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Abstract: Software testing is critical for ensuring software reliability, with test case genera-
tion often being resource-intensive and time-consuming. This study leverages the Llama-2
large language model (LLM) to automate unit test generation for Java focal methods, demon-
strating the potential of AI-driven approaches to optimize software testing workflows. Our
work leverages focal methods to prioritize critical components of the code to produce more
context-sensitive and scalable test cases. The dataset, comprising 25,000 curated records,
underwent tokenization and QLoRA quantization to facilitate training. The model was
fine-tuned, achieving a training loss of 0.046. These results show the promise of AI-driven
test case generation and underscore the feasibility of using fine-tuned LLMs for test case
generation, highlighting opportunities for improvement through larger datasets, advanced
hyperparameter optimization, and enhanced computational resources. We conducted a
human-in-the-loop validation on a subset of unit tests generated by our fined-tuned LLM.
This confirms that these tests effectively leverage focal methods, demonstrating the model’s
capability to generate more contextually accurate unit tests. The work suggests the need to
develop novel validation objective metrics specifically tailored for the automation of test
cases generated by utilizing large language models. This work establishes a foundation for
scalable and efficient software testing solutions driven by artificial intelligence. The data
and code are publicly available on GitHub

Keywords: LLM; focal methods; unit testing; test case generation; Llama-2; software testing;
QLoRA

1. Introduction
In modern software engineering, effective and comprehensive testing is critical to

ensuring the reliability, scalability, and correctness of our everyday applications [1]. This
goal has become more challenging due to the complexity of the architectures, dependencies,
and codebases in these systems [2]. With software systems growing in this complicated,
dynamic, and asynchronous way, served by an enormous number of web and cloud ser-
vices, manually testing every aspect of software systems has become infeasible, making
automation a vital task in the software development lifecycle [3]. Efficient and comprehen-
sive testing that covers user scenarios is critical to detecting bugs early, reducing technical
debt, reducing maintenance costs, and ensuring the overall quality of software systems [1].
However, the challenge is to balance test coverage with limited resources and a reduced
time to market [3,4].

A key approach to tackle this challenge is the implementation of focal methods [5].
This strategic software testing technique focuses on identifying and prioritizing the complex
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and critical components of the codebase, ensuring that testing efforts are directed where
they will have the greatest impact [6,7]. This approach focuses on highly used, complex, or
central functionality components while implementing test scenarios that affect an object’s
state [8,9]. This allows software engineers to allocate testing resources more effectively,
which leads to generating high-quality unit tests [10,11]. This foundational practice ensures
that individual methods and functions perform as expected in isolation. However, although
combining focal methods and unit tests is beneficial, manual generation for all units,
particularly in large-scale systems, can be time-consuming and error-prone [12]. This is
where automation is needed to achieve balanced testing coverage, especially with limited
resources and a reduced time to market [13].

Although numerous tools and approaches have been developed for automated
unit test generation—such as search-based, constraint-based, and random-based tech-
niques [1,14–16]—their effectiveness remains limited [1,17,18]. These methods rely primar-
ily on static code analysis or random input generation, lacking prioritization that considers
the importance or complexity of the code. This results in generating many insignificant test
cases that miss critical areas where bugs are likely to occur [19]. Furthermore, the inability
to grasp the business context of changing software requirements results in incomplete
test suites that demand considerable manual effort to maintain and enhance. Thus, many
research efforts are underway to explore innovative techniques aimed at enhancing the
effectiveness of software testing tasks, with artificial intelligence being among the most
promising solutions [1,19].

Artificial intelligence (AI) and its subset, generative AI, have revolutionized numerous
fields, including software engineering [20]. Generative AI, particularly in the form of LLMs,
has demonstrated remarkable capabilities in understanding and generating human-like
text and code. LLMs can automatically generate code and can explain code in natural
language, bridging the gap between human understanding and machine execution [21].
These models, trained on vast amounts of data, can capture intricate patterns and rela-
tionships within code structures, making them particularly suited for tasks such as code
completion, bug detection, and test case generation [22]. LLMs like GPT, PaLM, and Llama
have shown impressive results in code-related tasks, often matching or surpassing hu-
man performance in certain scenarios [23,24]. The application of these models to software
testing has created new possibilities for automating various aspects of software develop-
ment. These pre-trained models promise to address long-standing challenges in the field,
such as the generation of high-quality, context-aware test cases and the automation of
test maintenance [25].

Despite the benefits of LLMs being applied in software-engineering-related tasks
such as test unit generation [17,26], their adoption and implementation have their own
challenges and limitations. The main concern is that LLMs can generate test cases that are
syntactically correct (and plausible) but functionally incorrect or not optimized, resulting
in a lack of coverage and false results, thus handing the developers a poorly performing
test suite [27]. LLMs often have limited understanding of the context and nuances of large
software systems, leading to low-quality tests that do not cover domain-specific functional-
ity or edge cases well [28]. Moreover, the dynamic nature of software systems also poses
challenges for LLMs in adapting to changes, updating test suites, and maintaining consis-
tency [28]. The black-box nature of LLMs causes explainability and transparency problems
as a given test scenario cannot be explained, nor can the completeness of coverage be veri-
fied, which are serious problems in safety-critical systems [29]. Additionally, integration
with existing software development processes is a challenge since adding LLM-generated
tests into continuous integration and continuous deployment (CI/CD) pipelines is not
straightforward [29].
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Nevertheless, LLMs have the beneficial potential of being able to generate test units
in software engineering. To tackle these challenges, addressing the aforementioned issues
requires ongoing research, the development of specific tools, and careful thought on how
to incorporate LLMs into existing software testing activities. However, as this domain
evolves, hybrid methods that combine LLM capabilities with tools and expert human input
are likely to be the most effective solution for providing thorough, high-quality software
testing. Based on their understanding of code semantics and natural language, LLMs might
generate unit tests that cover critical code paths and are sensitive to evolving software
requirements, creating a step change in the efficiency and effectiveness of this aspect of the
software testing lifecycle.

In this study, we present a novel approach that integrated focal methods with
fine-tuning the Llama-2-7b-chat-hf model using QLoRA quantization techniques for
automated unit test generation. Our experiments, conducted on a curated dataset of
25,000 records, demonstrate the model’s capabilities to generate context-aware test cases.
Out of three configurations, the chosen fine-tuned model achieved a training loss of 0.046
and showed promising performance in terms of recall (39.5%), an F1 score of 33.95%,
and precision of 23.86%, indicating a significant improvement in capturing relevant test
scenarios compared to the existing methods. The results were validated in terms of the
human-in-the-loop (HITL) process, which also indicates promising results. These results
underscore the effectiveness of our approach in enhancing test coverage and reducing
redundancy or incorrect test cases, thereby paving the way for scalable and efficient
software testing operations.

The remainder of the paper is structured as follows: Section 2 reviews the related work,
covering advancements in software testing techniques and test case generation. Section 3
outlines the proposed methodology and describes the experimental setup, including dataset
selection, evaluation metrics, and implementation details. Section 4 presents the results and
discussion, comparing our method against state-of-the-art approaches and analyzing its
performance across different scenarios, considering human-in-the-loop (HITL) validation
and threats to validity. Finally, Section 5 summarizes the key findings, highlights the
contributions, and discusses potential future directions for improving test case generation.

2. Related Work
Few recent works have investigated different possible ways of leveraging LLM tech-

nologies to improve the quality of software engineering by generating test cases related to
specific scenarios, detecting bugs, and enhancing the overall software quality assurance
activities. With the increasing complexity of software systems, traditional testing methods
are often incapable of identifying deep-seated bugs and achieving high test coverage. As
a result, researchers have started exploring how LLMs and other AI-assisted tools can
be utilized to improve the efficiency and effectiveness of software testing. This section
provides an overview of some of the most significant studies that have contributed to
this novel field, highlighting high-level advantages, limitations, and future directions for
LLM-driven techniques in software testing. These studies show that LLMs integrated into
testing workflows can achieve promising results while also identifying challenges to the
realization of this potential in broader software development environments.

The work in [30] illustrated how software test case generation validation can be
enhanced via the TestGen-LLM tool, which augments existing test classes by generating
additional test cases that enable coverage of missed scenarios. The LLMs also filter and
evaluate the code, and the evaluation is supplemented by software developers, which
helps to improve the efficiency of the model. The results of testing the model showed that
75% of the cases were built correctly, 57% passed reliability checks, and 25% increased
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test coverage. and, during Meta’s test-a-thons, it improved 11.5% of all the classes it was
applied to, and 73% of its recommendations were accepted.

The use of LLMs for software testing, specifically in bug detection, was explored
in [31], which highlights the limitations of traditional automated test generation tools in
identifying complex bugs. It proposes AID, which leverages large language models (LLMs)
and differential testing to generate effective test cases and oracles. The paper reports that
conventional LLM-based testing achieves only 6.3% precision due to incorrect test oracles.
In contrast, compared to state-of-the-art methods, AID improves recall, precision, and
F1 scores by up to 1.80×, 2.65×, and 1.66×, respectively. AID’s precision reaches up to
85.09%, significantly outperforming other methods that achieved 53.54% in similar tests.
The evaluation of datasets TrickyBugs and EvalPlus shows that AID excels in detecting
tricky bugs in plausibly correct programs.

The utilisation of ChatGPT (gpt-3.5-turbo) in this field has been cited with considerable
success, such as in [32], which explored the potential of using ChatGPT to automate Java
unit test generation. The study evaluated the effectiveness of ChatGPT-generated test sets
by analyzing key metrics like code coverage, mutation score, and test execution success rate.
The experiment used 33 Java programs and generated 33-unit test sets for each, resulting
in a total of 1089 tests. The key findings reveal that the best-performing tests, with a
93.5% average code coverage and 58.8% mutation score, were generated with a temperature
setting of 0.6. Despite promising results, some generated tests failed to build due to syntax
errors, limiting their practical applicability. The paper highlights that ChatGPT-generated
tests performed similarly to traditional tools like EvoSuite, although further work is needed
to improve reliability and address the limitations.

The paper in [33] proposed a solution for generating test cases using natural language
processing models, T5 and GPT-3. The methodology leverages the T5 model for under-
standing conversational context and the GPT-3 model for refining and generating test
cases in natural language. Trained on the WebNLG2020 dataset, the T5 model extracts
key phrases from conversations and encodes them, while GPT-3 further improves test
case generation performance. The experimental results indicate that this approach can
automate test case generation, reducing reliance on human expertise and improving test
coverage. The model generated outputs with reasonable performance in several test scenar-
ios, identifying edge cases often missed in manual testing. However, challenges remain,
including the computational expense of GPT-3 and inconsistent output in large-scale test
case generation. Future work includes improving the model performance and integrating
this system with other testing platforms. This study also highlighted the computational
costs of this solution.

The study in [34] presented a novel approach to generating test cases for Test-Driven
Development (TDD) using a fine-tuned GPT-3.5 model. The model, fine-tuned on a curated
dataset of 163,000 method descriptions and test case pairs, achieved superior performance
compared to other models. The key results include 78.5% syntactic correctness, 67.09%
alignment with requirements, and 61% code coverage, outperforming baselines such as
Bloom and CodeT5. An ablation study revealed that fine-tuning improved syntactic correct-
ness by 223%, requirement alignment by 164%, and code coverage by 153%. Furthermore,
effective, prompt design increased syntactic correctness by 124%, requirement alignment
by 82%, and code coverage by 58%. The study also found that 21.5% of the generated test
cases contained errors, with 11.3% being assertion errors, 6.9% syntax errors, and 2.4%
value errors.

The authors of [35] presented a new benchmark designed to evaluate large lan-
guage models’ (LLMs) capabilities in generating test cases for software testing. Using
210 Python programs from LeetCode, the benchmark assesses the overall coverage, tar-
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geted line/branch coverage, and targeted path coverage. Sixteen LLMs were tested, with
GPT-4 achieving the highest overall line and branch coverage at 98.65% and 97.16%, re-
spectively. However, most models struggled with tasks requiring specific program logic
comprehension. Notably, only minor improvements were observed in targeted line cov-
erage tasks, with the models improving performance by less than 5% in many cases. The
paper highlights the need for advanced reasoning frameworks in LLM-based test case
generation to handle complex program paths and logic. The study offers insights into the
limitations and future directions for LLMs in software testing.

The paper [36] presented the ChatUniTest framework for unit test generation using
large language models. ChatUniTest leverages adaptive focal context and a generation–
validation–repair mechanism to generate high-quality unit tests. It aims to address the
limitations of traditional program-analysis-based tools and previous LLM-based solutions
like TestSpark and EvoSuite. In evaluations across four Java projects, ChatUniTest achieved
the highest line coverage compared to TestSpark and EvoSuite. The study found that 40.4%
of the generated tests failed due to runtime or syntax errors. A user study further confirmed
the value of ChatUniTest, with 89% of the participants reporting its usefulness in generating
unit tests, especially for junior developers. However, the authors noted challenges with
runtime errors and highlighted future improvements, like supporting more programming
languages and enhancing the validation mechanisms. The work in [37] introduced A3Test,
a novel deep-learning-based approach for automated test case generation augmented with
assertion knowledge and verification of naming consistency. Evaluated on the Defects4j
dataset, A3Test significantly outperformed baseline tools like AthenaTest and ChatUniTest.
A3Test generated 25.16% to 395.43% more correct test cases, achieved up to 34.29% higher
method coverage, and provided 25.64% higher line coverage. In terms of assertions, A3Test
generated up to 55.56% more correct assertions compared to other methods. Furthermore,
the addition of the assertion component improved the performance by 38%, and verification
contributed 23.7%. A3Test was also 20.7% faster than AthenaTest in generating test cases,
and the developers found the test cases more readable than those generated by EvoSuite,
with 70.51% of the participants in agreement. The recent research mentioned above con-
cerning the integration of LLMs for testing demonstrates notable progress in automating
various testing activities, including unit test generation, bug detection, and the enhance-
ment of the software quality assurance process. Studies have utilized advanced LLMs
such as GPT, PaLM, and Llama, showing considerable potential in generating code and
test cases, thus significantly boosting productivity and effectiveness [30–32]. For instance,
TestGen-LLM demonstrates that LLMs could improve test coverage during Meta’s software
testing events [30]. Similarly, tools like AID [31] and ChatUnitTest [36] have enhanced
the precision and recall of generated tests compared to traditional automated methods.
However, despite these contributions, several limitations remain. Some work reports that
the generated test cases struggle with correctness and context-sensitive tests, resulting in
syntactical errors and redundancies [32]. Our work stands apart from the previous research
by integrating focal methods with a fine-tuned LLM, specifically the Llama-2-7b-chat-hf
model, using the QLoRA quantization technique and exploring various parameter-efficient
fine-tuning configurations. While prior approaches, such as TestGen-LLM [30], AID [31],
and GPT-based test generation [32], primarily focused on generating a large volume of test
cases, they often suffered from limited content awareness and high computational costs.
In contrast, our approach leverages focal methods to strategically prioritize the critical
components of the code, resulting in more context-aware and scalable test case genera-
tion. Building on the strengths of LLMs and focal methods, this paper introduces a novel
approach that automates unit test generation by combining the structured prioritization
of focal methods with the code comprehension and generation capabilities of fine-tuned
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LLMs. By fine-tuning LLMs on domain-specific code and test data, our method generates
relevant and effective unit tests, specifically targeting the most complex and critical parts
of the codebase. This method has the potential to provide a major boost to test coverage,
reduce the time and resources needed for exhaustive testing by ensuring that all aspects of
functionality are considered, and raise the overall standard of software system quality and
reliability.

3. Data and Methodology
This study explores the potential of fine-tuned large language models (LLMs) to

automate unit test generation in software testing, aiming to streamline the testing process
and enhance its efficiency. The experiment centered on adapting a pre-trained LLM for
generating test cases for Java methods by training the model on a specialized dataset of
focal methods and their corresponding test cases. Key considerations included handling
the complexity of Java syntax, ensuring dataset quality, and mitigating potential biases in
the training process. Figure 1 depicts the key phases of the developed method.

Figure 1. Overview of the main phases of the test case generation method.

3.1. Dataset

The publicly available methods2test dataset [5] was selected for its extensive collection
of focal methods in Java and their corresponding test cases. The dataset, derived from
various Java programming repositories, enables mapping between focal methods and test
cases to train the model in identifying patterns for automated test case generation. A focal
method, in this context, refers to the specific function or method under test. Additionally,
the repository provides metadata that can enhance the learning process by supplying
supplementary information [5]. The dataset is organized into a “Corpus” folder contain-
ing test cases and corresponding focal methods in formats such as JSON, raw text files,
tokenized data, and preprocessed binary data. The text-format corpus was prioritized for
its compatibility with the preprocessing workflow. Moreover, the corpus is divided into
varying levels of focal context, each incorporating distinct layers of information such as
class names, constructor signatures, and public method signatures [5].

The dataset comprises 780,944 focal methods and associated test cases, divided into
training and testing. For this study, the FM_FC (focal method and focal class name) level of
context was chosen as it incorporates the focal method and class name, striking a balance be-
tween specificity and simplicity and providing sufficient contextual information to enhance
the model’s ability to generate test cases without exceeding computational constraints.
While deeper levels of context could improve performance, their higher computational
demands necessitated reducing the dataset size, which was deemed impractical given the
resources available. Using only the focal methods (FM level) without additional context
was also avoided as it would limit the model’s understanding of test case generation
patterns. The FM_FC level strikes an optimal balance by offering the model sufficient infor-
mation to generate accurate and task-specific unit tests, avoiding unnecessary complexity
or computational overhead [38].
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3.2. Data Preprocessing

The dataset containing the FM_FC focal context was prepared for the fine-tuning process
by transforming the raw data into a format suitable for the Llama-2-7b-chat-hf model.
The original dataset, comprising 624,022 records, represented focal methods and their
corresponding test cases. Given the size constraints imposed by hardware (A100 GPU),
the dataset was reduced to a manageable size of 25,000 records. This reduction involved
incrementally increasing the number of records until a balance between dataset size and
available computational resources was achieved. The final size of 25,000 records ensured
the feasibility of the fine-tuning process while maintaining a representative sample of
the original data. Initially, the raw input and output files were processed and structured,
allowing flexible manipulation and preparation.

After that, the raw text data were converted into token IDs, the expected input format
for the Llama-2-7b-chat-hf model. Tokenization was performed using the AutoTokenizer
class from Hugging Face’s transformer library [39]. To prevent memory spikes, the dataset
was tokenized in batches of 5000 records. Each batch was transformed into arrays con-
taining input IDs, attention masks, and labels. The token lengths were calculated for
each record in the input and output columns, as well as their combined length. These
lengths were analyzed to identify and remove outliers that could negatively affect model
performance [40]. Entries exceeding 512 tokens for input or 1024 tokens for combined
length were excluded, resulting in the removal of 1533 records. This refinement ensured
compatibility with the model’s context window while minimizing computational overhead.

The filtered dataset was then divided into training and testing subsets using training
80:testing 20 split. Randomization ensured unbiased splitting, which is critical for
evaluating model performance. To standardize record lengths, padding was applied
using the UNK token, which avoids conflicts associated with the commonly used EOS
token [41]. Attention masks generated during tokenization informed the model of padded
versus meaningful tokens, facilitating efficient processing during fine-tuning. The resulting
dataset provided a structured, memory-efficient foundation for training the model. This
preprocessing pipeline ensured the dataset was optimally prepared for downstream tasks,
balancing hardware constraints and model requirements.

3.3. Large Language Model Selection

Selecting an appropriate large language model (LLM) is a critical step in enabling
effective fine-tuning for software testing tasks. The chosen model must possess a sub-
stantial number of parameters to accommodate training on new data and ensure robust
performance in downstream tasks, such as generating unit test cases [42]. Additionally,
accessibility and reproducibility are vital; hence, an open-access model that avoids pay-
walls or subscriptions was prioritized. The Llama-2-7b-chat-hf model, republished by
NousResearch and available on the Hugging Face platform, was chosen for this study.
This model is functionally equivalent to the original Llama-2-7b, providing the same ar-
chitecture and capabilities while being openly accessible. The Llama-2-7b-chat-hf model
comprises 7 billion parameters and has been pre-trained on 2 trillion tokens sourced from
publicly available datasets. Specifically optimized for dialogue-based tasks, this model was
provided in the Hugging Face transformer format, facilitating seamless integration into
the fine-tuning pipeline. This alignment with the experimental requirements ensured an
efficient and reproducible setup for subsequent steps.

It is important to select an LLM that has a large number of parameters to enable it
to be trained and fine-tuned on the new data more effectively and to perform well in
the required downstream task of test case generation [42]. Another important considera-
tion for the sake of accessibility and repeatability is to select an open-access LLM, i.e., a
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model that is accessible by users without the need to proceed through any paywalls or
subscriptions and the model is openly available to the public. Considering these factors,
the Llama-2-7b-chat-hf model for NousResearch was selected as the base model. This
is the same model as the official Llama-2-7b from Meta, but it has been republished by
NousResearch on the Hugging Face platform and is openly accessible, improving the
reproducibility of the experiment. The model from NousResearch has been optimized for
implementation in dialogue use, and it has been converted into the transformer format
from Hugging Face, which will help to streamline the fine-tuning process.

3.4. LLM Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) is an efficient way to customize LLMs to a
specific task without the computational cost of full fine-tuning. Instead of adjusting the
entire model, PEFT fine-tunes only a small set of additional parameters while keeping
most of the pre-trained model unchanged. This significantly reduces the time, memory,
and storage costs while preserving the model’s original knowledge. One of the largest
advantages of PEFT is that it avoids catastrophic forgetting, a common issue when fully
fine-tuning LLMs, where the model forgets what it already knows. PEFT has also been
demonstrated to perform better in low-data regimes and generalize well to new, unseen
domains. Many PEFT approaches also improve efficiency via the use of gradient check-
pointing, a memory-reduction method that allows models to train without needing to store
all intermediate calculations at once.

There are several PEFT methods, each with its own strengths and specialties. Some
of the most well-known are adapters, LoRA (Low-Rank Adaptation), QLoRA (Quantized
LoRA), prefix-tuning, prompt-tuning, and P-tuning. These approaches enable efficient
adaptation of LLMs to various applications with few computational needs. Adapters
include small trainable modules within the layers of a frozen pre-trained model. While this
strategy reduces memory overhead by reducing the number of model parameters that are
to be modified during fine-tuning, it has the disadvantage of requiring the addition of new
parameters per task, resulting in increased inference latency and memory usage. LoRA
improves computational efficiency and speeds up the training process during fine-tuning
by decomposing the weight update matrix into two lower-rank matrices. This reduces the
number of trainable parameters and, therefore, the memory requirements. However, the
weights of the adaptation layers cannot be quantized in this approach.

QLoRA builds upon LoRA by introducing 4-bit quantization for the weights of the base
LLM and the LoRA parameters (adaptation layers) to further reduce memory usage and
computational costs without any significant losses in accuracy. The efficiency improvements
allow for LLM fine-tuning tasks to be carried out on consumer GPUs, making QLoRA the
standout approach for this experiment.

Prefix tuning takes a different approach at reducing memory usage for the fine-tuning
of LLMs. This method focuses on optimizing a small set of task-specific vectors that are
prefixed to the input embeddings. While this approach boasts a low memory footprint and
is efficient when adapting LLMs for simple downstream tasks, the LoRA approaches fare
better when the LLM needs to handle complex tasks.

Prompt tuning involves only fine-tuning the continuous input prompt embeddings,
which results in fewer parameters being updated. While it can be more efficient in terms of
computational resources and memory usage, prompt tuning can struggle to adapt LLMs
to complex downstream tasks that require adjustments across several attention layers.
Petrov et al. [43] analyzed the effectiveness of context-based PEFT approaches, including
prefix tuning and prompt tuning for handling complex downstream tasks, and concluded
that these methods, while computationally efficient, struggle to adapt to novel tasks that
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necessitate new attention structures. Dettmers et al. [44] explained how QLoRA offers the
benefit of enabling the fine-tuning of LLMs on consumer hardware with limited memory
through the implementation of 4-bit quantization, unlike adapters or LoRA. While prefix
and prompt tuning are lightweight methods for parameter-efficient fine-tuning, they often
underperform in structured text generation jobs like producing unit test cases for software
testing. Fine-tuning deeper attention layers of an LLM helps to produce detailed, structured
outputs, which are required when generating software test cases. QLoRA enables fine-
tuning the deeper attention layers on standard GPUs by using quantization, which makes
it the ideal PEFT method in terms of performance, scalability, and efficiency for fine-tuning
the Llama-2-7b model for software test case generation. The object of this paper is to
develop an efficient and scalable fine-tuned LLM that can be employed in software test case
generation tasks. We have based our choice of QLoRA for parameter-efficient fine-tuning
based on an extensive literature review of the candidate methods and the scenarios in
which each method is best suited.

PEFT was incorporated to adapt the Llama-2-7b-chat-hf model for task-specific
requirements without training all parameters. The QLoRA approach introduces a small
number of trainable low-rank parameters into targeted layers while freezing the rest,
enabling efficient adaptation. The key configurations of the QLoRA method adopted in
this study included the following:

• lora_alpha = 32: Alpha is the strength of the adapter, and it dictates how much of
an impact the adapter has on the model during training. Lower alpha values lessen
the weight of the adapter when being merged with the base model, while higher
values of alpha inject the adapter more aggressively into the base model. The selected
value of 32, while quite high, is generally considered a standard value for alpha for
models of this scale as it achieves a balance between strong adaptation of the low-rank
fine-tuned layers and retention of the model’s existing knowledge [45].

• lora_dropout = 0.05: During the training phase of the low-rank layers, a dropout
is included to prevent overfitting by randomly deactivating specific connections
during the training process. A value of 0.05 indicates that 5% of the neurons would
be randomly dropped during the training process to regularize the model. Higher
dropout rates can cause the model to underfit, so 5% dropout is an appropriate choice
in this case.

• r = 16: Sets the rank of low-rank matrices, striking a balance between learning
capacity and computational cost. The rank specifies the dimensions of the matrix to
be used in the LoRA process. A high rank affords more capacity for the adaptation
of learning, but it comes with the cost of higher computational requirements and
resource usage. However, if the rank is too low, the adaptation will not be effective,
and the model performance will suffer. A rank of 16 was considered appropriate
as it allowed for the LoRA process to be executed effectively without increasing the
computation overhead to unmanageable levels [45].

• bias = “none”: Excludes bias parameters to streamline computations. Adding
biases in the LoRA process adds additional bias parameters, which are not needed in
this case.

• task_type = “CAUSAL_LM”: Defines the task as causal language modeling, aligning
with text generation requirements. Causal LM stands for Casual Language Modeling,
and it is the task type used for text generation processes by making predictions of the
proceeding words based on the earlier words of the sequence. This is the appropriate
choice for this parameter when fine-tuning the Llama-2-7b model for generating
software test cases.
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• target_modules = [‘up_proj’, ‘down_proj’, ‘gate_proj’, ‘k_proj’, ‘q_proj’,
‘v_proj’, ‘o_proj’]: Focuses adaptation on critical projection layers, including the
attention mechanism projection layers (‘k_proj’, ‘q_proj’, ‘v_proj’, ‘o_proj’) included
in the LlamaAttention() structure and the feedforward network (FFN) projection lay-
ers (‘up_proj’, ‘down_proj’, ‘gate_proj’) present in the LlamaMLP() structure. The
choice regarding these specific target modules is based on the structure of the Llama-2
model. [46].

The QLoRA technique compresses the Llama-2-7b-chat-hf to operate efficiently on
a single virtual machine. By loading the model in 4-bit precision, memory usage was
significantly reduced without compromising accuracy. The following configuration was
used to facilitate memory-efficient quantization:

• load_in_4bit = True: Ensures that the model is loaded in 4-bit precision instead of
the full 32-bit precision. This is the basic concept used in quantization that allows for
memory savings.

• bnb_4bit_compute_dtype = torch.float16: Defines the data type to be used for
computations. Using torch.float16 rather than float32 reduces memory consumption
during training, and it helps to maintain adequate precision due to the float16 setting.

• bnb_4bit_quant_type = “nf4”: Normalized float 4-bit quantization ensures higher
accuracy than integer-based methods, counteracting some of the accuracy losses
incurred due to quantization.

• bnb_4bit_use_double_quant = False: Avoids double quantization to reduce accu-
racy loss. Double quantization is used to make the fine-tuning process more memory-
efficient at the cost of accuracy, included mainly when weaker hardware is used [39].

• Model: Llama-2-7b-chat-hf from the transformer library.
• device_map: Automatically distributes computation across available GPUs.
• Disabled cache usage and set tensor parallelism to 1.

The Llama-2-7b-chat-hf model was loaded, and the device_map setting automati-
cally distributed computations across the available GPU, enhancing reproducibility and
efficiency. Additional configurations included disabling cache usage to save memory and
setting tensor parallelism to 1 due to the single-GPU setup. Finally, k-bit (4-bit) training
was employed, aligning model layers with low-precision settings to ensure compatibility
and resource efficiency. Fine-tuning was conducted and input sequence lengths were
capped at 512 tokens to align with the model’s context window and hardware constraints.
Packing multiple inputs into a sequence was avoided to maintain the integrity of focal
methods and their corresponding unit tests. The final dataset included both input and
output texts, facilitating effective training of the LLM for test case generation.

Training Hyperparameters

The fine-tuning process was guided by carefully tuned hyperparameters to optimize
computational efficiency and model performance. These included the following:

• Epochs: 12, to ensure sufficient training cycles.
• Batch size: 32 per device for balanced memory usage and gradient updates.
• Learning rate: 2× 10−4, chosen after iterative testing to prevent overfitting or underfitting.
• lr_scheduler_type: “linear”, selected because linear decay produced better results

than cosine annealing over iterative tests.
• Gradient clipping: 0.3, to stabilize gradient updates and improve convergence.
• Evaluation and checkpointing: Performed at 500 steps to track progress and save

intermediate states.



Electronics 2025, 14, 1463 11 of 25

• Optimizer: The paged_adamw_8bit optimizer, which reduces memory overhead while
maintaining performance.

The learning rate followed a linear scheduler with a warmup ratio of 0.03, gradually
increasing to the target rate to stabilize early training stages. Mixed-precision training was
enabled to further optimize memory usage and computational speed [39].

3.5. Inference and Model Integration

After training, the trained adapters were merged with the base model to produce a
unified fine-tuned model suitable for deployment. Subsequently, the fine-tuned model
underwent inference validation using randomly selected test samples from the valida-
tion dataset.

3.6. Model Evaluation

The model’s performance was rigorously evaluated using the test dataset. Periodic
logging of metrics, such as loss and accuracy, provided insights into the model’s adaptation
and convergence during training. A random sample from the test dataset was used for
inference as a proof of concept, ensuring the model was able to communicate via the
predefined chat template. This inference step involved generating unit tests for unseen Java
methods, demonstrating the model’s ability to generalize its learned patterns effectively.
Additionally, qualitative assessments of the generated test cases ensured their relevance
and syntactic correctness. The evaluation metrics used in this study are explained as
follows [47,48]:

• Precision: The proportion of correctly generated responses out of all generated responses.
• Recall: The ratio of correctly generated tokens to the total number of relevant tokens

in the validation data.
• F1 Score: The harmonic mean of precision and recall, providing a balanced view of

model performance.
• BLEU Score: A metric originally developed for machine translation, used here to

evaluate the similarity between generated and reference test cases.

3.7. Data and Code Availability

All data used in this work, including fine-tuned Llama-2-7b-chat-hf, scripts for data
processing, tokenization, fine-tuning configurations, inference code, and evaluation metric
calculations, have been made publicly available for reproducibility purposes via GitHub
https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing (accessed on 21 March
2025).

4. Results and Discussion
This section presents the outcomes of the fine-tuning process, highlighting the key

differences in hyperparameter configurations and their impact on model performance.
Three configurations with distinct learning rates were evaluated to identify the optimal
balance between training and evaluation loss. The discussion emphasizes the final configu-
ration selected for validation.

4.1. Training and Evaluation Loss Metrics

The primary metrics used to assess fine-tuning performance were training loss and
evaluation loss. Training loss measures the model’s ability to accurately fit the training,
and evaluation loss reflects the model’s generalization ability on unseen data. Ideally, both
metrics should exhibit a steady decline during training. However, in large language models
(LLMs), overfitting—evident when training loss decreases but evaluation loss plateaus or

https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing
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increases—can enhance predictive accuracy in specific domains [45]. Loss curves for each
configuration are provided below, with solid lines representing training loss and dotted
lines representing evaluation loss.

4.1.1. Configuration 1: Learning Rate 3 × 10−5

The first configuration employed a learning rate of 3 × 10−5 with a cosine annealing
scheduler, allowing for a gradual reduction in the learning rate over time. Training was
carried out for 12 epochs. The cosine annealing scheduler facilitated a smooth warm-up
period, contributing to stable early-stage training, as illustrated in Figure 2.

Figure 2. Learning rate schedule during model training, showing a warm-up phase followed by
a gradual decay. The learning rate starts at a lower value, increases rapidly during the initial
steps (warm-up phase), peaks at approximately 3 × 10−5, and then gradually decreases as training
progresses over approximately 7000 global steps. This approach helps to stabilize training by
providing a higher learning rate initially for faster convergence and a lower learning rate later to
fine-tune model parameters.

While the loss curves displayed consistent declines, as shown in Figure 3, the evalua-
tion loss plateaued after ∼3500 steps, indicating limited improvement in generalization.
The final metrics for this configuration are summarized in Table 1. This configuration
exhibited suboptimal performance, as evidenced by the relatively high evaluation loss and
limited generalization capability.

Figure 3. Training and evaluation loss curves for configuration 1 (3 × 10−5).
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Table 1. Evaluation metrics for configuration 1 (3 × 10−5).

Metric Value

Training Loss 0.2960
Evaluation Loss 0.5582

4.1.2. Configuration 2: Learning Rate 5 × 10−5

The second configuration increased the learning rate to 5 × 10−5 and utilized a linear
decay scheduler. This configuration achieved better training loss reduction compared to
configuration 1, as shown in Figure 4. However, the evaluation loss plateaued after ∼3500
steps, suggesting limited generalization improvement. The final metrics are presented in
Table 2. The training was terminated once further reduction in evaluation loss appeared
unlikely, ensuring computational efficiency, as illustrated in Figure 5.

Figure 4. Learning rate decay schedule during model training. The learning rate starts at approx-
imately 5 × 10−5 and decreases linearly over the course of training, reaching a lower value near
1 × 10−5 by the end of approximately 5,000 global steps. This linear decay strategy gradually reduces
the learning rate to stabilize learning and fine-tune model performance in later training stages.

Figure 5. Training and evaluation loss curves for configuration 2 (5 × 10−5).
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Table 2. Evaluation metrics for configuration 2 (5 × 10−5).

Metric Value

Training Loss 0.1854
Evaluation Loss 0.5508

4.1.3. Configuration 3: Learning Rate 2 × 10−4

The third configuration significantly increased the learning rate to 2 × 10−4 while
maintaining the linear decay scheduler, as shown in Figure 6. This configuration was
selected for the final validation due to its favorable performance trends. While the training
loss reached a desirable low value, the evaluation loss increased after ∼4000 steps, confirm-
ing overfitting—a phenomenon often advantageous for LLMs in domain-specific tasks [45],
as illustrated in Figure 7. The final metrics are detailed in Table 3.

Figure 6. Linear learning rate decay during model training. The learning rate starts at approximately
2 × 10−4 and decreases steadily throughout the training process, reaching close to zero by 7000 global
steps. This gradual reduction in learning rate helps to refine model parameters, allowing for more
stable convergence and minimizing overshooting during optimization.

Figure 7. Training and evaluation loss curves for configuration 3 (2 × 10−4).
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Table 3. Evaluation metrics for configuration 3 (2 × 10−4).

Metric Value

Training Loss 0.0460
Evaluation Loss 0.6317

This configuration demonstrated strong training performance but limited gener-
alization, attributable to the dataset’s small size and computational constraints. The
2 × 10−4 learning rate configuration was ultimately selected for fine-tuning the
Llama-2-7b-chat-hf model on a software testing dataset. Despite achieving low training
loss, the high evaluation loss highlighted challenges in generalization, primarily due to the
dataset’s limited size (∼25,000 records) and computational constraints (a single 40 GB GPU).
Effective fine-tuning of contemporary LLMs often requires larger datasets and greater com-
putational resources to produce models suitable for industrial applications. These findings
underscore the importance of aligning computational capacity with model and dataset
complexity.

4.2. Validation Using Evaluation Metrics

For this study, where the Llama-2-7b-chat-hf model was fine-tuned to generate
unit tests for focal methods in Java, validation was conducted by comparing the model’s
generated outputs with known results (ground truth). Both the baseline and fine-tuned
models were loaded, allowing the adapted model weights (QLoRA) to merge with the
baseline model. To assess the fine-tuned model, a dataset unseen during training (validation
set) was used. This dataset was loaded for preprocessing. The records were tokenized,
and entries exceeding a maximum token length of 1024 for inputs or 2048 for combined
input–output lengths were filtered out. This step ensures compatibility with computational
memory and time constraints. After filtering, 387 records remained. To reduce bias,
300 random samples were selected from the filtered dataset. These samples were converted
into lists of inputs (focal methods) and outputs (validation unit tests). Approximately
2400 LLM-generated test cases from our fine-tuned model, along with their corresponding
focal methods and validated test cases (hereafter also referred to as reference test cases) from
the methods2test dataset, are available on the GitHub page https://github.com/Shaheer-
Rehan/Llama-2-for-Software-Testing (accessed on 21 March 2025).

Inference was performed on these samples to generate unit tests for each focal method.
The generated tests were considered for further analysis. Tokenization was applied to all
the generated tests, enabling compatibility with performance metrics that rely on tokenized
data. The evaluation metrics included precision, recall, F1 score, and BLEU score. BLEU
score was used to assess the similarity between generated and reference test cases. The
combination of standard classification metrics and specialized natural language generation
(NLG) metrics is required to comprehensively assess the performance of a fine-tuned LLM
for text generation tasks like producing unit test cases from focal methods [49].

Precision is the ratio of correctly generated responses to the model’s total generated
responses. It provides an indication of how many test cases produced by the LLM are
relevant, and high precision scores mean fewer hallucinations [49]. Recall tackles the
problem of under-generation in LLMs by assessing how many correct test cases the model
was able to produce [49]. Reporting precision and recall when gauging the performance
of a fine-tuned LLM in the context of software test generation tasks is important because
these metrics help to balance the trade-off between specificity and coverage.

F1 score is a metric that presents a balance of precision and recall and is calculated by
determining the harmonic mean of the recall and precision [49]. The F1 score provides a
more rounded estimation of the model’s actual performance by taking into account recall

https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing
https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing
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and precision. Software test cases require high coverage (indicated by recall) as well as high
correctness (provided by precision). So, the F1 score serves as a single definitive metric for
capturing the trade-off between correctness and coverage.

Finally, BLEU score (Bilingual Evaluation Understudy Score) is an n-gram overlap
metric widely used for structured text generation tasks, and it captures the fluency and
linguistic quality of the generated responses [49]. In the context of this experiment, the
BLEU score indicates how well the generated unit tests from the fine-tuned LLM match the
reference unit tests, assessing semantic and syntactic similarities. The BLEU score evaluates
the linguistic and structural quality of the responses generated by the LLM, making it an
essential metric to gauge the model’s performance.

The performance metrics for the fine-tuned Llama-2-7b-chat-hf model are summa-
rized in Table 4:

Table 4. Performance metrics for the fine-tuned Llama-2-7b model.

Metric Value

Precision 23.86%
Recall 39.52%

F1 Score 33.95%
BLEU Score 7.48%

At first glance, the metrics indicate low performance:

• Precision: The score of 23.86% indicates that roughly one-quarter of the model’s gener-
ated responses are relevant. This result could improve with a larger fine-tuning dataset.

• Recall: The recall of 39.52% suggests that the model captures nearly half of the relevant
tokens, which is promising given the small dataset size.

• F1 Score: A score of 33.95% highlights moderate performance, indicating room
for improvement.

• BLEU Score: The low score of 7.48% confirms that the generated test cases have
limited similarity to the reference test cases, primarily due to dataset constraints.
Code–text mismatches, where function implementations do not align perfectly with
their corresponding test cases, reduce the model’s ability to generate matching outputs.
A lack of dataset diversity prevents the model from learning to produce varied yet
correct test cases, while ambiguity in gold references means that multiple valid outputs
are not captured, leading to lower BLEU evaluations. Additionally, datasets with
complex code structures make it harder for the model to generate comprehensive test
cases, and noisy annotations from real-world sources introduce errors that further
reduce BLEU scores. These constraints collectively hinder the model’s ability to
produce outputs that align closely with the provided references, resulting in lower
BLEU scores.

These results underscore the limitations of the current model, particularly its inability
to perform reliably in real-world applications of software test case generation. However,
this project demonstrates the potential of fine-tuning large language models for such tasks.
Improvements could be achieved with larger datasets, enhanced computational resources,
and further fine-tuning. The size of the dataset used to train an LLM during the fine-tuning
process is pivotal to the performance of the fine-tuned LLM for a downstream task. With
larger datasets, the model has access to more diverse examples of the data, allowing it to
learn the more nuanced patterns and adjust better to unseen data. Using smaller datasets
can often lead to the model overfitting the training data, resulting in poor generalization.

A study by Mehrafarin et al. [50] demonstrated the impact of the number of fine-
tuning samples on the extent of the encoded linguistic knowledge in fine-tuned models.
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This study reinforces our conclusion that an increase in dataset size for the fine-tuning
process would improve the recoverability of any changes made to the linguistic knowledge
base of the model, thereby allowing the model to perform better in generalization tasks
on unseen data and exhibit better performance metrics. Ultimately, this project serves
as a proof of concept for fine-tuning LLMs for software test case generation, showcasing
promising avenues for future research and development in this domain.

4.3. Human-in-the-Loop (HITL) Validation

In software engineering, although the automation of test case generation using AI is
essential and can result in a larger number of test cases, it is important to assess the reliability
and correctness of the unit test cases generated by large language models (LLMs). Manual
validation by test engineers is a commonly used step in both academic and industrial
contexts when tests are being generated by LLMs or deep learning techniques that require
human validation. Overall, this process will enhance and validate the reliability of systems
involving machine learning [51]. In the field of LLMs and unit test generation, the study
conducted by Meta using TestGen-LLM [30] clearly shows that, while LLMs are capable of
generating numerous unit tests, only a portion of these tests meet the necessary reliability
and correctness standards for production use. In this process, engineers are responsible for
evaluating and deciding which generated unit test cases to accept or reject.

Therefore, we selected a random sample of six focal methods from the validated test
cases in the dataset, https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing
(accessed on 21 March 2025), along with their corresponding LLM-generated unit test cases,
totaling fifty-two individual test cases. These fifty-two unit test cases were analyzed from a
software engineering perspective, focusing on readability, coverage, object values, edge
cases, assertions, and syntax. Table 5 presents the analysis of the test cases generated from
the LLM in relation to their focal methods, along with the count of generated test cases
using our fine-tuned model. The focal methods listed in the first column of the table are the
focal methods published by the publicly available methods2test dataset [5].

Table 5. Software engineering test case analysis.

Focal Method # Generated
Test Cases

Analysis

InstantColumn extends
AbstractColumn{InstantColumn,
Instant} implements
InstantMapFunctions,
TemporalFillers{Instant,
InstantColumn},
TemporalFilters{Instant},
CategoricalColumn{Instant} {
@Override boolean isMissing(int
rowNumber) { return valueIsMiss-
ing(getLongInternal(rowNumber)); } }

15

• Clear and focused assertions, although some minor
missing values or assertions. For example, some cover
critical rows 0 and 2 for isMissing(0), while some cases
did not cover. Redundancy and over-configuration in
some cases.

• The generated test cases all follow expressive
assertions, which makes them easy to understand and
follow.

• Good coverage. While there are some redundancies,
multiple cases capture suitable different behavior
settings or input conditions and edge case testing.

• Exploration of different configurations. Some tests
assert the value for the missing column using
setMissingValue (null) or etMissingValue
(Instant.now()), which helps to verify that the method
behaves correctly under different configurations,
ensuring that the missing-value logic is more robust.

• Some inconsistency in the expected outcomes as some
tests assert row (2) is false, while this should be true.

https://github.com/Shaheer-Rehan/Llama-2-for-Software-Testing/blob/main/Validation_LLM_Generated_Test-Case.csv
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Table 5. Cont.

Focal Method # Generated
Test Cases

Analysis

PackedLocalDateTime extends
PackedInstant { static int
getSecondOfDay(long
packedLocalDateTime) { return
PackedLocalTime. getSecondOf-
Day(time(packedLocalDateTime)); } }

3

• Uses several fixed long values for localDateTime
(e.g., 7526268000000L) and expects the output to be a
constant value of (12,000 s), which may not be accurate
as this is fixed and specific value rather than adapting
the range of possible inputs.

• There are many repetitions of the same unit test case.
• Limited coverage as all of the generated test cases

always assert the value of 12,000 for the SecondOfDay.
• Adding additional tests for parsing testParse() and

testParseWithOffsetRef(), which do not directly assess
the focal method (getSecondOfDay).

• Some test cases demonstrate correct syntax.

TextColumn extends
AbstractStringColumn{TextColumn} {
@Override Selection isNotIn(String...
strings) { Selection results = new
BitmapBackedSelection();
results.addRange(0, size());
results.andNot(isIn(strings)); return
results; } }

12

• Overall simple unit test cases: The test used a fixed
array, such as ( ““foo””, ““bar””, ““zoo””, ““zoo””)
without considering more complex or edge cases
or input.

• The use of fixed characteristics, such as returning the
value 2 for functions getMaxIndex() and getMinIndex(),
which does not reflect the method’s true behaviors.

• The LLM tests present multiple (closely) identical unit
tests with different hard-coded arrays, which does not
add any meaningful coverage.

• Most of the test cases demonstrate correct syntax, with
a focus on core logic for internal boundaries.

• The test cases followed structured testing of method
behavior, which can help regarding inconsistencies in
how duplicates or different input lengths are
processed.

Table extends Relation implements
Iterable{Row} { static table create() {
return new Table(); } } @Test void
testColumnSizeCheck() { assert-
Throws(IllegalArgumentException.class,
() { double[] a = {3, 4}; double[] b
= {3, 4, 5}; Table.create(“test”,
DoubleColumn.create(“a”, a),
DoubleColumn.create(“b”, b)); });}

7

• Good coverage of detailed assertions on the internal
states, such as checking aspects of the table object (such
as schema, number of tables, columns, and filters. . . ).

• Use of good domain-specific data, such as creating
column names with a, b, and c and setting the
corresponding expressions like “sum (a.b.c.) > 10”,
which simulate realistic scenarios that reflect real use of
columns.

• Some of the test cases focus on verifying the base
behavior of table create () to test additional more
complex behaviors that are not part of the focal
method. For example, the focal method should focus
on creating an empty table.

• There are multiple instances of nearly identical unit
test cases being repeated.

• No-exception testing was conducted as all generated
LLM outputs disregarded the column size
exception handling.
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Table 5. Cont.

Focal Method # Generated
Test Cases

Analysis

Table extends Relation implements
Iterable<Row> public static table
create() return new table();

8

• Good coverage of core functionality; the unit tests
clearly verify that the arithmetic operations on
columns work correctly. Furthermore, tests create the
table with no arguments, resulting in a table with an
empty qualified name, a null schema, and empty
internal factors, which validate the state of a new table.

• Demonstrate verification of extended features as the
test cases show not just that the table was created but
that, when a group of filters are applied, the internal
state of the table is updated accordingly. Also, tests
cover scenarios where a schema is set on a table.

• The use of precise assertions (e.g., checking table
number), which can help to detect deviations from the
expected internal state.

• Multiple versions of tests for similar functionality, and
some showed overly rigid exceptions when relying on
hard-coded expected values (e.g., a specific number of
columns).

• Some tests showed a lack of context on dependencies,
where using Table.Creat(relation (“a”, “b”, “c”)) relies
on a variable or parameter called relation whose setup
is not shown.

DataFrameJoiner public Table
leftOuter(Table... tables) return
leftOuter(false, tables); @Test public
void leftOuterJoinOnAgeMoveInDate()
Table table1 =
createANIMALHOMES(); Table table2
= createDOUBLEINDEXEDPEOPLE-
NameHomeAgeMoveInDate(); Table
joined = table1.joinOn(“Age”,
“MoveInDate”).leftOuter(true, table2);
assertEquals(8, joined.columnCount());
assertEquals(9, joined.rowCount());

7

• Variety of input scenarios as tests covered a good range
of conditions (e.g., joining empty tables or single-entry
tables). This reflects positively on catching edge cases,
such as covering end-of-day tables where included.

• Readable and self-contained tests with a focus on table
output, focusing on table output to verify the
correctness of the functions (merging tables in this case).

• Some tests showed limited coverage of real-world
scenarios, such as joining multiple large tables
(e.g., 2000 rows), but the focus was on an empty or
simple table.

• Some tests showed redundancies and partial overlaps.

The test cases shared some common strengths but also exhibited similar shortcom-
ings. Across most of the focal methods, the generated tests generally employed clear and
expressive assertions that make them easy to read and understand, and some included
domain-specific assertions and detailed internal state checks. This aligns with the princi-
ples suggested in software testing, where clarity in test cases is crucial for maintainability
and fault diagnosis [52]. Some tests incorporated realistic data that simulate real-world
usage scenarios, including exception handling assertions, which is beneficial for ensuring
that methods perform correctly under practical and useful conditions. Finally, despite
redundancies, there is evidence of good coverage for both typical behaviors and edge cases
in certain focal methods, which is a promising sign that some of the generated tests capture
key functional aspects.

In examining the shortcomings of the generated test cases, many of the tests generated
were nearly identical (with approximately 30% of the analyzed set). In a very small
number of instances, they were actually the same. Furthermore, approximately 20% of
the test cases relied overly on simplistic or hard-coded values, limiting their capability
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to explore diverse scenarios and edge cases. This lack of diversity in inputs can decrease
effectiveness by not exploring a wider range. Moreover, certain test cases where the
expected outcomes are inconsistent can lead to confusion in relation to the true method
behavior. Finally, some cases overlooked exception handling, leaving a gap in ensuring
robustness in error scenarios. Addressing these limitations demands adopting advanced
data selection techniques, possibly employing advanced clustering and filtering strategies,
to ensure a more representative and diverse training set, ultimately enhancing the model
capacity for generating reliable, diverse, and accurate unit tests. Overall, the generated
unit tests provide a foundation with clear and expressive assertions, and they simulate
realistic scenarios in some cases. However, their dependence on fixed values, the presence of
redundant cases, and inconsistent handling of edge cases reveal areas needing improvement.
Addressing these issues would result in more comprehensive and robust unit test cases
generated by LLMs.

4.4. Validation Discussion

In light of the two validation methods, one is through human-in-the-loop validation
for randomized test cases and the other employs automated evaluation methods, such
as recall, precision, F1 score, and BLEU score. We found that human-based validation
provides advantages over solely depending on automated metrics when assessing the test
cases generated by large language models. For example, automated metrics like BLEU
focus on surface-level similarity and may assign high scores to test cases that appear syntac-
tically correct but fail to capture critical logical conditions or edge cases. In one instance, a
generated test case achieved a high BLEU score but incorrectly validated an edge condition
due to a misunderstanding of the input range, which was only identified through human
review. Similarly, F1 and recall metrics may overlook semantic errors, such as incorrect
assertions or partial coverage of complex input scenarios, which are better detected by hu-
man evaluators. These examples highlight the importance of combining automated metrics
with human validation to ensure the accuracy, completeness, and functional correctness of
generated test cases.

Human oversight offers context-aware judgment that automated metrics often over-
look as those metrics were designed for general evaluation purposes. Humans can detect
edge cases, redundant tests, and optional biases that an algorithm might overlook. Addi-
tionally, human reviewers can access qualitative factors such as readability, maintainability,
and the overall reliability of test cases, thus providing a more comprehensive evaluation
that focuses on quality. In addition, in unit test cases, there are instances where the syn-
tax of a given generated test case may be missing certain attributes, such as practices or
semicolons. Although metrics like the BLUE score could flag these omissions, the test case
might still be valid from a context perspective. In such cases, test engineers can make the
necessary corrections and consider these test cases for testing. This human intervention
can facilitate iterative improvement as this can be fed into the LLM to enhance test case
generation over time.

Overall, our findings indicate that integrating human evaluation into the validation
of test cases provides considerably more insightful judgment compared to relying solely
on automated algorithms. This suggests the need to develop novel validation metrics
specifically tailored for the automation of test case generation utilizing large language
models or deep learning models. The objective of this development is to reduce the burden
placed on human evaluators, whose efforts can be both time-consuming and resource-
intensive, thereby enhancing the efficiency of software testing processes that are deployed
using LLMs.
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4.5. Threats to Validity

In this section, we list potential threats to the validity of our findings following the
recommendations [53].

Internal validity: The threats to internal validity lie in potential biases in experiments,
such as properties, experimental settings, and metrics used to measure outcomes. To avoid
any internal validity threats, especially construct validity, we utilized a supervised dataset
that comprises validated test cases and their corresponding focal methods derived from
a collection of Java software repositories. Furthermore, we relied on multiple evaluation
methods to measure the performance of our output, including precision, recall, F1 score,
and BLEU score metrics. In addition, a randomized human-in-the-loop validation was
performed for a sample of the test cases. To avoid bias, the third author, an expert in
software engineering, independently selected and analyzed a random subset (52 out of
approximately 2400 test cases) to ensure an impartial evaluation of test quality. Finally,
we conducted fine-tuning of the LLM on three types of configurations to avoid any va-
lidity threat from the configuration and hyperparameter perspective. We made these
publicly available on GitHub and reported the performance metric comparison of the three
configurations.

External validity: This validity type refers to potential threats to the generalizability
of the outcome. As we acknowledged this study as a proof of concept, we cannot extend
the results to other large language models (LLMs) or programming languages. While the
results are promising, further investigations are necessary to draw definitive conclusions.

Reliability: To ensure that our results can be reproduced and that fellow researchers
can perform all the experimental settings, we provide access to the fine-tuning code for
the Llama-2-7b-chat-hf model, which is available online, and all the data generated from
our experiments were made available online as well. Furthermore, we relied on a publicly
available LLM model with a publicly available validated dataset of unit test cases.

5. Conclusions
This study lays a foundational framework for automating software testing through

the fine-tuning of modern large language models (LLMs). The versatility of LLMs enables
their application across numerous downstream tasks, including bug localization, test case
generation, and test suite optimization. The outcomes of this study highlight the potential
of fine-tuned LLMs to revolutionize workflows in software testing, paving the way for more
efficient and scalable solutions. The current study provides a proof of concept but leaves
ample room for enhancements. With increased computational resources and extended time
allocation, several improvements could be pursued:

• Expanded Dataset Size: Increasing the training and validation dataset sizes could
significantly enhance the model’s performance and generalizability.

• Optimized Hyperparameters: Experimenting with a broader range of learning rates
and batch sizes and employing gradient accumulation could lead to an improved
hyperparameter configuration.

• Extended Token Lengths: Performing inference with higher maximum token length
limits would offer a more comprehensive evaluation of the model’s true capabilities.

• Increased Training Epochs: Training the model for additional epochs could lead to
more refined and task-specific adaptation.

Based on the results and the human-in-the-loop (HITL) validation, the findings are
promising. Some tests demonstrated good coverage of functionalities and addressed
multiple scenarios, while certain unit test cases focused on edge cases. However, issues
with redundancy, accuracy, and reliability were common, with varying degrees of severity.
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Future work should focus on minimizing redundancies and enhancing the accuracy and
reliability of the results. This can be achieved by developing more efficient test cases that
optimize time and resource allocation during the fine-tuning of large language models for
specific datasets. Implementing advanced techniques such as automated data selection,
adaptive sampling, and dynamic resource management could streamline the fine-tuning
process, ultimately leading to improved model performance and faster deployment in
real-world applications, which would contribute to more sustainable practices in model
development. This study sets the stage for further advancements in leveraging fine-tuned
LLMs for software testing. Future research could explore the following directions:

• Analytical Models for Test Cases: Developing fine-tuned LLMs specifically designed
to analyze software test cases, facilitating validation processes.

• Scaled Up Deployment: Creating a robust and accurate fine-tuned model capable of
generating software test cases with performance metrics suitable for public deployment.

• Multi-Language Support: Extending the capabilities of fine-tuned models to support
software test case generation for various programming languages, such as Python
and others.

• New Evaluation Metrics: Develop novel validation metrics specifically tailored for the
automation of test cases generated by utilizing large language models.

By addressing these improvement areas and future directions, the potential of LLMs in
automating and optimizing software testing can be fully realized. This study underscores
the transformative role of artificial intelligence in enhancing efficiency and scalability in
software development workflows.
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