC IPD (n=11):

a) Individual variables not measured (n=9)

b) Combination of variables not available (n=2)

1 model externally

validated in the

available IPPIC IPD

Figure 5.2: PRISMA flowchart, as shown in Chapter 2, extended to demonstrate birthweight/FGR

models available for external validation
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Of the prediction models identified in Chapter 2, none were found to adhere to the binary FGR

definition included above, thus all 87 of the binary outcome models were excluded from the

external validation analyses. This left 12 models of potential interest, all predicting birthweight

on a continuous scale, based on a combination of maternal and pregnancy features.

5.3.2 Available datasets for external validation

Cohorts within the IPPIC collaboration data collection were compared to the list of necessary

predictors for implementation of each of the identified 12 birthweight models, to discern which

contained all the necessary information to be included in the external validation. Unfortunately,

of these eligible models, nine could not be externally validated as they contained variables (such

as biparietal diameter, or birthweight from previous pregnancies) that were not measured in any

of the individual IPPIC FGR cohorts. A further two models could not be included for external

validation as they included variables that, although all available within the IPPIC collaboration

data collection, were not present in combination in any single cohort.

Thus, despite the huge effort that went into obtaining IPD from multiple studies, external

validation in the IPPIC FGR data was possible for only one model, for predicting birthweight

on its continuous scale. This model was published by Poon et al in 2011, and included predictor

variables for gestational age at delivery, mother’s weight, mother’s height, mother’s age, ethnic

origin, key comorbidities (chronic hypertension, diabetes), and whether the pregnancy was a result

of assisted conception [208].
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5.3.3 External validation of the Poon 2011 birthweight model

The remainder of the results in this chapter describe the external validation of the Poon 2011 model,

with predictions of birthweight in the external validation populations calculated using the below

equation, where: predictor variable GA refers to gestational age at delivery (measured in weeks);

height, weight, and age of the mother were measured on their continuous scale, in centimetres (cm),

kilograms (kg), and years, respectively; and the remaining predictors were binary variables, with

value of one indicating that the individual has the feature in question, and a value of zero indicating

that the feature was absent.

log10Birthweight =− 0.935219 + 0.186853(GA)− 0.002078(GA)2

+ 0.003726(weight)− 0.000030(weight)2 + 8.820640e−08(weight)3

+ 0.000965(height) + 0.001466(age)− 0.000026(age)2

+ 0.016986(if parous)− 0.024867(if current smoker)

− 0.021769(if African ethnicity)− 0.017824(if South Asian ethnicity)

− 0.005543(if East Asian)− 0.009063(if mixed ethnicity)

− 0.020995(if chronic hypertension present) + 0.03143(if diabetes present)

− 0.004015(if assisted conception)

A total of nine individual cohorts were identified that included all required predictor variables and

outcome information for external validation of the Poon 2011 model, these were: STORKG [218],

Allen [219], Odibo [220], Baschat [221], Rumbold [222], POP [223], Generation R [224], ALSPAC

[200], and Chie [225]. Key cohort features, including recruitment location and time period, and

available sample size are shown in Table 5.2 and Figure 5.3, respectively.
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Table 5.2: Features of external validation cohorts for the Poon 2011 model

Cohort Location Study type Time period Population

STORKG [218] Norway Prospective cohort 2008-2010 Unselected

Allen [219] UK Prospective cohort 2010-2014 Unselected

Odibo [220] US Prospective cohort 2009-2011 Unselected

Baschat [221] US Prospective cohort 2007-2010 Unselected

Rumbold [222] Australia Randomised trial 2001-2005 Low risk only

POP [223] UK Prospective cohort 2008-2012 Unselected

Generation R [224] Netherlands Prospective cohort 2002-2006 Unselected

ALSPAC [200] UK Prospective cohort 1991-1992 Unselected

Chie [225] Japan Prospective registry 2013-2014 Unselected

823STORKG [218]

1045Allen [219]

1200Odibo [220]

1704Baschat [221]

1877Rumbold [222]

4212POP [223]

8824Generation R [224]

15444ALSPAC [200]

+ 406286Chie [225]

0 2 4 6 8 10 12 14 16 18 20
Sample size, nj , in ‘000s, available in cohort j

Figure 5.3: Bar chart showing the available sample size in each validation cohort.
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5.3.4 Sample size requirements for external validation

Precisely estimate R2
val (criterion (i))

The first stage of the calculation discussed in Chapter 4 requires an assumed value R̂2
val, and

uses a SER̂2
val

of 0.0255 to target a confidence interval width of 0.1. From the model performance

in the development data, R2
val = 0.625 was assumed, along with the lower assumed model fit of

R2
val = 0.5

R̂2
val = 0.625 R̂2

val = 0.5

n =
4R2

val(1−R2
val)

2

SE2
R̂2
val

=
4R2

val(1−R2
val)

2

SE2
R̂2
val

= 4∗0.625∗(1−0.625)2

0.02552
= 4∗0.5∗(1−0.5)2

0.02552

Sample size to meet criterion (i) = 541 = 769

Precisely estimate calibration-in-the-large (criterion (ii))

The second step in the calculation requires specification of a value for ˆvar(Yi), the anticipated

variance of outcome values in the external validation population. Given the clinical importance

of birthweight predictions on their original scale, the Poon 2011 model’s external validation

performance on this scale was of primary interest (with performance statistics calculated after

transforming predictions back to the gram-scale). Thus, calculations of required sample size

for precise estimation of CITL was based on values for birthweight in grams, rather than for

log10Birthweight, to ensure appropriate precision on this scale.

The authors of the development study did not report the standard deviation of the model outcome

(log10Birthweight) in their model development data, nor did they report the standard deviation of

birthweight on its original scale, thus information from the model development population could

not be used to inform the calculation in this case. Given the external validation population was
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known prior to analysis, with the data already available, an estimate of the standard deviation

of birthweight in the validation population could be calculated. The standard deviation of

birthweight on the grams scale was 594g.

The precision required to estimate CITL again needs to be placed in context of the mean

birthweight value in the population (Ȳ = 2722g). Considering this scale, an accuracy of around

±50g around Ȳ seems an acceptable level of precision, which corresponds to a target SE ˆCITL of

about 25.5g.

In applying the equation, the expected value for R2
CITL was first assumed to equal R2

val = 0.625,

as in the published model development, with the more conservative estimate of R2
CITL = 0.5 also

assessed:

R̂2
CITL = 0.625 R̂2

CITL = 0.5

n =
var(Yi)(1−R2

CITL)

SE2
ˆCITL

=
var(Yi)(1−R2

CITL)

SE2
ˆCITL

= 5942∗(1−0.625)
25.52

= 5942∗(1−0.5)
25.52

Sample size to meet criterion (ii) = 204 = 272

Precisely estimate calibration slope (criterion (iii))

Targetting a confidence interval width for the calibration slope of at most 0.2 (SEλ̂cal
= 0.051)

and assuming good calibration (λ̂2
cal = 1), with R̂2

cal = R̂2
val:

R̂2
cal = 0.625 R̂2

cal = 0.5

n =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1 =
λ2
cal(1−R2

cal)

SE2
λ̂cal

R2
cal

+ 1

= 1∗(1−0.625)
0.0512∗0.625 = 1∗(1−0.5)

0.0512∗0.5

Sample size to meet criterion (iii) = 232 = 386

206



Precisely estimating residual variances (criterion (iv))

As shown in the previous chapter, to ensure sufficiently precise residual variance estimates from

the calibration models (10% margin of error), at least 235 participants are required regardless of

clinical context.

Minimum sample size to meet all criteria simultaneously

Thus, the minimum sample size to ensure precise estimation of R2, CITL, calibration slope, and

the residual variances of the calibration models was 541 pregnancies, assuming the overall model

fit would be consistent between model development and external validation populations. When

anticipating poorer model fit on external validation, with an R2
val = 0.5, this minimum sample size

requirement increases to 769 pregnancies.

The sample sizes required to meet each of the criteria are summarised in Table 5.3. Not only did

the combined external validation IPD across eligible cohorts easily surpass these requirements,

with a total of 441,415 pregnancies included, all individual cohorts had sample sizes greater than

the recommended minimum even where assuming the lower value of R2
val = 0.5.
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5.3.5 External validation cohort characteristics

As would be expected due to differences in time period and countries for recruitment, population

demographics varied across the nine external validation cohorts. Some notable differences include

the proportion of mothers smoking, ranging from a low of only 2.7% (Chie) up to 19.4% (Rumbold).

The proportion of nulliparous women across cohorts varied, in some cases by design, with Rumbold

and POP containing only nulliparous women (0% parous) as a part of their recruitment criteria.

Ethnic origins of mothers also varied across populations, with mothers from most European

(ALSPAC, Generation R, STORKG and POP), Australian (Rumbold), and North American

(Odibo) cohorts being predominately white. Allen, a UK-based cohort recruiting from a hospital

in East London, included 47% South Asian mothers, while 47% mothers in Baschat were of Black

ethnic origin. As the recruitment for the Chie cohort was conducted in Japan, 100% of mothers

were reported as being of Eastern Asian origin, the most highly represented ethnicity in the

external validation data.

Both Hispanic and Mixed ethnicities were poorly represented in the available external validation

data, with the maximum representation in an individual cohort being only 2% for each (Odibo).

The level of detail on ethnic groups varied across the IPD from different cohorts, thus it is possible

that some of those women included in the “other ethnicity” group in some cohorts might have

been better suited to other category. This information was not available in sufficient detail in the

IPD to be sure of alternative classifications, thus those coded as “other” in the IPD were retained

in this group for analysis.
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5.3.6 Missing data

All cohorts had missing data in measurements of at least one of the predictor values, though

the level of missingness varied considerably across cohorts. Four of the cohorts were over 90%

complete (Allen, Baschat, Odibo, POP), meaning complete information on predictor and outcome

values were available in at least 90% of the women included.

Two cohorts had missing information for at least one predictor or the outcome in more than half

of their participants. In STORKG, this was driven by missing measurements for mother’s weight,

which were missing for 51% of women. The greatest proportion of observations with missing

information was seen in ALSPAC, which only had complete data for 11% of women. Within

the ALSPAC cohort mother’s height (63%) and mother’s weight (66%) were the most commonly

missing predictor variables.

Birthweight, the outcome of interest, was missing for at least some women in every cohort. The

level of missingness ranged from only 0.05% missing (Chie) up to 67% (ALSPAC). With the

exception of the ALSPAC cohort, birthweight was at least 95% complete in all cohorts.

No notable associations were seen between the missingness of a given predictor variable and the

values of other predictors or the outcome (where reported), thus there were no obvious violations

of the missing-at-random assumption. Multiple imputation was therefore considered a reasonable

method to account for missing information in this case.
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5.3.7 Predicted birthweight distribution

Predicted birthweight on the grams scale was slightly skewed on visual inspection of histograms

(Figure 5.4), with a long left tail. This left tail was also seen in the distribution of observed

birthweights for all cohorts, with notably few babies been born at weights below 2000g. The Chie

cohort was the only setting where a larger number of both lower predicted and lower observed

birthweights (below 2000g) were seen.

In all cohorts the distribution of predicted birtweights was narrower than that seen in the observed

birthweights. Though the lower tail in observed birthweight distributions was well matched by the

prediction distributions, higher birthweights were less well represented. While the left tail of the

true distribution was well modelled by the Poon 2011 model, the more extreme right observations

were poorly identified, with very few predicted birthweights exceeding 4000g (4kg) in any of the

cohorts. Though very few observed birthweights exceeded 5000g, observed weights between 4000g

and 5000g were common, and were not reflected in the distribution of predictions.

Distributions for both observed and expected birtweights were reasonably consistent across all

cohorts. The only differences were noted in the Chie cohort, although these were minor, where

more data was observed in the extremes. The largest observed babies were seen within the Chie

cohort, where 27 babies were born larger than 5kg, potentially a reflection of the larger size of this

dataset, allowing rarer more extreme observations to occur. Overall, the Poon 2011 predictions

reasonably well mimicked the distribution of the observed outcome, where the majority of babies

were born at a larger, healthier weight, with gradually fewer small babies, reflecting those born at

unusually early gestational ages or with some level of growth restriction.
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5.3.8 Model calibration performance

Given the Poon 2011 model was developed to predict values of log10 birthweight, it was expected

that calibration performance would be optimal for predictions on this scale, though given

birthweight predictions on the grams scale were more easily clinically interpreted, and were more

likely to be used in practice, reasonable calibration on the grams scale was important. Thus,

calibration plots were produced for predictions on the more clinically interpretable grams scale, as

follows. Assessment of calibration performance when using predictions on the log10 grams scale is

given in Appendix IVa.

Calibration curves in Figure 5.5 suggest very good calibration on average for all cohorts. The

individual-level scatters, however, show a wide spread of observed birthweight values for those

with a given predicted birthweight, especially at higher predicted birthweight values. This spread

is less pronounced on the log10 grams scale due to the shape of the log transformation. The most

notable variation is seen in the largest cohort (Chie), where, for example, those with an expected

birthweight of 3500g had observed values ranging from 500g up to over 7000g.

When focusing on the range of lower predicted birthweights, those at higher concern for FGR,

calibration was good on average, and generally showed lower variability in observed values for

a given predicted value. Given the clinical intention of identifying low birthweight babies at

risk of FGR for early intervention, good calibration on average and small variation in predicted

birthweights in the lower ranges is promising.
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Calibration slope

The pooled calibration slope across all cohorts was 0.97 (95% CI: 0.94 to 1.01, τ2 = 0.0018),

implying near ideal calibration performance on average across settings, when using the model

to predict birthweight in grams. Some heterogeneity was evident in calibration slope estimates

across cohorts, as would be expected given case-mix differences in the samples included. Point

estimates varied from as low as 0.91 (Allen) to 1.05 (POP), suggesting the range of predicted

birthweights was too wide in the former and too narrow in the latter, relative to the range of

observed birthweights. The 95% prediction interval for the calibration slope implied that the value

expected in a new cohort from a similar setting has a 95% chance of falling between 0.87 and 1.08.

All cohorts comfortably exceeded the 386 participants required to achieve the recommended

maximum confidence interval of width around the calibration slope (≤ 0.2), as shown in Section

5.3.4. Figure 5.6 shows how all cohorts give narrow confidence intervals around the calibration

slope estimate, meeting the desired level of precision. This is also true of those cohorts with

estimated calibration slope values above one (Generation R, STORKG, POP), though the sample

size calculation conducted in Section 5.3.4 assumed a calibration slope on external validation

of λ̂2
cal ≤ 1. Chapter 4 demonstrated how the same size required to achieve precision in the

calibration slope estimate would be higher where the value of λ̂2
cal exceeded one: in this case, the

high sample sizes available in all cohorts were sufficient to accommodate this difference from the

assumed value.

The confidence interval around the pooled calibration slope was also narrow, with a width of only

0.05, despite some heterogeneity between estimates from the different cohorts. This implies the

calibration slope of the Poon 2011 model was sufficiently consistent across populations to maintain
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high precision in the pooled estimate.

Figure 5.6: Forest plot for the calibration slope of the Poon 2011 birthweight prediction model,

across all external cohorts

Calibration-in-the-large

On average across cohorts, CITL was 90.39g (37.86g to 142.92g, τ2 = 4578g2) on the grams

scale, implying a systematic under-estimation of birthweight by around 90g on average, across all

cohort populations (see Figure 5.7). The only cohort in which the Poon 2011 model over-predicted

birthweights on average was the Chie cohort, where a CITL of -26.4g (-27.5g to -25.3g) suggests

systematic over-prediction of just 26.4g: a clinically insignificant amount.

The largest absolute CITL value suggested an under-prediction of birthweight by 220.3g (206.5g
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to 234.0g) on average in the ALSPAC cohort. While this amount is relatively small for a full-term,

healthy weight baby, it was noted among the clinical team that 220.3g would be considered a

clinically significant amount for small babies with suspected FGR, thus this level of error was

concerning when considering application of the model in practice.

The sample size available in all cohorts was sufficient to meet the minimum requirement of 272

participants to ensure confidence interval widths of at most 100g. In fact, confidence intervals in

most cohorts were considerably narrower than this, with widths ranging from just 2g (Chie) to

58g (STORKG). The confidence interval for the pooled CITL estimate, however, was wide (with a

width of 105g) and so narrowly missed the desired precision level.

As can be seen from the large value for τ2 and the spread of points on the forest plots in

Figure 5.7, there was considerable heterogeneity in CITL estimates across the nine cohorts,

supporting the notion that underlying birthweight distributions in the different populations (and

so correspondingly, CITL values) were different to one another. Incorporation of this large τ2

value in the variance of the pooled CITL estimate, to accommodate the variation in CITL across

studies, resulted in a larger variance value overall.

Further to this, as mentioned in Section 5.2.6, a Hartung-Knapp-Sidik-Jonkman approach

was employed in the calculation of the confidence interval around the pooled CITL. Given

the Hartung-Knapp-Sidik-Jonkman confidence interval is derived using critical values from

the student’s t distribution, which are larger than the corresponding values from the normal

distribution used in the derivation of intervals for individual cohorts, the resulting confidence

interval is expected to be wider than if using other methods of estimation.

220



Thus, in this case, the heterogeneity in model performance across cohorts, along with analysis

methods to properly allow for this, resulted in lower precision in the pooled CITL result than in

any individual cohort. The concept of precision in estimates alone does not directly extend to

an IPD meta-analysis situation, where different studies contain different populations resulting in

different levels of model performance.

Figure 5.7: Forest plot for the calibration-in-the-large of the Poon 2011 birthweight prediction

model, across all external cohorts

Further details on the consistency of model calibration between analysis in the multiply imputed

data and analysis in complete cases only are given in Appendix IVb.
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5.3.9 Decision curve analysis

In order to assess the clinical utility of using the Poon’s birthweight prediction model in the

identification of SGA babies early in pregnancy, decision curves were produced from the number

of true positive (those correctly identified as SGA) and false positive (those incorrectly identified

as SGA) cases. The observed number and proportion of SGA babies in each of the external

validation cohorts, and over all external validation data combined, are summarised in Table 5.6.

The outcome prevalence varied across cohorts, between 3.3% (STORKG) and 16.5% (Chie), while

the overall prevalence across all cohorts was heavily influenced by the considerably higher sample

size and SGA prevalence seen in the Chie cohort.

Table 5.6: Numbers of observed SGA events, defined as being below the birthweight 10th percentile

cut-off for observed gestational age at delivery, by cohort

Cohort Total participants Events (10th percentile) %

Allen 1041 90 8.6%

ALSPAC 5132 305 5.9%

Baschat 1679 121 7.2%

Generation R 8742 489 5.6%

Odibo 1164 63 5.4%

Rumbold 1871 92 4.9%

Chie 403,284 66,347 16.5%

STORKG 823 27 3.3%

POP 4212 168 4.0%

Total 427,948 67,702 15.8%

Decision curves in Figures 5.8 and 5.9 display the expected benefit of using the Poon 2011 model

to identify those at a high risk of FGR, net of any harm caused by incorrectly identified high risk
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cases (where the baby was of healthy weight at birth), for each of the external validation cohorts.

These figures have been generated using the methods described in Chapter 3, from the probability

that the birthweight prediction from the Poon 2011 model would imply a predicted birthweight (a)

in the lowest 10% birthweights at an assumed 40 weeks’ gestation at delivery (Figure 5.8); and (b)

in the lowest 10% birthweights for their true gestational age at delivery, which would be unknown

if the model were to be used in practice (Figure 5.9). These probabilities were compared to the

observed, dichotomised birthweight outcome: observed birthweight in the lowest 10% birthweights

for their observed gestational age at delivery, based on the cut-offs given in Table 5.1.

The below curves show the net benefit of treatment based on model predictions compared to that

of simple treat-all and treat-none strategies. Eight of the nine studies show the net benefit of the

Poon 2011 model closely following the treat-all strategy up to the point where the treat-all curve

crosses the x-axis. This suggests that, in these cohorts, using the model to guide SGA treatment

based on treatment decision thresholds up to this point has no benefit over treating everyone as

if they were at high risk. For decision cut-off values beyond the point where both the treat-all

and Poon 2011 model curves cross the x-axis (where the threshold probability corresponds to the

outcome prevalence for each cohort, in the treat-all case), the best strategy is to treat-none despite

having a net benefit of zero, as both treat-all and treat-per-model options result in net harm overall.

The only cohort for which a net benefit seems to be indicated is Chie: the cohort with both the

largest sample size, and the largest proportion of events. In this case, probability thresholds

between 15% and 25% appear to have some benefit over other strategies, though this range is

clearly data dependent and was not defined a priori as being of clinical relevance.
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These results seem to be consistent across both definitions for defining outcome probabilities,

though interestingly using the observed gestational age to generate predicted values lead to

decision curves that indicated net benefit slightly below that of the treat-all strategy for lower

threshold probabilities.
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5.4 Discussion

5.4.1 Summary of key findings from this chapter

This chapter demonstrates how external validation of a published prediction model in multiple

individual datasets can be used to assess both model generalisability and transportability. From

the 119 models identified in Chapter 2, no model predicted FGR by a definition that was

compatible with that specified by clinical collaborators (birthweight <10th centile adjusted for

gestational age, with stillbirth or neonatal death or delivery before 32 weeks). Of the 11 models

predicting birthweight on a continuous scale, eight included variables that were not recorded in

the IPPIC collaboration data collection, and two contained variables that were not available in

combination within a given cohort. Just one model, for birthweight on its continuous scale could

be externally validated.

External validation was possible in nine cohorts from across six countries, with recruitment periods

ranging from 1991 to 2014. Data contained information on 441,415 pregnancies, though the bulk

of these came from a single, Japan-based cohort (Chie). Birthweight distributions were similar

across cohorts, as were prediction distributions, though predictions poorly matched the higher

range of the observed birthweight distribution. Overall, predictions well mimicked the distribution

of observed birthweights in the lower range of weights, with the majority of babies born at a larger,

healthier weight and with relatively few small babies.

All cohorts individually met the minimum sample size requirements for a single external validation

of the Poon 2011 model, per criteria introduced in Chapter 4. Increased numbers of participants

from combining information across cohorts, however, did not result in corresponding increases in
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precision (defined by a narrower confidence interval width around pooled estimates). Heterogeneity

stemming from between study variances lead to lower precision in the pooled CITL result than for

the CITL in any individual cohort.

Estimates of the calibration slope were fairly consistent across cohorts, with the resulting pooled

calibration slope value having a narrow confidence interval width of only 0.05 (within the precision

targetted during the sample size calculation). Despite some heterogeneity between calibration

slope estimates across cohorts, this implies the calibration slope of the Poon 2011 model was

sufficiently consistent across populations to maintain high precision in the pooled estimate.

While the Poon 2011 model was well calibrated on average, large amounts of individual-level

variation was not well accounted for by the model predictions. Individual-level scatters of expected

to observed birthweight showed a wide spread of observed values for those with a given predicted

birthweight, especially at higher predicted birthweight values. This variation was also present,

though less pronounced, on the log10 grams scale on which predictions were generated, suggesting

room for improvement in prediction of birthweight, despite promising calibration performance

through pooled values.

Beyond assessments of calibration, this chapter further demonstrated an additional application of

methods for gaining predicted probabilities from a linear regression model, described in Chapter

3, through an example of how this proposed method could be combined with traditional decision

curve analysis to explore the net benefit of using a birthweight prediction model in the management

of patients at high risk of FGR. In this case, decision curves suggested that using the model to

guide treatment decision had no benefit over alternative strategies (treating all or treating none,
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depending on threshold probability) for most cohorts. A clear net benefit over other strategies

was only seen in one cohort, Chie, which was both the largest, and had the highest outcome

proportion.

5.4.2 Strengths and limitations

The applied example in this chapter enabled further consideration of a potential drawback of the

sample size approach suggested in Chapter 4. While on average CITL was considered small, larger

absolute CITL values such as that seen in the ALSPAC cohort (220.3g, 95% confidence interval:

206.5g to 234.0g) were noted among the clinical team as being a clinically significant amount for

small babies with suspected FGR. This level of error would be concerning when applying the

model in truly small babies, those born at unusually early gestational ages or with some level of

growth restriction, though would be considered a negligible amount in the assessment of full-term,

healthy weight baby.

The acceptable level of precision in CITL included in the sample size calculation in Section 5.3.4

was ±50g. Given the difference in acceptable error in predictions, it is feasible that the desired

confidence interval width could vary considerably depending on the population under assessment.

For those with an earlier gestational age at delivery, with relatively low birthweights, narrow

confidence intervals would be desired, meaning the sample size calculated above may not be

sufficient.

Thus, prior to sample size calculation the population composition must be considered carefully,

to allow for varying precision requirements during an external validation. Targetting different
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levels of precision for different subgroups, for example those defined by different gestational

ages, might be preferable. This would mean conducting multiple sample size assessments, with

appropriately and independently targetted precision in key subgroups, or establishing a precision

in performance statistics that would be acceptable in all subgroups simultaneously, rather than

just being acceptable for the majority.

Despite the large number of models identified in Chapter 2, the external validations conducted

within this chapter were confined to a single published model. All published models identified to

predict FGR failed to meet a suitable outcome definition, and of those predicting birthweight,

suitable predictors were not available in combination in the available data.

A key challenge in the implementation of IPD-MA in practice, as clearly demonstrated here, is the

difficulty in dealing with different definitions or measurements of necessary predictors and outcomes

across different data sources [67]. In particular, completely (systematically) missing predictors in

some cohorts limited the number of models that could be validated in this study, despite the wealth

of data available and the huge effort that went into curating the IPPIC collaboration data collection.

While multiple imputation approaches were conducted to account for missing predictor data

within a cohort, no attempt was made to account for predictor information that was entirely

missing in some cohorts, though recorded in others. Methods to account for systematically missing

information may have enabled the external validation of a further two models for predicting

continuous birthweight, though were not considered in this example [209, 210].

IPD-MA for prediction model validation has great potential, allowing evaluation of predictive
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performance and clinical utility across a range of patient subgroups, different populations, or even

different care settings, if such datasets are included [67]. Setting-specific performances over a more

variable case-mix allows more robust conclusions on the model’s generalisability across different

settings.

The external validation discussed in this chapter, along with subsequent research involving model

development and internal-external cross-validation (summarised in this chapter’s Appendices),

have been detailed in an HTA report “External validation and development of prediction models

for fetal growth restriction (FGR) and birthweight: an Individual Participant Data (IPD)

meta-analysis and cost-effectiveness analysis”, which is due for publication in 2024.

5.4.3 Conclusion and next steps

Through application in an example model for predicting birthweight, this chapter has demonstrated

how combining performance estimates from external validations across differing populations may

lead to wide confidence intervals, even where all cohorts meet precision recommendations for

a single validation study. Heterogeneity in model performance across external validations may

arise where populations differ, for example when coming from different geographical regions or

having different case-mixes. When combining performance estimates across heterogeneous groups,

targeting narrow confidence intervals for pooled estimates may not be suitable. Appropriate

random-effects meta-analysis methods to allow for heterogeneity in model performance will

rightly result in wider confidence intervals around pooled estimates. Thus, precision in pooled

estimates depends on the consistency of performance across settings, not solely the sample size used.
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The concept of precision in estimates alone does not directly extend to an IPD meta-analysis

situation, where different population compositions can lead to different predictive performance.

Assessment of sample size needed for an external validation involving meta-analysis across settings

should allow for this, and precision in the pooled value should be interpreted differently to the

equivalent in a single study. Wider confidence intervals may not be rectified when pooling across

populations, thus narrow confidence intervals around a pooled estimate should not be the target

of sample size calculations where heterogeneity is expected and random-effects meta-analysis

methods are employed. Similarly, a sufficient sample size across studies combined should not be

assumed to be sufficient where individual studies are smaller than the recommended minimum.

Chapter 6 will further expand on this theme of external validation across multiple populations

and settings, with the IPD meta-analysis methods introduced in this chapter further utilised to

demonstrate variability in model performance at a national (UK) level. The performance of a

model to predict the risk of a serious fall (resulting in hospitalisation or death) is investigated in

routinely collected data across many different GP practices, allowing assessment of the extent of

heterogeneity in model performance across different settings, and identification of where precise

overall estimates of model performance (given a large sample size for external validation) may

have masked poor performance in smaller geographical subgroups with differing case-mix.

So far, this thesis has presented examples with an outcome of interest that has been measured on

a continuous scale, with outcome dichotomisation being considered to model the data instead as

a binary outcome. Chapter 6 now introduces an example of a prediction model for a genuinely

binary outcome event (a serious fall), with the (continuous) time until this event occurred being of

primary interest. In particular, the continuous aspect of this time-to-event outcome is investigated
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through the use of pseudo-values for observed outcomes, to account for both the censoring of data

and the competing risk of death, to measure the model calibration on a continuous scale. These

concepts are explained further in the upcoming introduction section.
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CHAPTER 6

Chapter 6: Methods for external validation of survival models in

big data whilst accounting for competing risks: examining

calibration on a continuous scale using pseudo-values
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6 Chapter 6: Methods for external validation of survival models

in big data whilst accounting for competing risks: examining

calibration on a continuous scale using pseudo-values

6.1 Introduction and objectives

Thus far, this thesis has presented examples where an outcome dichotomisation was conducted

with a view to modelling data simply as a binary outcome, without the time until this binary

outcome occurred being of interest. Survival analysis combines a binary outcome (such as the

high pain intensity and FGR examples from previous chapters) with the continuous aspect of the

time until that event takes place. Many clinical prediction models are developed using a survival

analysis approach, and these also require thorough external validation.

The suitability of survival models for application outside the model development dataset is

assessed through measures of calibration, discrimination, and net benefit, just as with continuous

and binary outcome model. This chapter continues with the theme of external validation, in this

case of a survival model, through the use of pseudo-value estimates for observed outcomes, giving

a representation of the individual’s contribution to the survival function. These pseudo-values

are derived from the cumulative incidence function for the outcome of interest, incorporating

both right censoring (described in Chapter 1) and competing risks (introduced in Chapter 1 and

discussed in further detail in Section 6.2.1, below) in the assessment of the observed outcome, and

are measured on a continuous scale. Further details on the use of pseudo-values in the assessment

of calibration for a survival model are given in Section 6.2.2 of this chapter.

The analyses shown in Chapter 5, demonstrate the potential of IPD meta-analysis techniques
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in the investigation of heterogeneity in model performance across populatoins and setting. This

chapter expands on these concepts, with IPD meta-analysis being employed on a much larger

scale, in the assessment of model performance in big data from Electronic Health Records

(EHR), comprising patients from numerous sub-populations within different GP practices across

England. Summarising performance measures across these different GP practices, especially

when considering those of smaller sizes, may reveal substantial variation in estimates across

sub-populations. Such variability is a key consideration prior to the application of a prediction

model in practice, as promising performance on average may obscure poor performance in

subgroups, where, for example, model miscalibration could cause an overall harm to patients.

Thus, this chapter delves deeper into the importance of sample size for external validation, as

discussed in Chapters 4 and 5, with overall sample size across the validation population not being

the only concern. Given populations within national settings vary considerably, assessment of

model performance in patient subgroups, such as those defined geographically through GP practice

registration, could potentially reveal unacceptable levels of uncertainty in model performance

within (or variation across) subgroups.

First, the motivating clinical example is introduced, including details of the clinical prediction

model to be validated and the wider research project that this chapter contributes to. Next,

a summary of further methods for survival analysis are introduced, building on the concepts

described in Chapter 1, including discussion of methods to account for competing risks and the

use of pseudo-values to estimate survival from incomplete outcome measurements (censoring).

Part (i) then fully demonstrates methods to calculate the minimum sample size required for the

external validation of this survival model, while part (ii) describes the results of the validation itself.
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6.1.1 Clinical scenario

The motivating example behind this chapter stems from a programme of work surrounding the

prediction of adverse events associated with antihypertensive medication in frail older adults.

Medications to reduce blood pressure (antihypertensives) are widely prescribed in older adults

[226] and are generally effective at reducing the risk of cardiovascular disease in the future [227].

These medications are also thought to be associated with many different adverse events, including

acute kidney injury (AKI), electrolyte abnormalities, and syncope [13]. In particular, previous

studies have suggested a possible association between antihypertensive treatment and falling in

frail individuals [13, 228, 229].

Improved assessment of the risk of different adverse events could allow targeted treatment in

those with an indication for antihypertensive medication, who are least likely to experience harm

from associated adverse events. The STRAtifying Treatments In the multi-morbid Frail elderly

(STRATIFY) project aimed to use routinely collected data from UK-based EHR to develop and

externally validate clinical prediction models to estimate an individual’s risk of experiencing

hospitalisation or death due to different adverse events within 10 years of antihypertensive

treatment being indicated. Thus, the clinical example discussed here formed a part of a larger

body of work, developing and external validating models to predict the risk of serious falls

(the focus of this chapter) [97], AKI [98], fractures, hypotension, syncope, hyperkalaemia, and

hyponatraemia. The protocol for this study was assessed and approved by the Independent

Scientific Advisory Committee (ISAC) (protocol number 19 042).

240



The clinical prediction model of interest in this chapter is for the prediction of hospitalisation or

death associated with a fall, defined based on ICD-10 (International Classification of Diseases,

10th revision) codes in Hospital Episode Statistics (HES) and Office for National Statistics

(ONS) mortality data. The population of interest were those aged 40 years or older, with

health records available during the study period, from the time of their first systolic blood

pressure reading above (or including) 130mmHg [230]. Patients with any systolic blood pressure

reading greater than 180 mmHg were excluded, as antihypertensive treatment would be indicated

for these patients regardless of the risk of adverse events. These eligibility criteria were applied

both in the external validation data, reported in this chapter, and in the model development cohort.

Given the population of interest in this clinical case were older adults at a higher risk of

cardiovascular disease, there was a notable chance that some participants may die from causes

unrelated to the outcome of interest, before that outcome of interest could take place, with such

death being considered a competing risk to the main outcome of serious falls risk.

Indication for

antihypertensives

Serious fall

(event of interest )

Death before fall

(competing event)
Death after fall

Figure 6.1: Demonstration of death as a competing risk, where the transition from indication for

antihypertensives to serious fall is of primary interest
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Existing model to predict the risk of a serious fall

The model to be externally validated was developed in a previous stage of the same project,

after identifying a lack of suitable models for the desired population in the literature. The model

to predict serious falls was developed using EHR data from the Clinical Practice Research Datalink

(CPRD), from GP practices across the UK. Specifically, this model was developed using linked

data from CPRD GOLD, which included data from GP practices using Vision electronic health

record software (Cegedim Healthcare Solutions, London, England). Outcomes were determined

through linkage to ONS mortality data and HES. All development analyses were conducted by

members of the STRATIFY research team who were based at University of Oxford, independent

to the external validation analyses.

Clinically relevant predictors of falls were identified from the literature [13] and through consultation

with clinical experts. Prior to variable selection, 30 predictor variables were considered (44 predictor

parameters, including fractional polynomial transformations of continuous predictors), covering

demographics, clinical characteristics, comorbidities, and prescribed medications. A Fine-Gray

sub-distribution hazard model was fitted to estimate falls risk over time, taking into account the

competing risk of death by other causes [231]. The resulting apparent calibration plots in the

model development data showed significant miscalibration, with under-prediction of falls risk for

patients with low predicted risks and substantial over-prediction for those with high predicted

risks. This original model was therefore recalibrated to the observed pseudo-values for the CIF of

a serious fall, which improved apparent calibration (in the model development data) considerably.

Both the Fine-Gray model and the pseudo-value recalibrated version (“STRATIFY-Falls model”)

were assessed as a part of the external validation analyses.
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The primary outcome for prediction was falls risk ten years following a patient’s first systolic

blood pressure reading above (or including) 130mmHg. Pre-defined secondary outcomes of one-

and five-year risks were also of interest, though are not discussed further in this chapter.

Available datasets for external validation

Identification of participants for the external validation followed a retrospective cohort design.

The validation cohort came from CPRD Aurum, which contained IPD from GP practices in

England that used recording software from Egton Medical Information Systems (EMIS, Leeds,

England). Patients were eligible if they were registered at a linked practice (with outcome

information available from HES or ONS data) between 01/01/1998 and 31/12/2018. The data

contained within CPRD Aurum had previously been shown to be representative of the England

patient population, in terms of age, ethnicity, and deprivation status, and so was considered

suitable for assessing the model’s generalisability in the UK population [232].

6.1.2 Objectives

This chapter describes the evaluation of a clinical prediction model for the risk of hospitalisation or

death from a serious fall in those with an indication for antihypertensive treatment. The external

validation cohort comprised information on patients from 738 different GP practices, routinely

collected and stored in EHR.

In particular, the objectives of this chapter were to:

1. Demonstrate methods to calculate the appropriate sample size needed to accurately assess
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the predictive performance of a survival model for serious falls in a single validation study.

2. Illustrate the use of pseudo-values in the assessment of calibration performance in the external

validation of prognostic models with a time-to-event outcome.

3. Demonstrate IPD meta-analysis methods to summarise model performance across

populations, while assessing heterogeneity in model performance across GP practices.

The sample size calculation demonstrated in the first part of this chapter, for the external

validation of a clinical prediction model with a survival outcome, was developed as a part of a

wider research team, and was published in Statistics in Medicine [93], following the publication

of the calculation methods proposed in Chapter 4 [92], and other associated work [95, 94]. The

clinical application discussed here was published in a journal article in the BMJ [97], and led to

related publications into the prediction of falls risk in a wider population [99], and into further

exploration of adverse events associated with antihypertensive medication [98, 13], as a part of a

wider research group.
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6.2 Further methods for survival analysis

6.2.1 Competing risks in prediction modelling

Given the length of follow up in many survival analysis prediction models, follow up for an

individual can often end in one of many possible ways. Whilst in many cases, those without the

event of interest during their follow up can be treated as right censored observations, in other

cases an alternative (competing) event may have occurred that prevents the event of interest from

taking place [233]. To treat such individuals as censored observations involves the unrealistic

assumption that they are still at risk of the event of interest for the remainder of the time frame

of interest, when this is not actually possible [234].

Standard survival analysis methods, without accounting for competing risks, are likely adequate

when the competing risk is rare, but in older or frail populations where a competing event such

as death is common, alternative approaches must be considered [235]. Where an event such as

death precludes the event of interest, treating those who have died as though they were censored

(for example, by using the Kaplan-Meier estimate of the survival function [28]) can result in

overestimating the risk of that outcome in the remaining study population [236, 237]. Predictions

from these methods in the presence of competing risks are said to refer to the risk of the event of

interest in a hypothetical world where the competing event is not possible [234]. To inform clinical

decision making in a real-world setting, where the competing event can actually happen, these

hypothetical risks are not always relevant [238].

What constitutes appropriate analysis of those who have experienced the competing event will

depend on the research question under investigation [236]. Two common approaches for accounting
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for competing risks in the analysis of survival data are described below.

Cause-specific hazards models

The cause-specific hazard function hc(t), so named because it refers to the hazard function

specifically for follow up ending due to cause c, gives the probability that event c occurs in the time

interval immediately following time t given the subject has not experienced event c up until that

time.

hc(t) = lim
δ→0

P (t ≤ Tc < t+ δ|t ≤ Tc)

δ

where Tc denotes the time to the specific event type c.

When multiple competing events are present, survival analysis methods described in Chapter 1

can be used to separately estimate the probability of each type of event, c, while treating all

other possible events as if they were censored [239]. These probabilities over time are known as

the cause-specific hazard functions, for example based on a Cox proportional hazards model [29],

giving functions of the form:

hc(t) = h0c(t)exp(βcX)

where h0c gives the baseline hazard for event c, and βc is the vector of cause-specific coefficients,

allowing for the effects of covariates to differ between different event types.

This process leads to multiple cause-specific models, one for each of the competing events and one

for the main event of interest. To subsequently make predictions for the main event accounting

for the competing events involves a non-trivial combination of the hazards from all of these

cause-specific models. [234, 237].
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One potential drawback of implementing this approach is that the Cox model assumes independent

censoring not only for those who were truly censored, but also for those who experience a

competing event [29, 30]. This is the equivalent of assuming independence between the risk of

different event types (an assumption which cannot be tested in practice, and is likely unrealistic

in many cases), though evidence suggests that a cause-specific approach is valid, whether or not

independent censoring is the case [239, 237]. Cause-specific approaches to modelling survival data

in the presence of competing risks are generally preferred when the research question surrounds

the effect of specific prognostic factors on different outcomes [236].

Sub-distribution hazards model

An alternative involves modelling the Cumulative Incidence Function (CIF) using a

sub-distribution hazards approach, which is derived from the cause-specific hazards of each

event, but does not assume their independence [240]. In the absence of any other censoring,

for example through loss to follow-up, the approach is equivalent to including individuals who

experienced the competing event in the risk set until the end of the study follow-up. If right

censoring, then the contribution of these individuals is down-weighted over time, accounting for

the probability of having been censored.

The CIF gives the marginal probability of each event type occurring at a specific time t: the

probability of the event occurring regardless of whether the individual was censored or experienced

a competing event. For a given event type, c, the CIFc at time t can be expressed in terms of the

247



cause-specific hazard (hc(t)) and overall survival (S(t)) functions [239], as

CIFc(t) = P (Tc ≤ t) =

∫ t

0
S(u)hc(u)du

where Tc denotes the observed time that event c occurred. When no competing risks are present,

the function CIFc(t) is equivalent to 1−KM(t), where KM is the Kaplan-Meier estimator of the

survival function [233, 239].

In 1999, Fine and Gray proposed a model akin to the Cox proportional hazards model, to predict

the value of the CIF in the presence of other covariates [231]. This model treats the CIF as a

sub-distribution, and so models the sub-distribution hazard function for the event of interest based

on this CIF. This sub-distribution hazard function is defined as:

hc,CIF (t) = lim
δ→0

P (t ≤ Tc < t+ δ|t ≤ Tc ∪ Tc′ ≤ t, c′ ̸= c)

δ

The resulting model is of the form

hc,CIF (t) = h0c,CIF (t)exp(βXi)

which estimates the sub-distribution hazard at a time t based on the value of the baseline CIF

for event c at that time point, h0c,CIF (t), the vector β holding predictor effect estimates in the

presence of the competing risk, and the vector of predictor values Xi. These predictor effects are

interpreted in much the same way as the coefficients from a Cox model, as the (adjusted) effects

of the covariate on the cumulative incidence of the event of interest [234, 237].

There is still debate over what is the optimal approach to handling competing risks when

developing and validating prediction models for survival outcomes, with evidence that, when using

a Fine-Gray approach, the sum of the cause-specific estimates of risk (i.e., the combined CIFs
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from all possible events obtained from sub-distribution hazard models) can exceed 100% for some

patients [241]. In the development of the model being validated in this chapter, however, only the

risk of a single event was of interest, rather than the probabilities or effect estimates for all event

types, thus the adopted approach was that proposed by Fine and Gray [231], with the CIF of the

event of interest (as defined above) being used [236].

6.2.2 Pseudo-values for observed survival estimates

A key feature of survival analysis is the incompleteness of outcome data due to censoring. Without

censoring, the survival time T would be observed for all individuals, and standard regression

methods could be used to model survival time directly, or to model a binary event indicator

(I(T ≤ t)) formed when dichotomising follow-up at some time t. Similarly, regression models

could be used to assess any given function of the follow-up time, f(T ), if information on T were

complete. One method proposed to allow such analyses in incomplete event history data is the use

of pseudo-values: jack-knife estimators representing an individual’s contribution to any function,

f(T ), of interest [242].

For an unbiased estimator θ̂ of the expected value E(f(T )), the pseudo-value of estimate for

individual i is defined as

θ̂i = nθ̂ − (n− 1)θ̂−i

This is a logical construction in the absence of censoring, where individual random variables can

be reconstructed using the leave-i-out estimator θ̂−i of θ. For example, consider estimating the

expected value, E(f(T )), of a function of event times across n individuals. In the absence of
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censored observations, this is a simple average defined as θ̂ = 1
n

∑
i f(Ti), thus

nθ̂ = n
1

n

∑
i

f(Ti) = f(T1) + f(T2) + ...+ f(Ti−1) + f(Ti) + f(Ti+1) + ...+ f(Tn)

(n− 1)θ̂−i = (n− 1)
1

n− 1

∑
ρ̸=i

f(Tρ) = f(T1) + f(T2) + ...+ f(Ti−1) + f(Ti+1) + ...+ f(Tn)

Evidently, here nθ̂ − (n− 1)θ̂−i = f(Ti), ∀i = 1, ..., n [243, 244].

When independent censoring is present, the function of interest is the survival function over time,

thus θ̂ = Ŝ(t) = E(1− P (T ≤ t)), which can be gained using the Kaplan-Meier estimate [242, 28].

Extending the above concept, we construct individual-level estimates of θ̂i = Ŝi(t) for a given

value of t as nŜ(t)− (n− 1)Ŝ−i(t) [243]. These θ̂i define the time-dependent pseudo-values for the

incompletely observed outcomes in the same way for both censored and uncensored participants

[242]. Similarly, in a competing risks setting, θ̂ = ˆCIFc(t) = E(P (Tc ≤ t)), thus pseudo-value

estimates can be derived as n ˆCIFc(t) − (n − 1) ˆCIFc
−i
(t) for the observed risk of event c in

individual i, in the presence of both right censoring and the competing risk [245, 246].

The derivation of pseudo-values leads to new, complete outcome observations for everyone in

the dataset (no longer missing event indicators due to censoring), which are correlated across

individuals due to their method of derivation. These new non-missing outcomes can then be used in

‘standard’ regression models, to relate the outcome with covariates of interest at a given time point.

Generalised estimating equations can be used, with appropriate link functions to allow for logistic

(logit-link), Cox (cloglog-link), or Fine-Gray (cloglog-link) type models to be fit on the continuous

pseudo-value outcome, with robust standard errors to account for correlation between observations
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[243, 245, 246]. Importantly, the resulting equations are approximately unbiased only where

censoring is independent of covariates [242]. In the case of dependent censoring, modifications

of the method are possible to achieve unbiased estimation [247], though these modifications are

beyond the scope of this thesis. Instead independent censoring is assumed in the presented scenario.

A key benefit is that these pseudo-values provide a set of continuous outcome values for which

various further analysis techniques are applicable, thus their use aligns with the themes of the

thesis and with previous chapters, where continuous outcomes have been of particular interest.

In prediction modelling research, calibration performance should presented visually, for example

using a loess smoother to give a calibration curve across individuals. Relationships between

observed and predicted outcomes in survival data are hard to visualise in this way. With the use

of pseudo-values to define observed survival, comparisons through scatters and smoothers become

possible [244]. For a pseudo-value regression model with a single covariate (predicted risk for

the event of interest), a scatter-plot with a smoother overlaid is possible, giving a plot akin to a

standard calibration plot.

Computation of pseudo-values can be time consuming, because the base estimator (for example,

CIF (t)) needs to be re-calculated for each individual in the dataset [244]. Approximations to the

pseudo-value calculation have been proposed, for example using an ‘infinitesimal jackknife’ process,

to speed up this process in large datasets [248], giving values are asymptotically identical to full

pseudo-values. Despite being conducted in large EHR data, the approach used in this chapter was

that of full pseudo-value calculation, without approximation.
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6.3 Part (i): Sample size calculation for external validation of a prediction

model with a survival outcome

6.3.1 Sample size requirements for external validation

Sample size recommendations for the external validation of a prediction model have been developing

in recent years. While criteria for the minimum sample size required to validate a prediction model

with a continuous outcome have been discussed in Chapters 4 and 5, requirements for the external

validation of a model for a survival outcome have not yet been discussed in this thesis.

Following the publication of the methods proposed in Chapter 4 [92], further recommendations

have been published for validating both binary and survival outcome prediction models [95, 94, 93].

Prior to the publication of these new methods, sample size for external validation of such models

was based on rule-of-thumb recommendations, such as those from Collins et al [172], which

suggest at least 100 (thought ideally 200 or more) events in the external validation data. The

following section of this chapter demonstrates the application of these recently published sample

size assessment methods for the external validation of the survival model to predict falls risk, and

compare the results to the available external validation data.

6.3.2 Process for determining appropriate sample size

Newly proposed simulation-based calculations for the sample size needed in the external validation

of a survival model [93] allow tailoring of sample size calculations to a specific clinical question,

potentially resulting in a higher recommended minimum than the 100 or 200 events of Collins

et al [172]. An expanded version of the approach suggested by Riley et al follows in Figure 6.2 below.
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Following the iterative steps described in Figure 6.2, the empirical distribution of calibration

curves should also be assessed by considering the set of simulated calibration curves on the same

set of axes. This could be presented, for example, as a 95% bootstrap confidence region around

the anticipated calibration curve when estimated in a sample of the indicated minimum size to

achieve the pre-specified target precision in the performance metrics. This reveals the variability

in the calibration curve that might be observed in practice. If variability in the calibration curve

is too high, then the calculation should be repeated with more stringent precision requirements for

calibration measures.

This calculation method was applied in the assessment of the sample size available for the external

validation of the STRATIFY-Falls prediction model. Not only was the full sample size available

of interest (which, being from EHR across England, was likely ample for external validation of the

model), but also the sample size available across the individual GP practices that formed clusters

within the external validation data.
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Figure 6.2: Summary of the steps involved in the sample size calculation for the external validation

of a clinical prediction model with a survival outcome, as adapted from Riley et al 2021

STEP 1: Set up process
Specify the following:

(i) time point of interest for checking model performance, t
(ii) model’s anticipated linear predictor (LPi) distribution in the validation population
(iii) overall outcome risk, F (t) (or 1− S(t)), in the validation population at time t
(iv) assumed distribution of survival times, Ti, in the validation population, conditional on LP i

(v) assumed distribution of censoring times, Ci, in the validation population
(vi) maximum follow-up time in the validation population, Cmax

(vii) target values for the standard error of key performance measures, e.g., for the calibration
slope, SEλ̂cal

≤ 0.051

STEP 2: Choose starting sample size
Specify a starting sample size, n, and generate a dataset containing this number of individuals as
a starting point

STEP 3: Simulate values of LPi

For each individual i in the dataset, simulate a value of LPi from the assumed linear predictor
distribution, specified in step 1

STEP 4: Generate values of F̂i(t) for each individual
For the time point of interest (t, specified in step 1), calculate individual-level predictions of outcome

risk, F̂i(t), based on the format of the existing prediction model equation. For example, this existing

model will typically be of the form F̂i(t) = 1− Ŝ0(t)
exp(LPi) where Ŝ0(t) is the baseline survival

probability at time t, and LPi is the value of the linear predictor for individual i, from step 3.

STEP 5: Generate values of Ti for each individual
Randomly generate observed survival times for each individual (Ti) according to the assumed
distribution from step 1, conditional on their LPi value. For each individual, set their outcome

status to be 1 (Di = 1, an event) and their follow-up time to be their survival time, T̃i = Ti.

STEP 6: Generate values of Ci for each individual
Randomly generate a censoring time (Ci) for each individual, under the censoring distribution
assumed in step 1. For those with a survival time (from step 5) later than their censoring time
(Ti > Ci) or the maximum follow-up time (Ti > Cmax), allocate their event status as 0 (Di = 0, no
event) and update their follow-up time to be the earliest of their censoring time or the maximum

follow-up time, T̃ = min(Ci, Cmax).

STEP 7: Estimate model performance

For the chosen time point of interest for prediction, generate pseudo-values F̃i(t) for observed

event probabilities Fi(t), based on T̃i and Di (generated in steps 5 and 6). Estimate key model
performance estimates and their standard errors, including the calibration slope and any other
measures of interest.

STEP 8: Repeat and store
Repeat steps 2 to 7 many times (Riley et al suggest 1000), each time storing the obtained estimate
and standard error of the performance estimates.

STEP 9: Assess sample size suitability
Summarise the mean standard error of the desired performance measure across repetitions. If this
mean is equal to the targeted value specified in step 1, then the sample size proposed in step 2 is
the minimum sample size required to obtain a precise estimate of the given metric. Otherwise,
repeat steps 2 to 9 with an alternative sample size, e.g., if targetting a precise estimate of the
calibration slope, where SEλ̂cal

is greater than the target value, increase n; where SEλ̂cal
is smaller

than the target value, decrease n.
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6.3.3 Simulation set up in the context of the STRATIFY-Falls model

(i) Time point of interest for checking model performance, t

The primary time point of interest for checking model performance was ten years after

antihypertensive treatment was indicated, thus t = 10. Follow up times of one and five years were

also of interest as secondary outcomes, and, though the linear predictor distribution is consistent

across all analysis times, the overall outcome risk was very different (with fewer severe falls events

observed within the shorter time frames). This concern will be consistent across all prediction

models for a time-to-event outcome where multiple time points are of interest for validation.

Targeting precise estimation of the STRATIFY-Falls model at the primary outcome time point

seemed the most logical approach, though it is worth noting that an external validation set exactly

meeting the required sample size for ten-year falls risk assessment would likely give wide confidence

intervals for performance statistics measured at one year.

(ii) The model’s anticipated linear predictor (LPi) distribution in the validation

population

The prediction model equation was applied in the external validation data and a summary of

the linear predictor distribution is given in Table 6.1. The linear predictor was found to follow

an approximate skew-normal distribution, which was best simulated using the nearest available

options in the sknor package in Stata software: a mean of 0.41, variance of 0.8, skewness parameter

of 1, and kurtosis parameter of 4.
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Table 6.1: Summary of the STRATIFY-Falls model linear predictor distribution, with parameters

observed on application of the model in the external validation data, the nearest available options

in the sknor package in Stata software, and observed in an example simulated dataset of 50000 LPi

values using these parameters to define the LPi distribution

Parameter Observed Simulated Example simulation

Mean 0.408 0.41 0.395

Variance 0.800 0.8 0.798

Skewness 1.124 1 1.015

Kurtosis 4.300 4 4.193

Figure 6.4 shows the distribution of the linear predictor, as observed in the external validation

data and in a single simulated dataset of 50000 LPi values using the above parameter values.

When assessed visually, this histogram of simulated values closely matched the linear predictor

distribution seen in the external validation data. Summarising the LPi in this example simulation

gave a mean of 0.395, variance of 0.798, skewness parameter of 1.015, and kurtosis parameter of

4.193 - a close match to the distribution summary values in the external validation data, again

suggesting this was a reasonable approximation.
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(a) Observed distribution

(b) Simulated distribution

Figure 6.4: Observed and simulated distributions of the linear predictor for the STRATIFY-Falls

model, with parameters measured in the external validation data and the nearest available options

in the sknor package in Stata software used in the simulation.
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(iii) Overall outcome risk, F(t) (or 1− S(t)), in the validation population at time t

The observed cumulative incidence of severe falls by ten years varied considerably across

individual GP practices, ranging from F (10) = 1.3% up to F (10) = 17.6%. This variation can be

seen in Figure 6.5, and was more notable in smaller GP practices, with fewer eligible individuals,

where uncertainty in the estimation of the outcome proportion was higher.

When pooled across all GP practices in the external validation data, there was an observed overall

10-year outcome risk of 8.7% (95%CI: 8.6% to 8.9%). Thus, there was an expected 91% survival

(those with no severe fall event) at ten years, across the whole population. This value was taken

forward to the simulation as, even though there was likely some variation in the true outcome

proportion in individual practices (due to population and case-mix differences), no practices lay

outside the 95% prediction region so this value was deemed appropriate for overall sample size

calculation.
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Figure 6.5: Observed outcome risk (F (10)) against standard error for each GP practice in the

CRPD Aurum external validation data. Blue dashed line shows pooled incidence across all practices.

(iv) Assumed distribution of survival times, Ti, in the validation population,

conditional on LPi

An assumed parametric distribution of survival times was required to preserve the 91% survival

at ten years that was observed in the external validation data. Conditional on the values of the

linear predictor, LPi, an exponential distribution with a baseline rate parameter 0.0042 was found

to give an appropriate outcome risk at ten years. The methods proposed by Riley et al do not

allow for the inclusion of the competing risk of death in the sample size calculation for external

validation, thus this was not accounted for in the calculation shown here. Future research might

consider adapting the simulation process to also account for this risk.
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(v) Assumed distribution of censoring times, Ci, in the validation population

A constant censoring rate was assumed, with censoring times following an exponential

distribution. Examining the censoring rate in the external validation dataset indicated that

censoring was high, with 62% participants censored before 10 years. Through trial and error, rate

parameter of 0.096 was found to give a probability of censoring by 10 years of about 62%.

(vi) The maximum follow-up time in the validation population, Cmax

Follow-up times in the external validation data were capped at 10 years, thus the maximum

possible follow-up for any individual Cmax = 10.

(vii) Target values for the standard error of key performance measures

Riley et al suggest that the sample size calculation for the external validation of a time-to-event

prediction model is most likely to be driven by the requirement for a precise estimation of model

calibration, as defined by the estimate of the calibration slope (λ̂cal) at the time point of interest.

Therefore, simulations were conducted to identify what sample size, n, would be sufficient to

achieve a precision of SEλ̂cal
= 0.051, to target a 95% confidence interval width of no more than

0.2 around a calibration slope estimated using Cox regression for the calibration model (as was

also suggested in the equivalent criterion for the precise estimation of the calibration slope of a

continuous outcome prediction model, shown in Chapters 4 and 5).
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6.3.4 Calculation in the context of the STRATIFY-Falls model

The simulation process shown in Figure 6.2 was set up using the information specified in Section

6.3.3, tailoring the calculation to the validation of the STRATIFY-Falls model in the CPRD

Aurum data. This process needed to be repeated iteratively until the sample size defined in step

2 resulted in the target SEλ̂cal
on average across the 1000 simulated datasets. Riley et al [93] do

not recommend an approach to inform decisions on which sample size option should be tested at

subsequent iterations of the process, thus two methods were trialled to assess their efficiency: using

linear interpolation and using Newton’s divided difference interpolation. For both approaches, the

initial two values of n were chosen with one smaller (n = 500) and one bigger (n = 20, 000) than

the anticipated sample size to achieve SEλ̂cal
= 0.051, though the same concepts would apply

(though possibly less efficiently) with any two starting values.

Linear interpolation

Starting sample size estimates of n = 500 and n = 20, 000 were input into the simulation

process, giving average SEλ̂cal
across simulations of 0.208 and 0.013 respectively. Thus, the sample

size needed to gain SEλ̂cal
= 0.051 an average would lie somewhere between these two values for

n. A simple linear function f(n) = a0 + a1n was fitted between these two points, with a slope of

a1 = f(n2)−f(n1)
n2−n1

and intercept defined by a0 = f(n) − a1n for one of the known (ni, f(ni)) pairs.

The point f(n) = 0.051 on this linear function was used to inform the next “best guess” of the

required sample size.

Accordingly, at each stage f−1(0.051) was calculated, giving the value of n to be used in the

subsequent iteration:
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ni+1 = ni−1 +
(0.051− f(ni−1))(ni − ni−1)

f(ni)− f(ni−1)

The sequence of n chosen by this method, with their corresponding mean SEλ̂cal
across simulations,

are presented in Table 6.2. Linear functions at each iteration, and proximity of sequentially tested

sample sizes to the target SEλ̂cal
= 0.051 are further shown in Figure 6.7. This approach resulted

in an estimated sample size requirement of 10,853 patients to ensure precise estimation of the

calibration slope, taking only seven iterations to reach a conclusion on the required sample size.

Table 6.2: Sample sizes (n) considered, with their corresponding mean SEλ̂cal
across simulations,

for the sequence of n determined through linear interpolation.

i ni SEλ̂cal
= f(ni) |f(ni)− 0.051|

1 500 0.2591525 0.2081525

2 20000 0.0376685 0.0133315

3 18827 0.0400418 0.0109582

4 13411 0.0461711 0.0048289

5 9145 0.0559455 0.0049455

6 11304 0.0496936 0.0013064

7 10853 0.0509753 0.0000247
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Anticipated uncertainty in the calibration curve

To assess the anticipated uncertainty in the calibration curve resulting from an external

validation using 10,853 individuals, example calibration curves with bootstrapped 95% confidence

intervals were generated for a sample of simulated datasets of this size. These calibration curves

and, importantly, their confidence intervals were inspected, to ascertain whether the precision

of the curve was acceptable. An example calibration curve for one simulated dataset is shown

in Figure 6.8. Confidence intervals suggested high precision in the calibration curve for lower

predicted outcome probabilities. While the width of confidence intervals increased for predictions

in the higher range, calibration curves are still anticipated to be estimated with adequate precision

across the full range of predictions when using a sample of this size for external validation.

Figure 6.8: Anticipated uncertainty in the calibration curve with a simulated sample of 10,853

individuals. Grey shaded area shows the bootstrapped 95% confidence interval around the

estimated calibration curve (blue line).
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Newton’s divided difference interpolation

As an alternative to linear interpolation, Newton’s polynomial interpolation was trialled to inform

the next sample size n in the sequence to test. This was done to assess whether an alternative

approach might result in a more efficient sequence of iterations than the simple linear method.

Newton’s (divided difference) polynomials were used fit a polynomial function, f(n), through all

known (ni, f(ni)) pairs from previous iterations. These functions are traditionally defined as follows,

for a set of ρ different (x, f(x)) pairs:

fρ(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ aρ(x− x0)(x− x1) . . . (x− xρ)

∴ fρ(x) =

ρ∑
i=0

aiρi(x), where ρi(x) =
i−1∏
j=1

(x− xj)

In this context, x = n (the sample size for external validation) and f(x) = f(n) = SEλ̂cal
(the

resulting standard error in the estimate of the calibration slope, averaged across simulations), with

values for ai determined sequentially, by substituting in values for known (ni, f(ni)) pairs and

rearranging Newton’s formulae:

1. f0(n0) = a0 =⇒ a0 = f(n0)

2. f1(n1) = a0 + a1(n1 − n0) =⇒ a1 =
f(n1)− f(n0)

n1 − n0

3. f2(n2) = a0 + a1(n2 − n0) + a2(n2 − n0)(n2 − n1)

=⇒ a2 =

f(n2)−f(n1)
n2−n1

− f(n1)−f(n0)
n1−n0

n2 − n0
=

f1(n2)− f1(n1)

n2 − n0
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4. f3(n3) = a0 + a1(n3 − n0) + a2(n3 − n0)(n3 − n1) + a3(n3 − n0)(n3 − n1)(n3 − n2)

=⇒ a3 =

f(n3)−f(n2)
n3−n2

− f(n2)−f(n1)
n2−n1

n3−n1
−

f(n2)−f(n1)
n2−n1

− f(n1)−f(n0)
n1−n0

n2−n0

n3 − n0
=

f2(n3)− f2(n2)

n3 − n0

...

ρ+ 1. fρ(nρ) =

ρ∑
i=0

aiρi(nρ) =⇒ aρ =
fρ−1(nρ)− fρ−1(nρ−1)

nρ − n0

As with linear interpolation, at each iteration, the point f(n) = 0.051 on this polynomial function

was used to inform the next “best guess” of the required sample size. This was calculated as the

real (non-complex) root of equation f(n) = 0.051− fρ(n), within the range of ni from the current

known (ni, f(ni)) pairs. This root was determined using the uniroot function in R version 4.2.2.

Table 6.3 shows the sequence of n chosen by this method, with the associated mean SEλ̂cal
across

simulations. Plots of the polynomial functions defined at each iteration are shown in Figure

6.10, along with the proximity of each tested sample size to the target SEλ̂cal
= 0.051. After 9

iterations, this approach gave an estimated sample size requirement of 11,385 patients. This value

is slightly higher than that found with linear interpolation, likely due to chance differences arising

during the simulation process.

As before, precision in calibration curves was high for lower predicted probabilities and decreased

(with wider confidence intervals) for higher predictions. Overall, calibration curves were anticipated

to be sufficiently precise across the full range of predicted values when using a sample of 11,385

for external validation of the STRATIFY-Falls models at ten years.
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Notably, by the final iteration, the polynomial function (of degree eight) fit the data points very

badly. Though the curve passed though all (ni, f(ni)) pairs from previous iterations by design, the

shape of the function was far removed from the logical monotonic-decreasing function that would

be expected of the relationship between standard error and sample size. Thus, the complexity

introduced by such high order of polynomials not only does not facilitate estimation, but actively

hinders it.

Table 6.3: Sample sizes (n) considered, with their corresponding mean SEλ̂cal
across simulations,

for the sequence of n determined through Newton’s divided difference interpolation.

i ni SEλ̂cal
= f(ni) |f(ni)− 0.051|

1 500 0.2591525 0.2081525

2 20000 0.0376685 0.0133315

3 18827 0.0400418 0.0109582

4 16096 0.0410136 0.0099864

5 10256 0.0538596 0.0028596

6 10735 0.0525219 0.0015219

7 11277 0.051419 0.000419

8 11522 0.0503237 0.0006763

9 11385 0.051 0
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6.3.5 Assessment of sample size available for external validation

Using the larger of these simulation-based calculations to be conservative, targetting a 95%

confidence interval of width 0.2 around the estimate of the calibration slope resulted in a

minimum sample size requirement of 11,385 patients, including approximately 991 serious fall

events. Using CPRD Aurum, a large EHR database, for external validation allowed inclusion

of many more than 991 events across the whole population, meaning these recommendations

were easily met. When using such databases, however, it is also essential to consider the natural

clustering of the data by GP practice. In this example, the variability in model performance

across GP practices was also of interest. Ideally, there would also have been sufficient data in

each practice to allow accurate assessment of the model’s performance in these different populations.

Figure 6.11: Numbers of falls events by GP practice size in the CRPD Aurum external validation

data. The red line shows the recommended minimal sample size per Riley 2021, 991 falls events,

while the blue line shows the recommended minimal per Collins 2016, 200 events.
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When comparing to the sample size recommendations from tailored simulations, per Riley 2021

[93], 103 (14.5%) practices had a sufficient effective sample size to accurately estimate the

calibration slope, recording more than 991 falls events at 10 years. An additional 488 (68.6%)

practices recorded more than 200 falls events, though less than 991, meeting the Collins 2016 [172]

criteria while failing to meet the Riley 2021 recommendations.

When comparing to the lower of Collins’ suggestions (a minimum of 100 events, not tailored to

the model of interest), 33 (4.6%) of GP practices in CPRD Aurum fell short of the sample size

requirement, if the aim had been to evaluate model performance in that population specifically.

Although sufficient data were included in the database overall to assess the model performance

on average across the UK, it is important to carefully consider any conclusions around model

performance in those smaller GP practices, especially where smaller practices might represent

sub-populations that are under-represented in the full CPRD Aurum data.
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6.4 Part (ii): External validation of the STRATIFY-Falls model

6.4.1 Methods for the assessment of model performance

Missing data

Where a patient’s records had no entry describing the diagnosis of comorbidities or prescribed

medications, it was assumed that no such diagnosis or prescription was present. Aside from

comorbidities and medications, predictor variables included in the STRATIFY-Falls model but

missing in some observations of the validation data were cholesterol level, ethnicity, deprivation

score, smoking status, and alcohol consumption.

Multiple imputation by chained equations was used to impute these missing values across the

whole of the external validation cohort, with no allowance for the clustering of patients within GP

practices, potentially masking some of the heterogeneity between practices [211]. The imputation

models included all predictor variables, along with binary event indicators for falls and for

the competing event of death by 10 years, and a Nelson-Aalen estimator for the cumulative

cause-specific hazards of each of these possible event types [249, 250]. A total of ten imputations

were generated, a value lower than the percentage of incomplete observations (as was referenced

in previous chapters) [173], which was chosen for practical reasons due to the size of the data and

the computational intensity of generating and analysing a higher number of imputed datasets.

Imputations were assessed for consistency by comparing density plots, histograms, and summary

statistics across imputations and back to the complete values. Predictive performance measures

were then estimated in each imputed dataset separately, before combining estimates across

imputations using Rubin’s Rules [177], where appropriate.
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Measures of performance

Model performance was assessed through measures of calibration, discrimination, overall model

fit, and clinical utility, as were described in previous chapters.

Calibration performance was assessed through the use of pseudo-values, based on the CIF for falls,

accounting for competing risk of death, calculated by the Aalen–Johansen method [251]. These

pseudo-values gave jackknife estimates that represented an individual’s contribution to the overall

estimate of the cumulative incidence function for serious falls, giving a continuous outcome value

for each individual that represented their observed 10-year falls risk while accounting for both the

competing event of death and for right censoring. Observed pseudo-values for observed 10-year

falls risks were compared to the predicted risks from the STRATIFY-Falls model in the calculation

of the Observed/Expected ratio and allowed the estimation of smooth calibration curves across

individuals, which were presented in calibration plots.

Discrimination performance was measured using an inverse probability of censoring weighted

estimate of the time dependent area under the ROC curve (C-statistic) at 10 years [252] and the

D-statistic, as proposed by Royston and Sauerbrei [253]. Overall model fit was assessed using

Royston and Sauerbrei’s R2
D [253]. Clinical utility was assessed using net benefit, plotted against

potential thresholds for clinical action on decision curves. Net benefit at each threshold probability

was calculated using the CIF of falling (accounting for the competing risk of death) to define the

number of true positive and true negative classifications [69].
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Heterogeneity across GP practices

Heterogeneity in model performance across different GP surgeries was assessed using a random

effects meta-analysis, by restricted maximum likelihood estimation (REML), given that the

case-mix and incidence of falls were known to vary considerably between practices, so too were

model performance estimates expected to vary [65, 63]. Confidence intervals for pooled estimates

were derived using the Hartung-Knapp-Sidik-Jonkman variance correction, to account for any

uncertainty in the estimate of the between-practice variance [217]. Performance estimates were

first calculated for each GP practice, within each imputed dataset, with estimates combined across

imputations (within GP practice) by applying Rubin’s Rules where appropriate [177]. Estimates

were then combined across practices using the random effects meta-analysis to gain estimates of

average model performance across all populations [213].
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6.4.2 External validation cohort characteristics

After exclusions for failure to meet the inclusion criteria, also being included in the model

development data, and a lack of data linkage (Figure 6.12), a total of 3,805,366 patients were

included in the cohort for external validation of the STRATIFY-Falls model, from across 711 GP

practices, with 206,956 (5.4%) experiencing fall events during the ten-year follow-up. A further

334,552 (8.8%) patients died during follow-up from causes unrelated to a fall, prior to any fall

occurring.

n = 22,699,368

in CPRD Aurum

Not meeting inclusion criteria (n=14,160,840):

a) Patients ≤ 40 years of age

b) No records available after 01-01-1998

n=8,538,528 meeting

inclusion criteria

Patients also included in CPRD GOLD

(n=1,657,593)

n=6,880,935 not also

in development data
Patients lacking linked data (n=884,794)

n=5,996,141 with

appropriate linkage

Patients without SBP measurement between

130 and 179 mmHg (n=2,190,775)

n=3,805,366 available

for external validation

Figure 6.12: PRISMA flowchart, showing the number of eligible participants for external validation

from the total CPRD Aurum population
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Median follow up time in the validation cohort was 6.7 years (LQ to UQ: 2.7 to 10 years). The

median time until a serious fall was 4.3 years (1.9 to 7.1), with those dying prior to any fall being

followed up for a median of 3.8 years (1.6 to 6.5). Characteristics of the external validation cohort

as a whole, and those who experienced the outcome and competing events, are given in Table 6.4.

The predictor most often missing in the validation data was total cholesterol, with 48.3%

individuals missing this measurement overall. Data were also missing for some individuals for

ethnicity (19%), deprivation score (9.7%), smoking status (7%), and alcohol consumption (18%).

All other predictor values were assumed complete, with an absence of data entries describing

comorbidity diagnoses or prescribed medications being taken to mean no such diagnoses or

prescriptions were present for that individual. Summaries of imputed values showed no obvious

differences from distributions of complete values.

Given the external validation data came from a very large UK database, containing information

from 738 different GP practices, model performance was expected to vary across clusters, as was

seen in the external validation across different populations in Chapter 5. Not only was the observed

incidence of serious falls known to vary across practices (see Figure 6.5), case-mix in terms of age

distribution, deprivation status, and ethnicity was also expected to be very different in different

areas of the UK. This difference in demographics and outcome incidence would likely affect the

performance of the model, with those clusters most similar in composition to the population

average being most likely to show good performance. Heterogeneity in the model performance by

different measures is therefore summarised in the following sections.
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Table 6.4: Characteristics of the sample of CPRD Aurum used in the external validation of the

STRATIFY-Falls prediction model. Values are number (percentage) unless otherwise stated.

Total Falls Competing event

n 3,805,366 206,956 334,552

Age, mean (SD) 58.6 (13.3) 72.8 (12.7) 73.1 (12.3)

Sex (Female) 1959489 (52%) 134945 (65.2%) 165689 (49.5%)

Systolic blood pressure, mean (SD) 143.8 (12.3) 147.2 (13.2) 147.7 (13.3)

Diastolic blood pressure, mean (SD) 83.9 (9.8) 81.9 (10.2) 82.0 (10.3)

Cholesterol, mean (SD) 5.5 (1.2) 5.4 (1.3) 5.4 (1.3)

Missing 1839116 (48.3%) 109708 (53.0%) 195390 (58.4%)

Ethnicity

White 2041505 (54%) 194311 (93.9%) 206384 (61.7%)

Black 115279 (3%) 2239 (1.1%) 4019 (1.2%)

South Asian 94485 (3%) 2449 (1.2%) 3673 (1.1%)

Other 832614 (22%) 3442 (1.7%) 21458 (6.4%)

Missing 721483 (19%) 4515 (2.2%) 99018 (29.6%)

Deprivation Score

IMD 1 790311 (20.8%) 41786 (20.2%) 66606 (19.9%)

IMD 2 732246 (19.2%) 41820 (20.2%) 68147 (20.4%)

IMD 3 684288 (18%) 40665 (19.7%) 67130 (20.1%)

IMD 4 630482 (16.6%) 40383 (19.5%) 65342 (19.5%)

IMD 5 597180 (15.7%) 42141 (20.4%) 67024 (20.0%)

Missing 370859 (9.7%) 161 (0.1%) 303 (0.1%)

Smoking status

Non smoker 1475708 (39%) 77990 (37.7%) 109249 (32.7%)

Ex-smoker 1236061 (33%) 39087 (18.9%) 75081 (22.4%)

Smoker 838404 (22%) 66836 (32.3%) 105363 (31.5%)

Missing 255193 (7%) 23043 (11.1%) 44859 (13.4%)

Frailty index, median (LQ to UQ) 0.06 (0.03 to 0.08) 0.08 (0.06 to 0.17) 0.08 (0.06 to 0.17)
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Total Falls Competing event

n 3,805,366 206,956 334,552

Alcohol consumption

Non drinker 864865 (23%) 59364 (28.7%) 89537 (26.8%)

Trivial drinker 998948 (26%) 47088 (22.8%) 71739 (21.4%)

Light drinker 696369 (18%) 26635 (12.9%) 44924 (13.4%)

Moderate drinker 246468 (7%) 9378 (4.5%) 17491 (5.2%)

Heavy drinker 74005 (2%) 5124 (2.5%) 6845 (2.1%)

Unknown amount 237464 (6%) 9631 (4.7%) 12117 (3.6%)

Missing 687247 (18%) 49736 (24%) 91899 (27.5%)

Comorbidities

Previous falls 140886 (3.7%) 21697 (10.5%) 25124 (7.5%)

Memory problems 99264 (2.6%) 15996 (7.7%) 28636 (8.6%)

Mobility problems 85675 (2.3%) 13999 (6.8%) 22928 (6.9%)

Stroke 111462 (2.9%) 15704 (7.6%) 26703 (8%)

Multiple sclerosis 11328 (0.3%) 975 (0.5%) 1373 (0.4%)

Antihypertensive medications

ACE inhibitors 478778 (13%) 38867 (18.8%) 67787 (20.3%)

Angiotensin II receptor blockers 136926 (4%) 11018 (5.3%) 14308 (4.3%)

Alpha blockers 68131 (2%) 6335 (3.1%) 11388 (3.4%)

Beta blockers 461329 (12%) 36317 (17.6%) 59019 (17.6%)

Calcium channel blockers 426151 (11%) 37590 (18.2%) 63764 (19.1%)

Diuretics 397980 (11%) 36418 (17.6%) 55934 (16.7%)

Other antihypertensives 19235 (1%) 1437 (0.7%) 2471 (0.7%)

Other medications

Opioids 1213876 (32%) 84108 (40.6%) 121303 (36.3%)

Hypnotics, anxiolytics 750584 (20%) 52854 (25.5%) 78627 (23.5%)

Antidepressants 793690 (21%) 52820 (25.5%) 71452 (21.4%)

Anticholinergic medications 388513 (10%) 31542 (15.2%) 46255 (13.8%)

Follow up, median (LQ to UQ) 6.7 (2.7 to 10) 4.3 (1.9 to 7.1) 3.8 (1.6 to 6.5)

SD - Standard Deviation, LQ - Lower Quartile, UQ - Upper Quartile.

Scales: age (years), blood pressure (mmHg), cholesterol (mmol/L), follow up (years).
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6.4.3 Model calibration performance

Calibration of the STRATIFY-Falls model was assessed through comparison of model predictions

with the 10-year pseudo-values, calculated from the observed CIF in the external validation data.

Overall summaries of calibration were visualised through average calibration curves, based on the

pseudo-values calculated across all patients, with no allowance of clustering by GP practice. For

practice-level calibration assessment, as subsequent pooling of calibration statistics, pseudo-values

were generated in each practice individually to preserve heterogeneity in observed outcomes across

practices.

When assessing calibration performance across the full external validation dataset, without

accounting for the clustering by GP practice, pseudo-value-based calibration curves were estimated

with high precision for both the Fine-Gray and the STRATIFY-Falls models. Plots in Figure 6.14

show these calibration curves and their 95% confidence intervals when generated in a random

10% of the data from a representative imputation. Even in this sub-sample of the full data,

the uncertainty around both calibration curves was negligible due to the very large total sample size.

As was seen in the model development data, the Fine-Gray model was extremely miscalibrated at

the 10-year time point. Predictions of risk below 30% were generally too low (with a calibration

curve above the diagonal) and predictions higher than 30% falls risk were generally too high. The

STRATIFY-Falls model had a more restricted range of predicted risks, with predictions going no

higher than 26%. While recalibration of the model had corrected the miscalibration at 10 years

in the model development cohort, under-prediction of risk on average was still evidence in the

validation data.
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Calibration performance varied considerably across practices, as can be seen through consideration

of calibration curves of the STRATIFY-Falls model across practices (Figure 6.15). This variation

was not evident in the average calibration curves shown in Figure 6.14. The vast majority of

practice-level calibration curves can be seen to lie above the line of ideal calibration, suggesting

the STRATIFY-Falls model consistently under-predicts the risk of a serious fall across most GP

practices. The spread of curves across practices shows far more variation in calibration performance

than might be implied from the uncertainty estimate in the overall calibration curves shown in

Figure 6.14, likely due to the lack of allowance for practice-level clustering in the generation of this

summary plot.
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Figure 6.15: Calibration curves of the STRATIFY-Falls model to predict falls across GP practices

in the CRPD Aurum external validation data. Green line indicates ideal calibration. “Predicted

probabilities” axis cropped at maximum value of this model in the external validation data.

Heterogeneity in calibration performance is also evidenced in the assessment of the O/E ratio,

through summary values in Table 6.6 and through scatter plots in Figure 6.17. Relatively

high values for τ2 and wide prediction intervals can be seen for both the Fine-Gray and the

STRATIFY-Falls models, suggesting heterogeneous model calibration.

Though the entire of both prediction intervals indicate under-prediction of risk is expected in a new

population, intervals are still very wide. The prediction interval from the STRATIFY-Falls model

suggests that observed falls risks could be anywhere from 28% to 164% higher than predicted, if
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the model were applied in patients in a new GP practice from a similar setting to that used for

this external validation.

Table 6.6: Observed/Expected ratio for the Fine-Gray and STRATIFY-Falls models on external

validation, pooled across GP practices

Fine-Gray model STRATIFY-Falls model

Observed/Expected

Pooled effect size (95% CI) 1.682 (1.657 to 1.707) 1.839 (1.811 to 1.865)

Prediction interval, 95% 1.139 to 2.484 1.284 to 2.638

τ2 (95% CI) 0.038 (0.035 to 0.043) 0.0342 (0.031 to 0.038)
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(a) Fine-Gray model

(b) STRATIFY-Falls model

Figure 6.17: Observed/Expected ratio of the Fine-Gray and STRATIFY-Falls models, by their

standard errors, across GP practices in the CRPD Aurum external validation data. Blue dashed

line shows summary value, red dashed lines show the 95% prediction interval.
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6.4.4 Model discrimination performance

Discrimination performance of the Fine-Gray and STRATIFY-Falls model on external validation

is summarised in Table 6.7, with the spread of C- and D-statistic values from individual practices

displayed in scatter plots in Figure 6.19. The ordering of participants’ predicted probabilities

altered only slightly on recalibration; thus the discriminative abilities of the Fine-Gray model and

the STRATIFY-Falls model were consistent with one another.

Table 6.7: Discrimination performance statistics for the Fine-Gray and STRATIFY-Falls models

on external validation, pooled across GP practices

Fine-Gray model STRATIFY-Falls model

C-statistic

Pooled effect size (95% CI) 0.833 (0.832 to 0.835) 0.833 (0.831 to 0.835)

Prediction interval, 95% 0.789 to 0.870 0.789 to 0.870

τ2 (95% CI) 0.022 (0.019 to 0.025) 0.022 (0.019 to 0.025)

D-statistic

Pooled effect size (95% CI) 1.643 (1.515 to 1.771) 1.597 (1.472 to 1.721)

Prediction interval, 95% 1.51 to 1.77 1.47 to 1.72

τ2 (95% CI) <0.0001 (<0.0001 to 0.0168) <0.0001 (<0.0001 to 0.016)

When considering discrimination alone, small τ2 values suggest that practices were reasonably

homogeneous in terms of the C- and D-statistics. Similarly, 95% prediction intervals were relatively

narrow, given the variation in case-mix that was expected, based on the different sizes and locations

of the included practices. The analyses suggest that, were the Fine-Gray model to be used in

a new GP practice (outside this external validation data), the C-statistic would be expected to
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be somewhere between 0.789 and 0.870. The prediction interval for the D-statistic was similarly

narrow, at 1.51 to 1.77.

Scatter plots in Figure 6.19 show that the majority of practices contained sufficient patients to

give precise (standard error of logit C-statistic < 0.1, standard error of D-statistic < 0.2) estimates

of discrimination, despite most falling short of the sample size requirement discussed in Section

6.3. Given this minimum sample size was calculated to target precise calibration, it seems precise

estimates of discrimination are achievable with less stringent requirements.

Confidence intervals for both discrimination metrics were narrow for the Fine-Gray and

STRATIFY-Falls models, with interval widths of only 0.003 for the C-statistic (0.831 to 0.835)

and 0.256 for the D-statistic (1.515 to 1.771) of the Fine-Gray model. Therefore, despite some

variation in discrimination performance across practices, pooled C- and D-statistics were both

precisely estimated. This is in contrast to the example in Chapter 5, where heterogeneity in model

performance across cohorts resulted in lower precision in the pooled performance estimates than

in any single cohort.
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(a) C-statistic

(b) D-statistic

Figure 6.19: Discrimination performance of the Fine-Gray model to predict falls, by their standard

errors, across GP practices in the CRPD Aurum external validation data. Blue dashed line shows

summary value, red dashed lines show the 95% prediction interval.
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6.4.5 Overall model fit

Overall model fit was assessed using Royston and Sauerbrei’s R2
D for both the Fine-Gray model

and the STRATIFY-Falls model. Table 6.8 summarises the model fit across GP practices.

Table 6.8: Summary of Royston and Sauerbrei’s R2
D across GP practices, for the Fine-Gray and

STRATIFY-Falls models on external validation

Fine-Gray model STRATIFY-Falls model

R2
D

Range 21.3 to 91.4 21.6 to 91.4

Median (LQ-UQ) 39.9 (36.4 to 43.8) 38.6 (35.4 to 42.4)

Mean (SD) 40.8 (0.07) 39.4 (0.07)

Overall model fit by R2
D for the Fine-Gray model varied considerably across GP practices, with

values ranging from 21.3 to 91.4 on the 0-100 scale, suggesting exceptionally good performance in

some practices, and relatively poor performance in others. This range was most notable among

the smaller GP practices, where R2
D would have been estimated with larger uncertainty, with

estimates becoming more stable across larger the practices. Overall, half of practices gave an R2
D

value in the range 36.4 to 43.8.
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Figure 6.20: RD
2 of the Fine-Gary model to predict falls, by GP practice size in the CRPD Aurum

external validation data.
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6.4.6 Net benefit

Decision curve analysis of the Fine-Gray and STRATIFY-Falls models indicated potential net

benefit of using either model to predict 10-year falls risk, based on the pre-specified treatment

decision threshold of 10% (Figure 6.21). Basing clinical decisions on either model with a 10%

threshold probability yielded a benefit over the two alternative, model-blind strategies: altering

care for all patients, for example by introducing falls prevention measures, which may include

deprescribing of antihypertensives; and usual care for all patients (not introducing falls prevention

measures or changing treatment.

Figure 6.21: Decision curve analysis showing net benefit of using STRATIFY-Falls models across

different threshold probabilities for assigning treatment
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Benefit over other strategies was evident when using a treatment decision threshold of 7% or

higher from the Fine-Gray model, or a treatment decision threshold of 6% or higher from the

STRATIFY-Falls model. Curves were reasonably consistent with one another over the full range

of threshold probabilities, though suggested that, on average over all GP practices (without

accounting for clustering), the recalibration in the development data resulted in slightly improved

net benefit for the STRATIFY-Falls model over the 0.1 to 0.2 range when assessed on external

validation.
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6.5 Discussion

6.5.1 Summary of key findings from this chapter

This chapter demonstrates the methods used in the external validation of a clinical prediction

model for the risk of a serious fall within ten years of being indicated for antihypertensive

treatment. Meta-analysis methods (as discussed in Chapter 5) were used to summarise model

performance across populations, while assessing heterogeneity in model performance across GP

practices, given the external validation cohort comprised routinely collected information from

patients at 738 different GP practices.

Methods to calculate the appropriate sample size needed to accurately assess the predictive

performance of this survival model were also demonstrated. Though the derivation of these

methods does not form a part of this thesis, they form an extension to the calculations proposed in

Chapter 4, and were developed and published as a part of a wider research team subsequent to that

work [93]. When identifying the sample size value to test in subsequent iterations, two methods

were trialled: a simple linear interpolation and a Newton’s divided difference interpolation. Given

the increased complexity in the Newton method, without a corresponding increase in efficiency,

the linear interpolation approach was preferred for guiding this iterative approach to sample size

calculation.

In this applied example, the sample size calculation suggested a minimum of 11,385 patients

(approximately 991 serious fall events) were required to target precise estimates of the model’s

calibration performance. External validation data comprised information on patients from multiple

different GP practices across the UK, many of which individually failed to meet the required
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sample size for this external validation. Though the size of the external validation data overall

surpassed this requirement by a considerable margin, only 14.5% of individual GP practices

contained the required minimum number of falls events at 10 years.

Prediction intervals from meta-analyses across practices gave an indication of how well the models

would be expected to perform in a new practice, outside the external validation population, helping

to inform decisions on whether the model was suitable for implementation in practice. In this

clinical example, the prediction intervals were relatively narrow across discrimination performance

statistics, suggesting that the model’s ability to discriminate between those with and without a

serious fall would be consistent in a new practice from a similar population. Thus, the narrow 95%

prediction intervals around pooled estimates for discrimination measures (C-statistic: 0.789 to

0.870, D-statistic: 1.51 to 1.77) gave reassurance that that the high level of discrimination would

likely also be seen if the model were applied in a new setting.

In contrast, calibration performance was highly variable across practices, with wide prediction

intervals for O/E in both the Fine-Gray (1.139 to 2.484) and STRATIFY-Falls (1.284 to 2.638)

models. These intervals suggest that both forms of the model would likely under-predict the risk

of serious falls if applied in a new but similar setting, though the extent of under-prediction is

unclear. High heterogeneity was also seen in calibration curves across GP practices, with large

amounts of variation in the level of under-prediction seen across sub-populations.
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6.5.2 Strengths and limitations

The sample size calculation methods used in this chapter are not meant for use in a case with

competing risks, and as such incorporates only the survival distribution for falls events (along

with the censoring distribution) without allowing for the competing event of death. The data

generating mechanism in the simulation process in Figure 6.2 would become more complicated

if the competing risk were included, requiring additional information on both the distribution

of times until the competing event, and on correlations between the risks of each event. While

methods have been proposed for the simulation of data with competing risks [254], this alteration

to the methods proposed by Riley et al 2021 [93] is beyond the scope of this thesis, though is an

important consideration for future research.

In this model, drug treatments were defined as binary variables based on the presence of a

prescription within the year before model application, without accounting for any changes to

drugs during follow-up. This approach is known as “landmarking”, with the treatment variables

being considered only at a fixed point in time (the landmark), and the value of the predictor

at the landmarking time being treated as a time-fixed covariate. Given the long time-frame for

prediction, not allowing for the time-varying nature of treatment could have a substantial affect on

the predicted risks obtained from the model. One alternative approach to account for important

variations in prescriptions over time includes combining information across multiple landmarking

times, by stacking landmark datasets and stratifying analyses by the times when treatment

variables were reassessed (with corrections to the calculations of standard errors for repeated use of

the same patients’ data) [255]. However, this method would be highly computationally intensive,

given the size of the model development and external validation datasets at just a single landmark

(1,772,600 and 3,805,366 patients respectively).
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Another option would have been to use multi-state modelling to account for time-varying

treatments. In this approach, outcome probabilities are calculated based on transition rates

between different “states”, which describe the covariate position a patient occupies at any given

time (for example, being prescribed an antihypertensive or not). Transitions between states may

be two-way, where patients can move back and forth over time (such as starting and stopping

different treatments); one-way, where there is no return to the prior state once the transition

has occurred (diagnosis of a chronic comorbidity); or absorbing, where it is not possible to leave

the state after transitioning to it (death, either related to a fall or as a competing event). A

key drawback to the use of multi-state models in this example is that they would need to be

formed under the Markov assumption: that transition rates depend only on the current state

(current prescribed treatments at the point of prediction) and not the patient’s history of state

transitions. This assumption is unlikely to hold in practice, as the sequence of prescriptions in a

patient’s history is likely to be just as informative as their current prescription status, if not more so.

In the chapter, assessments of predictive performance were made across a range of GP practices,

giving an opportunity for insight into the expected spread of performance across sub-populations

with different case mix and outcome prevalence. The values of all performance measures varied

considerably among smaller practices, with more consistency as practice sizes increased. This

higher variation in small practices demonstrates both true variations in model performance and

higher levels of uncertainty in the estimates derived in practices with small sample sizes. One likely

source of the heterogeneity in model performance is differences in 10-year incidence of falls across

the tested GP practices, which may have stemmed from differences in demographic composition,

or different standards of care or availability of falls prevention programmes across different areas
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of the UK.

Heterogeneity in baseline risk can lead to a lack of transportability of a model across different

populations, resulting in systematic miscalibration. In such situations, model performance can

often be improved by simple recalibration procedures [63]. Recalibration is the process of updating

the model to tailor it to the population of interest and, in its simplest form, involves re-estimation

of the model’s intercept, or baseline risk term. The variation in the calibration performance of

the STRATIFY-Falls models could have been substantially reduced if the CIF (in the Fine-Gray

model), and the intercept term (STRATIFY-Falls model) were tailored to individual practices,

to better represent the average falls risk in the given sub-population. It is worth noting, though,

that these procedures would result in a new model for each practice, that had not been externally

validated, thus the appropriateness of application in new individuals without further evaluation

should be carefully considered.

Thus, there was potential for local recalibration of the STRATIFY-Falls model to specific

sub-populations, to maximise calibration performance and the opportunity for patients to benefit

from more accurate, tailored risk estimates. Though this approach to model updating was

beyond the scope of the STRATIFY work programme, these methods were considered further

and implemented in subsequent research into the risk of serious falls in a wider, frail population [99].

6.5.3 Conclusions and next steps

Big data from EHR offer great opportunities to more closely examine the performance of a

clinical prediction model across populations. However, IPD meta-analysis techniques are key for
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assessment of heterogeneity and to adequately account for differing predictive performance in

the presented summaries. The use of a national GP database for external validation, provided

the opportunity to assess heterogeneity across the different GP practices, where different model

performance was expected. This analysis shows the power and importance of the appropriate

consideration of heterogeneity in model performance, over-and-above what was shown in the

previous chapter.

While the sample size in this applied example far exceeded the minimum requirement for

the external validation of the STRATIFY-Falls model, the data comprised a combination of

sub-populations, the majority of which did not meet the requirement in isolation. Heterogeneity

in model performance across GP practices was high, in particular regarding the extent of

miscalibration. Model updating would likely be required before these models could be considered

for application in new settings, at a minimum involving recalibration of the baseline CIF and

intercept terms to better account for baseline falls risk in specific sub-populations.

Thus, given populations within national settings vary considerably, consideration of model

suitability is important not only on average, but within a variety of patient subgroups, such

as those defined geographically through GP practice registration. Where such subgroups are

represented in the validation data only in small numbers, with higher uncertainty in performance

estimates, caution should be taken in the assumption that a model that performs well overall is

suitable for application in the general population.

296



CHAPTER 7

Chapter 7: Discussion
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7 Chapter 7: Discussion

7.1 Overview of thesis

Each year, thousands of prediction models are published in the medical literature, cementing

prediction modelling as a core component of research in healthcare. Following a recent surge in

interest in the topic during the COVID-19 pandemic [1], it is clear that the general quality of

prediction research remains sub-standard, despite the publication of the PROGRESS partnership

recommendations over 10 years ago [3, 4, 5, 6].

When appropriately accurate and precise, prediction models hold great potential for improving

clinical decision making [186, 256]. Clearly, prediction modelling research has the potential to offer

considerable clinical benefit, through the opportunity to enhance shared decision making, facilitate

clinician-patient communication, and inform personalised care. Equally, poorly performing models

have the capacity to cause considerable harm to individuals, for example if use of the model

leads to an invasive treatment being used unnecessarily, or to advantageous treatments being

wrongly withheld. Thus, the use of inappropriate or sub-optimal statistical methods is a real

concern, leading to a gap between the potential and realised impact of research on patient outcomes.

Building on the PROGRESS recommendation to improve choice and implementation of statistical

methods within prognosis research, this thesis has centred around the demonstration and

development of leading methods for research involving clinical prediction models [5]. In particular,

the research included here has revealed current practice and possible impacts of dichotomisation

of continuous outcomes; demonstrated the importance of sample size consideration in the external

validation of prediction models with continuous outcomes; and shown the impact of heterogeneity
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in model performance on the precision of predictive performance estimates in clustered data.

Furthermore, the preceding chapters have shown the implementation of robust statistical methods

in prediction-based projects in clinical areas including musculoskeletal pain [91], pregnancy

complications [109], and hypertension [97].

This final chapter gives a short summary of the chapters included in this thesis, followed by

outlining the publications resulting from this body of work. Areas of contribution to the prediction

modelling literature are discussed, for both methodological approaches and clinical applications,

followed by suggestions of further projects that has been sparked by the analyses reported here.

It concludes with a summary of strengths and limitations of this thesis as a whole, along with

recommendations for future research involving prediction modelling in healthcare.

7.1.1 Summary of thesis chapters

Chapter 1 introduced key statistical concepts for the development and validation of clinical

prediction models, including the different modelling methods often employed in the development

of prediction models with outcomes of different types, and important considerations for evaluating

the performance of a prediction model.

Chapter 2 described a review of recently published models for predicting Fetal Growth

Restriction (FGR), demonstrating how the continuous outcome of birthweight is commonly

dichotomised in practice, and how there is often a lack of any justification offered by authors for

their choice of outcome treatment.
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Chapter 3 discussed the development and validation (both internal and external) of prediction

models for a patient’s anticipated pain intensity outcomes following a primary care consultation for

NLBP. Of particular interest was the comparison models’ predictive performance when modelling

pain intensity as a continuous versus a binary outcome variable, in a clinical scenario where the

binary outcome had no notable clinical benefit above a continuous outcome at implementation.

This chapter further demonstrated a method proposal for how a model for a continuous outcome

(such as pain intensity) could be used to make subsequent predictions of the probability of a

dichotomised outcome, comparing these probabilities to those gained from a logistic model, where

the binary outcome was modelled directly.

Chapter 4 proposed closed-form solutions to calculate the minimum sample size required when

externally validating a clinical prediction model with a continuous outcome, to ensure sufficient

precision around key performance statistics. This proposed method was demonstrated, walking

through a calculation for the sample size required to ensure precise estimates in the external

validation of a model to predict fat-free mass in children and adolescents.

Chapter 5 described the external validation of published prognostic models identified in

Chapter 2, in particular evaluating one model to predict continuous birthweight as a proxy

for the risk of delivering a growth restricted baby. External validation was conducted using

IPD meta-analysis methods to combine model performance estimates across multiple cohorts,

demonstrating heterogeneity in the accuracy of this birthweight prediction model across different

populations.
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Chapter 6 discussed the use of routinely collected data to externally validate a model to predict

the risk of a serious fall (resulting in hospitalisation or death), in those eligible for antihypertensive

treatment in a primary care population. IPD meta-analysis methods were further employed to

show the variability in model performance across GP practices, demonstrating how precise overall

estimates of model performance masked highly variable performance in settings with differing

case-mixes.

7.1.2 Publications arising from this thesis

This thesis has lead to a number of publications, as a direct output of the research discussed here

as well as from related, follow-on projects. These publications are summarised in Table 7.1.

In particular, first-author journal articles relating to the clinical applications discussed in Chapters

3 [91] and 6 [97], and from the sample size methodology discussed in Chapter 4 [92], have been

published in Physical Therapy, BMJ, and Statistics in Medicine, respectively. Copies of these

publications have been included as appendices to the relevant chapters.

Notable publications from extensions of the methodology work discussed in this thesis include

co-authorship on sample size guidance for the external validation of both binary [95, 94] and

time-to-event outcome models [93], an article discussing instability in prediction models developed

on different sample sizes [182] and a three-part BMJ series on Evaluation of Clinical Prediction

Models, including a paper on sample size recommendations [257, 258, 96].
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7.2 Areas of contribution to prediction modelling research

This thesis has contributed to both applied and methodological research in the field of prediction

modelling. The findings and recommendations for each research contribution are presented in

the discussion section of individual chapters, and the key methodological and clinical areas of

contribution are now considered once more below.

7.2.1 Methodological approaches

Development of prediction models with a continuous outcome

The literature review described in Chapter 2 demonstrated current modelling preferences for

just one clinical scenario where the prediction of a continuous outcome is important to inform

patient care. In reality, continuous outcomes are relevant across the whole spectrum of clinical

areas, with this thesis demonstrating examples in maternal, musculoskeletal, and metabolic health

(birthweight, pain intensity score, and fat-free mass, respectively). Prediction models that fail

to keep continuous outcomes on their continuous scale may suffer from loss of information and

reduced power to detect predictor effects, thus avoidance of unnecessary dichotomisation is crucial

[106, 102, 103].

The method proposed in Chapter 3, for generating predicted probabilities from the output from

a linear regression model, could allow researchers to make maximum use of their development

data at the modelling stage, while still allowing the dichotomisation of a continuous outcome to

facilitate clinical decision making, if desired. This proposal could be beneficial to research in any

clinical setting where outcomes of interest are on (or are formed from) a continuous scale. The

proposed calculation can be applied post-modelling, meaning that there is no need to dichotomise

a continuous outcome prior to prediction. Reserving the choice of cut-point until after the model
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development means that continuous outcome models could then be applicable in a much wider

range of populations. For example, where cultural differences contribute to different conventions

around the interpretation of pain intensity, a different cut-point in pain score might be more

relevant in identifying those in a high amount of pain.

External validation of prediction models with a continuous outcome

Conclusions on whether a prediction model is suitable to help inform clinical practice are often

drawn on the basis of the model’s performance in data from just a sample of the population where

the model might be used. Clearly, accurate estimation of the model’s performance here is vital, as

imprecise estimation from assessment in only small samples of patients could lead to inappropriate

decisions on whether or not to use the model in new patients. However, sample sizes used for

external validation are often too small to provide reliable conclusions about a prediction model’s

performance [23, 20, 74].

Chapter 4 introduced new criteria to inform the minimum sample size needed for external validation

of a clinical prediction model with a continuous outcome. The aim of these proposed criteria was

to ensure their external validation gains sufficiently precise estimates of key performance measures,

to ensure researchers can have confidence in the model’s predictive ability. The proposed sample

size calculations are closed-form, so are quick and easy to implement, and could be used by

researchers to help improve the quality of external validation studies across all clinical areas. The

paper associated with this work [92] has been cited 69 times as of 4th June 2024, and the work

has been embedded in the pmvalsampsize package in R and Stata, allowing users to easily apply

the method [260]. Calculation methods are also easily adapted to estimate the expected precision
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in estimates based on a fixed sample size for external validation, allowing researchers to gauge

expected precision of estimates prior to analysis, for example to inform grant applications.

External validation of prediction models with a survival outcome

Chapter 6 demonstrated the potential of pseudo-values as a complete, continuous representation

of the risk of a survival outcome, where the observed data is incomplete due to right censoring or

competing risks [251, 245]. The value of pseudo-values in the assessment of survival data is known,

and their benefit in terms of improved plotting over traditional survival analysis approaches is

acknowledged [242, 244, 248]. The potential of pseudo-values in the validation of prediction model,

in particular in the assessment and visualisation of calibration performance, are not yet widely

established.

Traditional approaches to the plotting of observed survival have involved sub-grouping data [261],

which is inefficient and looses information at the individual level [101]. Alternative calibration

plots for survival outcomes, based on the pseudo-values for observed risk (as demonstrated in

Chapter 6 of this thesis, and the associated publications), could be used in the future to allow

smoothed calibration curves across all individuals, giving a more complete view of a model’s

calibration performance.

External validation of prediction models in clustered data

Chapters 5 and 6 of this thesis have demonstrated the potential for IPD meta-analysis methods

to increase the potential for insight into model performance, and in particular the heterogeneity of

performance, across different populations[67, 63]. In cases where the available samples for external
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validation are small, combinations of records from different sources can vastly boost the available

sample size [63]. In such cases, however, it is possible that the increased sample size will not lead

to increased precision in summary estimates of predictive performance, due to heterogeneity in

model performance across populations. This imprecision in pooled estimates should not be seen

as a limitation of the external validation, and instead be recognised as an artefact of differing

case-mixes and outcome prevalences within clusters.

When assessing model performance in large populations, for example at a national level,

performance summaries across the whole population might hide important variations in the

predictive ability of the model across distinct subpopulations. Heterogeneity in model performance

across sub-groups, for example across geographical regions defined by GP practice, should be

considered and appropriately visualised. Where a model is intended to be applied in practice,

adequate and precise estimates of performance on average should not be assumed to mean that

the model is equally applicable in all sub-populations. Where analysis suggests heterogeneity in

model performance across clusters, tailoring of the model to the local setting (for example, through

re-estimation of the baseline risk or value of the outcome) should be considered [262, 59].

7.2.2 Clinical applications

While the research contributing to methodological chapters could be beneficial to any clinical area,

the particular applied research areas benefiting from this thesis include:

Fetal growth restriction

Chapter 2 revealed a lack of prediction models currently available in the literature for predicting

a clinically acceptable definition of FGR. Most binary outcome models simply dichotomised
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birthweight, defining their outcome based on either the 10th of 5th percentile as a cut-point.

Not only does this definition fail to capture the pregnancy and birth complications indicative of

FGR, but is a highly inefficient way to model a continuous outcome [106, 102, 103]. Prediction

of birthweight on a continuous scale was found to be rare in the literature, as was justification of

authors’ choice on how to treat this outcome variable in their modelling.

Where possible, performance of published prediction models on external validation was assessed

and compared using IPD from cohorts within the IPPIC collaboration data collection [109].

Of the models identified, none adequately met the binary FGR definition provided by clinical

collaborators. Thus, this chapter lends support to calls for better standardisation of the definition

of FGR used in a research setting, to more better reflect true growth restriction rather than just

normal levels of smallness in a healthy baby.

Of the models predicting birthweight on its continuous scale, 11 were excluded from the external

validation analyses due to containing variables (or combinations thereof) that were not present

in the available IPD. Given the data included in the IPPIC collaboration data collection was

extensive, containing information on around 3 million pregnancies in total from 14 UK and

66 international datasets, it was disappointing that so many of the reported models included

predictors were not represented. This is suggestive of models including variables that are not

routinely recorded, which would likely negatively impact their usability in practice. Though

factors such as biparietal diameter, or birthweight from previous pregnancies, might contribute

strongly to predictions on model development, further consideration of more widely measured

clinical predictors could be beneficial, especially if models are to be used in resource poor settings.
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In the external validation discussed in Chapter 5, the birthweight prediction model was well

calibrated on average. However, large amounts of individual-level variation in birthweight were

not adequately represented by the model predictions. Thus, it was concluded that the current

literature was lacking in an acceptable model for the prediction of FGR, either directly or through

use of birthweight as a proxy. Future research, therefore, aimed to build on this model to develop

and validate new prediction models for identifying the risk of delivering a growth restricted baby.

An updated model for the prediction of birthweight was also considered, in an attempt to improve

calibration on the individual level.

Neck and/or low back pain (NLBP)

Chapter 3 demonstrated an application of model development and validation methods for the

continuous outcome of future pain intensity, in a NLBP population. This applied example aimed

to contribute to improved communication and treatment matching for patients consulting with

NLBP, through predictions of pain on both the continuous and a dichotomised scale [91]. This

research formed a part of an international body of work, aiming to develop varied digital health

technologies to support decision making for those consulting with NLBP [164].

Visualisations based on the prediction models developed within this chapter were incorporated

into an online demonstrator, to allow clinicians to see patient predictions for hypothetical

individuals and to give their feedback on their usability. Future research will include reporting

on the acceptability of the prediction visualisations to both clinicians and patients, to inform

improvements to the layout and usability of this decision support tool. At present, however, the

prediction models themselves are not yet adequate for clinical use at the point of consultation,
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and will not be used in patients. Further research is planned to update and hopefully improve

the prediction models through inclusion of non-modifiable risk factors. External validation in

additional, larger datasets would also reduce uncertainty in predictive performance estimates

and to inform the need for updating to local settings, for example through tailored recalibration [59].

Adverse events following anti-hypertensive medication

Chapter 6 discussed the external validation of a model for the prediction of hospitalisation or

death associated with a serious fall [97]. The clinical example formed a part of a larger body

of work, the STRAtifying Treatments In the multi-morbid Frail elderly (STRATIFY) project,

aiming to develop and externally validate prediction models for adverse events associated with

antihypertensive medication in frail older adults [13, 98]. The overall aim of this project was to

allow targeted treatment in those with an indication for antihypertensive medication, tailoring

prescribed medications to those who are least likely to experience harm from associated adverse

events [6].

The STRATIFY-Falls model could be used in future to aid primary care doctors in the assessment

of falls risk, using data that is routinely available in electronic health records [263, 264]. For

individuals with a high risk of a serious fall but a low risk of cardiovascular disease [265], clinicians

might consider whether new or continued antihypertensive treatment is still appropriate. Though

miscalibration was noted in higher risk individuals the external validation, under-prediction in this

clinical setting was deemed to be of minimal concern. Given the known benefits of antihypertensive

medication, clinical collaborators on this project were clear that, were the model to be used to

inform treatment changes, doctors would need to be confident that the true risk was at least at
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the indicated level, if not higher.

Further research is planned to explore the appropriate treatment decision thresholds to maximise

the model’s clinical utility and cost effectiveness, and to examine the practicality of recalibration

to local settings. Not only could tailoring the model to local settings substantially reduce variation

in the calibration performance across populations, but these measures may also eliminate the

under-prediction of falls risk seen on external validation [63, 262]. Thus, there is potential for local

recalibration to further improve calibration performance in this case, and for future patients to

directly benefit from the consideration of more accurate risk estimates to inform their treatment

options.

7.3 Further research

Building on the research discussed in this thesis, several areas have been identified as having

potential for important further research. Key areas for extensions of both the methodological and

applied projects are summarised below.

7.3.1 Methodological approaches

Treatment of continuous outcomes in prediction modelling

The methods review in Chapter 2 aimed to investigate how continuous outcomes are being

modelled in the development of prediction models, and what justification is given by researchers

for any dichotomisation of outcome variables in practice. In particular, this review focused on the

prediction of continuous birthweight as a proxy for binary FGR, thus conclusions on the regularly

of dichotomisation and the lack of justification are somewhat restricted to this clinical area.
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The current review is restricted in scope, limiting the ability to make conclusions about the

treatment of continuous outcomes in other contexts. An extension of this review into a wider

variety of clinical areas could provide further understanding of motivations behind dichotomisation

decisions across different medical specialities, and would allow scope for conclusions to be more

generally applicable. Furthermore, an update into more varied clinical areas may attract attention

from a wider audience, with potential for increased impact across the prediction modelling

literature in the future.

With regards to dichotomisation of predictions post-modelling, as proposed in Chapter 3,

the examples shown in this thesis were generally straightforward in terms of their modelling

approaches and outcome distributions. Thus, findings regarding the suitability of post-analysis

dichotomisation in reducing model instability may not extend to scenarios involving more

complicated analysis methods. Future work will include testing the methods more thoroughly

across a range of simulated scenarios, to assess stability [182, 181] and performance of clinical

prediction models with dichotomised continuous outcomes, and to identify situations where the

suggested transformation to the probability scale might not be appropriate.

Furthermore, the proposed probability generation methods are highly reliant on the underlying

assumptions of linear regression [30], and do not allow for alternative methods of predicting

outcomes on a continuous scale. In particular, the method stems from the linear regression

requirement for normally distributed residuals and for constant error terms across different

observed outcome values [30, 191]. Further research is also needed to investigate the suitability

of these methods to generate probabilities from a continuous outcome prediction where data do
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not meet the assumptions, and where linear regression models are not necessarily appropriate.

Understanding how to link the approach to conformal prediction methods would also be important,

where the uncertainty of predictions is summarised using distribution-free approaches [266].

Extension of sample size calculations for external validation

Important extensions of the work in Chapter 4 include assessment of the necessary sample size

for external validations of prediction models with non-continuous outcomes, building on the work

of others in this area [76, 172]. Such calculations were investigated as a part of a wider research

team. As mentioned in Chapter 4, subsequently published simulation-based extensions to binary

[95] and time-to-event [93] outcome settings, and approximate closed-form solutions for a binary

outcome model [94], are now available to help researchers externally validating prediction models

with these outcome types. Future work might also consider an extension of the proposed criteria

to include precise estimation of calibration curves [79, 188], which was not considered in Chapter

4, nor in subsequent publications.

As with many new statistical methods, ease of implementation can be a barrier to use of the

approach in practice. User-friendly software to simplify the application of such approaches

therefore facilitates their implementation. Thus, to encouraging adoption of the sample size

calculation proposed in Chapter 4, software that is easy to use and freely available is key, and

was intended as a follow-up to this chapter. These methods were incorporated instead into the

freely available pmvalsampsize package in Stata and R [260, 267], along with methods for the

calculation of the minimum sample size required to externally validate a prediction model with a

binary outcome mentioned above.
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In recent years, there have been an increasing number of published prediction models being

attributed to machine learning methods though these are often of poor quality [20, 74]. Sample

size recommendations for external validation must be suitable for use with models of this type,

in addition to more traditional regression-based models [23]. Further extensions to sample size

criteria are planned to consider precision in estimates of cut-off-based performance metrics more

commonly used in machine learning research (including precision, recall, and F1 score), and

whether the amount of data required to precisely estimate these is higher than that required for

precise estimation of, for example, calibration.

7.3.2 Clinical applications

Prediction of FGR with complications in pregnancy

Following the literature review in Chapter 2 and external validation of existing models discussed

in Chapter 5, it was concluded that the current literature was lacking in an acceptable model for

the prediction of FGR, either directly or through use of birthweight as a proxy. The next steps of

this research project, therefore, were to develop and externally validate a new prediction model

for identifying the risk of delivering a growth restricted baby (as defined in the previous chapters),

using data from the IPPIC collaboration data collection.

The planned model development combines IPD meta-analysis methods with multiple imputation,

variable selection, and assessment of non-linear predictor-outcome relationships, while an

internal-external cross-validation (IECV) approach was used for model validation [67, 109, 56].

The aim of this new model development was to allow predictions conditional on some assumed
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gestational age at delivery, allowing assessment of anticipated FGR risk or continuous birthweight

if a baby were to be born at various different stages of gestation. Although the observed gestational

age at delivery would not be available at the moment of prediction, producing the models in this

way allowed for a range of potential gestational ages at delivery to be assessed for each pregnancy,

with plots of predictions against gestational age to give a more complete assessment of risk over time.

Before any birthweight or FGR prediction model is deemed suitable for use to identify high risk

pregnancies that would benefit from increased monitoring, further assessment will be required to

further consider the clinical utility and cost effectiveness of the model, and the implications of its

use in practice.

Prediction of adverse events in antihypertensive-eligible populations As mentioned in

Chapter 6, the prediction of serious falls risk was just one outcome of interest within a larger body

of work, developing and external validating models to predict hospitalisation or death within 10

years of antihypertensive treatment being indicated. The next steps of this project involve further

research to develop and externally validate models for other adverse events known to be associated

with antihypertensive medications [13].

Thus far, the development and external validation of a model to predict acute kidney injury have

been published in the British Journal of General Practice [98]. Further models concerning the

risk of fractures, hypotension, and syncope have each been developed and externally validated in

UK-based EHR, with a paper reporting these three models currently being under review. The

external validation of two further models to predict the risks of different electrolyte abnormalities
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is currently underway, with the ability of models to predict risks of both hyperkalaemia and

hyponatraemia being assessed across GP practices.

7.4 Recommendations for future research

The work included in this thesis has lead to a number of recommendations that could contribute to

improved quality in research involving prediction modelling in a healthcare setting. In particular,

these relate to the prediction of a continuous outcomes and to methods for external validation, as

discussed below.

� As with the dichotomisation of continuous predictors, the dichotomisation of continuous

outcomes prior to modelling is not recommended. Continuous outcomes are better modelled

on their continuous scale, to allow predictions of continuous values that retain a more

complete picture for informing decisions. In the case of cut-points being desired for clinical

decision making, dichotomisation after modelling on the continuous scale would be preferable.

� Accurate estimation of the model’s performance on external validation is vital, as imprecise

estimation could wrongly influence decisions on whether or not to use the model in new

patients. Assessments of whether a prediction model is suitable to inform clinical practice

should be based on validation in data that is large enough to precisely estimate all key

measures of predictive performance.

� Small samples for validation may not be suitable in isolation, but are highly valuable
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if analysed along with other datasets in an IPD meta-analysis of model performance,

though heterogeneity in the predictors recorded across studies may hamper intended IPD

meta-analyses by limiting which models can be externally validated. Where researchers have

insufficient data to accurately assess model performance, they should consider contacting

other researchers in the same clinical area to identify additional data resources that

could contribute to a more thorough model evaluation. Researchers should also embrace

opportunities to contribute their own data to future IPD meta-analyses, by making their

own datasets available to others.

� When externally validating a prediction model across different settings, researchers should

examine and embrace the heterogeneity in model performance. Clinical prediction models

should be expected to perform differently in different populations and among different

subgroups, thus heterogeneous performance should not be considered a drawback of the model

or of the validation analyses. In particular, researchers should ensure that they thoroughly

investigate differential model performance, especially where differences might increase health

inequalities. Where a model is intended to be used in a variety of individuals, adequate and

precise estimates of performance on average should not be assumed to mean that the model

is equally applicable in all sub-populations.

7.5 Concluding remarks

Building on previous work in a range of clinical settings, this thesis has explored opportunities

to improve the quality of research in the prediction modelling field, in particular relating to the

modelling of continuous outcomes and the external validation of prediction models in small or

clustered data. Many challenges remain in the field of clinical prediction modelling in healthcare,

317



and methodologists will continue to play a critical role in addressing them and educating better

practice going forwards.
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Abstract

Objective. The purpose of this study was to develop and externally validate multivariable prediction models for future pain
intensity outcomes to inform targeted interventions for patients with neck or low back pain in primary care settings.
Methods. Model development data were obtained from a group of 679 adults with neck or low back pain who consulted a
participating United Kingdom general practice. Predictors included self-report items regarding pain severity and impact from
the STarT MSK Tool. Pain intensity at 2 and 6 months was modeled separately for continuous and dichotomized outcomes
using linear and logistic regression, respectively. External validation of all models was conducted in a separate group of 586
patients recruited from a similar population with patients’ predictor information collected both at point of consultation and
2 to 4 weeks later using self-report questionnaires. Calibration and discrimination of the models were assessed separately
using STarT MSK Tool data from both time points to assess differences in predictive performance.
Results. Pain intensity and patients reporting their condition would last a long time contributed most to predictions of future
pain intensity conditional on other variables. On external validation, models were reasonably well calibrated on average when
using tool measurements taken 2 to 4 weeks after consultation (calibration slope = 0.848 [95% CI = 0.767 to 0.928] for 2-
month pain intensity score), but performance was poor using point-of-consultation tool data (calibration slope for 2-month
pain intensity score of 0.650 [95% CI = 0.549 to 0.750]).
Conclusion. Model predictive accuracy was good when predictors were measured 2 to 4 weeks after primary care
consultation, but poor when measured at the point of consultation. Future research will explore whether additional,
nonmodifiable predictors improve point-of-consultation predictive performance.
Impact. External validation demonstrated that these individualized prediction models were not sufficiently accurate to
recommend their use in clinical practice. Further research is required to improve performance through inclusion of additional
nonmodifiable risk factors.

Keywords: Back Pain, External Validation, Neck Pain, Prediction Model Development, Targeted Interventions
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2 Predicting Future Pain: Neck and/or Low Back Pain

Introduction

Despite substantial research focused on improving patient
outcomes in those with neck and/or low back pain (NLBP),
the impact of these conditions persists and they are among
the top 10 reasons for overall disease burden in terms of
disability-adjusted-life-years.1 Although most NLBP episodes
are not long-lasting, the proportion of people for whom these
symptoms develop into disabling problems is growing.2 The
task of improving first contact treatment for such a large pub-
lic health problem is an international priority,3 particularly
among low-income and middle-income countries where the
disease burden is rising fastest.4

This research builds on epidemiological studies, which have
consistently highlighted that the transition from acute NLBP
episodes into persistent NLBP can be predicted.5,6 In addition,
the use of risk stratification tools to discriminate between
risk subgroups to better match initial treatment7,8 has
demonstrated advantages to first contact treatment decision-
making3,9 and is, therefore, recommended by international
guidelines.10–12

A key next step is not only to stratify individuals into
subgroups based on prognostic information, but to also
develop and validate individual patient prediction models and
to produce communication aids for consultations, including
clear visualizations of predictions. Accurately predicting an
individual’s future pain intensity scores may allow for the
development of clinician decision support tools that enable
more tailored, individualized clinical care. Existing tools, such
as the Keele STarT Back risk stratification tool,8 determine
risk subgroups but do not predict an individual patient’s
future pain intensity outcomes, which could be used to
shape patient and clinician expectations and lead to more
personalized health care.

Existing prediction tools for patients with NLBP have been
developed using data collected through self-report question-
naires or interviews, often after first presentation in primary
care, rather than during the consultation where most of these
tools are intended to be used.7,13,14 It is important to under-
stand to what extent predictions based on such data align
with predictions based on information collected by clinicians
during a routine consultation.

This research forms part of a larger body of work, devel-
oping digital health technology for first contact consultations
to support clinical decision-making for patients with NLBP
based on individual outcome predictions, as part of a
Horizon 2020 European research program (http://backup-
project.eu/).15 This incorporates the Keele STarT MSK Tool
(www.keele.ac.uk/startmsk), which predicts poor outcomes
in patients in primary care settings who are consulting
due to musculoskeletal pain,16 alongside a set of recom-
mended risk-matched treatment options developed through
consensus.9,17,18

In the present study, we used predictor items that were
agreed to be clinically relevant during the forming of the
Keele STarT MSK Tool to develop new models to predict an
individual’s future pain intensity. We report on the develop-
ment, internal validation, and external validation of prognos-
tic models to predict 2- and 6- month pain intensity score,
which was also modeled when dichotomized as low/moderate-
high pain intensity. We explored the predictive performance
of these models in external data, using predictor information
collected at 2 distinct time points: during the consultation

and through patient self-report questionnaires collected 2 to
4 weeks afterwards.

Methods

Source of Data

For this study, secondary analysis of data from 2 existing
datasets, the Keele Aches and Pains Study (KAPS)16 and the
STarT MSK Pilot Trial (STarT MSK-pilot),9 was combined
for model development and internal validation, while external
validation of the prediction models was conducted in patients
from a third existing dataset: the STarT MSK Main Trial
(STarT MSK-MT).18 Eligible patients were defined in the
same way in all 3 datasets: those aged 18 and over, consulting
at a participating general practice with musculoskeletal pain.
The present study included only the subset of patients who
consulted with NLBP. Further details of the datasets used in
these analyses are included in Supplementary Appendix I.

Outcome Definitions

The outcome was future pain intensity score, which was
measured at 2- and 6-month follow-up, through participants’
self-reported response to the question “How intense was your
pain, on average, over the last 2 weeks? [Responses on a 0-10
scale, where 0 is ‘no pain’ and 10 is ‘worst pain ever’].” This
score was modeled continuously and separately as a binary
outcome, dichotomized as 0 to 4 (low pain intensity) versus
5 to 10 (moderate-high pain intensity). A cut-off of 5 on a 0–
10 numerical rating scale to indicate at least moderate pain
intensity has been reported previously in the literature19–21

and was considered clinically meaningful by the physical
therapists in the research team (ie, was considered to be the
most appropriate cut-point to group patients into those with
good pain intensity outcomes [score of 0 to 4] and those with
poor pain intensity outcomes [5 or more]).

Predictors

The 10 items from the Keele STarT MSK Tool were considered
as predictors in all models (Tab. 1). These were pain intensity
(on a scale from 0 to 10), pain self-efficacy, pain impact,
walking short distances only, pain elsewhere, thinking their
condition will last a long time, other important health prob-
lems, emotional well-being, fear of pain-related movement,
and pain duration.16 No statistical selection was conducted,
as these predictor variables had all been considered clinically
important during the development of the Keele STarT MSK
Tool.16 We included the additional predictor of primary pain
site (back or neck pain) as this was identified through dis-
cussion with the wider research team as being potentially
clinically important for both accurate prediction and face
validity.

Predictor information was collected through a postal
questionnaire sent to patients within a few days of their
general practice consultation (KAPS, STarT MSK-pilot,
and STarT MSK-MT). For STarT MSK-MT (the external
validation data), predictor information was also collected at
the time of general practice consultation in patients in the
intervention arm, and these data were used for additional
validation analyses.

Further detail on all candidate predictors is given in Supple-
mentary Appendix IV (Tab. S1).
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Table 1. Baseline Predictor Responsesa

Model Development External Validation

STarT MSK-Pilot KAPS Total POC 2–4 Wk
n = 214 n = 465 n = 679 n = 275 n = 586

Age (at consultation, y), mean (SD) 58.2 (15.9) 54.6 (17) 55.7 (16.7) 56.6 (15.5) 58.5 (16.0)
Sex, female 134 (62.6) 267 (57.4) 401 (59.1) 167 (60.7) 353 (60.2)
Primary pain site, neck 59 (27.6) 57 (12.3) 116 (17.1) 61 (22.2) 129 (22.0)
Pain duration

<3 mo 67 (31.3) 116 (25.0) 183 (27.0) 63 (22.9) 140 (23.9)
3–6 mo 33 (15.4) 67 (14.4) 100 (14.7) 41 (14.9) 91 (15.5)
7–12 mo 29 (13.6) 33 (7.1) 62 (9.1) 33 (12.0) 70 (12.0)
Over 1 y 85 (39.7) 240 (51.6) 325 (47.9) 134 (48.7) 278 (47.4)

Comorbidities (self-reported)
Diabetes 19 (8.9) 41 (8.8) 60 (8.8) 23 (8.4) 59 (10.0)
Respiratory problem 37 (17.3) 67 (14.4) 104 (15.3) 48 (17.5) 102 (17.4)
Heart problem 65 (30.4) 118 (25.4) 183 (27.0) 75 (27.3) 171 (29.2)
Chronic fatigue 14 (6.5) 11 (2.4) 25 (3.7) 16 (5.8) 43 (7.3)
Anxiety/depression 48 (22.4) 97 (20.9) 145 (21.4) 61 (22.2) 147 (25.1)
Other 46 (21.5) 121 (26.0) 167 (24.6) 71 (25.8) 132 (22.5)

EQ5D—Usual activities
No problem 44 (20.6) 138 (29.7) 182 (26.8) 40 (14.6) 96 (16.4)
Slight problem 80 (37.4) 139 (29.9) 219 (32.3) 95 (34.6) 206 (35.2)
Moderate problem 52 (24.3) 106 (22.8) 158 (23.3) 86 (31.3) 183 (31.2)
Severe problem 28 (13.1) 60 (12.9) 88 (13.0) 38 (13.8) 70 (12.0)
Unable/extreme problem 10 (4.7) 15 (3.2) 25 (3.7) 12 (4.6) 23 (3.9)

Help to read instructions
Never 162 (75.7) 354 (76.1) 516 (76.0) 221 (80.4) 476 (82.2)
Rarely 33 (15.4) 48 (10.3) 81 (11.9) 22 (8.0) 51 (8.7)
Sometimes 9 (4.2) 36 (7.7) 45 (6.6) 19 (6.9) 32 (5.5)
Often 2 (0.9) 14 (3.0) 16 (2.4) 9 (3.3) 19 (3.2)
Always 3 (1.4) 13 (2.8) 16 (2.4) 1 (0.4) 2 (0.3)

NDI—Baseline score, mean (SD) 16.1 (8) 17.5 (8.7) 16.6 (8.7)
NDI %—Baseline score, mean (SD) 32.2 (16) 35.1 (17.4) 33.2 (17.4)
RMDQ—Baseline score, median (IQR) 9 (5–13) 10 (5–15) 9 (5–14)
STarT MSK Tool score (baseline), median (IQR) 6 (4–7) 7 (4–9) 7 (4–9) 7 (5–8) 7 (5–9)
STarT MSK Tool score subgroup (baseline)

High risk 29 (13.6) 118 (25.4) 147 (21.6) 95 (34.6) 140 (23.9)
Medium risk 105 (49.1) 176 (37.9) 281 (41.4) 120 (43.6) 273 (46.6)
Low risk 63 (29.4) 125 (26.9) 188 (27.7) 40 (14.6) 101 (17.4)

1) Pain intensity, median (IQR) On average, how intense was your
pain [where 0 is “no pain” and 10 is “pain as bad as it could be”]?

7 (5–8) 7 (4–8) 7 (5–8) 7 (6–8) 7 (5–8)

2) Pain self-efficacy Do you often feel unsure about how to manage
your pain condition?

144 (67.3) 225 (48.4) 369 (54.3) 163 (59.3) 279 (47.6)

3) Pain impact Over the last 2 wk, have you been bothered a lot by
your pain?

113 (52.8) 330 (71.0) 443 (65.2) 228 (82.9) 462 (78.8)

4) Walking short distances only Have you only been able to walk short
distances because of your pain?

117 (54.7) 248 (53.3) 365 (53.8) 143 (52.0) 344 (58.7)

5) Pain elsewhere Have you had troublesome joint or muscle pain in
more than 1 part of your body?

147 (68.7) 304 (65.4) 451 (66.4) 126 (45.8) 398 (67.9)

6) Thinking their condition will last a long time Do you think your
condition will last a long time?

154 (72.0) 315 (67.7) 469 (69.1) 211 (76.7) 477 (81.4)

7) Other important health problems Do you have other important
health problems?

81 (37.9) 183 (39.4) 264 (38.9) 88 (32.0) 242 (41.3)

8) Emotional well-being Has pain made you feel down or depressed in
the last 2 wk?

132 (61.7) 284 (61.1) 416 (61.3) 170 (61.8) 388 (66.2)

9) Fear of pain-related movement Do you feel it is unsafe for a person
with a condition like yours to be physically active?

56 (26.2) 133 (28.6) 189 (27.8) 144 (52.4) 322 (55.0)

10) Pain duration Have you had your current pain problem for
6 months or more?

114 (53.3) 219 (47.1) 333 (49.0) 121 (44.0) 345 (58.9)

aBaseline characteristics and responses to the Keele STarT MSK tool items (“As you answer these questions, think about how you have been over the last two
weeks:”) in model development and external validation data sets. Values are n (%) unless otherwise stated. EQ5D = EuroQol 5 Dimension; IQR = interquartile
range; KAPS = Keele Aches and Pains Study; NDI = Neck Disability Index; POC = point of consultation; RMDQ = Roland Morris Disability Questionnaire;
SD = standard deviation.

Statistical Analysis
Sample Size

The sample size for all analyses was fixed due to the
size of the available datasets. We compared the available
number of participants for each analysis (Fig. 1) to sample
size recommendations for developing22,23 and externally

validating24–26 clinical prediction models. Further details on
the sample size calculations are included in Supplementary
Appendix II.

Based on the anticipated inclusion of 11 predefined pre-
dictor parameters (1 continuous predictor, modeled linearly,
and 10 binary predictors), we required 311 participants for
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4 Predicting Future Pain: Neck and/or Low Back Pain

Figure 1. Patient flow summary at model development (A) and at external validation (B). KAPS = Keele Aches and Pains Study; NLBP = neck and/or low
back pain.

the development of models for continuous pain intensity
score, and at least 824 participants (with 412 “moderate-high
pain intensity” events) for binary pain intensity outcomes.
Thus, our available data exceeded the requirements for the
continuous pain intensity score model but was not enough for
the binary pain intensity outcome.

For precise estimation of model performance, we required
892 and 1946 participants to externally validate the continu-
ous and binary outcome models, respectively; thus, estimates
of predictive performance are subject to some uncertainty.

Missing Data

Multiple imputation by chained equations was used to
account for missing data in both predictor and outcome mea-
surements, under the assumption that data were missing at
random.27,28 Multiple imputation was performed separately
for each dataset to allow for the clustering of individuals
within that dataset, with the number of imputations chosen
to exceed the percentage of incomplete cases.28 Preliminary
checks for associations between missingness and predictor
values were conducted to check for obvious violations of
the missing at random assumption. Results of analyses
were pooled across imputations using Rubin rules where
appropriate.27

Model Development

Continuous pain intensity score outcomes were modeled using
random-effects linear regression, while binary outcomes of
moderate-high pain intensity were modeled using random-
effects logistic regression.29 Outcomes were modeled using
multilevel mixed-effects models to account for heterogeneity
across the 2 model development datasets, resulting in aver-
age model intercepts across the KAPS and STarT MSK-pilot
datasets.30 Models were fitted using restricted maximum like-
lihood (REML), with an unstructured variance–covariance
for the random effects on the intercept term.31 Continuous
predictors were modeled linearly on their continuous scale,
and all predictors were forced into all models.32,33

Internal Validation

Predictive performance of the developed models was assessed
through calibration for the continuous outcome models, and
through calibration and discrimination for the binary out-
come models.34 Calibration was assessed using the calibra-
tion slope, calibration in the- large (CITL), and the ratio of
observed to expected cases (O/E, for binary outcome models
only). Discrimination was assessed through the C statistic.
The proportion of variance in the outcome explained by the
predictors in each model was determined using the adjusted
R2 (or pseudo R2 for binary outcomes, using Nagelkerke and
Cox-Snell approaches).

Internal validation was conducted simultaneously for
all models, using bootstrapping with 1000 samples to
provide optimism-adjusted estimates of predictive perfor-
mance.27,29,35

The optimism-adjusted calibration slope was used as an
estimate of the uniform shrinkage factor for each model, with
regression coefficients multiplied by this shrinkage factor to
correct for overfitting.29,35,36

External Validation

Model equations for the 4 prediction models were applied
for the participants in the STarT MSK-MT data to calculate
the prediction values from each model. Predictive perfor-
mance measures were calculated, as described for the inter-
nal validation, including measures of calibration (calibration
slope, CITL, O/E ratio) and discrimination (C statistic), and
measures of overall model fit (R2 or Nagelkerke pseudo R2

for binary outcomes). Model performance was also assessed
within subgroups to check consistency in performance across
age ranges, sex, treatment group (matched treatment or usual
care), and pain durations prior to presentation.

Predictors in the STarT MSK-MT data were recorded for
each patient at 2 time points. Data on predictors were avail-
able for each participant when assessed (i) within the general
practice consultation, and (ii) after the consultation using
a self-reported questionnaire, which was returned by post
around 2 to 4 weeks after the consultation.
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Table 2. Prognostic Modelsa

Coefficients for Continuous Outcome,
Pain Score (β)

Odds Ratios for Binary Outcome,
High Pain

2 mo 6 mo 2 mo 6 mo

Pain intensity 0.236 0.269 1.23 1.26
Pain self-efficacy 0.526 0.212 1.38 1.20
Pain impact 0.859 0.632 2.33 1.40
Walking short distances only 0.447 0.934 1.57 2.37
Pain elsewhere 0.49 0.278 1.51 1.33
Thinking their condition will last a long time 1.22 1.673 2.51 3.61
Other important health problems 0.783 0.578 1.73 1.38
Emotional well-being −0.032 −0.002 0.91 1.28
Fear of pain-related movement 0.041 −0.434 1.07 0.63
Pain duration 1.029 1.129 2.82 2.19
Primary pain site −0.171 0.515 0.69 1.02

Intercept −0.304 −1.153 −4.010 −4.324
Var (intercept) 0.237 0.132 0.030 0.041

Shrinkage factor 0.975 0.982 0.930 0.938

aPrognostic models after optimism adjustment. Numbers are intercepts (α) and coefficients (β) and for continuous outcome models, intercepts (α), and odds
ratios (exp[β]) and for binary outcome models. Uniform shrinkage factors for each model were obtained through bootstrapping with 1000 replications.

The timing of risk predictors collected 2 to 4 weeks
after consultation was more similar to the recording of the
predictor variables in the model development data, while
predictor variable collection at the point of consultation
better reflects the models’ intended future use. We therefore
tested model performance for both data collection time
points to assess the validity of our assumption that the
developed models could be used in practice at point of
consultation.

Extended statistical methods are given in Supplementary
Appendix III. All analyses were performed using Stata MP
Version 16 (StataCorp). This paper adheres to the TRIPOD
checklist for the transparent reporting of multivariable pre-
diction models, see Supplementary Appendix VI.37

Role of the Funding Source

The funders played no role in the design, conduct, or reporting
of this study.

Results

Study Population
Development Data

Across the 2 model development datasets, 679 patients with
NLBP were available for inclusion in the analysis (Fig. 1A).
Patients predominantly presented with back pain (83%), with
a much smaller group presenting with neck pain (17%), and
had a median baseline pain intensity score of 7 (interquartile
range = 5–8) out of 10. Patient demographics across the 2
datasets are given in Table 1.

Table 1 also shows a summary of predictor responses.
When summarized across both model development datasets,
most patients (n = 451, 66.4%) had troublesome muscu-
loskeletal pain in more than 1 part of their bodies, with 69.1%
(n = 469) thinking their condition would last a long time. A
further 27.8% (n = 189) participants were reported a “fear of
pain-related movement.”

Few predictors’ variables showed substantial differences
(larger than 10%) in distribution between the STarT MSK-
pilot and KAPS datasets, as can be seen in Table 1. Notable

differences in predictor variable distributions included
those for pain self-efficacy (“unsure about how to manage
[their] pain condition”; STarT MSK-pilot 67.3%, KAPS
48.4%); and for pain impact (“bothered a lot by [their]
pain” in the preceding 2 weeks; STarT MSK-pilot 52.8%,
KAPS 71.0%).

External Validation Data

The STarT MSK-MT data included 586 patients with NLBP
for the external validation of the above models (Fig. 1B).
Patients predominantly presented with back pain (78%) and
had a median baseline pain intensity score of 7 (Interquartile
range [IQR] = 6–8) out of 10 reported at point of consultation,
and a median of 7 (IQR = 5–8) when reporting in the data
collected 2 to 4 weeks after consultation.

The majority of patients reported experiencing moderate-
high pain intensity at 2 months, with a prevalence of
moderate-high pain intensity at 57.7% (slightly higher than
the 49.5% prevalence seen in the development data). This
dropped to 47.1% at 6 months follow-up (44.0% for the
development data). Baseline pain intensity scores on a scale
from 0 to 10 were reported consistently across the data
collected 2 to 4 weeks after consultation (median = 7; IQR = 5–
8) and at the point of consultation (median = 7; IQR = 6–8),
with a slightly narrower spread of scores recorded at point of
consultation.

Predictors regarding pain impact and pain self-efficacy were
both reported as present in a higher proportion of patients
when collected at point of consultation, while the remaining
predictor items showed a higher prevalence when recorded 2
to 4 weeks after consultation. The largest difference was seen
for the “pain elsewhere” item, with 68% answering “yes” 2 to
4 weeks after consultation compared to only 46% answering
“yes” at point of consultation.

Model Development and Internal Validation

The final models for predicting pain intensity scores in
patients with NLBP, after optimism adjustment, are presented
in Table 2, along with the shrinkage factor estimated via
bootstrapping. Detailed results from the internal validation
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6 Predicting Future Pain: Neck and/or Low Back Pain

Figure 2. Demonstration of prediction calculation. LP = linear predictor; NLBP = neck and/or low back pain.

can be seen in Supplementary Appendix IV (Tab. S2 and
Fig. S1).

Conditional on other variables in the model, baseline pain
intensity and thinking their condition would last a long time
were the strongest predictors of pain intensity at both follow-
up time points, with higher baseline pain intensity and expect-
ing the condition to last a long time both being associated

with higher pain intensity scores at follow-up. Episode dura-
tion (whether the patient had experienced pain for longer
than 6 months at the time of their general practice con-
sultation) was also an important predictor, associated with
higher pain intensity at both 2 and 6 months. Figure 2 gives a
demonstration of how the models for pain intensity could be
used to calculate predictions for pain intensity score and the
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Table 3. External Validation, Predictive Performance a

Time Outcome Measure Point of Consultation 2–4 Wk After
Consultation

2 mo Pain score Calibration slope 0.650 (0.549 to 0.750) 0.848 (0.767 to 0.928)
CITL 0.649 (0.506 to 0.792) 0.378 (0.249 to 0.507)
R 2 median (IQR) 11.1% (10.0% to 12.1%) 25.3% (24.9% to 26.0%)

High pain Calibration slope 0.436 (0.338 to 0.535) 0.657 (0.556 to 0.758)
CITL 1.081 (0.951 to 1.21) 0.798 (0.665 to 0.931)
O/E 1.599 (1.552 to 1.647) 1.369 (1.329 to 1.41)
C statistic 0.649 (0.618 to 0.679) 0.726 (0.696 to 0.753)
Pseudo R2 median (IQR) 12.1% (10.5% to 13.3%) 27.1% (26.1% to 27.9%)

6 mo Pain score Calibration slope 0.593 (0.499 to 0.688) 0.735 (0.656 to 0.815)
CITL −0.93 (−1.088 to

−0.773)
−1.262 (−1.408 to

−1.116)
R 2 median (IQR) 10.4% (9.4% to 11.4%) 20.8% (20.2% to 21.3%)

High pain Calibration slope 0.526 (0.417 to 0.635) 0.71 (0.598 to 0.823)
CITL 0.028 (−0.101 to 0.157) −0.307 (−0.438 to

−0.176)
O/E 1.015 (0.984 to 1.046) 0.88 (0.854 to 0.908)
C statistic 0.663 (0.632 to 0.693) 0.721 (0.692 to 0.749)
Pseudo R2 median (IQR) 8.7% (7.6% to 10.2%) 22.1% (21.1% to 23.1%)

aPredictive performance of models for pain on external validation in the STarT MSK Main Trial data. CITL = calibration in the large; IQR = interquartile
range; O/E = observed/expected ratio.

probability of moderate-high pain intensity for individual
patients at 6 months.

External Validation

Details of the model performance on external validation are
given in Table 3, while calibration plots for all models can be
seen in Figure 3.

Predictions for continuous pain intensity score generated
using point-of-consultation data were poorly calibrated when
compared to observed values, with calibration slopes of 0.65
(0.55–0.75) and 0.59 (0.50–0.69) at 2 and 6 months respec-
tively. However, the predictions generated in data from 2 to
4 weeks after consultation showed better calibration at both
time points, with calibration slopes of 0.85 (0.77–0.93) and
0.74 (0.66–0.82).

Estimates of CITL suggest that the 2-month pain intensity
score model systematically underpredicted patients 2-month
pain intensity scores by an average of 0.65 pain intensity
points in the point-of-consultation predictions (95% CI = 0.51
to 0.79), and by an average of 0.38 pain intensity points (95%
CI = 0.25 to 0.51) in predictions generated from predictor
responses 2 to 4 weeks after consultation. The pain inten-
sity score model at 6 months systematically overpredicted
patients’ pain intensity scores for both sources of predictor
data, with predicted pain intensity scores being an average
of 0.93 points too high in the point-of-consultation data
(95% CI = 0.77 to 1.09), and 1.20 points too high in the
data from 2 to 4 weeks after consultation (95% CI = 1.12
to 1.41).

The model to predict pain intensity score at 2 months
performed better than the 6-month model by all predictive
performance measures, in both sources of predictor variables
at point of consultation and 2 to 4 weeks after consultation,
as can be seen in Table 3.

Calibration performance was poor for the models predict-
ing the binary outcome of moderate-high pain intensity. In
the point-of-consultation data, the calibration slope was 0.44
(95% CI = 0.34 to 0.54) for predicting high pain intensity at
2 months and 0.53 (95% CI = 0.42 to 0.64) at 6 months,
indicating predictions were too high in those at low risk of
high pain intensity and were too low in those at high risk
of moderate-high pain. As with the continuous outcome pain
intensity models, calibration slopes indicated better calibra-
tion performance for predictions generated using predictors
collected 2 to 4 weeks after consultation.

Discrimination performance was consistent for models pre-
dicting moderate-high pain intensity at both time points. C
statistics of 0.65 (0.62–0.68) and 0.66 (0.63–0.69) at 2 and
6 months, respectively, suggest that around 65% and 66%
of concordant pairs were correctly identified by the models
for these outcome time points, based on predictors recorded
at point of consultation. Again, using predictor values from
2 to 4 weeks after consultation to generate predictions gave
better discriminative performance, with 73% of concordant
pairs correctly identified at 2 months and 72% identified at
6 months.

Analyses to assess model performance across different
subgroups (shown in Suppl. Appendix V) suggest that
model performance was reasonably consistent across age
ranges, sex, treatment group, and pain duration prior to
presentation.

Discussion

We have developed and externally validated new individual-
ized prediction models for pain intensity outcomes at 2- and 6-
month follow-up in patients consulting with NLBP in general
practice, based on the Keele STarT MSK Tool items.
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Figure 3. Model calibration in external validation data.

The findings from our external validation demonstrated
that models applied in the predictor data collected 2 to
4 weeks after the consultation achieved better predictive
performance than data collected at the point of consultation.
For example, in terms of calibration performance, the model
predicting pain intensity score at 2 months had a calibration

slope of 0.848 (0.767–0.928) in data from 2 to 4 weeks after
consultation, but only 0.650 (0.549–0.750) at point of con-
sultation. The discriminative ability of the models for predict-
ing 6-month binary outcomes was more consistent between
validations in data from 2 to 4 weeks after consultation and
point of consultation, with a reasonable C statistic of 0.66 for
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moderate–high pain intensity when using data collected at
point of consultation compared with 0.72 for predictions
based on data from 2 to 4 weeks after consultation. The con-
tinuous outcome models showed a systematic underprediction
of pain intensity scores at 2 month, and systematic overpredic-
tion at 6 months. When predictions were generated using data
collected at point of consultation, this overprediction was by
around 0.9 points on the 0–10 pain intensity scale, which is
not trivial.

The models presented here were based on known predictors
for outcomes in patients with NLBP from the team’s previous
risk stratification work.16 The choice of candidate predictors
was therefore limited to our previously validated Keele STarT
MSK Tool items: A decision that proved in hindsight to be a
limitation to exploring options for greater accuracy in our pre-
dictions of pain intensity outcomes. In understanding reasons
for the disappointing performance of these prediction models,
it is important to recognize that the Keele STarT MSK Tool
was designed for risk-stratification to inform clinicians about
risk-matched treatment options. The Keele STarT MSK Tool,
therefore, contains mainly items considered to be treatment
modifiable risk factors (with pain duration being the only
nonmodifiable item). Other known non-modifiable risk fac-
tors that were not considered during the model development
process presented here include factors such as employment
status and other socioeconomic indicators, previous surgery,
comorbidities, and previous pain episodes.38 The next step
to improve model performance for individualized predictions
will be to explore whether adding such nonmodifiable factors
to our models improves their predictive accuracy.

Comparison With Other Studies

Other prediction models currently exist to predict various
outcomes in those with NLBP, such as time to recovery
for patients with acute low back pain,13 global perceived
effect for patients with persistent neck pain,39 or disability
in patients undergoing surgery for lumbar degeneration.40

However, as far as we are aware, this is the first time that mod-
els have specifically been developed to predict an individual
patient’s levels of pain intensity at future time points. Predic-
tion models in the field which have previously been updated
and externally validated13,41 often performed suboptimally
in external samples. It is not uncommon for risk prediction
models to need updating depending on their specific purpose
or clinical population, as we have found here.

Several studies have previously shown baseline pain inten-
sity to be a reliable predictor of future pain intensity among
patients with low back pain, suggesting that initial pain lev-
els could be a useful indicator of long-term pain outcomes
and poor recovery.42–44 Our findings are also consistent
with recent data from Brazil showing that the Keele STarT
Back Tool is more predictive of outcomes when collected
a few weeks after a physical therapist consultation than at
the consultation itself.28 Our results further agree with a
study in United Kingdom and Dutch primary care which
suggests that additional assessment of pain intensity after 4 to
6 weeks results in better predictions than when using baseline
pain intensity alone.45 However, although predictor–outcome
associations are known to be weaker for time-varying predic-
tors (such as pain intensity) when measured at consultation
than when measured 2 to 4 weeks after consultation, it is
still recommended for such predictors to be measured at the

time of intended model use to improve the applicability of the
model in practice.46

In patients with neck pain, expectations and previous clini-
cal course of symptoms were found to predict global perceived
effect.41 In patients with low back pain of short duration
(<4 weeks) and a pain intensity ≥2/10, the duration of the
current episode, pain intensity, and depression was found to
predict time to recovery from pain.14 Despite some differences
in populations, we also found that pain intensity, episode
duration, and thinking their condition will last a long time to
predict future pain intensity (conditional on other model vari-
ables). Thus, some predictive factors seem consistent across
the literature.

Our findings of the limited predictive performance of low
mood, however, contrast with the results of an umbrella
review of systematic reviews in this area.38 Differences in the
predictive ability of mood may be related to differences in the
populations used for analysis, or due to other variables in our
models (such as bothersomeness or pain intensity) assimilating
the prognostic impact of mood.

It should be noted that all variables included in our models
were self-report measures, with no variables arising from
clinical examination, existing electronic medical record data,
or imaging results. This decision was made due to a lack of a
standardized clinical examination for patients consulting with
NLBP, and the expectation that using self-report items could
overcome the wide variation in general practitioner clinical
examinations. Furthermore, general practitioners rarely have
imaging results on which to base a treatment decision. Indeed,
previous work suggests that clinical examination and MRI
scan results add little to outcome predictions in patients with
low back pain over-and-above predictors such as younger age,
attitudes and beliefs regarding pain, or depression.47,48

Strengths and Limitations

We acknowledge that to achieve a comprehensive understand-
ing of a patient’s health status over time, a variety of outcomes
are needed. Therefore, a key limitation here is that our new
prognostic model focusses solely on predicting pain intensity.
Although pain intensity is undoubtedly an essential aspect of
measuring a patient’s pain experience, it does not reflect the
complexity of pain and its wider impact on an individual’s
physical, emotional, and social well-being. We are, therefore,
planning to similarly publish prognostic models for a broader
range of outcomes, including physical function (restriction in
usual activities) and time off work. Collectively, these models
will provide useful information that could inform treatment
decisions and guide patient care.

A barrier to implementation in practice is the complexity
for clinicians to calculate outcome predictions for individ-
ual patients, which may require a prebuilt calculator. Such
a calculator has been incorporated into the Back-UP first
contact WebApp dashboard,15 however, reflecting on the
relatively low Cstatistic seen within the external validation at
the point of consultation; however, further research is needed
to improve the discriminative performance of these models
before we could recommend use in clinical practice.

Evaluating the performance of predictions at the point of
consultation is a clear strength to our validation, with predic-
tive performance assessment at the point where the models
are intended to be used in practice. However, small sample
sizes for this external validation resulted in some uncertainty
around performance estimates in this population, where all
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models performed less well than when used in data from
2 to 4 weeks after consultation. Although further external
validation in a larger dataset would reduce our uncertainty
in predictive performance estimates, the current validation
gives a good indication that for these models to perform
well at point of consultation, where they would be used in
practice, it is likely that updating (for example, to incorporate
nonmodifiable risk factors) or recalibration would be needed.

A strength of the external validation is in the representa-
tiveness of the sample used. An anonymized medical record
audit of all patients with MSK conditions in primary care
settings suggested that there was no evidence of selection bias
in baseline pain intensity or risk severity in the participants
within the STarT MSK MT population. Therefore, we are
confident that the sample used was representative of patients
consulting to primary care in the United Kingdom.

It was not possible to produce separate prediction models
for patients with neck pain and lower back pain, due to the
limited number of patients available with the neck as their
primary pain site. Rather than neglecting to include these
patients with neck pain in our analyses, we instead combined
the patient populations and introduced “primary pain site”
as a predictor in the model. For this reason, predictor effects
are likely to be highly weighted toward the effects experienced
by patients with low back pain as their primary pain site, and
thus future validation in separate neck pain and low back pain
populations would be required to assess the extent to which
our conclusions (and models) can be applied to a population
with neck pain only.

Implications

Predictions of binary pain intensity outcomes, as included
here, provide clinicians and patients with a simple assessment
of expected pain intensity at future time points. These offer
results that are easy to interpret and can contribute quickly
to decision making in clinical settings. However, binary pain
intensity outcomes do not provide detailed information about
the magnitude or severity of pain, which may limit their
usefulness for monitoring changes in pain intensity over time.
In contrast, pain intensity predictions on the continuous scale,
which this study also presents, give a clear indication of the
change in pain intensity score over time, allowing identifica-
tion of clinically meaningful, smaller changes in expected pain
intensity. Analyzing pain intensity outcomes on the continu-
ous scale maximizes the available information for detecting
predictor–outcome associations and allows these models to
have greater flexibility to be used in different contexts or
locations, where a different dichotomy of pain intensity score
might be preferred.

The initial individualized prediction models developed
within this study were incorporated into an online demon-
strator, the Back-UP First Contact web app (http://backu
p-project.eu/?p=767).15 For the first time, clinicians were
able to see individualized patient predictions on hypothetical
patients and give their feedback to the research team about
the usability of individual predictions and visualizations to
inform treatment decision-making. A future paper will report
on the acceptability of the prediction visualizations to both
clinicians and patients. The findings of this study, however,
suggest that, at present, the prediction models we have are
not yet adequate for clinical use for prediction purposes at the
point of consultation. Further research is therefore required
to improve the prediction models.

Conclusion

We have developed and externally validated models to predict
pain intensity outcomes for individual patients consulting in
primary care with NLBP. The variables included within the
risk prediction models were limited to the existing Keele
STarT MSK Tool items. External validation demonstrated
that these individualized prediction models, particularly when
evaluated at the point of consultation, were not sufficiently
accurate to recommend their use in clinical practice. Fur-
ther research is therefore required to improve the prediction
models through inclusion of additional nonmodifiable risk
factors.
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Appendix IIb - Considering the distribution of the error term, ei, in the generation of

predicted probabilities from a linear regression model

In generating the predicted probability from a linear regression model, the distribution of the error

term from the linear regression model could be considered. The observed outcome value Yi for

individual i is unlikely to exactly match the predicted value in practice, and is instead equal to

YPREDi plus some residual error term ei. This ei is itself a random variable that, by the underlying

assumptions of linear regression, follows a normal distribution with µ = 0 and σ2, defined by the

residual variance of the linear regression model, σ2
model:

Yi = YPREDi + ei

ei ∼ N (0, σmodel
2)

and

σ̂2
model =

1

n− p− 1

n∑
i=1

ei
2

Where n is the sample size for model development, p is the number of predictor parameters, and

ei is the residual error for individual i (thus the summation gives the total squared error across all

individuals in the model development data).

For some relevant cut-off, C, the underlying distribution of Yi is unlikely to be known at the point

of prediction, thus the value of P (Yi < C) cannot be gained directly. Instead, the above information

from the linear prediction model can be used as follows:

pi = P (Yi < C)

= P (YPREDi + ei < C)

= P (ei < C − YPREDi)
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Given the distribution of ei is known to be normal, with distribution parameters described as above,

this probability can be gained from the standardised normal distribution tables, with

P

(
Z <

X − µ

σ
=

(C − YPREDi)− 0

σmodel

)

Or simply,

P (Yi < C) = P

(
Z <

C − YPREDi

σmodel

)

This formulation exactly matches that from the alternative method described above, in the text

of Chapter 3.
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inform patient counseling and clinical decision making. External validation is
the process of examining a prediction model’s performance in data indepen-
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often suffer from small sample sizes, and subsequently imprecise estimates of
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children.
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1 INTRODUCTION

Clinical prediction models provide individualized outcome predictions to inform patient counseling and clinical deci-
sion making, such as treatment and monitoring strategies.1-3 Depending on the context, they may also be referred to as
clinical prediction tools, diagnostic or prognostic models, risk scores, and prognostic indices, among other names. They
are typically developed using a regression framework, which provides an equation to predict the outcome conditional on
the values of multiple predictors (variables, covariates). In this article, we focus on prediction of continuous outcomes
(such as birth weight, depression score, blood pressure or fat mass), for which the model equation is typically a linear
regression. Such models can be used to predict an individual’s expected outcome value, conditional on the individual’s
predictor values. The outcome may relate to something current (eg, fat mass level at present) or in the future (eg, pain
score at 1 month after a back injury).

Recently we proposed how to calculate the minimum sample size needed to develop a prediction model with a con-
tinuous outcome.4,5 Once a model has been developed, it is important to evaluate its predictive performance in new
data, independent to that used to develop the model. This process is known as external validation, and is usually crucial
regardless of how a model was developed. In particular, external validation indicates how the model performs in new
data that is representative of the target population to which the model will be used in practice.6-13 However, despite being
widely encouraged and having its importance clearly demonstrated,13-19 external validation of published prediction mod-
els is rare in practice, with researchers predominately focusing on the development of new models.19 Even when external
validation is performed, the sample size is often too small to provide reliable conclusions about a model’s predictive per-
formance and key measures are often neglected; in particular, calibration of predicted and observed outcome values is
rarely examined.16

In this article, we propose criteria to determine the minimum sample size needed for external validation of a clin-
ical prediction model with a continuous outcome. We suggest the minimum sample size needs to be large enough to
precisely estimate three key measures of predictive performance: calibration slope (agreement between predicted and
observed values across the range of predicted values), calibration-in-the-large (CITL, agreement between predicted and
observed outcome values on average), and R2 (the proportion of variance explained). Section 2 introduces these per-
formance measures, while in Section 3, we derive three closed-form solutions for the sample size required to estimate
each of them precisely. As these solutions depend on the variance of observed outcome values, we also present a fourth
criterion that aims to ensure this variance is estimated precisely. Hence, our sample size calculation comprises check-
ing four criteria, and we suggest the largest sample size calculated from the four approaches is used as the minimum
required for the external validation. Section 4 applies our proposal to an applied example, and Section 5 concludes with
discussion.

2 KEY MEASURES OF PREDICTIVE PERFORMANCE FOR A CLINICAL
PREDICTION MODEL WITH A CONTINUOUS OUTCOME

Assume that we wish to externally validate an existing prediction model for a continuous outcome, and have obtained
a suitable external validation dataset containing a sample of individuals from the target population of interest. We now
describe how to quantify the prediction model’s performance in this dataset.

First, the researcher needs to calculate the existing model’s predicted (expected) outcome value (YPREDi) for each
individual (i). As the outcome is continuous, the existing prediction model equation will usually be in the form of
a linear regression and so contain an intercept (𝛼), and predictor effects (𝛽1, 𝛽2, 𝛽3, etc) corresponding to predic-
tor variables (X1i, X2i, X3i, etc). For example, with three predictors a simple example of an existing prediction model
equation is:

YPREDi = 𝛼 + 𝛽1X1i + 𝛽2X2i + 𝛽3X3i. (1)

However, in practice the right hand side of the model equation (also known as the model’s linear predictor) may be far
more complex, for instance with more than three predictors and potential interactions and non-linear terms (eg, defined
by splines or polynomials). A real example is given in Box 1.
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ARCHER et al. 135

BOX 1 Hudda et al prediction model for the natural logarithm of ln(fat-free mass) in children20

Ln(fat-free mass) = 2.8055+ (0.3073×height2) − (10.0155×weight−1) + (0.004571×weight)+ (0.01408×BA)
−(0.06509× SA)− (0.02624×AO)− (0.01745× other) − (0.9180× ln(age))+ (0.6488× age0.5) + (0.04723×male)

• Predictor variables of black (BA), south Asian (SA), other Asian (AO), or other (other) ethnic origins are all
binary, with value of 1 if individual has the particular origin and 0 otherwise

• Height is measured in meters, weight in kilograms, age in years, and fat-free mass in kilograms

Clearly, the external validation dataset must contain values for all the predictors (X1i, X2i, X3i, … ) included in the
prediction model equation, so that YPREDi can be calculated by applying the model’s equation to each individual. The
dataset must also contain the observed outcome value (Y i) for each individual, so that the prediction model’s predictive
performance can then be quantified by comparing the YPREDi values to the Y i values.

We now introduce three key statistics to quantify a model’s predictive performance upon external validation, which
focus on overall model fit and calibration.

2.1 R-squared

R2 is a well-known measure of overall model fit and quantifies the proportion of outcome variation explained.
Let var(Y i) denote the variance of Y i values in the external validation population, and var(Y i −YPREDi) denote the

variance of (Y i −YPREDi) values (ie, the prediction errors in the external validation population). Then the true proportion
of outcome variation explained by the predicted values from the prediction model, R2

val, is:

R2
val = 1 −

(
var(Yi − YPREDi)

var(Yi)

)
. (2)

Values of R2
val closer to 1 indicate better fit of the YPREDi from the prediction model.

2.2 Calibration slope and calibration-in-the-large

Calibration measures the agreement between predicted (YPREDi) and observed (Y i) outcome values in the external val-
idation dataset.21 It is best shown graphically on a calibration plot, with YPREDi on the horizontal axis plotted against
Y i on the vertical axis, with every individual providing a single data point. A LOESS smoothed calibration curve
should also be fitted through the points and presented on the plot.2,11,22 Ideally, the predicted outcome values are not
systematically under- or over-estimated across the entire range of predicted values. That is, the points are scattered ran-
domly around the 45◦ line of perfect agreement (corresponding to a slope of 1), with little variation around the line
(ie, R̂2

val is large), and with close agreement between predicted and observed values across the entire horizontal axis
range.

To formally quantify calibration performance in an external validation dataset, a calibration model can be fitted of the
form,

Yi = 𝛼cal + 𝜆cal(YPREDi) + ecali

ecali ∼ N(0, 𝜎2
cal), (3)

where “cal” is used to emphasize that parameters are from the calibration model. This model can be fitted using standard
estimation methods for a linear regression, such as using restricted maximum likelihood estimation. The parameter 𝜆cal
represents the calibration slope, which measures agreement between predicted and observed outcomes across the whole
range of predicted values.2,3 As mentioned, the ideal 𝜆cal value is 1. A 𝜆cal < 1 indicates that some predictions are too
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136 ARCHER et al.

extreme (eg, predictions above the mean are too high, and/or predictions below the mean are too low) and a slope> 1
indicates that the range of predictions is too narrow. A calibration slope< 1 is often observed in external validation studies,
as clinical prediction models are often developed in small datasets without adjustment for overfitting, which leads to
extreme predictions (miscalibration) in new individuals external to those used for model development.23-26 The term 𝜎2

cal
measures the residual variance in the calibration model.

Note that the true calibration slope in the external validation population can also be expressed as,27

𝜆cal =

√
R2

calvar(Yi)
var(YPREDi)

, (4)

where R2
cal is the proportion of variance of Y i values explained when the calibration model (3) is fitted to the external

validation population.
Systematic over- or under-prediction is still possible even when the calibration slope is 1, and thus it should always

be considered alongside calibration plots and CITL. The latter measures the agreement between mean predicted (Y PRED)
and mean observed (Y ) outcome values, which can be estimated in the external validation dataset using:

ĈITLval = Y − Y PRED. (5)

Estimating CITLval by applying Equation (5) in an external validation dataset is equivalent to estimating 𝛼cal by fitting
model (3) with the constraint that 𝜆cal equals 1 (see Section 3.2).

3 SAMPLE SIZE REQUIRED TO TARGET PRECISE ESTIMATES OF
PREDICTIVE PERFORMANCE

In this section, we propose four criteria for researchers to use as a basis for determining the minimum sample size required
for an external validation study. The first three criteria aim to ensure the sample size is large enough to estimate R2

val,
CITLval, and 𝜆cal precisely (ie, with a small margin of error). Closed-form solutions are derived for this purpose. As these
expressions depend on the estimates of (residual) variances, a fourth criterion aims to precisely estimate these also.

3.1 Criterion (i): Precise estimate of R2
val

Our first criterion targets a precise estimate for R2
val from the external validation dataset, such that the confidence interval

for R2
val will be narrow. There are many suggestions for deriving confidence intervals for R2.28 Here, we focus on the

approach suggested by Wishart,29 which uses the following approximate standard error (SE) of R̂2
val:

SER̂2
val
=

√
4R2

val(1 − R2
val)2

n
. (6)

Tan suggests this approximation works well when the sample size (n) is reasonably large (say >50),28 which is likely
to be the situation when externally validating a clinical prediction model (see criterion (iv)). Rearranging Equation (6)
gives a closed-form sample size calculation of:

n =
4R2

val(1 − R2
val)

2

SE2
R̂2

val

. (7)

Equation (7) can now be used to calculate the sample size (n) required to meet criterion (i), by specifying a desired
value for SER̂2

val
and by setting R2

val at the anticipated true value for the external validation population.
For example, consider an existing prediction model with an adjusted R2 of 0.5 in the development dataset, with this

adjusted (rather than apparent) R2 giving an unbiased estimate of expected performance in new data. Then, if we assume
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ARCHER et al. 137

F I G U R E 1 Sample size (number of participants,
n) needed in an external validation dataset to target a
confidence interval for R2

val of a particular width (either
0.05, 0.1, or 0.2) for different assumed R2

val values
between 0.1 and 0.9. Sample size calculated using
Equation (7) [Colour figure can be viewed at
wileyonlinelibrary.com]

the validation sample is from a similar target population to the development sample, a simple starting point is to anticipate
R2

val upon external validation is similar to the adjusted R̂2 reported in the model development study. To target a 95%
confidence interval for R2

val that has a narrow width of about 0.1, we need a small SER̂2
val

of 0.0255. This stems from assuming
a 95% confidence interval for R2

val can be derived approximately by R̂2
val ± (1.96 × SER̂2

val
). We can now apply Equation (7)

to give,

n =
4R2

val(1 − R2
val)

2

SE2
R̂

2
val

= 4 × 0.5 × (1 − 0.5)2

0.02552 = 768.9

and so 769 participants are required to meet criterion (i). To achieve the same margin of error, 905 participants are required
when assuming R2

val is 0.3, and 197 participants are required when assuming R2
val is 0.8. These values are reasonably close

to those using more exact (but not closed-form) approaches to confidence interval derivation, such as that based on the
scaled non-central F approximation proposed by Lee.30 The ss.aipe.R2 function within Kelley’s MBESS package for the R
software identifies the sample size required to ensure Lee’s confidence interval for R2

val is sufficiently narrow,31-33 and so
is an alternative to using Equation (7).

Figure 1 shows how the required sample size changes from R2
val values between 0.1 and 0.9 based on Equation (7) and

assuming SER̂2
val

is 0.0255 to target a confidence interval width of 0.1. The required sample size will be lower when allow-
ing for wider target confidence intervals, and higher when aiming for narrower target confidence intervals (Figure 1).
However, we suggest SER̂2

val
≤ 0.0255 is a sensible compromise, as it targets a precise estimate (margin of error of 0.05 or

less compared to the true value) and still gives a required sample size that will be realistic to obtain in practice.
Note that upon external validation the true R2

val may be lower or higher than the adjusted R̂2 reported for model devel-
opment. Therefore, although the adjusted R̂2 from the development study is a useful starting point, we also recommend
calculating the sample size required when assuming slightly different values for the true R2

val. For example, researchers
might apply Equation (7) assuming R2

val values ± 0.1 of the adjusted R̂2 reported from the development study, and note
the largest sample size across this range.

3.2 Criterion (ii): Precise estimate of CITL

Our second criterion targets a precise estimate of CITLval from the external validation dataset. We estimate CITLval
by using Y − Y PRED (from Equation (5)), which is equivalent to estimating the intercept when fitting (in the external
validation dataset) model (3) with the predicted values as an offset term:

Yi = CITLval + 1(YPREDi) + eCITLi

eCITLi ∼ N(0, 𝜎2
CITL). (8)
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Therefore the SE of ĈITL is:

SE2
ĈITL

= var(Y − Y PRED) = var

(∑n
i=1(Yi − YPREDi)

n

)
=

𝜎2
CITL

n
=

var(Yi)(1 − R2
CITL)

n
. (9)

We can rearrange Equation (9) to obtain an expression for the required sample size:

n =
var(Yi)(1 − R2

CITL)

SE2
ĈITL

. (10)

Hence, the sample size required to meet criterion (ii) can be derived using Equation (10), for which the researcher
must pre-specify R2

CITL (the anticipated proportion of variance explained by the predictions in the external validation
population), along with var(Y i) (the anticipated variance of Y i in the target population), and the desired SEĈITL.

A sensible starting point is to assume CITL is zero, as then R2
CITL = R2

val (the anticipated proportion of variance
explained by the predictions upon validation), and so

n =
var(Yi)(1 − R2

val)

SE2
ĈITL

, (11)

with R2
val assumed to be the same as the adjusted R̂2 reported from the development study.

If CITL is not zero then R2
CITL will not equal R2

val. Hence, it is also sensible to consider a range of values for R2
CITL when

applying Equation (10), such as ± 0.1 of the adjusted R̂2 reported from the development study, and to note the largest
sample size across this range.

The value that defines a precise SEĈITL is context specific, as it depends on the scale of the outcome values. For example,
for systolic blood pressure an SE of about 2.5 mmHg may suffice, but for BMI a smaller SE may be required as the scale is
much narrower.

For instance, consider external validation of a prediction model for systolic blood pressure with a reported adjusted
R2 of 0.5 in the development study, and that the variance of the observed Y i values is anticipated to be 400 in the target
population for the validation study. Let us target an SEĈITL of 2.55, as this gives a 95% confidence interval for CITLval
with a narrow width of about 10 mmHg, assuming a 95% confidence interval for CITLval can be derived approximately by
ĈITL ± (1.96 × SER̂2

val
). Assuming R2

CITL = R2
val = 0.5, then applying Equation (10) gives,

n =
var(Yi)(1 − R2

val)

SE2
ĈITL

= 400 × (1 − 0.5)
2.552 = 30.76

and thus at least 31 participants are required to achieve criterion (ii).
More cautiously assuming that R2

CITL = 0.4, the required sample size is

n =
var(Yi)(1 − R2

CITL)

SE2
ĈITL

= 400 × (1 − 0.4)
2.552 = 36.91

and thus 37 participants are required.
It is likely that the sample size to precisely estimate CITL is smaller than that required to precisely estimate the

measures outlined in criteria (i), (iii), and (iv).

3.3 Criterion (iii): Precise estimate of calibration slope

The third criterion targets a precise estimate of𝜆cal, which represents the calibration slope obtained from fitting calibration
model (3) in the external validation dataset. As 𝜆cal is the slope from a simple linear regression model, the SE of 𝜆cal can
be estimated by,34
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ARCHER et al. 139

SE2
𝜆cal

=
𝜎2

cal∑n
i=1 (YPREDi − Y PRED)2

,

where 𝜎2
cal is the residual variance from model (3).

By utilizing Equation (4), and also recognizing that 𝜎2
cal = var(Yi)(1 − R2

cal) and that
n∑

i=1
(YPREDi − Y PRED)2 =

(n − 1) var(YPREDi), we can write SE2
𝜆cal

in terms of 𝜆2
cal and R2

cal values,27 as follows:

SE2
𝜆cal

=
𝜎2

cal
n∑

i=1
(YPREDi − Y PRED)2

=
var(Yi)(1 − R2

cal)
(n − 1) var(YPREDi)

= var(Yi)
(n − 1) var(YPREDi)

−
var(Yi)R2

cal

(n − 1) var(YPREDi)

= var(Yi)
(n − 1) var(YPREDi)

−
𝜆2

cal

(n − 1)

=
𝜆2

cal

(n − 1) R2
cal

−
𝜆2

calR
2
cal

(n − 1)R2
cal

=
𝜆2

cal(1 − R2
cal)

(n − 1)R2
cal

. (12)

Rearranging gives:

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1. (13)

Equation (13) allows calculation of the required sample size for a desired SE𝜆cal
, conditional on specifying 𝜆cal (the

anticipated (mis)calibration across the range of predicted values) and R2
cal (the anticipated proportion of variance in

observed Y i values explained by the calibration model).
In terms of choosing SE2

𝜆cal
, a value ≤0.051 is recommended, to target a 95% confidence interval for 𝜆cal that has a

narrow width ≤ 0.2 (eg, if the calibration slope was 1, the confidence interval would be 0.9 to 1.1 assuming confidence
intervals derived by 𝜆cal ± 1.96SE𝜆cal

; note that replacing 1.96 by critical values of the t-distribution is unnecessary, as the
sample size will not be small).

In terms of choosing 𝜆cal, a simple starting point is to assume good calibration, such that 𝜆cal = 1 and 𝛼cal = 0 in model
(3). Then, R2

cal = R2
val from criterion (i), and so R2

cal might be assumed to be the same as the adjusted R2 estimated in the
model development study. For example, for external validation of a prediction model that had an estimated adjusted R2 of
0.5 in the development dataset, a simple starting point is to anticipate the same value for R2

val. Then, assuming the model’s
predictions will be well calibrated in the external validation dataset (ie, on average, fitting model (3) would give 𝛼cal of 0
and a 𝜆cal of 1), using Equation (13) gives,

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1 = 1 × (1 − 0.5)
0.051 × 0.051 × 0.5

+ 1 = 385.47

and thus 386 participants are required to target a confidence interval width of 0.1 for the calibration slope, under the
assumptions of good calibration.

The sample size should also be large enough to precisely estimate some miscalibration. Often when a prediction
model is externally validated the calibration slope is less than 1, due to overfitting during model development that was
unaccounted for in the final prediction model equation (ie, penalization or shrinkage estimation methods were not used).
In such situations R2

cal can still be assumed to be the same as the adjusted R2 presented for model development, as this
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140 ARCHER et al.

value specifically adjusts for optimism due to overfitting. When applying Equation (13) for fixed R2
cal and SE2

𝜆cal
values,

lowering the assumed 𝜆cal below 1 will produce lower sample sizes than when assuming the prediction model is well
calibrated. Hence, assuming 𝜆cal is 1 is more conservative for the sample size calculation.

Further sensitivity analyses could be undertaken if desired. For example, we could change both 𝜆cal and R2
cal values.

However this is complex, as Equation (4) reveals that the value of 𝜆cal depends on R2
cal (and also var(Y i) and var(YPREDi)).

Therefore, changing the assumed value of 𝜆cal has implications for what the assumed value of R2
cal should be. This may

be too intricate for the sample size calculation. Similarly, although situations of under-prediction (where 𝜆cal is >1) may
lead to larger required sample sizes, this may not be practical to consider as over-prediction situations are more common.
Thus, we generally suggest to apply Equation (13) assuming good calibration (𝜆cal =1) and set R2

cal equal to the adjusted
R2 estimated for model development.

3.4 Criterion (iv): Precise estimates of residual variances

Our final criterion targets precise estimates of 𝜎2
CITL and 𝜎2

cal. This is essential because, although these residual variances
are not direct measures of predictive performance themselves, their estimated values are used toward parameter estimates
and, crucially, SEĈITLval

and SE𝜆cal
.

For 𝜎2
CITL, we can equivalently consider the sample size needed to precisely estimate a residual variance in a linear

regression model with only an intercept (see model (8)). In such situations, Harrell suggests calculating the sample size
to ensure the lower and upper bounds of a 95% confidence interval for the residual variance has a small multiplicative
margin of error (MMOE) around the true value,2 using

MMOE =

√√√√√max
⎛⎜⎜⎝
𝜒2

1− 𝛼

2
,n−1

n − 1
,

n − 1
𝜒2

𝛼

2
,n−1

⎞⎟⎟⎠, (14)

where 𝜒2
1− 𝛼

2
,n−1 and 𝜒2

𝛼

2
,n−1 are the critical values of a 𝜒2 distribution with n− 1 degrees of freedom for which there is,

respectively, a probability of 1 − 𝛼

2
and 𝛼

2
of being less than the critical value. The second term within the bracket of

Equation (14) will typically give the largest MMOE.
We recommend a margin of error of within 10% of the true value (1.0 ≤ MMOE ≤ 1.1), for which Equation (14) reveals

that a sample size of at least 234 participants is needed to ensure an MMOE ≤1.1 for 𝜎2
CITL.

For precise estimation of 𝜎2
cal, we need to adjust the sample size required for a slope parameter being estimated (see

model (3)). As outlined by Riley et al,4 the solution is simply 234+ 1, and thus 235 participants are required to ensure an
MMOE of ≤1.1 for 𝜎2

cal. Hence, in summary, at least 235 participants are needed to meet criterion (iv), and thus 235 is the
minimum sample size required for any external validation of a prediction model for a continuous outcome, regardless of
context and before consideration of criteria (i), (ii), or (iii).

3.5 Summary of the criteria

Our sample size criteria aim to ensure the external validation dataset will precisely estimate R2
val, CITL, calibration slope,

and residual variances. The approach requires a separate sample size calculation for each criterion, and the largest sample
size calculated provides the minimum needed for the external validation study. A step-by-step guide to our proposal is
provided in Figure 2.

4 APPLIED EXAMPLE

We now illustrate our sample size proposal using an applied example. Hudda et al developed a prediction model for
the natural logarithm of fat-free mass in children and adolescents aged 4 to 15 years, including 10 predictor parameters
based on height, weight, age, sex, and ethnicity (see Box 1 for model equation).20 The model is required to provide an
estimate of an individual’s current fat mass (weight - predicted fat-free mass). The apparent calibration of the model in
the development dataset is shown in Figure 3A. In the development dataset, the estimated adjusted R2 was 0.95. An initial
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ARCHER et al. 141

F I G U R E 2 Summary of the steps involved in our sample size calculation for external validation of a clinical prediction model for a
continuous outcome

external validation was undertaken in 176 children aged 11-12 years from the UK Avon Longitudinal Study of Parents
and Children (ALSPAC) study,35,36 where the model had an estimated R2

val of 0.90 Figure 3B. However, as acknowledged
by Hudda et al, further external validation is warranted in a broader age range, for which a sample size calculation can
be undertaken using our proposal. We assume that the validation population is similar to the development population,
and work through the calculations for criteria (i) to (iv).

STEP 1: Calculate the sample size needed to precisely estimate R2
val (criterion (i))

This requires us to apply Equation (7). Based on assuming an R2
val = 0.90, as in the published external validation of

the model, and a SER̂2
val

of 0.0255 to target a confidence interval width of 0.1, a sample size of 56 children is required, as:

 10970258, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8766 by T
est, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

399



142 ARCHER et al.

F I G U R E 3 Calibration performance: A, in the development dataset; and, B, on external validation of the prediction model for
ln(fat-free mass) in children, as proposed by Hudda et al.20 The 45◦ line shows perfect calibration on both plots. * in B, individual level data
points cannot be shown for confidentiality reasons. Data points shown are mean predicted against mean observed ln(fat-free mass) within
tenths of predicted ln(fat-free mass), with a local regression smoother through the individual level data points shown in gray [Colour figure
can be viewed at wileyonlinelibrary.com]

n =
4R2

val(1 − R2
val)

2

SE2
R̂2

val

= 4 × 0.90 × (1 − 0.90)2

0.02552

= 55.4.

It is sensible to also consider that the model may perform worse upon external validation, say with a 0.1 reduction in
R2

val to 0.80. Then, the required sample size to meet criterion (i) is 197 children. These sample size values are also identified
within Figure 1.

STEP 2: Calculate the sample size needed to precisely estimate calibration-in-the-large (criterion (ii))
This requires us to apply Equation (10), which itself requires us to specify var(Y i), the anticipated variance of outcome

values in the target population for external validation. Let us illustrate how to derive this from published information.
In their paper, Hudda et al reported the lower quartile (LQ) as 20.8 and the upper quartile (UQ) as 30.6 kg of fat-free
mass in their development dataset. By transforming this to the ln(kg) scale, and assuming ln(fat-free mass) values are
approximately normally distributed, we can derive an estimate of the SD of the ln(fat-free mass) in the development
population using37:

ln UQ − ln LQ
1.35

= ln 30.6 − ln 20.8
1.35

= 0.286.

Therefore, based on the published information v̂ar(Yi) ≈ 0.2862 = 0.082. Interestingly, when contacting the original
study authors directly for this information, they calculated it to be a similar value of v̂ar(Yi) = 0.089. We will use this value
from the study authors going forward.

We must also specify the expected value for R2
CITL. We begin by assuming R2

CITL = R2
val and that this is 0.90, as in Hudda’s

initial external validation of the model.
The precision required to estimate CITL needs to be placed in context of the mean outcome value in the population.

Hudda et al reported a median baseline fat-free mass of 24.8 kg. If we assume that the mean value is similar, then we have:

Y ≈ ln 24.8 = 3.21.

Considering the original untransformed scale, an accuracy of approximately±1 kg around Y seems reasonably precise.
A confidence interval of about 23.8 to 25.8 on the kg scale would correspond to a 95% CI of about 3.17 to 3.25 around Y ,
implying a target SE2

ĈITL
of about 0.02.
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ARCHER et al. 143

T A B L E 1 Summary of the sample size calculation for external validation of the prediction model of Hudda et al

Criterion Target precision Assumptions Minimum sample size required

(i) Precise estimate of R2
val SER̂2

val
= 0.0255 R2

val = 0.8 197

R2
val = 0.9 56

(ii) Precise estimate of CITL SEĈITL = 0.02 R2
CITL = R2

val = 0.8, var(Y i) = 0.089 45

R2
CITL = R2

val = 0.9, var(Y i) = 0.089 23

(iii) Precise estimate of 𝝀cal SE𝜆cal
= 0.051 R2

cal = R2
val = 0.9

𝜆cal = 1
44

(iv) Precise 𝝈
2
CITL and 𝝈

2
cal 1.0≤MMOE≤ 1.1 - 235

Therefore, we can now apply Equation (10) to obtain a sample size of,

n =
var(Yi) (1 − R2

CITL)

SE2
ĈITL

= 0.089 × (1 − 0.9)
0.022 = 22.3,

and thus 23 participants are required to meet criterion (ii). To be conservative, let us assume a 0.1 lower value for R2
CITL

to 0.80. Then, the required sample size to meet criterion (ii) would increase to 45 children.
STEP 3: Calculate the sample size needed to precisely estimate calibration slope (criterion (iii))
This requires us to apply Equation (13) after choosing values for SE𝜆cal

, R2
cal, and 𝜆2

cal. Let us choose an SE𝜆cal
of 0.051 to

target a confidence interval width of 0.2. Further, we assume R2
cal = R2

val and take the value of 0.90 as reported by the initial
validation study of Hudda et al; and assume good calibration such that 𝜆2

cal is 1. We can now apply Equation (13) to give,

n =
𝜆2

cal(1 − R2
cal)

SE2
𝜆cal

R2
cal

+ 1 = 1 × (1 − 0.9)
0.0512 × 0.9

+ 1 = 43.72,

and thus 44 participants are required.
STEP 4: Calculate the sample size for precisely estimating residual variances (criterion (iv))
To ensure a 10% margin of error in residual variance estimates from the calibration models, at least 235 participants

are required (see Section 3.4).
STEP 5: Calculate the final sample size
Assuming we aim to validate the model of Hudda et al in a population similar to the development data, steps 1 to 4

have provided four sample sizes to ensure criteria (i) to (iv) are met. These are summarized in Table 1. Based on the largest
of these sample sizes, the final minimum sample size required to meet all criteria is 235 participants. This is driven by
criterion (iv), to target sufficient precision around 𝜎2

CITL and 𝜎2
cal.

5 WHAT IF SAMPLE SIZE FOR EXTERNAL VALIDATION IS FIXED?

Sometimes there are no resources for prospective recruitment of participants to a new study for external validation of
a prediction model. Then, researchers might seek an existing (already collected) dataset from the target population of
interest. However, the sample size of an existing dataset is fixed, and so the researcher (and other stakeholders such
as funders and collaborators) needs to know if it is large enough for reliable external validation. In this situation, our
calculations in steps 1 to 4 can be re-expressed to calculate the expected SER̂2

val
, SEĈITL, SE𝜆cal

, and MMOE conditional on
the known sample size and assumed values of R2

val, var(Yi), R2
CITL, R2

cal, and 𝜆cal as before.
For example, in the initial external validation of Hudda et al, an existing dataset, from the ALSPAC study, of 176

children was used. Based on the calculation shown in Table 1, this sample size is likely to give very precise estimates of R2
val,

CITL, and 𝜆cal when assuming R2
val = R2

CITL = R2
cal is 0.9. However, the sample size is lower than the 235 recommended

for precise estimation of 𝜎2
CITL and 𝜎2

cal, and so the MMOE for these estimates is expected to be >10%. Nevertheless, when
applying Equation (14) assuming 176 participants, the MMOE is 1.12, and thus the error is expected to be 12%, only
just over the 10% recommendation. Hence, this existing dataset appears to have a reasonable sample size for external
validation, which would have been useful for Hudda et al to know at the time.
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144 ARCHER et al.

6 DISCUSSION

We have proposed closed-form sample size calculations for studies externally validating a prediction model for a con-
tinuous outcome. These aim to ensure the sample size is large enough to precisely estimate key measures of predictive
performance (R2, CITL, and calibration slope) and the residual variances in calibration models. This led to four criteria,
and the largest sample size required satisfying all four criteria is the recommended minimum sample size needed in the
external validation dataset. Our work builds on minimum sample size calculations for model development.4,38

As with any sample size calculation, assumptions are required to implement our proposed approach. In particular,
researchers must specify the model’s anticipated R2

val, v̂ar(Yi), and 𝜆cal in the validation dataset. As discussed, a simple
starting point is to assume these will be the same as those reported for the original model development study, especially
if the target population (for validation) is similar to that in the model development study. Then the researcher might
consider sample sizes based on slight adjustments; in particular, assuming the model may perform slightly worse than
in the development dataset. Our example illustrated this for a prediction model of fat-free mass in children, where we
assumed an R2

val of 0.8 rather than the 0.90 or 0.95 values reported in the original model development study. Lower values
may be even more important to consider in situations where the development dataset was small (such that reported per-
formance statistics were estimated with large uncertainty); the developed prediction model did not adjust for overfitting
using, for example, penalization and shrinkage techniques (such that reported performance statistics are likely to be opti-
mistic); and in situations where the intention is to validate the model in a different population or setting from that used
in the development study. Larger sample sizes may be needed if missing data are expected, and if a model’s predictive
performance in key subgroups (eg, males, females) is of interest.

Section 5 discussed how to use our calculations when an existing dataset (of a fixed sample size) is already available,
in order to gauge the expected precision of estimates conditional on the sample size available. Ideally the dataset will be
large enough to ensure precise estimates, as then more robust conclusions about predictive performance will be possible.
However, we recognize that even when datasets are small, obtaining estimates of predictive performance is still useful; in
particular, these could ultimately be combined in a meta-analysis.39 It is important that datasets for external validation
are high quality and applicable to the target population, setting, and timing of implementing the prediction model in
practice. Adequate sample size does not overcome issues in quality and applicability.39-41

We chose to focus on R2, CITL, and calibration slope as these are key performance measures; ensuring precise esti-
mation of residual variances is also important, as they are used to calculate the aforementioned predictive performance
measures and also mean-squared error. We anticipate that the largest sample size will usually be driven by criterion (i),
(iii), or (iv). Further work might consider precise estimation of calibration curves,11,22,42 and extension to non-continuous
outcomes is needed, building on work of others.11,17,43 Closed-form sample size solutions are transparent and quick to
implement, but more difficult to derive for binary and time-to-event outcomes. Jinks et al do suggest closed-form sample
size calculations for precisely estimating the D statistic for time-to-event prediction models.44 Also, we only focused on
statistical measures of predictive performance, and not on clinical utility or impact of using the model to inform healthcare
decisions (eg, initiation of treatment).

Finally, sometimes the sample size for an external validation dataset must also be large enough for model updating,
for example, when the researcher aims to recalibrate one or a few of the model parameters to the target population of
interest. Then, the required sample size needs to meet the criteria described in this article (for external validation), and
also those criteria proposed for model development (as model updating is akin to model development5). The exact sample
size needed for model updating depends on how the model is to be updated (eg, which parameters, and indeed how many
parameters, are to be revised) and whether additional predictors are to be included. Riley et al provide advice for this and
other model development situations.5

ACKNOWLEDGEMENTS
We thank two anonymous reviewers for their constructive feedback that helped improve our article upon revision. We
are grateful to all the families who took part in the ALSPAC study, the midwives for their help in recruiting them, and
the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research
scientists, volunteers, managers, receptionists, and nurses. Lucinda Archer is supported by funding from the European
Horizon 2020 Research and Innovation Programme under grant agreement No 777090. Kym Snell is funded by the
National Institute for Health Research School for Primary Care Research (NIHR SPCR Launching Fellowship). Joie Ensor
is funded by NIHR Clinical Trials Unit Support Funding, Supporting Efficient/Innovative Delivery of NIHR Research.
Mohammed Hudda is supported by a British Heart Foundation PhD Studentship (FS/17/76/33286). Gary Collins is

 10970258, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8766 by T
est, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

402



ARCHER et al. 145

supported by the NIHR Biomedical Research Centre, Oxford and Cancer Research UK programme grant
(C49297/A27294). Lucinda Archer, Richard Riley and Kym Snell are supported by funding from the Evidence Synthe-
sis Working Group, which is funded by the National Institute for Health Research School for Primary Care Research
(NIHR SPCR) [Project Number 390]. The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and
the University of Bristol provide core support for the ALSPAC study.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analysed in this study.

ETHICS STATEMENTS
Ethical approval for the ALSPAC study was obtained from the ALSPAC Ethics and Law Committee and the Local Research
Ethics Committees. The views expressed are those of the authors and not necessarily those of the BHF, Cancer Research
UK, the NHS, the NIHR, the Department of Health or the EU.

ORCID
Lucinda Archer https://orcid.org/0000-0003-2504-2613
Kym I. E. Snell https://orcid.org/0000-0001-9373-6591

Joie Ensor https://orcid.org/0000-0001-7481-0282
Mohammed T. Hudda https://orcid.org/0000-0001-7894-1159
Gary S. Collins https://orcid.org/0000-0002-2772-2316
Richard D. Riley https://orcid.org/0000-0001-8699-0735

REFERENCES
1. Riley RD, van der Windt D, Croft P, Moons KG, eds. Prognosis Research in Healthcare: Concepts, Methods and Impact. Oxford, UK: Oxford

University Press; 2019.
2. Harrell FE Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis.

Second ed. New York: Springer; 2015.
3. Steyerberg EW. Clinical Prediction Models: a Practical Approach to Development, Validation, and Updating. New York: Springer; 2009.
4. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: part I - continuous outcomes.

Stat Med. 2019;38(7):1262-1275. https://doi.org/10.1002/sim.7993.
5. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368:m441.
6. Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.
7. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130(6):515-524. https://

doi.org/10.7326/0003-4819-130-6-199903160-00016.
8. Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern

Med. 2006;144(3):201-209.
9. Toll DB, Janssen KJ, Vergouwe Y, Moons KG. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol.

2008;61(11):1085-1094. https://doi.org/10.1016/j.jclinepi.2008.04.008.
10. Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external

validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279-289. https://doi.org/10.1016/j.jclinepi.2014.06.018.
11. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from

utopia to empirical data. J Clin Epidemiol. 2016;74:167-176. https://doi.org/10.1016/j.jclinepi.2015.12.005.
12. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33.

https://doi.org/10.1186/1471-2288-13-33.
13. Bleeker SE, Moll HA, Steyerberg EW, et al. External validation is necessary in, prediction research: a clinical example. J Clin Epidemiol.

2003;56(9):826-832. https://doi.org/10.1016/S0895-4356(03)00207-5.
14. Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol.

2016;69:245-247. https://doi.org/10.1016/j.jclinepi.2015.04.005.
15. Collins GS, Altman DG. An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort

study. BMJ. 2010;340:c2442. https://doi.org/10.1136/bmj.c2442.
16. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological

conduct and reporting. BMC Med Res Methodol. 2014;14:40. https://doi.org/10.1186/1471-2288-14-40.
17. Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a

resampling study. Stat Med. 2016;35(2):214-226. https://doi.org/10.1002/sim.6787.
18. Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD

meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140. https://doi.org/10.1136/bmj.i3140.
19. Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med.

2013;10(2):e1001381. https://doi.org/10.1371/journal.pmed.1001381.

 10970258, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8766 by T
est, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

403



146 ARCHER et al.

20. Hudda MT, Fewtrell MS, Haroun D, et al. Development and validation of a prediction model for fat mass in children and adolescents:
meta-analysis using individual participant data. BMJ. 2019;366:l4293. https://doi.org/10.1136/bmj.l4293.

21. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med.
2019;17(1):230. https://doi.org/10.1186/s12916-019-1466-7.

22. Austin PC, Steyerberg EW. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers.
Stat Med. 2014;33(3):517-535. https://doi.org/10.1002/sim.5941.

23. Copas JB. Regression, prediction and shrinkage. J R Stat Soc B Methodol. 1983;45(3):311-354.
24. Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res. 1997;6(2):167-183. https://

doi.org/10.1177/096228029700600206.
25. Stein C. Inadmissibility of the usual estimator of the mean of a multivariate normal distribution. Proc Third Berkeley Symp Math Stat Prob.

1956;1:197-206.
26. Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Statistica Neerlandica.

2001;55:17-34.
27. Kirchner J. Data Analysis Toolkit #10: Simple linear regression. http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_10.pdf.

1996
28. Tan L. Confidence Intervals for Comparison of the Squared Multiple Correlation Coefficients of Non-nested Models. Electronic Thesis

and Dissertation Repository (Paper 384). 2012
29. Wishart J. The mean and second moment coefficient of the multiple correlation coefficient in samples from a normal population.

Biometrika. 1931;22:353-361.
30. Lee YS. Tables of the upper percentage points of the multiple correlation. Biometrika. 1971;59:175-189.
31. Kelley K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J Stat Softw. 2007;20(8):24. https://

doi.org/10.18637/jss.v020.i08.
32. Kelley K. Methods for the behavioral, educational, and social sciences: an R package. Behav Res Methods. 2007;39(4):979-984. https://doi.

org/10.3758/bf03192993.
33. Kelley K. MBESS (Version 4.0.0 and higher) [computer software and manual]. https://CRAN.R-project.org/package=MBESS. 2017.
34. Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis. Third ed. New York: Wiley; 2001.
35. Boyd A, Golding J, Macleod J, et al. Cohort profile: the ’children of the 90s’—the index offspring of the Avon longitudinal study of parents

and children. Int J Epidemiol. 2013;42(1):111-127. https://doi.org/10.1093/ije/dys064.
36. Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort profile: the Avon longitudinal study of parents and children: ALSPAC mothers

cohort. Int J Epidemiol. 2013;42(1):97-110. https://doi.org/10.1093/ije/dys066.
37. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or

interquartile range. BMC Med Res Methodol. 2014;14(1):135. https://doi.org/10.1186/1471-2288-14-135.
38. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: part II - binary and time-to-event

outcomes. Stat Med. 2019;38(7):1276-1296. https://doi.org/10.1002/sim.7992.
39. Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ.

2017;356:i6460. https://doi.org/10.1136/bmj.i6460.
40. Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation

and elaboration. Ann Intern Med. 2019;170(1):W1-W33. https://doi.org/10.7326/M18-1377.
41. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern

Med. 2019;170(1):51-58. https://doi.org/10.7326/M18-1376.
42. Austin PC, Steyerberg EW. Bootstrap confidence intervals for loess-based calibration curves. Stat Med. 2014;33(15):2699-2700. https://doi.

org/10.1002/sim.6167.
43. Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KG. Internal and external validation of predictive models: a simulation study

of bias and precision in small samples. J Clin Epidemiol. 2003;56(5):441-447.
44. Jinks RC, Royston P, Parmar MK. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event

data. BMC Med Res Methodol. 2015;15:82. https://doi.org/10.1186/s12874-015-0078-y.

How to cite this article: Archer L, Snell KIE, Ensor J, Hudda MT, Collins GS, Riley RD. Minimum sample
size for external validation of a clinical prediction model with a continuous outcome. Statistics in Medicine.
2021;40:133–146. https://doi.org/10.1002/sim.8766

 10970258, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8766 by T
est, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

404



Appendix IV - Chapter 5

Appendix IVa - External validation performance on the Poon 2011 model on the

log10 grams scale

Included items:

� Figure 8.1: Distributions of Expected and Observed birthweights (log10 grams), by external

validation cohort.

� Figure 8.2: Calibration plots for the Poon 2011 model when assessed on the log10 grams scale,

by external validation cohort.

� Figure 8.3: Forest plot for the calibration slope of the Poon 2011 model, when assessed on

the log10 grams scale.

� Figure 8.4: Forest plot for the CITL of the Poon 2011 model, when assessed on the log10 grams

scale.
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Figure 8.3: Forest plot for the calibration slope of the Poon 2011 model, when assessed on the

log10 grams scale.

Figure 8.4: Forest plot for the CITL of the Poon 2011 model, when assessed on the log10 grams

scale.
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Appendix IVb - External validation performance on the Poon 2011 model: complete

case analysis

Calibration slope

The pooled calibration slope across all cohorts of 0.97 (95% CI: 0.93 to 1.02) is consistent with

that seen in the imputed analysis, vary only in the slightly wider confidence intervals. Complete

case analysis continues to imply near ideal calibration of the Poon 2011 model across studies.

The 95% prediction interval implies that the calibration slope expected in a new cohort has a

95% chance of falling between 0.86 and 1.08. This is also consistent with the results found in the

imputation analysis. The only cohort for which there was a substantial difference in the calibration

slope was Rumbold, where confidence intervals were very wider, due to low numbers available in

the complete case analysis.
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Figure 8.5: Forest plot for the calibration slope of the Poon 2011 model, when assessed only in the

complete case data

411



Figure 8.6: Comparison of the calibration slope in complete case and multiply imputed data. The

grey lines indicate ideal value and the red line shows perfect agreement.

Calibration-in-the-large

On average, calibration-in-the-large for the complete case analysis was 89.00g (35.12g to 142.89g),

which is consistent with the 90.39g calibration in the large seen in the analysis of the imputed data.

Consistency in performance across analysis types was more consistent for calibration-in-the-large

than the calibration slope, with most studies lying close the line of agreement.
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Figure 8.7: Forest plot for the CITL of the Poon 2011 model, when assessed only in the complete

case data

Figure 8.8: Comparison of CITL in complete case and multiply imputed data. The grey lines

indicate ideal value and the red line shows perfect agreement.
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Appendix IVc - Prediction models for FGR and birthweight: subsequent research

Following the literature review and external validation of existing models discussed in this chapter,

it was concluded that the current literature was lacking in an acceptable model for the prediction

of FGR, either directly or through use of birthweight as a proxy. Therefore, the next steps of this

research project were to develop and validate a new prediction model for identifying the risk of

delivering a growth restricted baby (as defined above), using data from the IPPIC collaboration

data collection. Though the Poon 2011 model showed reasonable calibration performance on

average across individuals, model calibration was highly variable on the individual level, thus a

second model aiming to more consistently predict birthweight was also developed. Due to its

satisfactory performance on average, the Poon 2011 model was used as a starting point for the

development of both new models, with all predictor variables from this model being included as

candidate predictors, in addition to predictors identified through consultation with clinical experts.

Model development combined IPD meta-analysis methods with multiple imputation, variable

selection, and assessment of non-linear predictor-outcome relationships. An internal-external

cross-validation (IECV) approach was used for model validation, as model development involved

the combined IPD from multiple cohorts [268, 269]. Figure 8.9 summarises the main steps in

this process, which involved the development and external validation of multiple example models

across subgroups of the available datasets. For each cycle of the approach, an example model

was derived using the same development processes as for the full model, using the data from all

but one cohort. The reserved cohort was then used for external validation of this cycle-specific

prediction model, giving cycle-specific estimates of predictive performance.

Following all IECV cycles, there were multiple values for each predictive performance measure (one
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for each cohort from the full model development data, when that cohort was reserved for external

validation). These estimates were summarised across cycles using random-effects meta-analysis to

give pooled estimates for the full model’s predictive performance, and to assess the consistency

of model performance across populations and the anticipated generalisability of the estimated

predictive ability of the full model to new settings. As with the external validation seen in this

chapter, pooling of estimates across IECV cycles resulted in wider confidence intervals and thus

less certainty in performance than in any individual cycle, reflecting the varying populations and

heterogeneity in model performance across cohorts.
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An aim of this new model development was to allow predictions conditional on some assumed

gestational age at delivery, allowing assessment of anticipated FGR risk or continuous birthweight

if a baby were to be born at various different stages of gestation. Thus, gestational age at

delivery was included as a continuous predictor in both models, as in the Poon 2011 model.

Although the observed gestational age at delivery would not be available at the moment of

prediction, producing the models in this way allowed for a range of potential gestational

ages at delivery to be assessed for each pregnancy, with plots of predictions against gestational

age (“Georgie plots”) to give a more complete assessment of risk over time, as shown in Figure 8.10.

Figure 8.10: Predicted birthweight curves for two example pregnancies, compared to population

percentile curves, for assumed gestational ages at delivery between 30 and 43 weeks

417



Appendix V - Chapter 6, associated publication

RESEARCH

the bmj | BMJ 2022;379:e070918 | doi: 10.1136/bmj-2022-070918� 1

Development and external validation of a risk prediction model 
for falls in patients with an indication for antihypertensive  
treatment: retrospective cohort study
Lucinda Archer,1 Constantinos Koshiaris,2 Sarah Lay-Flurrie,2 Kym I E Snell,1 Richard D Riley,1 
Richard Stevens,2 Amitava Banerjee,3 Juliet A Usher-Smith,4 Andrew Clegg,5 Rupert A Payne,6 
F D Richard Hobbs,2 Richard J McManus,2 James P Sheppard,2 on behalf of the STRAtifying 
Treatments In the multi-morbid Frail elderlY (STRATIFY) investigators

Abstract
Objective
To develop and externally validate the STRAtifying 
Treatments In the multi-morbid Frail elderlY 
(STRATIFY)-Falls clinical prediction model to identify 
the risk of hospital admission or death from a fall 
in patients with an indication for antihypertensive 
treatment.
Design
Retrospective cohort study.
Setting
Primary care data from electronic health records 
contained within the UK Clinical Practice Research 
Datalink (CPRD).
Participants
Patients aged 40 years or older with at least one blood 
pressure measurement between 130 mm Hg and 179 
mm Hg.
Main outcome measure
First serious fall, defined as hospital admission or 
death with a primary diagnosis of a fall within 10 
years of the index date (12 months after cohort entry). 
Model development was conducted using a Fine-
Gray approach in data from CPRD GOLD, accounting 
for the competing risk of death from other causes, 
with subsequent recalibration at one, five, and 
10 years using pseudo values. External validation 
was conducted using data from CPRD Aurum, with 

performance assessed through calibration curves 
and the observed to expected ratio, C statistic, and D 
statistic, pooled across general practices, and clinical 
utility using decision curve analysis at thresholds 
around 10%.
Results
Analysis included 1 772 600 patients (experiencing 
62 691 serious falls) from CPRD GOLD used in model 
development, and 3 805 366 (experiencing 206 956 
serious falls) from CPRD Aurum in the external 
validation. The final model consisted of 24 predictors, 
including age, sex, ethnicity, alcohol consumption, 
living in an area of high social deprivation, a history 
of falls, multiple sclerosis, and prescriptions of 
antihypertensives, antidepressants, hypnotics, and 
anxiolytics. Upon external validation, the recalibrated 
model showed good discrimination, with pooled C 
statistics of 0.833 (95% confidence interval 0.831 
to 0.835) and 0.843 (0.841 to 0.844) at five and 10 
years, respectively. Original model calibration was 
poor on visual inspection and although this was 
improved with recalibration, under-prediction of risk 
remained (observed to expected ratio at 10 years 
1.839, 95% confidence interval 1.811 to 1.865). 
Nevertheless, decision curve analysis suggests 
potential clinical utility, with net benefit larger than 
other strategies.
Conclusions
This prediction model uses commonly recorded 
clinical characteristics and distinguishes well 
between patients at high and low risk of falls in the 
next 1-10 years. Although miscalibration was evident 
on external validation, the model still had potential 
clinical utility around risk thresholds of 10% and so 
could be useful in routine clinical practice to help 
identify those at high risk of falls who might benefit 
from closer monitoring or early intervention to prevent 
future falls. Further studies are needed to explore the 
appropriate thresholds that maximise the model’s 
clinical utility and cost effectiveness.

Introduction
The proportion of older adults in the population is 
rising,1 and with age the risk of falls increases,2 3 which 
can result in serious injury and long term disability.4 
In England, falls are associated with about 235 000 
emergency hospital admissions in the over 65s and 
cost the National Health Service more than £2.3bn 
($2.6bn; €2.6bn) every year.5-7
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What is already known on this topic
Serious falls are a possible side effect of antihypertensive treatment, which 
can adversely affect patients’ quality of life and increase the risk of hospital 
admission, especially in older people with frailty
Existing tools that estimate an individual’s risk of falls have been shown to be at 
high risk of bias, with only moderate discriminative ability

What this study adds
In the present study, a clinical prediction model for the risk of falls for up to 10 
years was developed and externally validated, incorporating commonly recorded 
patient characteristics, comorbidities, and drugs, in patients with an indication 
for antihypertensive treatment
Upon external validation, the model discriminated well between patients who 
went on to have a serious fall and those who did not, but calibration indicated 
under-prediction of risk
Nevertheless, a decision curve analysis suggests the model has clinical utility 
and so may be useful to identify patients with a high fall risk, who may require 
closer monitoring or early intervention to prevent future falls
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Many risk factors for falls exist, primarily related 
to comorbidities and frailty.2 3 8-10 A key modifiable 
risk factor is prescribed drugs, including those that 
lower blood pressure.11-13 Although antihypertensives 
are effective at reducing the risk of cardiovascular 
disease, typically many patients require treatment over 
several years to prevent a small number of events.14 
Data from randomised controlled trials show that 
antihypertensives are associated with an increased 
risk of hypotension and syncope, which may lead to 
falls.15 Observational studies examining patients with 
frailty and multimorbidity suggest a direct association 
between antihypertensive treatment and falls.11 16 17

In patients who are prescribed antihypertensives 
or other drugs that substantially increase their risk 
of falls, doctors might want to consider altering or 
withdrawing treatment (ie, deprescribing),18 along 
with other interventions to reduce the risk of falls (eg, 
advice on lower alcohol consumption, falls prevention 
clinics, exercises).7 Identifying people at high risk of 
falls is, however, challenging. A 2021 systematic review 
of falls prediction models for use in the community 
identified a total of 72 models.10 Most of these studies 
were deemed at high risk of bias, and only three of 
the models were externally validated. These three 
validated models showed moderate discriminative 
ability, with an area under the curve of between 0.62 
and 0.69. Calibration based on internal validation 
was only reported in seven of the studies, and it 
was typically moderate to poor.10 A further primary 
analysis aiming to predict falls in a general practice 
population showed good apparent discrimination for 
the model used (with an area under the curve of 0.87), 
but calibration performance was not assessed and no 
external validation was performed.19

To inform clinical decision making in primary care, 
both patients and doctors require better prediction 
models to accurately identify those at high risk of 
serious falls (defined as any fall resulting in hospital 
admission or death), from the population of older 
adults who might be considered for antihypertensive 
treatment. This population includes patients with a 
recent high blood pressure reading, including those 
with a new diagnosis of hypertension, as well as 
those in whom intensification of treatment is being 
considered. We used routinely collected data from 
electronic health records to develop and externally 
validate a clinical prediction model to estimate such 
individuals’ risk of experiencing a fall resulting in 
hospital admission or death within 10 years. This study 
is part of a broader research programme investigating 
the association between blood pressure lowering drugs 
and side effects: STRAtifying Treatments In the multi-
morbid Frail elderlY (STRATIFY): Antihypertensives.

Methods
A retrospective observational cohort study was used 
to develop a prediction model for serious falls (the 
STRATIFY-Falls model), using data from Clinical 
Practice Research Datalink (CPRD) GOLD, which 
contains information from general practices using 

Vision electronic health record software (Cegedim 
Healthcare Solutions, London, UK). The model was 
externally validated using a second retrospective 
observational cohort comprising data from CPRD 
Aurum, containing data from general practices using 
recording software from Egton Medical Information 
Systems (EMIS, Leeds, UK). These data were linked 
to Office for National Statistics mortality data, 
Hospital Episode Statistics, and index of multiple 
deprivation data. The CPRD independent scientific 
advisory committee approved the protocol for this 
study (protocol No 19_042, see Appendix 6 in the 
supplementary material).

Population
Patients were eligible if they were registered at a linked 
general practice in England, contributing to CPRD 
between 1 January1998 and 31 December 2018. At 
the time of analysis, CPRD GOLD (development cohort) 
contained 4.4 million active patients from 674 general 
practices, whereas CPRD Aurum (validation cohort) 
contained seven million active patients from 738 
practices. Both datasets have previously been shown to 
be representative of the patient population in England 
for age, ethnicity, and deprivation status.20 21 To avoid 
duplication of patients, when practices had switched 
from one recording system to the other during the 
study timeframe, we excluded practices from CPRD 
Aurum (validation cohort) that were also present in the 
CPRD GOLD (development) dataset.

Patients were considered eligible if they were 
aged 40 years or older (no upper age limit applied), 
registered to a CPRD “up-to-standard” practice 
(CPRD GOLD only), and had records available during 
the study period. Patients entered the cohorts at the 
time at which they became potentially eligible for 
antihypertensive treatment (ie, at the time of their first 
systolic blood pressure reading ≥130 mm Hg) after the 
study start date, and they were followed for up to 10 
years. This blood pressure threshold was chosen to 
account for varying treatment initiation thresholds 
specified in different international hypertension 
guidelines.6 Patients with any systolic blood pressure 
reading >180 mm Hg were excluded from the cohort, 
as antihypertensive treatment would be indicated for 
these patients regardless of the risk of adverse events, 
unless clearly contraindicated for other reasons. All 
patient characteristics and model predictors were 
determined at the index date, defined as 12 months 
after cohort entry. The same eligibility criteria and 
characteristic determination methods were applied 
to both the development cohort and the validation 
cohort.

Outcomes
The primary outcome was any hospital admission 
or death associated with a primary diagnosis of 
a fall within 10 years of the index date, the same 
time horizon as used for cardiovascular prediction 
models.22 Falls were based on ICD-10 (international 
classification of diseases, 10th revision) codes 
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documented in Hospital Episodes Statistics and ONS 
mortality data (applicable ICD-10 codes shown in 
supplementary table S4.1). Prespecified secondary 
outcomes were falls (defined in the same way) within 
one and five years of the index date. This outcome 
definition was consistent across both the development 
cohort and the validation cohort.

Model predictors
We identified clinically relevant predictors of falls from 
the literature and through expert clinical opinion.2 7-9 23 
These included 30 predictors (44 predictor variables), 
covering patient demographics (age, sex, ethnicity, 
area based socioeconomic deprivation (index of 
multiple deprivation), body mass index (BMI), systolic 
and diastolic blood pressure), clinical characteristics 
(total cholesterol level, smoking status, alcohol intake), 
comorbidities (previous falls, memory problems, 
mobility issues, history of stroke, multiple sclerosis, 
activity limitation, syncope, cataract), and prescribed 
drugs (antihypertensives, opioids, hypnotics or 

benzodiazepines, antidepressants, anticholinergics) 
(see table S4.2 in the supplementary material). A 
recent literature review of falls clinical prediction tools 
by the National Institute for Health and Care Excellence 
identified the need for frailty to be considered as a 
predictor in models for use in the community.24 We 
therefore also calculated a validated electronic frailty 
index using the 36 comorbidities and conditions 
specified, including this index as a single covariate.25 
Covariates were defined by any occurrence of relevant 
Read or SNOMED codes at any time point before the 
index date, with the exception of antihypertensives, 
which were defined as any prescription in the 12 
months before the index date.

To ensure consistency with commonly used risk 
calculators,26 27 our prediction models do not account 
for changes in prescriptions of drug type or amount 
over time, and as such give an estimation of falls 
risk assuming treatment assignment policy in any 
application setting is similar to that in the development 
data.28

Sample size
The prespecified sample size calculation for model 
development was 2194 participants (15 358 person 
years), assuming a maximum of 40 predictors would 
be included in the final model (see extended methods 
in the supplementary material).29 For the external 
validation, the estimated sample size required was 
12 000 patients (with at least 708 experiencing falls), 
sufficient to target a 95% confidence interval of width 
0.2 around the estimate of the calibration slope (see 
extended methods in the supplementary material).30 
The actual sample sizes in both the development 
cohort and the validation cohort far exceeded these 
estimates.

Statistical analysis
We calculated descriptive statistics for baseline 
characteristics in the model development and external 
validation cohorts separately.

Missing data
Multiple imputation with chained equations was 
used to impute missing data in both the development 
cohort and the validation cohort, with 10 imputations 
generated for the development and validation datasets. 
Two separate and independent imputation procedures 
were used, one for model development and one for 
model validation. The imputation models included all 
model covariates within each dataset, along with the 
Nelson-Aalen estimator for the cumulative baseline 
cause specific hazards for falls and for the competing 
event of death, and binary event indicators for each 
of these possible event types.31 32 When information 
was missing on the diagnosis of comorbidities or 
prescribed drugs, it was assumed that no diagnosis or 
prescription was present. Predictor variables requiring 
imputation were cholesterol, ethnicity, deprivation 
score (validation cohort only), smoking status, and 
alcohol consumption.

Final model equations, five and 10 years: 

Final model equation for one year:

Where p
5y

 and p
10y

 are the predicted probabilities of a fall at five and 10
years, respectively; and LP is the linear predictor from the original model,
as shown in table 2:

1 year risk = 1 – (1 – CIF
1y

)exp(LP)

In                        = α
5y

 + (β
5y

 x LP) + (γ
5y

 x (LP) x In(LP))
p

5y

1-p
5y( )

LP
i
 =

0.223 if female
0 if male– 0.242     x 4.102 +

+

+ (0.275 if previous falls) + (0.155 if memory problems)
+ (-0.08 if mobility problems) + (0.11 if using ACE inhibitors)
+ (0.17 if using angiotensin 2 receptor blockers)
+ (0.082 if using calcium channel blockers) + (0.071 if using diuretics)
+ (0.068 if using β blockers) + (0.041 if using α blockers)
+ (-0.045 if using other hypertensives) + (0.101 if using opioids)
+ (0.142 if using hypnotics/anxiolytics) + (0.146 if using antidepressants)
+ ( 0.034 if using anticholinergic) + (0.133 if history of stroke)
+ (0.537 if history of multiple sclerosis)

+

{

-0.425 if black ethnicity

-0.352 if other ethnicity
-0.381 if South Asian ethnicity{ +

0.038 if IMD2

0.169 if IMD4
0.072 if IMD3

0.229 if IMD5{
+

-0.105 if occasional drinker

-0.009 if moderate drinker

-0.068 if drinker (unknown quantity)

-0.065 if light drinker

0.451 if heavy drinker{
+

0.114 if former
  smoker
0.236 if current
  smoker{

3

( )Age
100( )

– 1.381     x 0.393
-0.5

( )TC
10( )

+ – 0.576     x 0.197( )FI
0.1( )

In                        = α
10y

 + (β
10y

 x LP) + (γ
10y

 x (LP) x In(LP))
p

10y

1-p
10y( )

Fig 1 | Final model equations for predicting risk of falls at one, five, and 10 years 
in patients with an indication for hypertensive treatment. Age is measured in 
years. Ln=natural logarithm; IMD2-IMD5=indices of multiple deprivation; TC=total 
cholesterol; FI=electronic frailty index. The full algorithm code (including the α, β, γ, 
and CIF values) is freely available for research use and can be downloaded at https://
process.innovation.ox.ac.uk/software/
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Imputations were assessed for consistency by 
comparing density plots, histograms, and summary 
statistics across imputations and back to the complete 
values. The model coefficients and predictive 
performance measures were then estimated in each 
imputed dataset separately, before being combined 
across imputations using Rubin’s rules.33

Model development
Researchers at the University of Oxford (CK, JPS) 
conducted the model development and apparent 
validation. Multivariable prediction models were 
fitted in each imputed dataset using a Fine-Gray 
subdistribution hazard model, taking into account the 
competing risk of death by other causes.34 The aim of 
accounting for the competing risk in this way was to 
avoid overestimation of the predicted probabilities of 
falls as defined in the Fine-Gray paper.34 35 Predictor 
effects in the model are reported as subdistribution 
hazard ratios with 95% confidence intervals, and the 
post-estimation baseline cumulative incidence for 
falls was estimated using a Breslow type estimator.34 
Analyses were undertaken using the fastcmprsk 
package in RStudio.36 Automated variable selection 
methods were not used, since the variables were all 
predetermined based on the literature and expert 
opinion, and given the large sample size would result 
in nearly all predictors having a statistically significant 
association with the outcome, regardless of effect 
size. To ensure a parsimonious model, we excluded 
variables with little or no association in multivariable 
analysis before fitting the final model.

Fractional polynomial terms were examined 
to identify the best fitting functional form of all 
continuous variables.37 Fractional polynomials were 
identified separately within each imputed dataset, and 

we selected the most consistent transformation across 
the imputations, choosing lower order fractional 
polynomial terms whenever possible for the sake of 
parsimony. We then forced the selected fractional 
polynomial format for each continuous variable into 
the model for all imputations to ensure consistency in 
coefficient estimation.

Interactions between age, sex, and antihypertensive 
treatments were considered but excluded from the 
model development owing to problems with stability 
or convergence, or for the sake of parsimony.

We examined the Schoenfeld residuals to check the 
proportional hazards assumption for each predictor.38

Apparent validation using development data
Observed outcome probabilities were defined using 
pseudo values: jack-knife estimators representing an 
individual’s contribution to the cumulative incidence 
function for falls, accounting for competing risk, 
calculated by the Aalen–Johansen method. Pseudo 
values were generated separately in 50 groups by 
linear predictor value, for stability, and to account for 
the competing risk of death and non-informative right 
censoring.39 40

The model’s apparent calibration performance 
was assessed using calibration plots comparing the 
observed to predicted risks at one, five, and 10 years. The 
calibration plots were produced using observed pseudo 
values and included a smooth (non-linear) calibration 
curve to show apparent calibration across the spectrum 
of predicted risks,41 with 95% confidence intervals. 
Plots were generated in each imputed dataset separately 
and were checked for consistency across imputations. A 
single, representative example is reported.

When plots showed miscalibration, we recalibrated 
the original Fine-Gray model separately at each 

CPRD Gold (acceptable patients
from up to standard practices)

Derivation cohort Validation cohort

16 071 111
CPRD Aurum (all patients)

22 699 368

Remove practices that are
included in GOLD dataset

Apply initial inclusion criteria:
• Patients ≥40 years in England
• Records available aer study start date
    (1 Jan 1998)

4 300 235
Apply initial inclusion criteria:
• Patients ≥40 years in England
• Records available aer study start date
    (1 Jan 1998)

8 538 528

6 880 935

Exclude patients who do not have systolic
blood pressure between 130 and 179 mm Hg

3 805 366
Exclude patients who do not have systolic

blood pressure between 130 and 179 mm Hg

1 772 600

Exclude patients without linked data
5 996 141

Exclude patients without linked data
3 223 667

Fig 2 | Flow of participants through study. CPRD=Clinical Practice Research Datalink
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time point by fitting a generalised linear equation 
with a logit link function directly to the observed 
pseudo values in the development dataset. The linear 
predictor from the original model was the only variable 
included in the recalibration model, which allowed 
for a non-linear recalibration effect using fractional 
polynomials.

External validation
Researchers at Keele University (LA, KIES, RDR) 
conducted the external validation of the prediction 
model, independent of the model development team. 
The prediction model algorithms presented in figure 1 
(both the original and the final) were applied to each 
individual in the external validation cohort to give the 

Table 1 | Descriptive statistics for model development and validation cohorts, in full cohorts and stratified by outcome type at 10 years. Values are 
numbers (percentages) unless stated otherwise

Variables

Development cohort Validation cohort

Total (n=1 772 600) Falls (n=62 691)
Mortality 
(n=181 731) Total (n=3 805 366) Falls (n=206 956)

Mortality 
(n=334 552)

Mean (SD) age (years) 59.4 (13.2) 73.6 (12.7) 74.3 (12.0) 58.6 (13.3) 72.8 (12.7) 73.1 (12.3)
Women 921 853 (52) 39 955 (64) 91 676 (50) 1 959 489 (52) 134 945 (65.2) 165 689 (49.5)
Systolic blood pressure (mm Hg) 143.5 (11.9) 146.3 (12.7) 146.9 (12.8) 143.8 (12.3) 147.2 (13.2) 147.7 (13.3)
Diastolic blood pressure (mm Hg) 83.8 (9.6) 81.6 (10.0) 81.7 (10.0) 83.9 (9.8) 81.9 (10.2) 82.0 (10.3)
Cholesterol (mmol/L) 5.3 (1.1) 5.2 (1.2) 5.2 (1.2) 5.5 (1.2) 5.4 (1.3) 5.4 (1.3)
Missing 868 461 (48.9) 32 661 (52) 104 094 (59) 1 839 116 (48.3) 109 708 (53.0) 195 390 (58.4)
Ethnicity:
  White 734 149 (41) 59 608 (95) 105 077 (40.5) 2 041 505 (54) 194 311 (93.9) 206 384 (61.7)
  Black 10 799 (0.6) 339 (0.54) 826 (0.45) 115 279 (3) 2239 (1.1) 4019 (1.2)
  South Asian 14 799 (0.8) 505 (0.81) 991 (0.55) 94 485 (3) 2449 (1.2) 3673 (1.1)
  Other 15 731 (0.9) 587 (0.94) 1229 (0.68) 832 614 (22) 3442 (1.7) 21458 (6.4)
  Missing 997 122 (56) 1652 (2.6) 73 608 (57.8) 721 483 (19) 4515 (2.2) 99 018 (29.6)
Index of multiple deprivation score:
  1 420 765 (23.7) 12 624 (20.2) 35 529 (19.6) 790 311 (20.8) 41 786 (20.2) 66 606 (19.9)
  2 406 775 (22.9) 13 429 (21.4) 39 652 (21.8) 732 246 (19.2) 41 820 (20.2) 68 147 (20.4)
  3 376 765 (21.3) 13 239 (21.1) 39 279 (21.6) 684 288 (18) 40 665 (19.7) 67 130 (20.1)
  4 313 595 (17.7) 12 031 (19.2) 35 183 (19.4) 630 482 (16.6) 40 383 (19.5) 65 342 (19.5)
  5 254 700 (14.4) 11 317 (18.1) 31 909 (17.6) 597 180 (15.7) 42 141 (20.4) 67 024 (20.0)
  Missing 0 (0) 0 (0) 0 (0) 370 859 (9.7) 161 (0.1) 303 (0.1)
Smoking status:
  Non-smoker 847 205 (48) 29 500 (47.1) 74 646 (41) 1 475 708 (39) 77 990 (37.7) 109 249 (32.7)
  Former smoker 471 005 (27) 17 440 (27.8) 50 884 (28) 1 236 061 (33) 39 087 (18.9) 75 081 (22.4)
  Current smoker 363 440 (21) 10 720 (17.1) 38 478 (21.2) 838 404 (22) 66 836 (32.3) 105 363 (31.5)
  Missing 90 950 (5) 5031 (8.0) 17 905 (9.9) 255 193 (7) 23 043 (11.1) 44 859 (13.4)
Median (IQR) frailty index score 0.03 (0-0.08) 0.08 (0.06-0.14) 0.08 (0.06-0.14) 0.06 (0.03-0.08) 0.08 (0.06-0.17) 0.08 (0.06-0.17)
Alcohol intake status:
  Non-drinker 289 472 (16) 14 172 (22.6) 37 568 (20.7) 864 865 (23) 59 364 (28.7) 89 537 (26.8)
  Occasional drinker 488 289 (28) 15 195 (24.2) 42 645 (23.5) 998 948 (26) 47 088 (22.8) 71 739 (21.4)
  Light drinker 239 732 (14) 6472 (10.3) 18 863 (10.4) 696 369 (18) 26 635 (12.9) 44 924 (13.4)
  Moderate drinker 179 102 (10) 3891 (6.2) 12 926 (7.1) 246 468 (7) 9378 (4.5) 17 491 (5.2)
  Heavy drinker 22 760 (1.3) 891 (1.4) 2336 (1.3) 74 005 (2) 5124 (2.5) 6845 (2.1)
  Unknown amount 291 649 (16) 9962 (15.9) 165 132 (14.4) 237 464 (6) 9631 (4.7) 12 117 (3.6)
  Missing 216 596 (15) 12 108 (19.3) 41 261 (22.7) 687 247 (18) 49 736 (24) 91 899 (27.5)
Risk factors:
  Previous falls 108 745 (6) 10 514 (16.8) 22 459 (12.4) 140 886 (3.7) 21 697 (10.5) 25 124 (7.5)
  Memory problems 28 276 (1.6) 3860 (6.2) 10 556 (5.8) 99 264 (2.6) 15 996 (7.7) 28 636 (8.6)
  Mobility problems 20 425 (1.2) 2462 (3.9) 7347 (4.0) 85 675 (2.3) 13 999 (6.8) 22 928 (6.9)
  Stroke 44 339 (2.5) 4320 (6.9) 14 167 (7.8) 111 462 (2.9) 15 704 (7.6) 26 703 (8
  Multiple sclerosis 6367 (0.4) 300 (0.5) 798 (0.4) 11 328 (0.3) 975 (0.5) 1373 (0.4)
Antihypertensive drugs:
  ACE inhibitors 219 506 (12) 12 039 (19.2) 38 096 (20.9) 478 778 (13) 38 867 (18.8) 67 787 (20.3)
  Angiotensin 2 receptor blockers 59 075 (3) 3167 (5.1) 7628 (4.2) 136 926 (4) 11 018 (5.3) 14 308 (4.3)
  α blockers 34 338 (2) 2088 (3.3) 6794 (3.7) 68 131 (2) 6335 (3.1) 11 388 (3.4)
  β blockers 216 122 (12) 10 885 (17.4) 31 341 (17.3) 461 329 (12) 36 317 (17.6) 59 019 (17.6)
  Calcium channel blockers 193 141 (11) 11 570 (18.5) 35 859 (19.7) 426 151 (11) 37 590 (18.2) 63 764 (19.1)
  Diuretics 180 065 (10) 10 706 (17.1) 29 783 (16.4) 397 980 (11) 36 418 (17.6) 55 934 (16.7)
  Other antihypertensives 10 784 (0.6) 400 (0.8) 1594 (0.9) 19 235 (1) 1437 (0.7) 2471 (0.7)
Other drugs:
  Opioids 553 344 (31) 26 060 (41.6) 69 496 (38.2) 1 213 876 (32) 84 108 (40.6) 121 303 (36.3)
  Hypnotics and anxiolytics 376 885 (21) 17 703 (28.2) 48 636 (26.8) 750 584 (20) 52 854 (25.5) 78 627 (23.5)
  Antidepressants 383 647 (21) 17 159 (27.4) 42 767 (23.5) 793 690 (21) 52 820 (25.5) 71 452 (21.4)
  Anticholinergics 207 345 (11) 11 085 (17.7) 29 384 (16.2) 388 513 (10) 31 542 (15.2) 46 255 (13.8)
Median (IQR) follow-up (years) 6.2 (2.6-10) 4.3 (1.8-7.0) 3.7 (1.6-6.3) 6.7 (2.7-10) 4.3 (1.9-7.1) 3.8 (1.6-6.5)
ACE=angiotensin converting enzyme; IQR=interquartile range; SD=standard deviation. 

 on 24 A
ugust 2023 at B

arnes Library M
edical S

chool. P
rotected by copyright.

http://w
w

w
.bm

j.com
/

B
M

J: first published as 10.1136/bm
j-2022-070918 on 8 N

ovem
ber 2022. D

ow
nloaded from

 

422



RESEARCH

6� doi: 10.1136/bmj-2022-070918 | BMJ 2022;379:e070918 | the bmj

predicted probabilities of experiencing a fall within 
one, five, and 10 years, taking account of the competing 
risk of death by other causes.42 Model calibration was 
assessed through comparison of predicted probabilities 
to observed pseudo values, estimated using jack-knife 
estimators representing an individual’s contribution to 
the cumulative incidence function for falls, accounting 
for competing risks, calculated by the Aalen–Johansen 
method in the external validation cohort.

Predictive performance was quantified by 
calculating the observed to expected ratio, Harrell’s 
C statistic, Royston’s D statistic with its associated R2 
statistic,43 each applied to the same pseudo values 

as above, and by using calibration plots and curves. 
Calibration plots were generated separately in each 
imputed dataset and checked for consistency (one 
illustrative example is shown for each model). All 
measures were calculated in each imputed dataset 
separately and, when appropriate, combined across 
imputations using Rubin’s rules. When Rubin’s rules 
did not apply (eg, when the posterior distribution 
was not expected to be normal), performance was 
summarised across imputations using the median and 
interquartile range.44

Heterogeneity in model performance across different 
general practices was assessed using a random effects 
meta-analysis, using restricted maximum likelihood 
estimation, given that the case mix and incidence of 
falls were expected to vary between practices (see 
extended methods in the supplementary material).45 
The observed to expected ratio was pooled across 
practices on the natural log scale, the C statistic on the 
logit scale (with the standard errors of logit C calculated 
using the delta method), and the D statistic on its 
original scale.46 47 Pooled estimates are reported with 
prediction intervals to give an indication of expected 
model performance in a new general practice.

Clinical utility was assessed by plotting the one year, 
five year, and 10 year risk of falls against the 10 year risk 
of cardiovascular disease, calculated using the Qrisk2 
algorithm.22 Clinical utility was also examined using 
net benefit analysis, where the harms and benefits 
of using a model to guide treatment decisions were 
offset to assess the overall consequences of using the 
STRATIFY-Falls prediction models for clinical decision 
making.48 The original and final models were compared 
with one another at five and 10 years and with model 
blind methods of introducing falls prevention measures 
(which may include deprescribing) for all patients, or 
not introducing falls prevention measures (starting 
or continuing treatment) for all patients, regardless 
of falls risk. We assessed net benefit across the full 
range of possible threshold probabilities, with a falls 
risk above 10% at 10 years specified a priori as being 
a threshold of clinical interest, to align with current 
thresholds for an individual’s risk of cardiovascular 
disease.49

The same external validation methods as described 
earlier were employed in subgroups by age (<65 years, 
≥65 years), sex (women, men), and ethnicity (white, 
black, South Asian, other), to assess the models’ 
predictive performance in these clinically relevant 
groups.

Patient and public involvement
This study was developed and conducted with the help 
of our patient and public advisor Margaret Ogden. As a 
member of our study advisory group, they commented 
on the study protocol and have been present in all team 
meetings discussing results and reporting. We also 
held a focus group with several older adults during the 
study to discuss broader themes related to drugs for 
cardiovascular disease prevention and adverse events, 
which informed the interpretation of this work.

Table 2 | Prediction model for falls. Values are subdistribution hazard ratios and 95% 
confidence intervals

Predictors
Full case analysis  
(n=358 207)

Multiple imputation model 
(n=1 772 600)

Age 30.1 (27.7 to 32.7) 60.46 (57.87 to 63.17)
Sex (women) 1.32 (1.28 to 1.35) 1.25 (1.23 to 1.27)
Total cholesterol 1.55 (1.44 to 1.67) 1.48 (1.36 to 1.61)
Ethnicity:
  White Reference Reference
  Black 0.68 (0.59 to 0.79) 0.65 (0.58 to 0.74)
  South Asian 0.67 (0.60 to 0.75) 0.68 (0.61 to 0.77)
  Other 0.66 (0.59 to 0.74) 0.70 (0.63 to 0.78)
Index of multiple deprivation score:
  1 Reference Reference
  2 1.05 (1.00 to 1.09) 1.04 (1.01 to 1.07)
  3 1.06 (1.02 to 1.12) 1.07 (1.05 to 1.10)
  4 1.14 (1.01 to 1.19) 1.18 (1.15 to 1.21)
  5 1.23 (1.18 to 1.29) 1.35 (1.31 to 1.39)
Smoking status:
  Non-smoker Reference Reference
  Former smoker 1.06 (1.04 to 1.09) 1.12 (1.10 to 1.4)
  Current smoker 1.26 (1.22 to 1.31) 1.27 (1.24 to 1.30)
Alcohol intake status:
  Non-drinker Reference Reference
  Occasional drinker 0.87 (0.84 to 0.90) 0.90 (0.85 to 0.95)
  Light drinker 0.93 (0.89 to 0.98) 0.94 (0.88 to 1.00)
  Moderate drinker 0.99 (0.94 to 1.05) 0.99 (0.93 to 1.06)
  Heavy drinker 1.71 (1.55 to 1.87) 1.57 (1.28 to 1.93)
  Unknown amount 0.97 (0.95 to 1.02) 0.93 (0.89 to 0.98)
Frailty index score 1.11 (1.09 to 1.14) 1.22 (1.20 to 1.23)
Risk factors:
  History of falls 1.40 1.35 to 1.46) 1.32 (1.29 to 1.35)
  Memory problems 1.25 (1.17 to 1.35) 1.17 (1.12 to 1.21)
  Mobility problems 0.99 (0.93 to 1.07) 0.92 (0.87 to 0.98)
  Stroke 1.28 (1.22 to 1.34) 1.14 (1.11 to 1.18)
  Multiple sclerosis 1.48 (1.23 to 1.78) 1.71 (1.51 to 1.94)
Antihypertensive drugs:
  ACE inhibitors 1.04 (1.01 to 1.07) 1.12 (1.10 to 1.14)
  Angiotensin 2 receptor blockers 1.07 (1.02 to 1.12) 1.19 (1.15 to 1.23)
  α blockers 1.00 (0.95 to 1.06) 1.04 (1.02 to 1.06)
  β blockers 0.97 (0.96 to 1.00) 1.07 (1.02 to 1.12)
  Calcium channel blockers 0.99 (0.97 to 1.03) 1.08 (1.06 to 1.11)
  Diuretics 0.98 (0.95 to 1.01) 1.07 (1.05 to 1.10)
  Other antihypertensives 1.08 (0.97 to 1.21) 0.96 (0.88 to 1.04)
Other drugs
  Opioids 1.10 (1.07 to 1.13) 1.11 (1.08 o 1.13)
  Hypnotics and anxiolytics 1.04 (1.00 to 1.07) 1.15 (1.13 to 1.18)
  Antidepressants 1.14 (1.10 to 1.18) 1.16 (1.13 to 1.18)
  Anticholinergics 1.11 (1.06 to 1.14) 1.03 (1.02 to 1.05)
ACE=angiotensin converting enzyme.
Variable transformations: Age=((age/100)^3)−0.242; cholesterol=((cholesterol/10)^−0.5)−1.381; frailty 
index=(frailty index/0.1)−0.576.
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Results
Study population characteristics
Figure 2 shows the flow of study participants for both 
the development cohort and the validation cohort. A 
total of 1 772 600 patients were included in the model 
development cohort (CPRD GOLD), with a mean age 
of 59 years (standard deviation (SD) 13 years) and 
a mean systolic blood pressure of 144 mm Hg (SD 
12 mm Hg) at study inclusion (table 1). The 10 year 
prevalence of falls was 3.5% (n=62 691), with 10.3% 
of patients (n=181 731) experiencing death by other 
causes before any fall occurred, and a median follow-
up of 6.2 years (interquartile range (IQR) 2.6-10 years) 
across the cohort.

In total, 3 805 366 patients were included in the 
validation cohort, with 206 956 (5.4%) experiencing 
fall events during 10 year follow-up. A further 334 552 
(8.8%) patients died during follow-up from unrelated 
causes, before any fall occurred. Median follow-up 
time in the validation cohort was 6.7 years (IQR 2.7-10 
years). Total cholesterol level was missing in 48% of 
participants, and ethnicity data were more complete in 
the validation cohort than development cohort (81% v 
44% complete data).

Model development
The original model consisted of 24 predictors, after the 
exclusion of variables with little or no association in 
multivariable analysis (table 2). Compared with men, 
women were more likely to experience a fall during 
follow-up (subdistribution hazard ratio 1.25, 95% 
confidence interval 1.23 to 1.27). Increasing age, white 
ethnicity, and being a smoker, a heavy drinker, or more 
deprived were predictors associated with an increased 
risk of falls (table 2). Increasing frailty was one of the 
strongest predictors of falls, with an increased falls risk 
of 22% for about every four deficits accrued (1.22, 1.20 
to 1.23). Of the previous medical conditions examined, 
the strongest predictors of falls were having a history of 
falls (1.32, 1.29 to 1.35) and multiple sclerosis (1.71, 

1.51 to 1.94). Drugs most strongly associated with falls 
were angiotensin 2 receptor blockers (1.19, 1.15 to 
1.23), antidepressants (1.16, 1.13 to 1.18), hypnotics 
and anxiolytics (1.15, 1.13 to 1.18), angiotensin 
converting enzyme inhibitors (1.12, 1.10 to 1.14), and 
opioids (1.11, 1.08 to 1.13). To ensure a parsimonious 
final model, systolic and diastolic blood pressure, 
BMI, activity limitation, syncope, and cataract were 
excluded from the model owing to a lack of association 
with falls risk. No violations of the proportional 
hazards assumption were detected.

Internal validation and recalibration using pseudo 
values
At five and 10 years, apparent calibration plots in 
the model development data showed significant 
miscalibration, with under-prediction for patients with 
a low predicted risk and substantial over-prediction for 
those with a high predicted risk (see supplementary 
figure S3.1). We therefore recalibrated the original 
model to the observed pseudo values and this improved 
apparent calibration (in the model development data) 
considerably (fig 4 and fig 5). Apparent calibration 
of the original model at one year was good, therefore 
recalibration was not required (see fig 3).

External validation
Predictive performance
Upon external validation, the original model showed 
excellent discrimination (table 3) but poor calibration 
(see supplementary figure S3.1), with considerable 
heterogeneity across general practices (see 
supplementary figure S3.2). Recalibration of the model 
corrected miscalibration in the model development 
cohort, but under-prediction of risk was still present 
in the validation cohort (fig 3, fig 4, and fig 5). This 
miscalibration was less extreme than that of the original 
model, in the narrower range of predicted probabilities 
between 0 to 0.2. On average, the recalibrated model 
showed a pooled observed to expected ratio at 10 years 

Table 3 | Predictive performance statistics of the falls prediction models on external validation in Clinical Practice Research Datalink Aurum

Statistics
1 year 5 years 10 years
Original model Original model Pseudo value recalibration Original model Pseudo value recalibration

Observed to expected ratio
Pooled effect size (95% CI) 0.162 (0.158 to 0.166) 1.702 (1.674 to 1.730) 1.906 (1.874 to 1.939) 1.682 (1.657 to 1.707) 1.839 (1.811 to 1.865)
Prediction interval 0.090 to 0.289 1.116 to 2.586 1.246 to 2.915 1.139 to 2.484 1.284 to 2.638
τ2 0.089 (0.080

to 0.099)
0.046 (0.042 to 0.052) 0.0479 (0.043 to 0.054) 0.038 (0.035 to 0.043) 0.0342 (0.031 to 0.038)

C statistic
Pooled effect size (95% CI) 0.866 (0.862 to 0.869) 0.843 (0.841 to 0.844) 0.843 (0.841 to 0.844) 0.833 (0.832 to 0.835) 0.833 (0.831 to 0.835)
Prediction interval 0.794 to 0.915 0.789 to 0.881 0.789 to 0.881 0.789 to 0.870 0.789 to 0.870
τ2 0.068 (0.056 to 0.083) 0.026 (0.023 to 0.030) 0.026 (0.023 to 0.030) 0.022 (0.019 to 0.025) 0.022 (0.019 to 0.025)
D statistic
Pooled effect size (95% CI) 2.160 (1.987 to 2.333) 1.903 (1.754 to 2.051) 1.894 (1.746 to 2.042) 1.643 (1.515 to 1.771) 1.597 (1.472 to 1.721)
Prediction interval 1.99 to 2.33 1.75 to 2.05 1.75 to 2.04 1.51 to 1.77 1.47 to 1.72
τ2 0.000 (0.000 to 0.039) 0.000 (0.000 to 0.023) 0.000 (0.000 to 0.022) 0.000 (0.0000 to 0.0168) 0.000 (0.000 to 0.016)
Royston and Sauerbrei’s R2

Range 0 to 86.0 28.0 to 91.4 25.9 to 91.4 21.3 to 91.4 21.6 to 91.4
Median (IQR) 58.1 (52.3 to 62.2) 47.4 (43.5 to 51.8) 47.3 (43.2 to 51.7) 39.9 (36.4 to 43.8) 38.6 (35.4 to 42.4)
Mean (SD) 56.5 (0.10) 47.9 (0.07) 47.7 (0.07) 40.8 (0.07) 39.4 (0.07)
CI=confidence interval; IQR=interquartile range; SD=standard deviation.
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of 1.839 (95% confidence interval 1.811 to 1.865, 
95% prediction interval 1.284 to 2.638), suggesting 
that the observed incidence of falls would be around 
84% (relatively) higher than expected when using the 
model to generate predictions. Under-prediction of 
10 year falls risk was consistent across all subgroups, 
with the exception of the “other ethnicity” group, 
where both the falls incidence and the observed to 
expected ratio were considerably lower than in the full 
population (see extended results in supplementary 
material section 2.2).

The ordering of participants’ predicted probabilities 
altered only slightly on recalibration; thus 
discriminative ability of the recalibrated models 
remained excellent at each of the analysis time points, 
with C statistics of 0.843 (95% confidence interval 
0.841 to 0.844, 95% prediction interval 0.789 to 
0.881) at five years, and 0.833 (0.831 to 0.835, 95% 
prediction interval 0.789 to 0.870) at 10 years, and 
D statistic values of 1.894 (1.746 to 2.042, 95% 
prediction interval 1.75 to 2.04) at five years, and 
1.597 (1.472 to 1.721, 95% prediction interval 1.47 to 
1.72) at 10 years (table 3). Model performance varied 
more among smaller practices, with more consistent 
performance seen as practice size increased (fig 6).

The model’s discriminative ability at 10 years 
was consistent across age and sex subgroups (see 
supplementary tables S2.1 and S2.2). The pooled C 
statistic was lowest in those of white ethnicity (0.796, 
95% confidence interval 0.793 to 0.798) and highest 
among those of other ethnicity (0.834, 0.830 to 0.839) 
(see supplementary table S2.3).

Clinical utility analysis
Net benefit and decision curve analysis of the original 
and recalibrated models indicated potential clinical 
utility at five and 10 years around the predefined 
threshold of 10% (fig 7). At 10 years, basing clinical 
management decisions on predicted probabilities 
of falls yielded a benefit over the two strategies of 
introducing falls prevention measures (which may 
include deprescribing) for all and not introducing falls 
prevention measures (starting or continuing treatment) 
for all patients, when using a treatment decision 
threshold of 7% or higher from the original model, or a 
treatment decision threshold of 6% or higher from the 
final recalibrated model. Thus, for either model, when 
using our prespecified treatment decision cut-off of 
10% risk of falls at 10 years, we would expect a benefit 
to patients over and above model blind treatment 
strategies (usual care). This treatment decision 
threshold of 10% showed a net benefit in all subgroups 
except other ethnicity, where a cut-off of at most 3% 
was required for the model to be superior to usual care 
for all (see supplementary figure S2.6). In the analysis 
at five years, using a treatment decision threshold of 
3% risk or higher gave a net benefit above starting or 
continuing treatment for all, for both models.

In analyses comparing the risk of falls with the risk 
of cardiovascular disease in CPRD GOLD, 198 654 
(11%) patients had a high risk of falls (>10%) but low 
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Fig 3 | Calibration curves for apparent performance of the final STRATIFY-Falls model 
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Histogram shows distribution of predicted probabilities. The model is not recalibrated 
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risk of cardiovascular disease (<10%) at 10 years (fig 
8). A further 128 458 (7%) patients were classified as 
high risk of both, and 571 274 (32%) had a low falls 
risk but high risk of cardiovascular disease.

Discussion
Principal findings
We developed and externally validated a clinical 
prediction model to determine an individual’s risk 
of experiencing a fall resulting in hospital admission 
or death within 10 years of being indicated for 
antihypertensive treatment (owing to raised blood 
pressure readings). The model incorporates routinely 
recorded information, including a history of previous 
falls, multiple sclerosis, heavy alcohol consumption, 
high deprivation score, and prescribed drugs, which 
were all strong predictors of subsequent falls, 
conditional on the other model variables.

The final recalibrated model showed good 
discrimination upon external validation, suggesting 
that it can help distinguish those at a higher risk of 
falling, which may improve how doctors identify 
patients who might benefit from targeted fall 
prevention strategies, including multifactorial or 
exercise based interventions,50 and drug reviews 
including deprescribing. Calibration performance 
of the prediction model was inconsistent across 
the development and validation datasets, with 
miscalibration leading to under-prediction of fall 
risk across the full range of predicted probabilities. 
Nevertheless, such under-prediction of risk may be 
deemed acceptable if the model is intended to inform 
whether treatment should be stopped to avoid adverse 
effects—particularly if the treatment in question also 
carries benefits. Indeed, the clinical utility analysis 
showed that at risk thresholds around 10%, the net 
benefit of the model is higher than for other strategies 
currently employed in usual care.

Strengths and limitations of this study
Strengths of this work include the large, population 
based cohorts used, incorporating routinely collected 
patient data that have been shown to be representative 
of the patients across England, suggesting that 
the findings could be generalised across this (or a 
similar) population.20 21 Analyses accounted for the 
competing risk of death in both model development 
and external validation, ensuring that falls risk was 
not over-estimated. This is particularly important 
in individuals with frailty and multiple long term 
conditions, where an over-estimation of falls risk 
might preclude prescription of antihypertensive drugs 
in those who could still derive benefit from continued 
treatment. This analysis method is superior to most 
prediction models in widespread use, which do not 
take into account competing risks.22 In these models, 
the stated risk of an event (cardiovascular disease, for 
example) is by design too high, as the actual risk of 
an event would be diminished by death from other 
(eg, non-cardiovascular) causes, particularly in older 
people.35
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All data were derived from routine electronic health 
records, including the outcome definition of falls. 
Such a definition might not capture all events that 
could be included in the ProFaNE (Prevention of Falls 
Network Europe) consensus definition of a fall (ie, an 
unexpected event in which the participants come to 
rest on the ground, floor, or lower level),51 and therefore 
the model results should be interpreted in this context. 
It is possible that some of these fall events were not 
reported or captured correctly within the electronic 
health record, therefore potentially underestimating 
the incidence of falls, which could have affected the 
performance of the model.

Assessments of the models’ predictive performance 
were conducted across a range of general practices, 
with different case mix and outcome prevalence, giving 
an indication of the expected spread of performance 
across a range of subpopulations. Model performance 
varied more among smaller practices, with more 
consistent performance seen as practice size increased. 
This reflects the increased uncertainty in the estimation 
of the predictive performance measures in practices of 
low sample sizes, many of which individually would 
have failed to meet the required sample size for this 
external validation. Prediction intervals from meta-
analyses across general practices give an indication 
of how well our falls models would be expected to 
perform in new practices, helping to inform decisions 
on implementation in practice. In the present study, 
the prediction intervals were relatively narrow across 
a range of performance statistics, suggesting that the 
models would perform similarly in a new practice from 
a similar population.

All variables included in our model were 
predetermined based on the literature, although we 
did choose to exclude some variables at the model 
development stage that had exhibited a negligible 
effect on the outcome. These variables were excluded 
because they did not contribute substantially to model 
predictions and served to unnecessarily increase the 
complexity of the equation. We did not use statistical 
selection methods such as backwards or forwards 
elimination, as these can lead to overfitting. Although 
our approach may have meant that some statistically 
significant (but clinically insignificant) predictors 
were excluded from the final model, these exclusions 
are unlikely to have led to overfitting given the large 
sample size or been the reason for miscalibration in the 
external validation.

For these models, we defined binary variables for 
antihypertensive drugs as any prescription within the 
year before (and including) the index date, without 
accounting for any changes to drugs during follow-up. 
Not allowing for the time varying nature of treatment 
could potentially affect the observed associations with 
falls risk, and so too the predicted risks obtained from 
the model. However, our model is intended to give a 
prediction for risk of falls over the next 1-10 years, 
from a particular moment in time, in the context of 
current care. The latter is important, because, for 
example, if a patient has low risk, then it means that 
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current care (ie, treatments and monitoring strategies 
over the next 1-10 years) is likely to be adequate for 
this individual. In contrast, if an individual’s risk is 

high, it means that current care is likely insufficient 
and that additional or alternative approaches are 
potentially needed.

Calibration performance of the prediction model 
was inconsistent across the model development 
and validation datasets. Such miscalibration was 
surprising, as populations were similar across both 
datasets for predictor distributions and the incidence 
of falls and of death (with the exception of self-
reported characteristics such as smoking status, 
alcohol consumption, and ethnicity, which may reflect 
differences in how these data are captured within the 
electronic health record systems that underlie these 
databases). Distributions of the linear predictor were 
also consistent across the development and validation 
datasets, suggesting miscalibration could be due to 
differences in the outcomes or the outcome recording or 
coding. This is representative of real life, where outcome 
definitions vary, and both models still exhibited useful 
discrimination and potential clinical utility across 
the full population for a range of treatment decision 
threshold probabilities, although the predicted risk for 
individuals may be different (miscalibrated) from their 
actual risk. Indeed, miscalibration was most evident 
in the 5-10% of patients with the highest predicted 
risk (those above a threshold of 10%), and in these 
patients, doctors may interpret the exact predicted 
risks with caution, even though these patients can still 
be considered at higher risk.

Comparison with previous literature
Several prediction models can now estimate an 
individual’s risk of falls, including those for use in the 
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community. A recent systematic review of development 
and validation studies identified a total of 72 existing 
models.10 These were typically poorly reported, with 
only 40 studies (56%) reporting discrimination statistics 
and seven studies (10%) reporting calibration. Only 
three models were externally validated. Discrimination 
was reported with area under the curves of 0.49 to 
0.87 for internally validated models and 0.62 to 0.69 
for externally validated models. Calibration was 
moderately good but presented in 10ths of risk across 
a small range of risk thresholds (eg, 0-10% 52) making 
it difficult to determine how calibration varied across 
the full range of predicted probabilities. All studies 
were deemed at high risk of bias owing to methods of 
analysis and outcome assessment along with restrictive 
eligibility criteria.

In contrast, our final model, reported in line with 
the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) 
guidelines for reporting of clinical prediction models53 
(see supplementary table S4.3), showed excellent 

discrimination upon external validation, with an area 
under the curve of 0.84. It demonstrated reasonable 
calibration across the low range of predicted risks 
typically examined by previous risk models (eg, 
0-10%) and although miscalibration was present at 
higher predicted probabilities, there was still clinical 
utility based on the decision curve analysis. This 
suggests that the present model is the most promising 
clinical prediction model for falls available to date, and 
that it may be effective in identifying individuals at 
high risk of falls from those in primary care with raised 
blood pressure.

Implications for policy and practice
As patients age, their risk of a fall resulting in serious 
injury and long term disability increases.4 Identifying 
those most at risk is therefore important to enable 
targeting of fall prevention strategies.7 The present 
model provides primary care doctors with a method 
of estimating the risk of falls using data routinely 
available in electronic health records and could 
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have uses beyond predicting falls in patients being 
considered for antihypertensive treatment.54

Among patients aged 40 years and older, with an 
indication for antihypertensive drugs owing to raised 
blood pressure, the model was shown to distinguish 
well those at high risk of falls in the next 1-10 years. 
Miscalibration was noted, with an under-prediction of 
risk seen particularly at higher predicted probabilities. 
Depending on how the model might be used, such 
under-prediction might be less of a concern—for 
example, if the model was being used to inform 
treatment changes only above a certain threshold 
of predicted risk. In this context, doctors could be 
confident that the true risk is at least at this threshold, 
if not higher. Further studies are, however, needed to 
explore the appropriate thresholds that maximise the 
model’s clinical utility and cost effectiveness, and to 
examine whether recalibration is possible in local 
settings.

The model may also be used to target falls 
prevention strategies to patients with the highest 
risk. These strategies might include multifactorial or 
exercise based interventions,50 or review of prescribed 
drugs, with those drugs likely to increase the risk 
of falls being considered for deprescribing.418 Such 
drug reviews are increasingly being encouraged in 
routine clinical practice, and the STRATIFY-Falls 
model may be useful for informing these reviews.55 
For example, in patients prescribed antihypertensive 
treatment, the model might be used alongside a 
cardiovascular risk prediction algorithm to compare 
the potential for benefit and harm from continued 
treatment prescription.262756 For individuals with a 
high risk of falls but low risk of cardiovascular disease, 
a doctor might consider whether new or continued 
antihypertensive treatment is still appropriate. We 
examined the prevalence of this scenario in our model 
development population (fig 8) and identified an 
important number of individuals (11%) who would 
be classified in this way, when comparing risks at 
10 years. More common, however, were individuals 
with a low risk of falls but high risk of cardiovascular 
disease (affecting one in three patients). For these 
patients, doctors could use the model to illustrate 
the minimal risk of harm for individuals, potentially 
improving uptake of, adherence to, and persistence 
with antihypertensive treatment, which is known to be 
poor currently.57

Conclusions
The STRATIFY-Falls prediction model helps to identify 
those at high risk of falls and could be used by doctors 
wanting to identify patients who might benefit 
from targeted fall prevention strategies, including 
multifactorial or exercise based interventions50 and 
drug reviews. Used alongside other prediction tools 
such as those for cardiovascular risk, such a model 
could be valuable when used as part of a wider risk 
assessment for falls prevention.
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