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Abstract

I introduce a formalism for representing the syntax of recursively structured graph­like pat­

terns. It does not use production rules, like a conventional graph grammar, but represents

the syntactic structure in a more direct and declarative way. The grammar and the pattern

are both represented as networks, and parsing is seen as the construction of a homomorphism

from the pattern to the grammar. The grammars can represent iterative, hierarchical and

nested recursive structure in more than one dimension.

This supports a highly parallel style of parsing, in which all aspects of pattern recognition

(feature detection, segmentation, parsing, filling in missing symbols, top­down and bottom­up

inference) are integrated into a single process, to exploit the synergy between them.

The emphasis of this paper is on underlying theoretical issues, but I also give some example

runs to illustrate the error­tolerant parsing of complex recursively structured patterns of 50–

1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols,

overlapping symbols, cluttered images, and erased patches.
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1. Introduction

The ability to represent and process recursive symbol structures is often seen as fundamental

to cognition, and its characteristic features of productivity, systematicity and compositionality

have been especially celebrated by the ‘classical’ school of cognitive science [24,51]; and yet such

symbolic processing is often brittle, i.e., unable to cope gracefully with noisy input, random

variation, contradictory or incomplete data, and unexpected input. In contrast, nonsymbolic

or subsymbolic methods [96], such as statistical pattern recognition and neural networks,

are much more robust but have great difficulty representing recursively structured data. In

the 1980s and 1990s this contrast was drawn in adversarial terms [51,53], but since then

much effort has been devoted to reconciling the two by implementing symbolic processing in

subsymbolic architectures [61,87,20].

I approach the problem from the other direction: the aim of my work is to make symbolic

processing more robust. I choose as a suitable problem domain geometric pattern recognition,

the problem of recognising structured spatial configurations. This is not computer vision:

we are not concerned with perspective, binocular vision, motion, occlusion, colour, texture,

shadow or illumination. We are concerned with issues that are common to pattern recognition

in general, not any particular sense modality. The raw data from which the pattern is

recognised I shall call the image, for want of a better word, although I intend it to be thought

of as a spatial domain, not necessarily a visual one; where necessary I shall assume that it is

two­dimensional.

Formal grammars will be used to specify the recursive structure of a class of patterns.

By a grammar I mean any formal system that specifies how patterns can be composed out of

parts, allowing for iteration and nested recursive structure; it may be expressed in the form

of a set of production rules, a transition diagram, an accepting automaton, or by any other

method. Since we are not limited to sequential patterns we need graph grammars rather than

string grammars. A graph grammar is a formalism for representing the syntactic structure of

systems of symbols connected by binary relations. The conventional type of graph grammar

generates patterns by repeatedly applying production rules; I shall review these grammars

and their difficulties in §2 and shall instead introduce a different kind of formalism that rejects

production rules and represents syntactic structure directly and declaratively using networks,

with parsing seen as a homomorphism between networks.

We begin by making a basic distinction between tokens and types. A symbol token is an

occurrence of a symbol somewhere in the image; every symbol token has a type. E.g., a page of

text may consist of hundreds of letter tokens, each with its own position, size, orientation, and

relations to nearby letter tokens, but there is only ever a fixed set of 52 letter types, which have

no position. The system of symbol tokens present in an image (with all their relationships) is

called a pattern; the grammar is a system of symbol types, specifying the permitted structural

and geometric relationships in patterns.

The grammars should be capable of representing complex patterns (of up to 1000 symbol

tokens) related by iteration (not just in one dimension but two­dimensional iterations such as

square grids), hierarchical structure, and nested recursive structure. Most syntactic pattern

recognition research uses extremely limited grammars: e.g., a fixed compositional hierarchy

(possibly allowing for absent parts) [68]; or AND­OR trees [81]; or special­purpose representa­

tions designed for a particular application, such as recognising the facades of buildings [93];



limited types of easy­to­parse graph grammars are used by [47,95]; specialised grammars are

used for music notation [42,83] and for mathematical formulae [66,64,15,22,104].

The recognition algorithm must be able to tolerate all kinds of error and variability:

• variability in the geometric relationships between neighbouring symbol tokens, or between

parts and wholes;

• blurry and indistinct symbol tokens, and cluttered images where the lowest­level symbol

tokens cannot be detected purely by bottom­up processing;

• overlapping symbol tokens (where the image cannot be segmented by tracing boundaries

or finding connected components);

• missing patches in the image, small blank regions where the recognition algorithm must

fill in the missing symbol tokens or parts of symbol tokens using top­down information.

These requirements are extremely challenging for any existing pattern recognition algorithm.

In my view the brittleness of syntactic pattern recognition is caused by the imposition of an

unwarranted sequential order on what is conceptually a parallel process. In the first place,

many graph parsing algorithms impose a sequential order on the graph and then traverse

it in that order (see [48, §2] for a survey); a single error at an early stage may cause the

whole parse to go astray. My algorithm will examine all parts of the image in parallel.

Secondly, recognition should not involve taking early irrevocable decisions: the algorithm

should generate alternative interpretations of (parts of) the image, which are then extended

and combined in parallel, with all but one eliminated by the end. Thirdly, most recognition

algorithms subdivide the task into a fixed sequence of phases. Recognising a pattern requires

decisions on how the image is segmented into symbol tokens, the type of each symbol token

present, which parts of the image are pixel noise (i.e., not part of any symbol token), the

structural relationships between the symbol tokens, and the position, orientation, size and

degree of stretching and shearing of each symbol token. It is widely recognised that these

tasks are inter­dependent and that the synergy between them should be exploited. Tu et al

[98] point out the need for segmentation, object detection and recognition, top­down parsing,

and bottom­up parsing to work together; Tombre [97] argues that segmentation, recognition

and higher­level semantic analysis need to interact; Casey & Lecolinet [21], in a survey of

character segmentation, point out the inter­dependence of decisions on segmentation, shape

similarity and contextual acceptability; see also [82,59]. Yet, despite all this, algorithms still

separate these tasks and perform them in sequence. Many image recognition algorithms

begin with a special segmentation method to identify the foreground object, find its bounding

box, and transform it to a standard position, before the main parsing (identification of parts)

begins, and there is commonly postprocessing after parsing [78,82]. For highly specialised

applications, where the structure present is highly predictable, such as recognition of music

scores, a top­down approach may be successful [83]. Other algorithms identify the lowest­level

features first, constructing a graph from them, and then parse the graph; for example, Celik

& Yanikoglu’s mathematical formula recognition system [22] achieves very low recognition

accuracy because any failure to recognise symbol tokens at the OCR stage cannot be corrected

at the parsing stage. As Flasiński et al. emphasise [46], the conversion of the numeric input

representation into a symbolic representation in terms of pattern primitives can lose essential

information. Better results can be achieved if the recognition of pattern primitives can be

guided by grammatical information from the higher­level stages [104]. Few algorithms can



cope with overlapping objects, because bottom­up approaches to segmentation are inapplicable

(a partial exception is [81]).

In my algorithm there is no division into phases; all aspects of recognition are integrated.

During the recognition process the pattern is built up incrementally; symbol tokens are created,

linked to other symbol tokens, merged, split and pruned; many rival pattern­fragments are in

play simultaneously, competing to attract parts and to grow at one another’s expense. Bottom­

up and top­down influences apply simultaneously; indistinct, missing or overlapping symbol

tokens can be ‘hallucinated’ using grammatical context.

The symbol tokens are arranged in spatial configurations, so some mathematical formalism

is needed for representing geometric relationships and how they are permitted to vary in a

pattern. In §5 I shall review the range of representational methods used and propose a

more general concept of a fleximap, an elastic affine transformation relating one symbol token

to another. The recognition process should be invariant under affine transformations, to

accommodate different points of view on the same pattern; most existing invariant pattern

recognition techniques assume that the image has already been segmented and apply only to

a single object (with little or no occlusion).

Finally, the recognition process must also cope with symmetry; this is a neglected topic

in the literature. A line segment has two­fold symmetry; the algorithm must understand that

it may occur either way round as part of a complex symbol token and that the two ways are

equivalent. A hexagonal grid has six­fold symmetry; the algorithm must recognise the six

symmetry variants of a pattern as equivalent, not as rival interpretations. The symmetries of

each symbol type must therefore be represented explicitly in the grammar.

This paper builds on my previous work [48], where regular graph grammars describing

two­dimensional geometric patterns were parsed and learned from positive examples. Here I

am using more powerful grammars, using the full geometry of the plane rather than a discrete

grid, and adding error­tolerance. However, this paper considers only recognition of patterns,

not learning of grammars.

The emphasis of this paper is on the new grammatical formalism. For reasons of space I

give only a summary of the mathematical theory; see [49] and [50] for full details and proofs.

Section 2 reviews graph grammars in general and my reasons for being dissatisfied with

the conventional approach based on production rules.

My new type of graph grammar is introduced informally in §3 and formally in §4, with

the spatial aspects covered in §5. The problem of pattern recognition is specified in §6. The

algorithm for recognition is developed in §§7–9. The core parts of the theory are provably

correct, but peripheral parts rely on heuristic arguments (particularly in §7.4).

Three example grammars are constructed in §10, illustrating various types of iteration

and recursion. Example runs with these three grammars (combined into a single grammar) are

described in §11. These runs are intended purely as proof of concept and are not experiments:

the emphasis of this paper is on investigating fundamental qualitative issues underlying

all pattern recognition, in particular the difficulty of combining recursive representational

capabilities with error­tolerance; I make no claims of applicability. Conclusions are drawn in

§12.



2. Graph grammars

There is a well­established theory of grammars for representing ‘strings’ (sequences of sym­

bols). String grammars contain production rules of the form L → R, where L and R are

strings, called the left­hand side and the right­hand side of the rule. Define a relation ⇒

between strings as follows: for any strings S and T, S ⇒ T iff S can be turned into T by

replacing a substring matching L in S by R; in that case we say that the rule L→ R has been

applied to S to yield T. To parse a string S is to find a sequence of production rule applications

S0 ⇒ S1 ⇒ S2 ⇒ · · · ⇒ S, which is called a derivation of S (where S0 is the start symbol). The

language generated by the grammar is the set of all strings S that have derivations.

To generalise all this to non­sequential patterns we replace the strings L and R by graphs,

in which the nodes, and perhaps also the edges, bear labels. This gives us a graph grammar,

which generates a language of graphs. (The node labels are symbol types and a labelled node

in the generated graph is a symbol token.) However, several complications and perplexities

arise in doing so:

(i) the complexity of the concept of applying a production rule, i.e, the ⇒ relation;

(ii) the lack of a well­defined Chomsky hierarchy for graph grammars;

(iii) the difficulty of combining good expressive power with the existence of parse trees;

(iv) the imperspicuity of graph grammars;

(v) the intractability of parsing;

(vi) the difficulty of coping with noise, i.e., errors in the graph to be parsed.

I shall take these issues in turn.

2.1 The complexity of production rule application

The concept of ‘applying’ a production rule to a graph is not as obvious as in the string case. To

apply the rule L→ R to a graph G we must identify an isomorphic copy of L in G and replace

it with an isomorphic copy of R, giving a new graph H. This may be expressed mathematically

by graph endomorphisms (injective homomorphisms) g: L → G and h: R → H. Thus g(L) is

removed from G and replaced by h(R), giving H. But how exactly is h(R) to be joined to

G \ g(L)? This is called the embedding problem. There are three approaches in the literature.

(I shall consider only sequential grammars, not parallel grammars, here.)

First approach: the context subgraph. In this method there is a subgraph of L that is

shared with R, or in bijection with a subgraph of R; this subgraph is called K, the context

subgraph. This can be expressed by endomorphisms l: K → L and r: K → R. Often the bijection

between the subgraphs l(K) and r(K) is expressed by marking the nodes of l(K) and r(K) with

unique numeric labels. Then, when a rule is applied, g(L) is removed from G and h(R) is

added to G \ g(L) in such a way that h(r(K)) occupies the same position as its isomorphic copy

g(l(K)) did before.

This can be expressed neatly in category­theoretic terms as a pair of push­outs [35,36]:

L
l
←− K

r
−→ R



yg


yd



yh

G
c1←− D

c2−→ H

where all the arrows are graph endomorphisms. (Think of D as the part of G that is unchanged

by the rule application (either because it is not involved in the operation or because it is the

context part g(l(K))), and think of c1, c2 as inclusion endomorphisms.)



Given a rule L → R and a graph G, the rule can only be applied to G if a D exists that

forms a push­out with K, L and G. This will be the case iff there are no edges in G \ g(L)

incident to nodes in g(L \ l(K)): this is called the dangling­edge condition.

In the most general formulation l, r, g, d, h, c1, c2 are not required to be injective, i.e., they

are simply graph homomorphisms. In this case, the identification condition must also hold for

the rule to be applicable to G: this states that whenever two nodes or edges x, x′ in L have

g(x) = g(x′) then x and x′ are in l(K).

(I have been assuming so far that the rule L → R is applied from left to right, i.e., that

we interpret G ⇒ H as meaning that G is transformed into H; but it is also possible to

apply the rule from right to left, i.e., to regard it as transforming H into G; corresponding

dangling­edge and identification conditions must be imposed to guarantee the existence of D

forming a push­out with R, K and H.)

Examples of this approach are hyperedge replacement grammars [56,33]; positional gram­

mars [25], which use plex­like structures with attaching points; Lichtblau’s grammar [69];

reserved graph grammars [106] and variants of them such as spatial grammars [62].

Ferrucci et al. [44] consider this type of grammar restrictive, because the context subgraph

K is fixed. The dangling­edge and identification conditions are also restrictive. There are some

slight extensions that allow some variation in K. Layered graph grammars [84] and breeze

graph grammars [67] allow the nodes in K to have ‘wildcard’ labels, each of which stands for

one of a definite set of possible labels. In edge­based graph grammars [90,91], an edge in K

may bear an asterisk, meaning that it represents any number of edges. In Blosetin’s grammar

[15] K may contain ‘set nodes’, each of which matches against as many nodes in G as possible.

Other variants, which involve something similar to a context subgraph, are [101,102,25,88].

Second approach: connection relations. In this approach we still have the endomorphisms

g: L → G and h: R → H, but no context subgraph K. When g(L) is removed from G, edges of

G \ g(L) that are incident to nodes of g(L) must also be removed and replaced by new edges

incident to nodes of h(R). How this is done is specified by a connection relation.

The advantage of this method is that it gives more powerful grammars than the ‘context

subgraph’ method – at least, this appears to be true in general and has been proved for

particular classes of grammar [28].

A disadvantage is that descriptions of how the connection relation is used to connect the

new edges are complicated [60,86] and often informal and incomplete [102,66]. This does not

lend itself to a neat mathematical theory.

A second disadvantage is that application of a production rule may not be reversible, or

not reversible in a unique way. In [4] the rules can be applied left­to­right or right­to­left, but

the two directions are not inverses of each other. This is a problem for bottom­up parsing:

the definition of a language involves left­to­right application, but bottom­up parsing involves

right­to­left application.

The commonest type of grammar of this kind is the node­replacement grammar [41], in

which the left­hand side L of each production rule is just a single node, n. Most commonly the

nodes bear labels and the labels control the connection of new edges: this is called a node­label

controlled (NLC) grammar [40]. The edges may bear labels too and may be directed. Rule

application works as follows: g(n) is replaced by h(R), and if there is an edge e in G between

g(n) and a neighbour node u, it is replaced by new edges between h(v) and u, for some nodes v



in R, depending on the labels of u and v (and e’s label and direction if they exist), as directed

by the connection relation that is provided with the grammar.

A slightly more general type of grammar is the neighbourhood­controlled embedding (NCE)

grammar [41]. Here, the connection of new edges depends on the identity of the node v in

R, not just its label. Relation grammars [43,44] are essentially equivalent to NCE grammars,

presented in a different format. NCE grammars generate the same class of languages as NLC

grammars, but that is not true when they are combined with some other extensions [40].

Alternatives to node­replacement grammars are edge­label controlled grammars (where

the left­hand side L of a rule is one edge and its incident nodes) [75] and Adachi et al.’s

context­sensitive NCE grammars, where L can be a graph of any size [4,5,3].

The most general type of production rule of this kind is Nagl’s set­theoretic approach [79],

in which new edges can be connected to G \ g(L), not just to neighbour nodes of g(L). A

further generalisation is [14], where more general types of graph operation are used in place

of production rules, the application of these operations being controlled by logical formulae

and a tree grammar.

The ‘context subgraph’ and the ‘connection relation’ approaches should be seen as alterna­

tives. Adachi et al. [4] use both in tandem, but in later work [5] abandon the context subgraph

without affecting the generative power of the grammars.

Third approach: implicit edges. The problem we are considering is how to connect h(R),

the new part of the graph, to G \ g(L), the old part, by edges. The simplest solution is to

do without edges entirely. The graph G is simply a set of nodes, with geometric attributes

such as position and size. The grammar contains ‘constraints’ between symbol types, which

are essentially edges; if two nodes in G are related in a way that fits the constraints, there

is implicitly a geometric relationship between them, but it is not represented explicitly as an

edge. In the production rules L is a single node. The geometric attributes of the node in g(L)

are related to those of the nodes in h(R); this means that new implicit geometric relationships

are produced when the rule is applied, but there is no need for a context subgraph or a

connection relation.

Examples of this approach are picture layout grammars [55] and constraint multiset

grammars [23,76]. They are described in terms of ‘multisets’, but they are best thought of as

graphs with implicit edges.

2.2 The lack of a well­defined Chomsky hierarchy

For string grammars there is a clear classification into levels according to generative power:

type 0 (unrestricted grammars), type 1 (grammars where the left­hand side of each rule

is no longer than the right­hand side, and parsing is guaranteed to halt), type 2 (context­

free grammars, expressing iterative and nested structure), and type 3 (regular grammars,

expressing iterative structure only). These types can be characterised in various ways (in

terms of production rules, recognition automata, or alternative notations such as regular

expressions), and are unaffected by minor differences in formulation.

Unfortunately the same cannot be said for graph grammars. One may still define type

0 grammars, having no restrictions on the production rules; there are inequivalent kinds of

type 0 grammar, such as context­sensitive NCE grammars [3], edge­based graph grammars

[90], reserved graph grammars [106], and the ‘set­theoretic approach’ [79]; reserved graph

grammars are more expressive than edge­based grammars [109], whereas the set­theoretic



approach seems to be the most expressive type. There are several concepts of type 1 grammar;

the aim is always to impose a restriction that ensures that parsing is guaranteed to halt. The

simplest restriction is that the number of nodes on the left­hand side of each rule is less than

or equal to the number of nodes on the right­hand side [4]; or alternatively that the number

of nodes and edges on the left is less than or equal to the number of nodes and edges on the

right [35]. Layered graph grammars [84,3] impose a more complicated condition of the same

kind, with node labels distinguished by ‘layer’. Reserved graph grammars did the same at

first [106], but more recent work drops the layering and reverts to the simpler condition [110].

There is a variety of inequivalent concepts of context­free grammar [39]. Some authors say

that a context­free grammar is one where each rule has a single (labelled) node as left­hand

side [60,106,102,91,52,72,25]. However Lange & Welzl [65] point out that this is not really

context­free in the full sense: “‘context­sensitivity” is hidden in the embedding mechanism

of NLC grammars’. Hence context­freedom is often identified with a confluence or finite

Church­Rosser property [16]. Definitions of this vary. The general idea is that ‘the result of a

derivation is independent of the order in which the productions are applied’ [40]. One version

is that if G⇒p H1 ⇒q K1 and G⇒q H2 ⇒p K2 (where ‘⇒p’ means ‘derives by using production

rule p’) then K1 is isomorphic to K2. Another version is that if G⇒p H1 and G⇒q H2, where

p 6= q, then G ⇒p H1 ⇒q K and G ⇒q H2 ⇒p K for some K. These are left­to­right versions;

right­to­left versions can be defined by reversing the arrows.

Courcelle argues from a more abstract perspective that ‘context­free’ should be defined to

mean confluent and associative [26].

These notions are heavily dependent on the surrounding formalism. In the ‘set­theoretic

approach’ [79] and boundary NLC grammars [86], the context­free languages coincide with

the context­sensitive ones, though this is not true for the grammars.

There are a few concepts of regular graph grammar in the literature [27,54,79,2,1,103,48].

These are heavily dependent on the details of the definition, especially on whether the right­

hand side is allowed to be disconnected. There is no unique notion.

There has been little work to characterise classes of graph language by accepting au­

tomata. Some classes of NCE grammars (linear NCE and boundary NCE grammars) can

be characterised by accepting automata, but this does not seem possible for arbitrary NCE

grammars [17].

There has also been a little work on algebraic characterisations of classes of graph lan­

guage. Courcelle [28] gives formal characterisations, using monadic second­order logic, of the

set of languages generated by edge­labelled edge­directed NCE grammars and the set of lan­

guages generated by hyperedge­replacement grammars. Bauderon et al. [6,9] claim to provide

an algebraic formulation of production rule application in NLC grammars as a pullback. But

this cannot be true, as their graphs have no node labels. There is a kind of node labelling

mechanism implicit in their ‘unknown’ homomorphisms [6, definition 3], but these labels are

freely changed every time a production rule is applied, so this is not at all like what is nor­

mally understood as an NLC grammar. In their later work [7,8] an elaborate mechanism is

specified for updating these labelling homomorphisms every time a rule is applied; this, along

with the pullback, specifies how rule application works. There is also an element of parallel

application of rules. It is now acknowledged that this generates a larger class of languages

than node­replacement grammars.



2.3 Perspicuity, parse trees, expressive power

In a context­free string grammar the production rules (e.g., Sentence→ NP verb NP) express

something about the structural possibilities of the language. After parsing a sentence, a parse

tree is produced, which makes explicit the grammatical structure of the sentence. It is the

central function of grammars to do this. The parse tree provides a declarative view of the

structure of the sentence, abstracting away from the operational details of the derivation. A

parse tree may also be thought of as an algebraic expression that is evaluated to produce

the sentence [34]. Unfortunately, with more complex types of grammar, including most graph

grammars, the production rules are merely engines for generating sentences and do not convey

any grammatical information. Parse trees are often not possible, so there is no representation

of the grammaticality of the sentence more abstract than the sequence of production rule

applications.

When is a parse tree possible in a graph grammar? If the production rules have a single

node on the left­hand side then one may construct a tree of the nodes involved in the derivation;

however, the edges will cut across between the branches in a tangle [55,29]. Useful parse

trees can be produced if the grammar is confluent. This is done for hyperedge­replacement

grammars [33], constraint multiset grammars [23], and relation grammars [43,44]. In [60] no

confluence condition is imposed and the parse trees are dependent on the order of application

of the production rules, so they do not express the syntactic structure in a fully abstract way.

Parse trees are also possible for the graph expansion grammars of [34], which are essentially

an extension of hyperedge replacement grammars.

Sometimes a nested graphical representation of syntactic structure is used, which is

equivalent to a parse tree [102,17]. I believe this only works well if the grammar is confluent.

Thus it seems that parse trees are possible only for context­free graph grammars. Unfor­

tunately, these grammars are surprisingly weak in their expressive power. One would expect

context­free grammars to be able to represent iterative and nested structure, but, as Zou et

al. say, ‘context­free graph grammars have difficulty in specifying a large portion of graphical

VPLs [visual programming languages]’ [110]. Even in the weakest sense of context­free, ‘Not

all, nor even the majority, of VL [visual language] formalisms are context­free even in this

loose sense’ [102]. Even an iterative pattern in two dimensions, which one would expect to

be captured by a regular graph grammar, is beyond the reach of context­free graph gram­

mars: Schuster [89,16] showed that the set of quadratic graphs (rectangular grids) cannot be

generated by any graph grammar with the finite Church­Rosser property.

Bauderon et al.’s pullback grammars can generate the set of square grids [7], but this

is a very much more powerful type of grammar, with an elaborate mechanism for changing

labels at every derivation step, and depending essentially on parallel application of rules; so

the rules themselves do not fully express the grammatical knowledge.

This is the key limitation of graph grammars: to obtain decent expressive power we have

to go beyond the context­free grammars, but then we lose the ability to represent syntactic

structure through parse trees. Thus we have a purely operational concept of what it means

to belong to the language. There is no description of how the graph fits the grammar simpler

than the sequence of production rule applications.

2.4 Parsing algorithms



Graph grammars are very powerful mechanisms, and so parsing is necessarily intractable.

Type 0 grammars in the ‘set­theoretic approach’ [79] and the ‘algebraic approach’ [35] and for

edge­label controlled grammars [75] can generate any recursively enumerable set of graphs, so

the membership problem (deciding whether a given graph is in the language) is undecidable.

Type 1 restrictions, which all amount to saying that the left­hand side is no larger than

the right­hand side, make the membership problem decidable [35].

Even in the case of context­free grammars the membership problem is still intractable.

NLC grammars can generate PSPACE­complete graph languages [16]. Hyperedge­replacement

grammars [33], linear edge­replacement grammars [33], confluent edge­labelled edge­directed

NCE graph grammars [41], and even regular NLC grammars [1] can generate NP­complete

graph languages. This is unlike context­free string grammars, which can be parsed in cubic

time using the standard Cocke­Younger­Kasami algorithm. The reason is that a string has

quadratically many substrings, whereas a graph has exponentially many subgraphs [13].

Some improvement in efficiency is possible by clever optimisation to reduce backtracking

[111]; the worst­case time­complexity however remains exponential in the size of the input

graph, for a fixed grammar. Hence much research effort is devoted to identifying subclasses

of grammar that can be efficiently parsed. Polynomial­time parsing is possible if

• the grammar has the finite Church­Rosser property,

• the grammar generates only connected graphs,

• the grammar generates graphs of bounded degree.

If any of these three conditions is dropped then a grammar exists for which the membership

problem is NP­hard [16]. Note however that even where parsing is possible in polynomial time

the degree of the polynomial is very high, so tailor­made efficient algorithms are still needed

for particular classes of grammar [86,43].

If the grammar is confluent in the right­to­left direction then bottom­up parsing without

backtracking, called selection­free parsing, is possible; this gives polynomial time complexity

[110,106,72]. This is a very restrictive condition, however.

Precedence graph grammars can be parsed in linear time [35]. Graph languages generated

by evaluating algebraic expressions generated by tree grammars can parsed in polynomial time

if certain restrictions are imposed [14,12]. Other fast parsing algorithms for restricted classes

of graph grammar are [31,32,13,54,103].

2.5 Coping with noise

Graph parsing algorithms have little ability to cope with errors in the graph (false or missing

nodes, and errors in labels, edges or structure).

Many graph parsing algorithms are based on exhaustive enumeration of all possibilities,

either by backtracking or by carrying forward a set of possible parses, e.g., algorithms based on

the Cocke­Younger­Kasami algorithm [86,55,16] or on the Earley algorithm [43,101,18,19,69].

With noise the possibilities proliferate and become unmanageable.

Most algorithms work by traversing the graph, i.e., by visiting each node or edge one at a

time [69,1,25,101]. This is unsuitable for non­Eulerian graphs and is error­intolerant, since an

error in the first node visited may throw the process onto the wrong track, and the erroneous

node cannot be corrected later because it is never revisited.



In addition, many pattern recognition systems work in a fixed sequence of phases, or in a

fixed direction (top­down or bottom­up), where misinterpretations made in one phase cannot

be corrected in later phases.

Some systems have a limited ability to handle simple types of error. Error­correcting

grammars can, in principle, model the errors using production rules and make the correction

of error part of the parsing process; however, these have only been used for the simplest sorts

of error. Skomorowski’s grammar [95] can correct errors in the label of a node or edge, but

not structural errors. In Fahmy & Blostein’s music recognition system [42], the symbols can

have ambiguous labels; one node is created for each possible value of the label. Thus labelling

errors (and stray dots) can be corrected. Liu & Yang’s [72] production rules include ‘uncertain

edges’, which are excess edges that it is anticipated may occur in the graph. If such edges

occur they are removed during bottom­up parsing. Sánchez et al.’s grammar [88] recognises

tessellations of rectangles and octagons. There are production rules that add special ‘inserted’

nodes where rectangles or octagons are expected at the boundary of the tessellation; at the

end of parsing other production rules either remove each ‘inserted’ node or relabel it as a

‘cut’ symbol or a ‘split’ symbol. Mas et al.’s grammar [76] recognises hand­drawn diagrams;

it includes production rules for eliminating errors where one stroke has been misconstrued as

two.

Error­correcting grammars are only suitable for simple, explicitly anticipated types of

error. It would not be feasible to use them for general error correction, where any symbol

or relation may be spurious, missing, mislabelled, misinterpreted as two, or conflated with

another.

Instead of modelling the errors in the grammar, an alternative is an error­tolerant parser,

which finds the closest match between the graph and what the grammar would accept (for

example [74], which matches a tree against a tree automaton). There are also error­tolerant

parsing algorithms for matching a graph against a fixed set of graphs (rather than a grammar)

by building up partial matches or by using edit distance [77,85].

3. Networks and homomorphisms

3.1 Requirements

From the literature survey in the previous section I draw the following conclusions for my

own work.

• I require a grammatical formalism that can represent iterative and nested structure

(including iterations in two dimensions such as tessellations).

• The syntactic structure in an image should be represented explicitly and declaratively, in

a structure called a pattern, like the way a parse tree represents the structure of a string,

rather than by a sequence of production rule applications. I shall do this by abandoning

production rules altogether. The grammar and the pattern will each be a graph­like

structure called a network, and parsing will be a matter of constructing a homomorphism

from the pattern to the grammar.

• The grammatical formalism should be amenable to mathematical treatment. There should

be no complicated semi­formal prose definitions. All definitions will be expressed alge­

braically.



• All phases of pattern recognition should be simultaneous and interdependent. Pattern

recognition involves both constructing the pattern from the given image and parsing the

pattern. Top­down and bottom­up parsing occur simultaneously. We break free completely

from sequential ideas drawn from string parsing: there is no concept of traversal. Error­

tolerant parsing must work opportunistically, starting with the most clear­cut parts of the

image and recognising the ambiguous parts later in the light of top­down evidence. Many

alternative interpretations of the image will be held in the same pattern and worked on

in parallel, with one interpretation chosen by the end of parsing.

In this section I am considering only the structural aspects of the pattern: the geometric

relationships will be considered in §5.

3.2 Networks

Consider the example in figure 1. The raw data is called the image. The pattern recognition

system recognises the presence of one symbol token, called A1, of type A, and three symbol

tokens, line1, line2, line3, of type line, which are its parts.

image A1

line1 line2 line3

pattern grammar

A

line

p
W W

P P

1 2 3 1 2 3

Figure 1. An image, the corresponding pattern, and the grammar against which it is

parsed. Rectangles are symbols, circles are nodes, small filled discs are hooks, and

black curves are edges. The W and P functions are depicted by green and blue arrows.

The symbol tokens are connected together to make the pattern. Part­whole relationships

are represented by node tokens. Whenever one symbol token, e.g., line1, is a part of another,

A1, there is a node n between them. Two functions W, P represent the relationship: W(n) = A1

and P(n) = line1. The node represents the role that the part plays in the whole; for example,

node 1 = left stroke, node 2 = cross­bar, node 3 = right stroke. (In all my figures, symbols are

depicted by rectangles and nodes by circles; the W and P functions are depicted by green and

blue arrows.) When two parts of a whole are related to each other they are called siblings,

and their relationship is represented by an edge token between the nodes. For example, the

left stroke of an A must be joined at its top to the right stroke, and so there is an edge token

between node 1 and node 3. In this example all three parts are one another’s siblings. (In the

figures edge tokens are depicted by black curves, sometimes directed.) Actually, an edge token

does not run between two node tokens but between two hook tokens, which are attached to

node tokens. (Hook tokens are depicted in the figures as small filled discs.) Note that there is

also an edge token between node token 1 and the symbol token A1.

The grammar is similarly constructed, except that it is composed of symbol types, node

types, hook types and edge types. Parsing consists of constructing a homomorphism p from



the pattern to the grammar, under which each symbol, node, hook and edge token maps to its

type, preserving incidence relations. The entire recognition process is, given an image and a

grammar, to construct the pattern and the homomorphism.

This illustrates the main features of networks, albeit in an uninteresting example. Fig­

ure 2 shows an example with iteration (the image is omitted). An alkane is a hydrocarbon

molecule consisting of a carbon chain of arbitrary length surrounded by hydrogen atoms.

Propane is the case where there are three carbon atoms. Diagrammatic conventions are as

before; under p, each symbol token or node token maps to the symbol type or node type with

the same alphanumeric label, except that propane maps to alkane. (These symbol and node

labels are just a diagrammatic convention for conveying how p works; they are not really there

in the network.)

H C

H

H

C C

H H

H H

H H C

alkanepropane

21 1112 33

4 4 4

55 5 5

4

P P

W

p

W

Figure 2. On the right, the grammar for alkanes. On the left, one possible alkane pattern.

There is a rule that each hook token in the pattern must have exactly one incident edge

token. As a consequence, the propane token must be connected to one ‘2’ node token, which

must be connected to one ‘1’ node token. Each ‘1’ node token must be connected to one ‘4’ and

one ‘5’ token, and to either a ‘2’ or a ‘1’ token (by its left hook), and to either a ‘3’ or a ‘1’

token (by its right hook). This permits unbounded iteration of ‘1’ node tokens, and hence any

number of carbon atoms. Thus, in the grammar, a hook with several incident edges represents

a one­from­n choice, and allows for grammatical alternatives and iteration, which can be in

one or more dimensions.

During the recognition process, while the pattern is under construction, there may be

any number of edge tokens incident to a hook token (either because no edge token has been

added yet or because several alternatives are being considered in parallel). Thus alternative

interpretations for various parts of the image may be entertained in parallel, in the same

pattern, without being confused. By the end, one incident edge token must be chosen for every

hook token.



3.3 Subsymbols

One further type of grammatical constraint is needed. Consider figure 3, which shows (a)

a hexagonal grid image, (b) part of the pattern corresponding to the portion of the image

encircled in red, with symbol tokens (the grid itself and the component lines) omitted, and

(c) the relevant portion of the grammar. (This is a simplified version of the hexagonal grid

grammar of §10.1.) As usual, each node and edge in the pattern is mapped under p to the

node and edge with the same label in the grammar.

(a) (c) (d)(b)

1
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32
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b
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f
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d
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c

c
b

a

a
p p
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Figure 3. (a) An image. (b) Part of the pattern (without symbol tokens). (c) The

relevant part of the grammar. (d) An unwanted pattern.

There is a problem with this. The grammar appears to allow ‘nonstandard models’,

unintended patterns that could map homomorphically to the grammar just as well (see (d)).

To cure this problem we need to treat a hexagon (i.e., the portion of the hexagonal grid shown

in figure 3(b)) as a symbol in its own right. The hexagon is said to be a subsymbol of the

hexagonal grid, meaning that all the parts of the hexagon (the six line symbol tokens) are

parts of the hexagonal grid. Figure 4 shows, in part (a), the relevant portions of the pattern:

the hexagon1 symbol token and all its nodes, hooks and edges; the hex1 hexagonal grid symbol

token (only the relevant nodes, hooks and edges are shown); and the six parts of hexagon1,

the symbol tokens line1–line6, which are also parts of hex1. Part (b) of the figure shows the

grammar. As usual, under the parsing homomorphism p, each node and edge token in the

pattern maps to the node or edge type with the same label in the grammar.

To indicate the subsymbol relationship, hexagon1 is ‘glued’ to hex1 by a gluing relation

G; formally we write G(hex1, hexagon1). We say hexagon1 is a subsymbol of hex1 and hex1 is

a supersymbol of hexagon1. The corresponding nodes are also glued: G(1, 1′), G(1, 1′′), G(2, 2′),

G(2, 2′′), G(3, 3′), G(3, 3′′). We say node 1′ is a subnode of node 1 and node 1 is a supernode

of node 1′. Corresponding hooks and edges are also glued: G(a, a′), G(b, b′), . . . . This is done

in both the pattern and the grammar; the gluings in the pattern must match those in the

grammar. Some of the gluings are shown in red in the figure.

One final syntactic feature is needed. The grammar must specify where hexagon sub­

symbols should occur in a hex grid. This is done by giving some of the edge types one or

more facets (these are depicted as small red crosses in the figure). Some of the facets in the

grammar are glued together in pairs. The edge tokens in the pattern have facets similarly.

There is a new grammatical rule: in the pattern, each facet must be glued to one other facet
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Figure 4.(a) Part of a pattern: a hexagonal grid symbol token hex1 and some its

nodes, hooks, edges; and a subsymbol hexagon1, with all its nodes, hooks and edges

and parts line1–line6. (b) The grammar, including the hexagonal grid symbol type

hex and its subsymbol type hexagon. Only a few of the W and P arrows are shown.

The gluing relation G is shown in red (only a few of the gluings are shown). Facets

are shown as small red crosses.

(in a way consistent with the grammar). When two facets are glued this forces their edges to

be glued, and hence their incident hooks are glued, hence the nodes to which they are attached

are glued, hence the whole symbol tokens above them are glued.

As another example, the three lines meeting at a vertex or junction of the hexagonal grid

also form a subsymbol. There are two sorts of junction subsymbol: those in which the three

lines are oriented towards the junction and those in which the three lines are oriented away

from the junction, so we need two subsymbol types, junctionA and junctionB. Figure 5 shows

the junctionA subsymbol type and one token junctionA­1 of that type. We give the edges a–f

in the grammar and pattern a second facet: this means that each such edge will be part of

two subsymbols: a junction and a hexagon. The junctionA edges a′, b′, c′ only need one facet.

As before, in the pattern each facet must be glued to one other facet (in a way consistent with

the grammar). This will force edge tokens a′, b′, c′ to be glued to a, b, c, respectively, in the

pattern. This will force their incident hook tokens to be glued; this will force the node tokens

1′, 2′, 3′ to be glued to 1, 2, 3; and so junctionA­1 will be glued to hex1.

Further example grammars are given in §10. In the next section the concepts of this

section will be defined formally.

4. The structural part of the theory

4.1 Preliminaries

We shall deal with sets, functions and binary relations. I use standard set and function

notation.
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Figure 5. (a) The image, with the relevant portion encircled. (b) The pattern: the

junctionA­1 subsymbol token and the relevant portion of the hex1 symbol token. (c)

The grammar: the junctionA and hex symbol types. A few of the P and W arrows and

a few of the gluings are shown. Every node or edge with a primed label is glued to

the one with the unprimed label. Every node or edge in the pattern is mapped under

p to the one with the same label in the grammar.

Definition. The domain dom(R) and range ran(R) of a relation R are defined by

dom(R) = {a | ∃b R(b, a) }, ran(R) = {b | ∃a R(b, a) }.

Definition. A relation R is said to be on a set A iff dom(R) ⊆ A and ran(R) ⊆ A.

Definition. For any set A, the identity relation idA is defined by

∀a, b (idA(a, b) ⇐⇒ a = b ∈ A).

Definition. The empty relation ⊥ is defined by ∀a, b ¬⊥(a, b).

Definition. For any relations R and S,

R = S ⇐⇒ ∀a, b (R(a, b)⇐⇒ S(a, b))

R ⊆ S ⇐⇒ ∀a, b (R(a, b)⇒ S(a, b))

R ⊂ S ⇐⇒ R ⊆ S ∧ R 6= S.

Definition. For any relations R and S, the relations R ∩ S, R ∪ S and R\S are defined by

∀a, b















(R ∩ S)(a, b) ⇐⇒ R(a, b) ∧ S(a, b),

(R ∪ S)(a, b) ⇐⇒ R(a, b) ∨ S(a, b),

(R\S)(a, b) ⇐⇒ R(a, b) ∧ ¬S(a, b).

Definition. For any relations R and S, the composed relation R ◦ S is defined by

∀a, c ((R ◦ S)(a, c) ⇐⇒ ∃b (R(a, b) ∧ S(b, c))).



Definition. For any relation R, the inverse relation R−1 is defined by

∀a, b (R−1(b, a) ⇐⇒ R(a, b)).

Definition. The graph of a function f is the relation f defined by

∀a, b (f (b, a) ⇐⇒ a ∈ dom(f ) ∧ b = f (a)).

Note that, for any f , g, f ◦ g = f ◦ g.

Definition. A relation R is finite iff there are finitely many pairs (a, b) such that R(a, b) holds.

Definition. The ‘not­equal­to’ relation NE is defined by NE(a, b)⇐⇒ a 6= b.

Definition. A finite relation R is acyclic iff

¬∃R∗ (⊥ 6= R∗ ⊆ R ∧ R∗ ⊆ (R∗ ◦NE ∩ NE ◦R∗)).

(Informally, R is acyclic iff every non­empty subrelation R∗ has an element of valency 1, i.e.,

an element related to just one element by R∗ or to just one element by R∗−1. This is equivalent

to the non­existence of a finite cyclic sequence x1, . . . xn, x1, with n even and n > 2, where the

terms are all different and are related by x1
R
→ x2

R
←x3

R
→ x4

R
←x5

R
→ · · ·

R
→ xn

R
←x1.)

Definition. If f : X → Y and R is a relation on X then R is connected relative to f iff, for any

set Z and function g: X → Z such that g ◦ R ⊆ g, there exists a function i: f (X) → Z such that

i ◦ f = g.

(Informally, R is connected relative to f iff, for any x, x′∈X such that f (x) = f (x′), there exists

a finite sequence x = x0, x1, . . . xn = x′ such that, for each i∈{1, . . . n}, R(xi−1, xi) or R(xi, xi−1)

holds.)

Definition. If f : X → Y and R is a relation on X then R is minimal relative to f iff

∀R∗ ⊆ R (f ◦R∗ = f ◦ R⇒ R∗ = R).

(Informally, R is minimal relative to f iff, for any x∈X and y∈Y, there exists at most one

x′∈X such that f (x′) = y and R(x′, x).)

I shall also use some basic concepts of category theory, namely pullbacks, sums and coequalis­

ers.

4.2 Networks and homomorphisms

Definition. A network is a 12­tuple (Σ, N, H, E, K, W, P, A, F, S, C, G), where Σ, N, H, E, K are

disjoint finite sets; W: N ∪ Σ → Σ, P: N → Σ, A: H → N ∪ Σ, F, S: E → H and C: K → E are

functions such that ∀σ∈Σ W(σ) = σ; and G is a relation on Σ ∪N ∪H ∪ E ∪ K such that

(1) idΣ ◦G = G ◦ idΣ, idN ◦G = G ◦ idN, idH ◦G = G ◦ idH, idE ◦G = G ◦ idE, idK ◦G = G ◦ idK ;

(2) W ◦G = G ◦W, P ◦G ⊆ P, A ◦G ⊆ G ◦ A, F ◦G ⊆ G ◦ F, S ◦G ⊆ G ◦ S, C ◦G ⊆ G ◦C;

(3) GH and G−1
H are minimal relative to A; GK and G−1

K are minimal relative to C; GE and

G−1
E are minimal relative to F and S (where GH = G◦ idH, GK = G◦ idK and GE = G◦ idE);

(4) G ◦G = ⊥.



The elements of Σ, N, H, E, K are called symbols, nodes, hooks, edges and facets, respectively.

G is called the gluing relation; G(x, y) means that y is a subsymbol, subnode, subhook, subedge

or subfacet of x, i.e., x is a supersymbol, supernode, superhook, superedge or superfacet of y.

The functions W, P, A, F, S, C express the incidence relations: a node n connects a part P(n) to

a whole W(n); a hook h is attached to a node (or possibly a symbol) A(h); an edge e runs from

its first hook F(e) to its second hook S(e); a facet k belongs to the edge C(k).

Condition (1) means the gluing relation G may be considered as the disjoint union of a

relation GΣ = G ◦ idΣ on symbols, a relation GN = G ◦ idN on nodes, a relation GH = G ◦ idH

on hooks, a relation GE = G ◦ idE on edges, and a relation GK = G ◦ idK on facets.

Condition (2) says that G preserves incidence: e.g., if a hook h1 is glued to a hook h2 then

the node A(h1) is glued to the node A(h2).

Condition (3) means that a hook is glued to at most one hook of any given node; a facet

is glued to at most one facet of any given edge; and an edge is glued to at most one edge of

any given hook (for each edge direction).

Condition (4) says that a subsymbol, subnode, subhook, subedge or subfacet cannot be

also be a supersymbol, supernode, superhook, superedge or superfacet.

Definition. If N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) and N0 = (Σ0, N0, H0, E0, K0,

W0, P0, A0, F0, S0, C0, G0) are networks, a homomorphism p:N1 → N0 is a function from Σ1 ∪

N1 ∪H1 ∪ E1 ∪ K1 to Σ0 ∪N0 ∪H0 ∪ E0 ∪ K0 such that

(1) p(Σ1) ⊆ Σ0, p(N1) ⊆ N0, p(H1) ⊆ H0, p(E1) ⊆ E0, p(K1) ⊆ K0;

(2) W0 ◦ p = p ◦W1, P0 ◦ p = p ◦ P1, F0 ◦ p = p ◦ F1, S0 ◦ p = p ◦ S1;

(3)
N0∪Σ0
x

A0

H0

p|N1∪Σ1
←−−−−−

p|H1
←−−−−−

N1∪Σ1
x

A1

H1

and
E0
x

C0

K0

p|E1
←−−−−−

p|K1
←−−−−−

E1
x

C1

K1

are pullbacks in the category of sets;

(4) p ◦G1 = G0 ◦ p;

(5) G1 is minimal relative to p.

Condition (1) means that p maps symbols to symbols, nodes to nodes, hooks to hooks, edges

to edges, and facets to facets.

Condition (2) means that p preserves the W, P, F, S incidence functions.

Condition (3) means that p maps the hooks of any node n bijectively onto the hooks of

p(n), and maps the facets of any edge e bijectively onto the facets of p(e).

Condition (4) means that p preserves gluing (i.e., if G1(x, y) then G0(p(x), p(y))), and if p(x)

is a subsymbol, subnode, subhook, subedge or subfacet then so is x.

Condition (5) says that the gluings in N1 are induced by those in N0, i.e., two things are

glued in N1 only if they are forced to be by condition (4).

The composition of two homomorphisms is a homomorphism and the inverse of a bijective

homomorphism is a homomorphism [50, theorems 15,16].

Definition. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a network, a subnetwork of N is a

12­tuple (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), where

Σ′ ⊆ Σ, N′ ⊆ N, H′ ⊆ H, E′ ⊆ E, K ′ ⊆ K

W(N′) ⊆ Σ′, P(N′) ⊆ Σ′, H′ = A−1(N′ ∪ Σ′), F(E′) ⊆ H′, S(E′) ⊆ H′, K ′ = C−1(E′)

W′ = W|N′∪Σ′ , P′ = P|N′ , A′ = A|H′ , F′ = F|E′ , S′ = S|E′ , C′ = C|K′

G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦G, G′ = idΣ′∪N′∪H′∪E′∪K′ ◦G ◦ idΣ′∪N′∪H′∪E′∪K′ .



If N ′ is a subnetwork of N then N ′ is a network and the inclusion function from N ′ into N

is a homomorphism [50, theorem 24].

A proper subnetwork of N is a subnetwork N ′ such that N ′ 6= N .

4.3 Semi­definite and definite networks

The grammar is required to be a semi­definite network and the pattern to be a definite network.

(While the pattern is under construction it is not definite.) First we need the concept of a

minimal gluing relation.

Definition. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a network then its gluing relation G is

minimal relative to N iff

idK ⊆ GK ◦G−1
K ∪G−1

K ◦GK

where GK = G ◦ idK ; and, for any relation G∗ ⊆ G such that

• W ◦ G∗ ⊆ G∗ ◦ W, P ◦ G∗ ⊆ P, A ◦ G∗ ⊆ G∗ ◦ A, F ◦ G∗ ⊆ G∗ ◦ F, S ◦ G∗ ⊆ G∗ ◦ S,

C ◦G∗ ⊆ G∗ ◦ C,

• idK ⊆ G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K (where G∗K = G∗ ◦ idK ),

we have G∗ = G.

(Informally, the condition that G be minimal relative to N means that every facet is glued to

another facet and, subject to this constraint, G is as small as it can be.)

Definition. A network (Σ, N, H, E, K, W, P, A, F, S, C, G) is semi­definite iff

(1a) W ◦ A ◦ F = W ◦ A ◦ S,

(3) GN is acyclic,

(4a) H = F(E) ∪ S(E),

(5a) GK ◦G−1
K ⊆ idK ,

(6) G is minimal relative to N ,

(7a) F ◦G = G ◦ F and S ◦G = G ◦ S,

(8a) ∀R (A
−1
◦R = (F ∪ S) ◦ R ⇒ GΣ ◦ R ⊆ W ◦GN ◦ R ∪ idΣ ◦ A ◦GH ◦ A

−1
◦R).

Definition. A network (Σ, N, H, E, K, W, P, A, F, S, C, G) is definite iff

(1b) E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser diagram in the category of sets,

(2b) GN is connected relative to P,

(3) GN is acyclic,

(4b) E
F
→ H

S
← E is a sum diagram in the category of sets,

(5b) idK = GK ◦G−1
K ∪G−1

K ◦GK ,

(6) G is minimal relative to N .

Condition (1a) says that the two nodes at the ends of any edge belong to the same whole. The

stronger condition (1b) says that the nodes and edges belonging to any whole form a connected

graph.

Condition (2b) means that two nodes share the same part only when they are glued to­

gether (directly or indirectly). (This condition prevents the same symbol from being interpreted

as part of two unrelated wholes.)

Condition (3) means that there is no cyclic sequence of gluings. This is a technical condition

for ensuring that condition (2b) holds in the pattern at the end of recognition [50, §3.6].



Condition (4a) says that every hook has at least one incident edge. The stronger condi­

tion (4b) says that every hook has exactly one incident edge.

Condition (5a) says that every facet has at most one superfacet. The stronger condition (5b)

says that every facet has exactly one subfacet or superfacet.

Condition (6) says that every facet is glued to another facet, but the gluings are minimal

subject to this constraint.

Condition (7a) says that, if any hook is a subhook, then all its incident edges are subedges.

Condition (8a) means roughly that, whenever a subsymbol is glued to a supersymbol, there

are sufficiently many nodes and hooks belonging to the subsymbol that are glued to nodes

and hooks belonging to the supersymbol. This is another technical condition for ensuring

that condition (2b) holds in the pattern at the end of recognition (it is used directly in [50,

theorem 22]).

Every definite network is semi­definite [50, theorem 18].

4.3 The recognition problem

We can now make our first formal statement of the recognition problem: given a semi­definite

network N0 (the grammar) and an image, the task is construct a definite network N1 (the

pattern) and a homomorphism p:N1 → N0 (the parse).

This statement will be refined in §6.3.

5. The geometric part of the theory

This section is concerned with the spatial aspects of the pattern, in particular the following

five issues:

• the geometric relationships between one symbol token and another;

• the embedding or ‘pose’ of a symbol token in the image, i.e., the transformation that maps

the symbol token into the image at a certain position, orientation and size;

• how to represent the variability in the embeddings and relationships;

• invariance of the whole pattern under affine transformations;

• symmetries of the pattern.

I shall review the available approaches in the literature and introduce my own concept of a

fleximap, a variable affine transformation.

5.1 Representing geometric relationships and embeddings

Some authors represent the relation between one symbol token and another using qualitative

relationships (i.e., special named relationships) such as horizontal and vertical neighbourhood

[94,15,63]; above, below, before, after, overlap, etc. [100,104]; closeness [42]; or topological

relationships such as hinged, butting, collinear, parallel, attached, concentric, radial, contained

[71] or parallel, incidence, perpendicular, intersection, neighbour, inclusion [76].

A more versatile approach is to represent relationships between symbol tokens in terms

of geometric attributes, such as vanishing points and orientation angles [57]; distance and

relative size [100]; relative angles [47]; distance and relative angle [70]; relative position,

angle and size [92,22]; internal angles and ratios of lengths [108,107]; curvature and direction



of bending [73]; closeness of attachment points, ratios of widths, curvature and angles of tilt

[80]; and perpendicular distance from an endpoint of a line to another line [11].

Embedding transformations are sometimes represented as sequences of simple transfor­

mations, e.g., as translation·rotation·dilation [11] (where the dot denotes function composition),

or stretch · rotation · shear [98], or via a singular value decomposition as translation · rotation ·

dilation · stretch · rotation [10].

5.2 Representing variability

Since symbol tokens are not likely to be perfectly positioned, some way is needed to allow for

variability in their embeddings and relationships. The crudest way of allowing for variability

is by rounding of geometric parameters (such as position, angle and size) into a small discrete

set of possible values. A small variation in position, angle or size is tolerated, provided it does

not cross over a rounding boundary [100,47]. A better­behaved approach is to allow geometric

parameters to vary in a certain range [15,58]. These are ‘hard’ constraints: they either hold

or do not.

Other authors use ‘soft’ constraints: deviations of the geometric parameters from their

nominal values are penalised by a ‘penalty’ or ‘affinity score’ [42]. Sometimes fuzzy conditions

are used [80]. Soft constraints have the advantage that they allow several alternative inter­

pretations of a symbol token to be scored and a choice made between them. Most commonly, a

quadratic penalty function is used to penalise deviations of the attributes from their nominal

values [99,57,108,11,30]; an ‘energy’ or ‘match’ function is calculated by summing the penal­

ties of all geometric relationships along with other penalty terms (and in some papers the

energy is exponentiated to give a Gaussian probability density [81]). The energy can then be

minimised, giving the optimal match of the symbols with the image. The advantage of using

an energy function is that a high deviation in one symbol­pair relationship can be traded off

against low deviations in other relationships to give the overall best match. In this way the

pattern recognition process becomes sensitive to context.

Particularly interesting is the use of ‘springs’ to connect pairs of symbol tokens [45].

This allows variability in the relative position of the symbols; a different device is used for

controlling relative orientation and length. This is similar to deformable templates, such as

[105], in which a human eye is modelled with parabolic curves.

Each of these methods represents the variability of a relationship in a fixed way, for a

particular purpose. For example, in [99] the variability is always analysed into rotations

around the centre point, dilations from the centre point, and translations. What if one wanted

a different decomposition, such as rotation or dilation about a different point? For example,

in figure 6 we have three ‘line’ symbol tokens, which are parts of an ‘A’ symbol token. We

may want to allow the crossbar part σ3 to rotate around its end­point, which is 40% up the

length of σ2, while σ3 may also dilate relative to σ2 (keeping one end in contact with σ2);

σ3 may be translated up or down σ2 from the nominal 40% position; it may also overshoot

or undershoot σ2 by a tiny amount. Each of these kinds of variation are to be penalised by

different coefficients. The total penalty should be a weighted sum of the squares of these

variations.

This is accomplished by my concept of a fleximap, a variable affine transformation in

which variations in relative position, orientation, size, stretching and shearing are treated

in a uniform formalism. Assume that every symbol type has a template, depicting an ideal
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Figure 6. The relationship between two symbol tokens, and some of its dimensions of variability

token of that type, at a standard position, size and orientation. Every symbol token has an

embedding, an affine transformation mapping from the plane of the template into the image

plane. Figure 7 shows the templates for the ‘A’ and ‘line’ symbol types, and embeddings for

one symbol token σ1 of type A and three symbol tokens σ2, σ3, σ4 of type line. The embeddings

are called u(σ1), u(σ2), u(σ3), u(σ4).

image
‘A’ template‘line’ template

u(   )σ1

4

3

2

u(   )σ

u(   )σ

u(   )σ

Figure 7. This shows an image and the templates for two symbol types line and A. In

colour are shown the embedding transformations for four symbol tokens, σ1 (of type

A) and σ2, σ3, σ4 (of type line).

Now consider the geometric relationship between σ2 and σ3: this is defined as u(σ3)−1 ·

u(σ2), which is a member of G, the group of affine transformations (if the image is a plane this

is a six­dimensional Lie group).

The relationship between σ2 and σ3 may be expressed in the form

u(σ3)−1 · u(σ2) = F · exp(A) (1)

where F∈G is the nominal or ideal value of the relationship, A is a member of A, the six­

dimensional Lie algebra of G, and exp:A → G is the exponential function. If you would like a

concrete representation, think of a point x in the plane, an affine transformation G∈G, and a

member A∈A of the Lie algebra in matrix form using projective coordinates:

x =













x1

x2

1













, G =













g11 g12 s1

g21 g22 s2

0 0 1













, A =













h11 h12 t1

h21 h22 t2

0 0 0













.

Then G may be applied to x by matrix multiplication, and exponentiation is defined by

exp(A) =

∞
∑

n=0

An

n!
.



A is called the deviation of u(σ3)−1 ·u(σ2) from its nominal value. This deviation is quadratically

penalised using a metric tensor.

Definition. A metric tensor is a function g:A → (A → R) such that

• ∀c1, c2∈R ∀A, B1, B2∈A g(A)(c1B1 + c2B2) = c1g(A)(B1) + c2g(A)(B2),

• ∀A, B∈A g(A)(B) = g(B)(A),

• ∀A∈A (A 6= 0⇒ g(A)(A) > 0).

A fleximap is simply the combination of the nominal transformation and the metric tensor.

Definition. A fleximap is a pair (F, g), where F ∈ G and g is a metric tensor.

The penalty of the affine transformation u(σ3)−1 ·u(σ2) relative to the fleximap (F, g) is defined

as g(A)(A), where A is given by equation (1) above. To state it in general,

Definition. For any fleximap τ = (F, g) and any affine transformation G, define the penalty

Eτ(G) of G relative to τ by

Eτ(G) = g(A)(A)

where G = F · exp(A).

If we choose a basis (a1, . . . a6) for A, A may be expressed as A =
∑6

i=1 Aiai, where A1, . . .A6

are real coefficients, and g may be represented as a positive­definite, symmetric real 6 × 6

matrix (gij), with g(A)(A) =
∑6

i,j=1 gijA
iAj.

By a suitable choice of basis (a1, . . . a6), g may be put into diagonal form,

g = diag(g1, g2, g3, g4, g5, g6), where g1, g2, g3, g4, g5, g6 > 0. Then the penalty is g(A)(A) =
∑6

i=1 gi(A
i)2. We can choose g so that a1, . . . a6 are the six desired dimensions of variation

(a1 = rotation about a certain point, a2 = dilation about a certain point, a3 = translation in

a certain direction, etc.), and g1, g2, g3, g4, g5, g6 are the penalties for each of these types of

deviation. Hence g(A)(A) is a weighted sum of squares of deviations, as desired.

Thus the deviation A may be decomposed into any six (linearly independent) dimensions

of variation that we like, and each dimension may be penalised as much as we like. For the

full and rigorous theory of fleximaps see [49, §3,§5].

In the grammar, relationships between siblings are represented by edges; so each edge

type will have a fleximap τ describing the geometric relationship. In the pattern, each edge

token has the actual value of the relationship, e.g., u(σ3)−1 · u(σ2). The penalty is calculated

for the actual relationship relative to the fleximap, and equals Eτ(u(σ3)−1 · u(σ2)).

Relationships between part and whole, e.g., between σ2 and σ1 in figure 7, are represented

by nodes; each node type in the grammar will have a fleximap constraining this relationship.

A penalty is calculated for the actual relationship u(σ1)−1 · u(σ2) relative to the fleximap.

All these penalties are summed (multiplied by −1), along with other penalty terms, to

give the total match function (see §6.2,§7.2), which is to be maximised.

5.3 Invariance of the whole pattern under affine transformations

Whichever method is used to represent geometric transformations, some allowance needs to

be made for invariance of the pattern under change of frame of reference. Qualitative spatial

relationships such as leftOf , aboveOf are invariant under translation but not rotation; they are

appropriate for applications where the image has already been normalised for orientation and



spatial directions have a special significance, such as recognition of mathematical formulae

[15] or musical scores [42].

Topological qualitative relationships [71] are invariant under homeomorphisms. The qual­

itative relationships in [76] are a mixture of topological invariants, affine invariants and

similarity invariants.

Where geometric relationships are expressed in terms of angles and ratios of lengths

[100,92,22,108,107] they are invariant under similarities; others are invariant under isometries

[11].

My fleximap formalism is invariant under affine transformations. If the whole pattern is

subjected to an affine transformation f then the embedding u(σ) of every symbol token σ is

transformed by u(σ) 7→ f · u(σ), so the relationship u(σ2)−1 · u(σ1) between two symbol tokens

σ1 and σ2 is unchanged, so the penalty value is unchanged.

5.4 Symmetry

The final issue to be considered is symmetry of the symbols and the whole pattern. A hexagonal

grid pattern, for example, has six­fold rotational symmetry: every interpretation of the image

has six symmetry variants. A pattern recognition system must recognise that these are

equivalent, rather than treating them as six alternative, competing hypotheses, all of precisely

equal merit. Thus symmetries must be represented explicitly. Every symbol type has a

symmetry group, which we assume to be finite.

For example, the line symbol type has two symmetries: the identity transformation and

rotation by π. Look back at figure 7. The symbol token σ1 of type A expects its three line parts

to be oriented in a certain way relative to it; for example, it may expect the crossbar to be

oriented left­to­right; yet the line token σ3 that plays the role of the crossbar may actually be

oriented the other way round. If so, then if we calculated the penalty of u(σ3)−1 ·u(σ1) against

the fleximap we would get a spuriously high value. We need a way of saying that rotations by

π are to be disregarded when calculating the penalty. To allow for this, it is convenient to give

node tokens embeddings as well as symbol tokens. Recall that the part­whole relationship

between σ3 and σ1 is represented by a node token n with P(n) = σ3 and W(n) = σ1. We give

n an embedding u(n), which is the same as u(σ3) except that it is oriented the expected way

round, considered as a part of σ1. That is, u(σ3) = u(n) · s, where s is either the identity or

rotation by π. It is u(σ3)−1 · u(n), rather than u(σ3)−1 · u(σ1), that we take as the part­whole

relationship in the calculation of the penalty relative to the part­whole fleximap.

To specify a symmetry we must provide

• an automorphism a:N0 → N0 of the grammar (i.e., an isomorphism onto itself),

• an affine transformation s(σ) to be applied to every symbol type σ (it must be one of σ’s

symmetries),

• an affine transformation s(n) to be applied to every node type n (it must be one of P(n)’s

symmetries),

such that the grammar is unchanged when the automorphism is applied to it and all fleximaps

are transformed using the s(σ) and s(n) functions. The symmetry itself is the pair (a, s). (See

[49, §6.4,§7.5] for precise details.) For example, in one symmetry the hexagonal grid symbol

type hex (see §3.3) is rotated by π
3
, some of its nodes are rotated by π (but line is not), and the

automorphism maps hex to hex, line to line, nodes 1,2,3 to nodes 2,3,1, and edges a, b, c, d, e, f



to b, c, a, e, f , d, respectively. Such symmetries of the grammar can then be applied to the

pattern N1 with a parse p:N1 → N0 and a set of embeddings; a local symmetry of N1 consists

of applying a separate symmetry to each symbol, producing a new parse and a new set of

embeddings. For example, a symmetry can be applied to a single token of type hex and its

subsymbols, nodes and edges, leaving everything else unchanged [50, §4.3].

5.5 Embedding tokens and types

It is convenient to bundle together all the embedding transformations into a single mathe­

matical object, the function u: Σ1 ∪ N1 → G (where N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1,

C1, G1) is the pattern). This is called an embedding token for N1. It is subject to the constraint

∀n, n∗∈N1 (G1(n, n∗)⇒ u(n) = u(n∗))

i.e., if two nodes are glued then they have the same embedding.

It is also convenient to bundle together all the fleximaps that constrain these embedding

transformations into a single mathematical object, called an embedding type for N1. This is a

sextuple v1 = (sub1, con1, rel1, symm1, tem1, in1), consisting of functions

sub1: { (σ, σ∗)∈Σ1 × Σ1 | G1(σ, σ∗) } → Flex, con1: N1 → Flex, rel1: E1 → Flex, symm1: Σ1 →

Sub(G), tem1: Σ1 → Tem, and in1: Σ1 → Flex, where Flex is the set of all fleximaps, Sub(G) is

the set of all subgroups of G, and Tem is the set of all templates. These are interpreted as

follows.

For any supersymbol σ and subsymbol σ∗, sub1(σ, σ∗) is the fleximap defining the variable

geometric relationship between them.

For any node n, con1(n) is the fleximap defining the geometric relationship between the

part P(n) and the whole W(n), or, more accurately, the relationship between the node and the

whole, as explained in the previous subsection.

For any edge e, rel1(e) is the fleximap defining the geometric relationship between the

nodes A(F(e)) and A(S(e)).

For any symbol σ, symm1(σ) is the symmetry group of σ, and tem1(σ) is its template;

in1(σ) is a fleximap (I, g) whose nominal part I is just the identity affine transformation, but

whose metric g is the inertial metric of σ, which is used to determine how σ moves in response

to forces (see §7.3).

But where does this embedding type v1 for N1 come from? We are given an embedding

token v = (sub, con, rel, symm, tem, in) for the grammar N0, which captures all the geomet­

ric information associated with the grammar. We can transfer it to the pattern using the

homomorphism p, giving an embedding type v1 = v ◦ p for N1, defined by

v ◦ p = (sub1, con ◦ p, rel ◦ p, symm ◦ p, tem ◦ p, in ◦ p).

where

∀σ, σ∗∈Σ1 (G1(σ, σ∗) ⇒ sub1(σ, σ∗) = sub(p(σ), p(σ∗))).

v1 is called the induced embedding type on N1. It is v1 that we compare with the embedding

token u, as just described.

Embedding tokens are further constrained by a symmetry condition. If u is the embedding

token for the pattern N1 and v1 = v ◦ p = (sub1, con1, rel1, symm1, tem1, in1) is the embedding

type for N1, the symmetry condition for N1, u, v1 is

∀n∈N1 u(P1(n))−1 · u(n) ∈ symm1(P1(n)).



This states that each node n is embedded in the image plane in the same way as the part

P1(n), up to a symmetry of P1(n) (as explained in the previous subsection). This symmetry

condition will be imposed throughout the recognition process.

6. Templates and the definite match function

6.1 Templates

So far I have said nothing about the relationship between the image and the pattern. It is

only at this point that we need to make any assumptions about the nature of the raw data,

which I have called the ‘image’. Assume in this section that the image is a rectangular array

of monochrome pixels. Formally, an image is a function I:R2 → [0,∞). For any point p ∈ R
2,

I(p) is the image intensity at the pixel p. The domain of I is called the image plane.

Recall figure 7 in §5.2. Formally, a template is a differentiable function T:R2 → [0,∞)

such that the set { x∈R2 | T(x) > 0 } is bounded. The domain of T is called the template

plane. Each token σ of this type has an embedding transformation G = u(σ), mapping from

the template plane to the image plane.

We shall define a measure ρI,T(G), called the correlation function, of how well a template

T matches the image (transferred into the template plane) I ◦G, and will seek to choose G to

maximise it. Define

ρI,T(G) = |det(G)|

∫

T(u) (I(G(u))− I0) d2
u =

∫

T(G−1(x)) (I(x) − I0) d2
x

where I0 is a positive real constant associated with T. The integrals are over the whole of R
2,

or equivalently over a large enough region to include in its interior all the points where T is

non­zero.

Each symbol type has a template (this is provided as part of the embedding type v, see

§5.5). This is transferred across to the pattern when we form v ◦ p, so now we can say that

each symbol token σ has a template, tem(σ), which is equal to the template of its symbol type.

There is one complication. We wish to prevent two identical symbols from forming at the

same place in the image, or more generally to discourage two or more symbols from claiming

credit for the same patch of the image. If two or more symbol tokens’ templates overlap in the

image plane, i.e., if there are points x in the image plane where tem(σ)(u(σ)−1(x)) > 0 for two

or more symbol tokens σ, then the point x should become saturated and the contribution it

makes to the correlation function should be reduced to penalise the overlapping symbol tokens.

For this it is necessary to calculate the saturation sat(x) of each point x, which is roughly the

sum of tem(σ)(u(σ)−1(x)) over each symbol token σ. (However, this needs modification for

subsymbols to avoid double­counting.) The formal definition of saturation follows.

Suppose we are given a pattern N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1), an em­

bedding token u for N1, and a function tem: Σ1 → Tem, then sat:R2 → R, is defined by

∀x∈R2 sat(x) =
∑

σ∈Σ1

(1− gσ) · tem(σ)(u(σ)−1(x)).

where gσ =
∣

∣{σ∗∈Σ | G1(σ∗, σ) }
∣

∣. We call sat(x) the saturation at the image point x.



The correlation function is now modified to take account of saturation:

ρI,T,sat(G) = |det(G)|

∫

w(sat(G(u))) T(u) (I(G(u)) − I0) d2
u =

∫

w(sat(G)) T(G−1(x)) (I(x) − I0) d2
x

where w is a weighting function that suppresses the integrand at points x where sat(x) is

above 1. A suitable definition of w is

∀s∈R w(s) =

{

1 if s ≤ 1,

(1.6− s)/0.6 if 1 < s < 1.6,

0 if 1.6 ≤ s.

We also define mass, m, of a symbol token, with template T, and which is embedded in

the image I by G, by

m = |det(G )|

∫

T(u) d2u =

∫

T(G−1(x)) d2x.

This is used when calculating how much the symbol token moves in response to a force (see

§7.3 below).

6.2 The definite match function

We are now in a position to state the definite match function, which measures how well a

definite pattern N matches an image I, and how well N ’s embedding token u matches an

embedding type v for N . It is the aim of recognition to construct a definite pattern that

maximises the definite match function.

The definite match function DM is defined by

DM(I,N , u, v) =
∑

σ∈Σ

ρI,tem(σ),sat(u(σ)) − θ|Σ\P(N)| −
∑

(σ,σ∗)|G(σ,σ∗)

Esub(σ,σ∗)

(

u(σ)−1 · u(σ∗)
)

−
∑

n∈N

Econ(n)

(

u(W(n))−1 · u(n)
)

−
∑

e∈E

Erel(e)

(

u(A(S(e)))−1 · u(A(F(e)))
)

where N = (Σ, N, H, E, K, W, P, A, F, S, C, G), v = (sub, con, rel, symm, tem, in), θ is a positive

real constant and sat is the saturation function, as defined in the previous section.

The first term on the right­hand side is a sum over all symbols; tem(σ) is the template

for σ, and ρI,tem(σ),sat(u(σ)) measures the correlation between the template (embedded in the

image using u(σ)) and the image I.

The second term on the right­hand side applies a fixed penalty of θ for each ‘bare’ symbol,

i.e., each symbol that is not a part of another symbol. This term encourages the symbols to

connect themselves together rather than remaining separate.

The third term measures how well each subsymbol matches its supersymbol geometrically.

The summation is over all pairs (σ, σ∗) such that σ is a supersymbol of σ∗; sub(σ, σ∗) is a

fleximap that defines what the geometric relationship between σ∗ and σ should be; u(σ)−1·u(σ∗)

is the actual relationship between them; the quadratic penalty function Eτ(G) calculates the

penalty for the deviation between an affine transformation G and a fleximap τ, as defined in

§5.2.

The fourth term measures how well each part matches its whole geometrically. The

summation is over all nodes n; P(n) is the part symbol and W(n) is the whole symbol. The

node n has its own embedding u(n), which equals u(P(n)) up to a symmetry; u(W(n))−1 ·u(n) is



the actual geometric relationship between the part (or rather the node) and the whole; con(n)

is a fleximap specifying what the relationship should be.

The final term measures how well each pair of siblings match geometrically. The sum is

over every edge e, representing a sibling relationship between two nodes A(F(e)) and A(S(e));

u(A(S(e)))−1 ·u(A(F(e))) is the actual relationship and rel(e) is the fleximap specifying what the

relationship should be.

All these fleximaps are provided by the embedding type v; the final component in of v is

not used yet.

The DM function is invariant under application of affine transformations to the symbols’

internal frames of reference, under local symmetries, and under affine transformations of the

image of determinant 1 [50, theorems 28­31].

The DM function is used as follows. We are given an embedding type v for the grammar,

we transfer it across to an embedding type v ◦p for the pattern, and DM allows us to compare

this with the embedding token u that we have constructed for the pattern, while also comparing

the pattern N1 with the image I.

6.3 Full statement of the recognition problem

We can now refine our statement of the recognition problem in §4.3. Given a semi­definite

network N0 (the grammar), an embedding type v for N0, and an image I, the task is construct

a definite network N1 (the pattern), an embedding token u for N1 (specifying how everything

in the pattern is embedded in the image), and a homomorphism p:N1 → N0 (the parse),

maximising DM(I,N1, u, v ◦ p), subject to the symmetry condition for N1, u, v ◦ p.

7. Inclusion functions and the indefinite match function

We now turn to the algorithm for solving the recognition problem. A pattern N1 is constructed

incrementally. While it is under construction it is indefinite, meaning that alternative gram­

matical interpretations co­exist for different portions of the image. Some alternatives are

evaluated as better than others. Each symbol token σ has an inclusion value i(σ)∈[0, 1], which

is the algorithm’s degree of confidence in σ, where i(σ) = 1 means that σ is definitely correct

and i(σ) = 0 means that σ is definitely wrong and will be pruned. Similarly each node token n

and each edge token e has an inclusion value i(n) and i(e). The function i is called an inclusion

function and is accompanied by a second inclusion function j, explained below.

By the end of the recognition process, all inclusion values have been driven to the extremes,

0 or 1, and everything with inclusion value 0 has been pruned.

7.1 Definition of inclusion functions

Definition. A pair of inclusion functions on a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is

defined as (i, j), where i: Σ ∪N ∪ E→ [0, 1] and j: Σ ∪N ∪H ∪ (K\dom(G))→ [0, 1], such that

∀σ∈Σ i(σ) = j(σ) +
∑

n∈P−1({σ})

(1− gn)i(n), where gn =
∣

∣{n∗∈N | G(n∗, n) }
∣

∣ (1)

∀n∈N i(W(n)) = j(n) + i(n) (2)

∀h∈H i(A(h)) = j(h) +
∑

e∈F−1({h})

i(e) +
∑

e∈S−1({h})

i(e) (3)

∀k∈K\dom(G) i(C(k)) = j(k) +
∑

k∗|G(k,k∗)

i(C(k∗)). (4)



(The summation notation in (4) means a sum over all k∗ such that G(k, k∗).)

This definition may be interpreted informally as follows. (In the following explanation I

shall say ‘should’ or ‘is correct’ to state what will hold or exist at the end of recognition when

the pattern is definite, and a simple ‘is’ for what is true during recognition when the pattern

is indefinite.)

Line (1). Each symbol σ should either be a ‘bare’ symbol (with P−1({σ}) = ∅) or a part

of one larger symbol (with |P−1({σ})| = 1). Hence the nodes presently in P−1({σ}) are in

competition with one another; at most one can be correct. i(σ) is interpreted as the degree of

confidence in σ, j(σ) is the degree of confidence that σ should be a bare symbol, and i(n) is

the degree of confidence in n. An exception to this competition is that if n is a subnode of n∗

(i.e., G(n∗, n)) then they may both be correct; the 1− gn factor allows for this co­existence.

In line (2), i(W(n)) is the degree of confidence in W(n), j(n) is the degree of confidence that

W(n) is correct but n is not, and i(n) is the degree of confidence in n.

Line (3) expresses the fact that each hook h should have a single edge incident to it

(i.e., |F−1({h})| + |S−1({h})| = 1); hence the edges presently in F−1({h}) and S−1({h}) are in

competition with one another. Thus i(A(h)) is the degree of confidence in the node or symbol

A(h), i(e) is the degree of confidence in e, and j(h) is the degree of confidence that A(h) is

correct but that none of its present edges is (i.e., the correct edge has yet to be created).

Line (4) expresses the fact that each facet k that is not itself a sub­facet should be glued

to a single sub­facet. Hence if k is presently glued to several sub­facets then they are in

competition with one another; i(C(k∗)) is the degree of confidence in the edge C(k∗), j(k) is the

degree of confidence that C(k) is correct but that none of k’s present sub­facets is.

At the end of recognition all surviving symbols, nodes and edges will have inclusion values

1 and the pattern will be definite.

Theorem 32 (from [50]). If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a definite network and

(i, j) is a pair of inclusion functions on N satisfying ∀x∈Σ ∪N ∪E i(x) = 1, then

∀σ∈Σ j(σ) =
{

0 if σ ∈ P(N)

1 otherwise
, ∀n∈N j(n) = 0, ∀h∈H j(h) = 0, ∀k∈K\dom(G) j(k) = 0.

7.2 The indefinite match function, IM

We can now generalise the definite match function DM to a function applicable to indefinite

patterns. First we generalise the (definite) saturation function defined in §6.1 to the indefinite

saturation function sat:R2 → R, defined by

∀x∈R2 sat(x) =
∑

σ∈Σ

(1− gσ) i(σ) tem(σ)(u(σ)−1(x)).

(The difference is that every symbol σ is now weighted by i(σ).) Then the indefinite match

function IM is defined by

IM(I,N , u, v, i, j, B) =
∑

σ∈Σ

(

i(σ)ρI,tem(σ),sat(u(σ))− j(σ)B(σ)
)

−
∑

(σ,σ∗)|G(σ,σ∗)

i(σ∗)Esub(σ,σ∗)(u(σ)−1 · u(σ∗))

−
∑

n∈N

i(n)Econ(n)(u(W(n))−1 · u(n))−
∑

h∈H

j(h)B(h)−
∑

k∈K\ dom(G)

j(k)B(k)

−
∑

e∈E

i(e)
(

Erel(e)(u(A(S(e)))−1 · u(A(F(e)))) + Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))
)

.



Here, I is the image, N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is the network we are comparing

with the image, u is the embedding token that specifies how N is embedded in I, v = (sub, con,

rel, symm, tem, in) is the embedding type against which u is evaluated, (i, j) are the inclusion

functions, and B is called the bareness function.

The terms of IM are much like the terms of DM, except that everything is weighted by

its inclusion value. The fixed penalty θ levied for each bare symbol is replaced by a variable

penalty B(σ); it is weighted by j(σ) because j(σ) is the degree of confidence that σ is bare.

There is a new penalty B(h) for a bare hook (i.e., a hook with no incident edges); this is

weighted by the degree of confidence j(h) that h is bare. Similarly there is a new penalty B(k)

for a bare facet (a facet that should have a sub­facet but does not); this is weighted by the

degree of confidence j(k) that k is bare.

All these variable penalties are specified by the bareness function B: Σ∪H∪(K\dom(G))→

[0,∞).

The final term (Ein(W(A(F(e))))(. . .)) is new. Normally, for any edge e, we have W(A(F(e))) =

W(A(S(e))), which means that the two nodes at each end of e belong to the same whole

(this is called a coherent edge). However, incoherent edges are temporarily permitted during

recognition. They may occur, for example, with the hexagonal grids in §10.1. There may be

genuine uncertainty about whether two overlapping hexagonal grids should be merged or kept

separate. Incoherent edges may form between a node of one grid and a node of the other. If

so, this is penalised in IM by using a metric tensor in(σ), where in is taken from v and σ is

one of the two grids. This term penalises incoherent edges; it is 0 if the edge is coherent. As

we are about to see, each term in IM gives rise to forces that change the symbols’ embeddings.

This final term exerts a force that draws the two wholes together; eventually, either they will

come close enough to be merged or the incoherent edges will be removed. At the end all edges

will be coherent.

The next theorem shows that DM is a special case of IM.

Theorem 33 (from [50]). If

(a) N is definite,

(b) ∀x∈Σ ∪N ∪ E i(x) = 1,

(c) ∀σ∈Σ\P(N) B(σ) = θ,

then IM(I,N , u, v, i, j, B) = DM(I,N , u, v).

When we use IM during recognition, the network we take is the pattern N1, and the embedding

type we take is v ◦ p, i.e., the given embedding type v for the grammar N0 transferred across

to N1 using the parse p:N1 → N0. So it is IM(I,N1, u, v◦p, i, j, B) that we shall be maximising.

At the end of the recognition process, when the conditions of theorem 33 will hold, we shall

have maximised DM(I,N1, u, v), as required.

7.3 Adjustment of the embedding token

During recognition the embeddings of all the symbols and nodes are continually adjusted to

maximise IM(I,N1, u, v ◦ p, i, j, B). Consider making a small change to the embedding token

u 7→ u · ∆u, where

∀σ∈Σ ∆u(σ) = exp(εVσ)

∀n∈N ∆u(n) = exp(εVn)



where the increments Vσ, Vn ∈ A (recall that A is the Lie algebra of the affine group). Then,

developing the change in the value of IM to first order,

IM(I,N , u · ∆u, v, i, j, B) = IM(I,N , u, v, i, j, B) + ε
∑

σ∈Σ

Fσ(Vσ) + o(ε).

Here Fσ ∈ F , the dual vector space to A. (The theory of A and F is developed fully in [49].)

Elements of F are called forces. Note that the change depends only on the Vσ increments, not

also on the Vn increments, because they are tightly related by the symmetry condition.

The forces can be understood informally as follows. Each term in IM generates (through

its derivative) a force at a symbol, node or edge, which propagates through the network; the

forces reaching any symbol σ are summed to give the total force Fσ acting on σ (see [49, §7.6]

and [50, §6.5]).

We then apply gradient ascent, choosing our increment ∆u to increase the value of IM.

To make this well­defined we must specify the cost of making the adjustment; this requires a

choice of an inertial metric tensor in(σ). The cost is defined as 1
2

ε
∑

σ∈Σ mσ in(σ)(Vσ)(Vσ), where

mσ is the mass of σ, defined in §6.1. It is a simple exercise [49, §7.7] to show that the optimal

choice of increment is

∀σ∈Σ Vσ =
1

mσ

in(σ)−1(Fσ).

Thus the role of the inertial metric in(σ) is to convert (covariant) forces into (contravariant)

increments. The increments Vn for nodes n are then determined by the symmetry condition.

This determines the change u 7→ u · ∆u in the embedding token (up to an arbitrary choice

of the positive constant ε). This incremental adjustment, continually repeated, optimises the

embedding of the pattern in the image.

The inertial metrics in(σ) are determined by the function in, provided as part of the

embedding type. (As we saw in the last section in(σ) also has a secondary use, in the penalty

for incoherent edges in the IM function; this is separate from its primary use here.)

7.4 How the inclusion functions are determined

The inclusion functions i, j are continually recalculated during the recognition process by a

simulated annealing process, governed by a temperature parameter that varies across the

pattern and with time. Where the structure of the pattern is changing, the temperature is

high, and this makes the inclusion functions take on mid­range values, so several alternative

interpretations can co­exist in parallel; when structural changes stop, the temperature declines

and the inclusion functions are pushed towards 0 or 1, and so a choice is forced between

alternatives. Every symbol token, node token or edge token with inclusion value 0 is pruned.

Eventually everything has inclusion value 1 and the pattern becomes definite.

For the purposes of this section only, we reformulate i, j and the constraints on them in a

vector notation in order to emphasise their linear nature. Given a pair of inclusion functions

(i, j) on a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), we shall convert (i, j) into the inclusion

vector i on N , with components ix, for all x ∈ X, where

X = Σ × {0, 1} ∪ N × {0, 1} ∪ H ∪ E ∪ K\dom(G).



Each component of i represents one value of i or j, as follows.

∀σ∈Σ i(σ,0) = i(σ), i(σ,1) = j(σ)

∀n∈N i(n,0) = i(n), i(n,1) = j(n)

∀h∈H ih = j(h)

∀e∈E ie = i(e)

∀k∈K\dom(G) ik = j(k)

The constraints on i and j in §7.1 are linear and so can be expressed as a set of linear conditions

on i of the form

∀y∈Y c
y · i =

∑

x∈X

c
y
xix = 0

using a set of vectors cy, for all y∈Y, where

Y = Σ ∪ N ∪ H ∪ K\dom(G)

and cy has components c
y
x for x∈X.

The IM function is also linear in i (if we disregard the dependence of the saturation

function on i) and so can be written in the form

IM(I,N , u, v, i, j, B) = i ·m =
∑

x∈X

ixmx

where m is a vector whose components mx depend on I,N , u, v, B.

The vector i is determined by maximising the expression

E =
∑

x∈X

ixmx

Tx

−
∑

x∈X

(

ix ln ix + (1− ix) ln(1− ix)
)

subject to the constraints ∀y∈Y cy · i = 0, where each Tx is a positive number, known as the

temperature of x. To be precise, every symbol, node, hook, edge and facet has a temperature,

and we define T(σ,0) = T(σ,1) = Tσ and T(n,0) = T(n,1) = Tn. The solution is

ix = sig
(

mx

Tx

+
∑

y∈Y

λyc
y
x

)

where the sigmoid function sig:R → (0, 1) is defined by ∀u∈R sig(u) = 1
1+e−u and the λy

parameters are unknown Lagrange multipliers. By examining the second derivatives it can

be determined that this solution is a local maximum of E.

We can split each cy vector into two vectors cy+ and cy− by separating positive and

negative components:

∀y∈Y ∀x∈X c
y+
x = max (cy

x, 0), c
y−
x = max (−c

y
x, 0),

so that the constraints may be written as ∀y∈Y cy+ · i = cy− · i. Also define

∀y∈Y Cy
=

(

max
x∈X

c
y+
x

)

+
(

max
x∈X

c
y−
x

)

.

The following iterative algorithm seeks values of λy satisfying the constraints.

For each y∈Y, initialise λy to its final value last time this algorithm was run;

repeat

for each x∈X, do ix := sig
(

mx/Tx +
∑

y∈Y λyc
y
x

)

|

for each y∈Y, do λy := λy +
1

Cy
ln
(

cy− · i

cy+ · i

)

until equilibrium;

for each x∈X, if ix is very close to 0 or 1, then round it to 0 or 1.



In this algorithm the semicolon means sequential composition, the ‘|’ symbol means parallel

composition, and the ‘for each’ loops are parallel loops. This means that all the assignment

statements in the ‘repeat’ loop body may be executed concurrently in any fair order. Note that

this loop is by far the most computationally expensive part of the entire recognition process,

so the high degree of parallelism is relevant from the point of view of time complexity.

I have no proof of convergence for this, but a heuristic argument [50, §7.4] shows that it

tends to bring the constraints closer to satisfaction. It can only halt when all the constraints

are satisfied.

Thus the inclusion functions are chosen to maximise E. In the final stages of recognition,

all the temperatures will converge to the minimum allowed temperature Tmin > 0 and so each

ix is likely to approach 0 or 1, and is then rounded to 0 or 1, giving

E =
IM(I,N1, u, v ◦ p, i, j, B)

Tmin

.

Hence maximising E ultimately maximises IM(I,N1, u, v ◦ p, i, j, B). By theorem 33 this max­

imises DM(I,N1, u, v ◦ p) for the final pattern.

8. The structural operations

This section describes the structural operations by which the pattern is incrementally grown

during recognition. There are four kinds:

• pruning operations,

• extension operations,

• merging two symbol tokens,

• partitioning a symbol token into two.

When such an operation is applied to the pattern N1, the parse p:N1 → N0, the embedding

token u on N1, and the inclusion functions (i, j) are updated accordingly.

8.1 Pruning operations

Definition. Given a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) and a pair (i, j) of inclusion

functions on N , a pruning operation is a transformation from N to a subnetwork N ′ = (Σ′,

N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′) such that

∀σ∈Σ\Σ′ i(σ) = 0, ∀n∈N\N′ i(n) = 0, ∀e∈E\E′ i(e) = 0.

A pruning operation is trivial iff N ′ = N .

In practice we may confine ourselves to elementary pruning operations, which consist of

• pruning a symbol σ – removing σ and its subsymbols, and all their dependent nodes,

hooks, edges and facets;

• pruning a node n – removing n and its subnodes, and all their dependent hooks, edges

and facets;

• pruning an edge e – removing e and its subedges, and all their facets.



A pruning operation, since it only removes things with inclusion value 0, does not alter the

value of the IM function [50, theorem 41].

Definition. A network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is unprunable, given a pair of

inclusion functions (i, j) on N , iff there is no proper subnetwork N ′ = (Σ′, N′, H′, E′, K ′, W′, P′,

A′, F′, S′, C′, G′) of N satisfying

∀σ∈Σ\Σ′ i(σ) = 0, ∀n∈N\N′ i(n) = 0, ∀e∈E\E′ i(e) = 0.

(In other words, a network is unprunable iff no non­trivial pruning operation is possible on it,

or, equivalently [50, theorem 40], iff no elementary pruning operation is possible on it.)

8.2 Extension operations

Definition. Given a grammar N0, a pattern N1, a homomorphism p:N1 → N0, and an embed­

ding token u for N1, an extension of (N1, p, u) is a triple (N ′1, p′, u′) where N1 is a subnetwork

of N ′1, p′:N ′1 → N0 is a homomorphism such that p = p′|N1
, and u′ is an embedding token for

N ′1 such that u = u′|N1
.

Definition. (N ′1, p′, u′) is a minimal extension of (N1, p, u) satisfying a condition P iff

(i) (N ′1, p′, u′) is an extension of (N1, p, u) satisfying P;

(ii) for any extension (N ′′1 , p′′, u′′) of (N1, p, u) satisfying P, |N ′1| ≤ |N
′′
1 |,

where the cardinality |N | of a network N is defined by |(Σ, N, H, E, K, W, P, A, F, S, C, G)| =

|Σ|+ |N|+ |H|+ |E|+ |K|.

Definition. An extension is trivial iff N ′1 = N1.

Using these notions we can define the extension operations used in the algorithm. The

notation is as usual: we have a grammar N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0)

and an embedding type v = (sub, con, rel, symm, tem, in) on N0, a pattern N1 = (Σ1, N1, H1,

E1, K1, W1, P1, A1, F1, S1, C1, G1) with a parse p:N1 → N0, an embedding token u, a pair of

inclusion functions (i, j), and a bareness function B for N1; we shall produce an extended

network N ′1 = (Σ′1, N′1, H′1, E′1, K ′1, W′1, P′1, A′1, F′1, S′1, C′1, G′1) with a new parse p′:N ′1 → N0 and

embedding token u′. The threshold θ is the positive constant used in the DM function (see

§6.2); the thresholds θ0, θ1, θ2, θ3, θ4 are used only in the extension operations and may be

made dependent on parameters such as temperature.

In the extension operations the following additional conditions, referred to collectively as

the extension conditions, will be imposed.

• ∀σ∈Σ1 (P′1
−1({σ}) 6⊆ N1 ⇒ j(σ) > θ0 ∧ B(σ) < θ),

• ∀h∈H1 (F′1
−1({h}) ∪ S′1

−1({h}) 6⊆ E1 ⇒ j(h) > θ0),

• ∀e∈E′1 (A′1(F′1(e)) /∈ N1 ∨ A′1(S′1(e)) /∈ N1 ⇒ W′1(A′1(F′1(e))) = W′1(A′1(S′1(e)))),

• ∀n ∈N′1\N1 Econ(p′(n))(u
′(W′1(n))−1 · u′(n)) < θ1,

• the symmetry condition for N ′1, u′, v ◦ p′.

The extension operations are as follows (see figure 8 below). For each one, the extension

conditions are checked at the end and the operation is cancelled if they do not hold.

(a) (Joining two symbols.) Given symbols σ1, σ2∈Σ1, an edge e0∈E0, and affine transformations

s1∈symm(p(σ1)) and s2∈symm(p(σ2)) such that



• P0(A0(F0(e0))) = p(σ1) and P0(A0(S0(e0))) = p(σ2),

• Erel(e0)(s
−1
2 · u(σ2)−1 · u(σ1) · s1) < θ2,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

nodes n1, n2 and an edge e for which

• p′(e) = e0, A′1(F′1(e)) = n1, A′1(S′1(e)) = n2, P′1(n1) = σ1 and P′1(n2) = σ2,

• u′(n1) = u(σ1) · s1 and u′(n2) = u(σ2) · s2.

(b) (Joining three symbols.) Given symbols σ1, σ2, σ3∈Σ1, edges e01, e02∈E0, s1∈symm(p(σ1)),

s2∈symm(p(σ2)) and s3∈symm(p(σ3)) such that

• A0(S0(e01)) = A0(F0(e02)), P0(A0(F0(e01))) = p(σ1), P0(A0(S0(e01))) = p(σ2) and P0(A0(S0(e02)))

= p(σ3),

• Erel(e01)(s
−1
2 · u(σ2)−1 · u(σ1) · s1) + Erel(e02)(s

−1
3 · u(σ3)−1 · u(σ2) · s2) < θ3,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

nodes n1, n2, n3 and edges e1, e2 for which

• p′(e1) = e01, p′(e2) = e02, A′1(F′1(e1)) = n1, A′1(S′1(e1)) = n2 = A′1(F′1(e2)), A′1(S′1(e2)) = n3,

P′1(n1) = σ1, P′1(n2) = σ2 and P′1(n3) = σ3,

• u′(n1) = u(σ1) · s1, u′(n2) = u(σ2) · s2 and u′(n3) = u(σ3) · s3.

(There are also variations of operation (b), in which the directions of e01 and e1 are reversed,

or the directions of e02 and e2 are reversed.)

(c) (Extending from a hook.) Given a hook h∈H1, construct a minimal extension (N ′1, p′, u′) of

(N1, p, u) such that

• p′(F′1
−1

({h})) = F−1
0 (p({h})) and p′(S′1

−1
({h})) = S−1

0 (p({h})),

• ∀e∈E′1\E1 Erel(p′(e))(u
′(A′1(S′1(e)))−1 · u′(A′1(F′1(e)))) = 0.

(d) (Extending from a facet.) Given a facet k∈K1 such that

• W1(A1(F1(C1(k)))) = W1(A1(S1(C1(k))))

• j(k) > θ0,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) such that

• p′ ◦G′1
−1 ◦ id{k} = G−1

0 ◦ p ◦ id{k}.

(e) (Extending from a part to a whole.) Given a symbol σ∈Σ1, construct a minimal extension

(N ′1, p′, u′) of (N1, p, u) such that

• p′(P′1
−1({σ})) = P0

−1(p({σ})),

• ∀n∈N′1\N1 Econ(p′(n))(u
′(W′1(n))−1 · u′(n)) = 0.

(f) (Filling in a missing part between two parts.) Given nodes n1, n3∈N1, hooks h1, h3∈H1,

edges e01, e02∈E0 and an affine transformation f such that

• W1(n1) = W1(n3), A1(h1) = n1, A1(h3) = n3, A0(S0(e01)) = A0(F0(e02)), F0(e01) = p(h1) and

S0(e02) = p(h3),

• Erel(e01)(f
−1 · u(n1)) + Erel(e02)(u(n3)−1 · f ) < θ4,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

edges e1, e2 and a node n2 for which



• p′(e1) = e01, p′(e2) = e02, F′1(e1) = h1, A′1(S′1(e1)) = n2 = A′1(F′1(e2)) and S′1(e2) = h3,

• if n2 /∈ N1 then u′(n2) = f .

(There are also variations of operation (f), in which the directions of e01 and e1 are reversed,

or the directions of e02 and e2 are reversed.)

(g) (Filling in a symbol between part and whole.) Given symbols σ1, σ3∈Σ1, symbols σ01, σ02,

σ03∈Σ0, nodes n01, n02∈N0, s∈symm(σ03) and an affine transformation f such that

• p(σ1) = σ01, p(σ3) = σ03, W0(n01) = σ01, P0(n01) = σ02 = W0(n02) and P0(n02) = σ03,

• Econ(n01)(u(σ1)−1 · f ) + Econ(n02)(f
−1 · u(σ3) · s) < θ4,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) such that N ′1 contains a symbol σ2 and

nodes n1, n2 for which

• p′(n1) = n01, p′(n2) = n02, W′1(n1) = σ1, P′1(n1) = σ2 = W1(n2) and P′1(n2) = σ3,

• if n1 /∈ N1 then u′(n1) = u′(σ2) = f ,

• if n2 /∈ N1 then u′(n2) = u(σ3) · s.

These extension operations are applied concurrently, in a fair order, controlled by probabilities;

the probability is low in cases where new symbols would be created (particularly operations (a)

and (e)), to avoid the creation of too many new symbols.

These operations are depicted in figure 8. As in previous figures, rectangles represent

symbols, circles represent nodes, small filled discs represent hooks, lines with arrowheads

halfway along represent edges, and small crosses represent facets (shown only for operation (e));

the W and P functions, which map each node to the whole and part symbols, are depicted by

green and blue arrows. For each operation solid lines are used for the symbols, nodes, etc.,

assumed to be present in the pattern before the extension operation; dashed lines are used

for the symbols, nodes, etc., added by the extension operation (if they are not already present

in N1). Thus, for example, operation (g) adds one symbol and two nodes (and their associated

hooks), unless a suitable symbol or suitable nodes already exist in N1. Note, however, that

whenever an edge is added the appropriate number of superedges must also be added, in order

that p′ satisfy the conditions for a homomorphism; and the same applies to symbols, nodes,

etc.; these are not shown in the figure.

Definition. (N1, p, u) is inextendable, given i, j, v, B, iff none of the extension operations can be

applied to it, other than ones giving a trivial extension.

8.3 Merging two symbol tokens

We may merge two symbol tokens of the same type that have similar embedding transfor­

mations (up to a symmetry transformation). Two symbol tokens σ1, σ2∈Σ1 of type σ0∈Σ0

are considered to have similar embeddings up to a symmetry transformation iff there exists

s ∈ symm(σ0) such that Ein(σ0)(s
−1 · u(σ2)−1 · u(σ1)) is below a threshold. If this condition holds

then the symmetry s is applied to σ2 (this is a local symmetry operation; the other symbols

are unchanged); σ1 and σ2 are replaced by a single symbol; and the nodes and edges of σ1

and σ2 are pooled. (See [50, §8.6] for the formal definition.)
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Figure 8. The extension operations. The figure shows the relevant parts of the pattern

N ′1 after each extension operation. Solid lines depict what must be present before the

operation; dashed lines depict what is added if not already present.

8.4 Partitioning a symbol token into two



For any σ0∈Σ1, if the nodes and symbol in W1
−1({σ0}) can be partitioned into two disjoint

non­empty subsets T1, T2, such that there is no edge between any element of T1 and any

element of T2, then σ0 may be replaced by two symbols, σ1, σ2, with σ1 getting the nodes of

T1 and σ2 getting the nodes of T2. The subsymbols of σ0 are glued to σ1 or σ2 as appropriate

(or duplicated if necessary). The nodes, hooks, edges and facets above σ0 must be duplicated.

This operation is called partitioning σ0 [50, §8.7]. It is roughly the inverse of the merging

operation.

Definition. In a network (Σ, N, H, E, K, W, P, A, F, S, C, G), a symbol σ0∈Σ is partitionable iff

there exist sets T1, T2 such that T1 ∪ T2 = W−1({σ0}) and T1 ∩ T2 = ∅ and T1, T2 6= ∅ and

F−1(A−1(T1)) ∩ S−1(A−1(T2)) = ∅ and S−1(A−1(T1)) ∩ F−1(A−1(T2)) = ∅. The network (Σ, N, H,

E, K, W, P, A, F, S, C, G) is partitionable iff at least one symbol in Σ is partitionable; otherwise

it is unpartitionable.

If no more partitions are possible then we are one step forward in attaining a definite pattern,

as the following theorem shows.

Theorem 46 (from [50]). If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is an unpartitionable net­

work satisfying the condition W ◦ A ◦ F = W ◦ A ◦ S then E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser

diagram in the category of sets.

9. The whole recognition process

There are a few details to add, and then I shall summarise the whole recognition algorithm.

As usual, the grammar is N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0), the pattern is

N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1), and the parse is p:N1 → N0.

9.1 Line operations

To get the process started there are some operations that introduce symbol tokens of type line

into the pattern (and possibly bar symbol tokens too – see §10). These are as follows.

(a) Create a line. A random search is used to find an initial embedding u(σ) with a high

value of ρI,T,sat(u(σ))

(b) Randomise a line’s embedding, when it is bare and its inclusion value falls too low.

(c) Remove a bare line, if its temperature falls below a threshold. This operation has a small

probability. The purpose of this is to tidy up the pattern by removing excess lines.

(d) Glue two lines together, end to end: the two lines are replaced by one; their bars are

connected together, end to end.

9.2 How temperature is determined

Every symbol token, node token, hook token, edge token and facet token has a temperature.

These change continually by the following three processes. (The notation X 7⇒ Y means the

assignment statement Y := max (X, Y), and X ⇐7⇒ Y means X 7⇒ Y and Y 7⇒ X. Typical values

for the spreading parameters are β = 0.3 and γ = 0.2.)

1. Every symbol, node, hook, edge or facet token created by a line operation or an extension

operation is given a high initial temperature.

2. Temperature is spread through the pattern by applying the following operations periodi­

cally.



• For every hook h∈H1, do TA1(h) 7⇒ Th; βTh 7⇒ TA1(h).

• For every edge e∈E1, do TF1(e) ⇐7⇒ Te; TS1(e) ⇐7⇒ Te.

• For every node n∈N1, do

TP1(n) 7⇒ Tn; γTn 7⇒ TW1(n);

if n ∈ dom(G1) then γTW1(n) 7⇒ Tn else γTn 7⇒ TP1(n).

• For every pair k, k∗∈K1 such that G1(k, k∗), do Tk ⇐7⇒ Tk∗ .

• For each k∈K1, do TC1(k) ⇐7⇒ Tk.

3. Periodically each temperature T declines by the formula

T := a + ηT

where the constant η is slightly below 1 and the constant a is small and positive.

Consequently active regions of the pattern will have high temperature; regions that have

settled down will have temperature converging to Tmin = a/(1− η).

9.3 How the bareness function B is determined

The purpose of the bareness function is to prevent the algorithm from getting stuck by doing

the same operations repeatedly. The bareness values B(σ), B(h), B(k) increase monotonically

to the maximum θ, inhibiting repeated extension operations at the same place.

For each h∈H1, B(h) is initially 0 and increases by a fixed amount every time an extension

operation is applied that adds edges to F1
−1({h})∪S1

−1({h}). This makes the algorithm more

and more unwilling to remove all the edges and leave the hook bare.

For each k∈K1, B(k) is initially 0 and increases by a fixed amount every time an extension

operation is applied that adds facets to {k∗∈K1 | G1(k, k∗) }. This prevents the algorithm from

repeatedly adding and removing sub­facets to k forever.

For each σ∈Σ1, if P0
−1(p({σ})) = ∅ then B(σ) is initially set to θ, and never changes

thereafter. If P0
−1(p({σ})) 6= ∅ then B(σ) is initially set to a positive value θ0 < θ; B(σ) is

increased by a fixed amount every time extension operation (a), (b), (e) or (g) is applied that

adds nodes to P1
−1({σ}). The increment is chosen so that θ−θ0 is a multiple of the increment.

Ultimately every symbol token σ has B(σ) = θ [50, theorem 47]. This prevents these structural

operations from being repeated indefinitely.

9.4 Summary of the entire recognition process

The input is an image I, a semi­definite network N0 (the grammar), and an embedding type

v for N0 (defining all the geometric relationships in the grammar).

The recognition process is a sequence of steps, called cycles. In each cycle,

• i and j are recalculated (§7.4);

• u is adjusted by one step (subject to the symmetry condition) to increase IM(I,N1, u, v ◦

p, i, j, B) (§7.3);

• all temperatures spread and decline a little (§9.2);

• structural operations are applied to N1 if the conditions are satisfied (elementary pruning

operations, extension operations, merging two symbol tokens, and partitioning a symbol

token into two); every new symbol, node, hook, edge or facet is given a high temperature

(§9.2), and some bareness values are increased after an extension operation (§9.3);



• line operations are applied to N1 (§9.1).

The algorithm halts when

• no further structural operations are possible (except for trivial extensions);

• the temperatures have declined very close to the minimum Tmin.

9.5 The outcome of the recognition algorithm

When recognition has finished the following have been constructed:

• a pattern N1,

• a parsing homomorphism p:N1 → N0,

• a pair of inclusion functions (i, j) on N1,

• an embedding token u for N1,

• a bareness function B for N1.

The condition

∀σ∈Σ1 B(σ) ≤ θ, with equality if P0
−1(p({σ})) = ∅

will hold, because it holds all the time. The condition

∀x∈Σ1 ∪N1 ∪ E1 i(x) ∈ {0, 1}

is likely to hold, because all temperatures have reduced to a very low value Tmin. Also, the

condition

W1 ◦ A1 ◦ F1 = W1 ◦ A1 ◦ S1

is likely to hold. This is because the final term in the definition of IM penalises incoherent

edges (recall the discussion of this in §7.2). The penalty is large and its effect is amplified

when temperature is very low; an incoherent edge will either pull the two wholes together

until they are merged or be pruned.

If we assume that all three of these conditions hold we can apply the following theorem.

Theorem 48 (from [50]). If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network satisfying W1 ◦ A1 ◦ F1 =

W1 ◦ A1 ◦ S1,

(b) p:N1 → N0 is a homomorphism, where N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0) is

a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying ∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1},

(d) u is an embedding token for N1 and v is an embedding type for N0,

(e) B is a bareness function for N1 satisfying ∀σ∈Σ1 B(σ) ≤ θ, with equality if P0
−1(p({σ})) =

∅,

(f) N1 is unprunable, given (i, j),

(g) (N1, p, u) is inextendable, given i, j, v, B,

(h) N1 is unpartitionable,

then

(1) N1 is definite,

(2) ∀x∈Σ1 ∪N1 ∪E1 i(x) = 1,



(3) IM(I,N , u, v, i, j, B) = DM(I,N , u, v).

Proof. This uses theorems from [50].

Theorem 46, using hypotheses (a,h), tells us that

(i) E1

A1◦F1−−→
−−→
A1◦S1

N1 ∪ Σ1
W1→ Σ1 is a coequaliser diagram in the category of sets.

Theorem 42, using hypotheses (c,f), gives

(j) ∀e∈E1 i(e) = 1.

So theorem 45, using hypotheses (a,c,g) and (j), gives

(k) ∀h∈H1 j(h) = 0 and ∀k∈K1\dom(G1) j(k) = 0.

Then theorem 44, using hypotheses (c,f) and (i,k), gives conclusions (1,2).

Theorem 47, using hypotheses (a,e,g) and (1,2), then gives

(l) ∀σ∈Σ1\P1(N1) B(σ) = θ.

Conclusion (3) then follows by theorem 33, using (l) and (1,2).

Thus the outcome is a definite pattern. The algorithm has sought to maximise IM(I,N , u, v, i,

j, B), and hence to maximise DM(I,N , u, v) at the end. The symmetry condition is enforced

throughout. The recognition problem is solved.

9.6 What can go wrong

The core of the theory is provably correct, but the more peripheral parts of the algorithm are

supported only by heuristic arguments (which I have indicated throughout by use of the word

‘likely’).

(i) The algorithm for determining the inclusion functions (§7.4) is not guaranteed to halt. It

finds only a local maximum of E, not a global maximum.

(ii) Even for low temperature, maximising E is not precisely the same as maximising IM(I,N1,

u, v ◦ p, i, j, B).

(iii) The monotonic raising of the bareness function may cut off possible structural extensions

prematurely.

(iv) Symbol tokens may be merged or not merged, or partitioned or not partitioned, wrongly.

(Errors in merging can be corrected by partitioning and vice versa.)

(v) The whole recognition algorithm is not guaranteed to halt.

(vi) It is not guaranteed that very low temperature will force all inclusion values to 0 or 1.

(vii) Incoherent edges may survive to the end.

(viii) Some portions of the image may have been overlooked and not covered by the pattern;

perhaps they are noise, but perhaps not.

In practice it is only (iii), (iv), (v) and (viii) that matter.



10. Example grammars

I shall give three examples of grammars, designed to illustrate various aspects of iteration,

recursion, and the use of subsymbols to enforce syntactic constraints. First, it is useful to

distinguish between a ‘line’ (a one­dimensional line segment) and a ‘bar’ (a thin rectangle,

with a positive width). I shall use both lines and bars together in my grammars. A line

plays a role as part of a larger symbol, such as a hexagonal grid; a bar gives a finer­grained

representation of the line. We introduce two symbol types, line and bar, where line has bar as

its sole part. The geometric relationship between the line and the bar may stretch width­wise,

to adapt the width of the bar to the image; this variation does not interfere with the variation

in the geometric relationship between the line and the rest of the pattern. In the simplest

implementation of this idea, each line token has one bar token as its sole part. However,

instead I shall allow a line token to be made up of one or more bar tokens, joined end­to­end

(see the grammar in figure 10): this is useful for representing bent or broken lines.

10.1 Hexagonal grids (hex)

The first example illustrates two­dimensional iteration (which is something that conventional

graph grammars can represent only using context­sensitive production rules, see §2.3). The

grammar for the hexagonal grid symbol type hex, with its subsymbols hexagon, junctionA and

junctionB, was introduced in §3.3, in simplified form. I omitted to say there that there are

also edges between the hexagon, junctionA and junctionB subsymbols and each of their nodes,

which ensure that each node occurs once per symbol token. More importantly, I made no

provision for what happens at the boundary of the grid. To cope with this we insert invisible

dummy symbol tokens at the boundary of the grid, where the next line would be if the grid

continued (figure 9).
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Figure 9. (a) A hexagonal grid image with dummy symbol tokens (marked by ‘d’)

inserted at the boundary; (b) The corresponding pattern (only nodes, hooks and edges

shown).



The hex grammar is then modified accordingly (figure 10). I have labelled the node types

E (for east­oriented line), NW (northwest­oriented line), SW (southwest­oriented line), e1

(dummy on the east boundary), e2 (dummy on the west boundary), etc.; figure 9(b) shows the

pattern corresponding to figure 9(a) (showing only the nodes, hooks and edges of the hex).

hex
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W E
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Pline

bar

W

P dummy

P

P

Figure 10. The hex grammar with the dummy and bar symbol types added.

The junctionA and junctionB subsymbols are modified similarly to allow for the possibility

that one of the three lines is a dummy. Several variants of the hexagon subsymbol are also

needed, to provide for the cases of a hexagon occurring on the boundary or at a corner of the

grid.

10.2 Crosses

The next example involves crosses – see figure 11 for an example image. It consists of a

central square, with four trunks radiating from it, each with the same number of smaller lines

called twigs. The grammar is shown in figure 12. On the left is the grammar for the symbol

type cross; the nodes N, E, S, W represent the lines of the square, the nodes NT, ET, ST, WT

represent the four trunks, and the nodes Nt, Et, St, Wt represent the twigs. To enforce the

constraint that every trunk has the same number of twigs we use a subsymbol 8twigs, which

includes two adjacent twigs of each trunk. Figure 13 shows the pattern corresponding to the

image in figure 11. The presence of 8twigs tokens in the pattern is governed by the facets.

The facets α–δ in a cross token must be glued to corresponding sub­facets in an 8twigs token:

this is what forces there to exist the required number of 8twigs subsymbol tokens, and this

forces the number of twigs on each trunk to be equal.

(Again I am omitting edges from the symbols to the nodes, to avoid cluttering the diagrams.

There are edges from cross to N, E, S, W, NT, ET, ST, WT and from 8twigs to each of its nodes.

This forces there to be one node token of each type per symbol token.)

10.3 Hnests



Figure 11. A image showing an example of a cross.
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Figure 12. The cross grammar. Only a few W and P arrows are shown. 8twigs is

glued to cross; nodes Nt′ and Nt′′ are glued to node Nt, etc.. The facets are shown as

red crosses: α is glued to α, β to β, γ to γ, and δ to δ.

The third example involves nested recursion. Figure 14 shows an example of an Hnest, which

consists of three lines forming an ‘H’ and two smaller Hnests nested inside it. Figure 15 shows
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Figure 13. The pattern corresponding to the cross image in figure 11. Only two of

the line tokens are shown. Nodes Nt′, Nt′′ are glued to node Nt, and so on. Facets

α, β, γ, δ, α∗, β∗, γ∗, δ∗ are glued to facets α, β, γ, δ, α∗, β∗, γ∗, δ∗, respectively.

the grammar. As usual, each node represents a role that a symbol may play as a part of

another. The nodes L, cb, R represent a line occurring as left bar, crossbar, and right bar of

the ‘H’, respectively. The nodes T, B represent an Hnest occurring as the top or bottom nested

Hnest of an Hnest (note that the Hnest symbol type is a part of itself). Every Hnest token

either has two or no Hnest parts. There are no subsymbols.

Figure 14. An Hnest image.

Figure 16 shows an example of an Hnest pattern.
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Figure 15. The Hnest grammar.
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Figure 16. An Hnest pattern. Edges between Hnest tokens and their nodes are

omitted. Bar tokens are omitted.

11. Example runs

I shall provide some examples of the algorithm recognising images according to the three

grammars described in the previous section (combined together into a single grammar). These

example runs are not intended as experiments and I make no quantitative claims; they merely

provide proof of concept. The test images were designed to illustrate the recursive capabilities

and aspects of error­tolerance listed as desirable in §1.

Test images were produced as follows. First I drew twenty hexes (with 2–4 hexagons

on each side), twenty crosses (with 3–6 twigs on each trunk), and twenty Hnests (with 1–4

levels of nesting) by hand; these are irregularly drawn, with bent lines and variable angles

and length ratios. The lines are automatically blurred. A composite image is produced by

randomly selecting three of these sixty simple images and superimposing them, with random

translations (in the range −300 to 300 pixels in each dimension), random rotations (in the



range 0 to 2π) and random dilations (in the range 0.9 to 1.3). Repeating this produces an

indefinitely large supply of composite images. Corrupted versions are produced by erasing one

or two random discs of radius 50 pixels in the composite image.

The reasons for using synthetic images rather than natural ones are that they allow me

to emphasise the features I am most concerned with (recursion and iteration, overlapping

symbol tokens, geometric variability, indistinct and bent lines, and random erasures), while

avoiding the need for special tricks, as often needed with natural images; they avoid issues I

am not interested in (perspective, binocular vision, motion, occlusion, colour, texture, shadow

and illumination); they allow me to calibrate the difficulty of the image set to match the

capabilities of the algorithm; and they allow me to generate an unlimited number of patterns

with consistent statistical properties and to test the algorithm under controlled conditions.

The above parameters were chosen to give images sufficiently complex and cluttered to

illustrate the desired qualitative features. Varying the number of simple images makes no

difference to the statistical properties of the results, so I have not gone beyond sixty; the variety

in the composite images comes from the random overlapping of the simple images. Varying the

number of composite images also makes no difference. There is sufficient geometric variability

in the images to ensure that top­down and bottom­up inference must be used in combination:

e.g., a junction between two lines cannot be recognised as belonging to a hex, a cross or an

Hnest merely from the angle or ratio of line lengths but must be interpreted in the light of

grammatical context.

The difficulty of a composite image depends on how much its three component images

overlap, and this may be roughly measured by an overlap index, calculated as follows. Fit a

circumscribing disc to each of the three component images. The overlap index is defined as

the sum of the areas of overlap between every pair of discs, divided by the sum of the areas

of the three discs. It ranges between 0 and 1. Another measure of difficulty is the number of

symbol tokens in the desired pattern.

The recognition algorithm is run on 300 of these composite images and the results are

summarised in tables 1–3, broken down by number of symbols and then by overlap index.

The first six columns give the numbers of composite images for which the constructed pattern

is topologically correct, subdivided by the number of wrong lines: a line is ‘wrong’ iff it is

misplaced or is part of a misplaced hex, cross or Hnest. The next three columns give the

numbers of composite images for which the constructed pattern is not topologically correct,

subdivided by the number of component images (hexes, crosses or Hnests) that are not topo­

logically correct (plus the number of spurious hexes, crosses or Hnests, if any). The final three

columns give the numbers of composite images for which the algorithm gets stuck, i.e., does

not halt, again subdivided by the number of components that are not topologically correct.

Tables 2 and 3 show that the algorithm has some ability to restore erased lines or junctions.

However, it tends to restore them in the most grammatically probable place, rather than where

they actually were before they were erased. This accounts for the increased number of wrong

lines. There is also an increase in the number of cases where the algorithm gets stuck.

The figures show some examples. Figure 17 shows an image consisting of a hex, an Hnest

and a cross, with two erased discs (erased discs are outlined in brown in the figures). Note

that the Hnest is somewhat sheared. The image is successfully recognised, but with three

misplaced lines of an H in one erased disc (this counts as ‘3 wrong lines’ in table 3). The

actual positions of the misplaced lines are marked in red and the correct positions in blue.



wrong lines topological error stuck

symbols 0 1 2 3 4 5+ 1 2 3 1 2 3 total

50–149 22 2 0 0 0 0 3 0 0 0 0 0 27

150–249 74 11 4 1 0 1 10 0 0 2 2 0 105

250–349 27 3 3 2 0 0 3 0 0 1 0 1 40

350–449 23 2 2 2 0 0 1 0 0 3 1 0 34

450–549 16 0 0 2 1 0 1 0 0 6 1 1 28

550–649 20 4 4 2 2 0 7 0 0 2 2 0 43

650–749 3 1 0 1 0 1 1 0 0 1 3 0 11

750–849 0 1 0 0 0 0 0 0 0 0 2 6 9

850–949 0 0 0 0 0 0 0 0 0 0 1 0 1

950–1049 1 0 0 0 1 0 0 0 0 0 0 0 2

total 186 24 13 10 4 2 26 0 0 15 12 8 300

overlap wrong lines topological error stuck

index 0 1 2 3 4 5+ 1 2 3 1 2 3 total

0–0.2 13 1 0 1 1 0 1 0 0 0 0 0 17

0.2–0.4 90 4 1 3 2 0 4 0 0 3 3 2 112

0.4–0.6 72 11 9 5 1 1 16 0 0 8 8 3 134

0.6–0.8 11 8 3 1 0 1 4 0 0 4 1 3 36

0.8–1 0 0 0 0 0 0 1 0 0 0 0 0 1

total 186 24 13 10 4 2 26 0 0 15 12 8 300

Table 1. Results for images with no erased discs.

wrong lines topological error stuck

symbols 0 1 2 3 4 5+ 1 2 3 1 2 3 total

50–149 21 2 1 0 0 0 3 0 0 0 0 0 27

150–249 64 15 2 4 1 2 9 0 0 7 1 0 105

250–349 25 7 0 2 0 0 2 0 0 3 0 1 40

350–449 18 5 2 1 0 0 2 0 0 4 2 0 34

450–549 12 3 0 0 1 1 1 0 0 7 2 1 28

550–649 16 4 1 2 2 2 4 1 0 2 9 0 43

650–749 1 3 1 0 0 0 2 0 0 2 2 0 11

750–849 0 0 0 0 1 0 1 0 0 2 0 5 9

850–949 0 0 0 0 0 0 0 0 0 0 0 1 1

950–1049 0 0 0 0 1 1 0 0 0 0 0 0 2

total 157 39 7 9 6 6 24 1 0 27 16 8 300

overlap wrong lines topological error stuck

index 0 1 2 3 4 5+ 1 2 3 1 2 3 total

0–0.2 14 0 0 1 1 1 0 0 0 0 0 0 17

0.2–0.4 69 14 2 3 2 1 7 0 0 7 6 1 112

0.4–0.6 59 19 5 5 1 3 14 1 0 16 7 4 134

0.6–0.8 15 5 0 0 2 1 3 0 0 4 3 3 36

0.8–1 0 1 0 0 0 0 0 0 0 0 0 0 1

total 157 39 7 9 6 6 24 1 0 27 16 8 300

Table 2. Results for images with one erased disc.



wrong lines topological error stuck

symbols 0 1 2 3 4 5+ 1 2 3 1 2 3 total

50–149 20 0 0 3 1 0 2 0 0 1 0 0 27

150–249 59 17 7 1 1 1 10 0 0 4 5 0 105

250–349 18 10 1 0 1 0 3 0 0 5 2 0 40

350–449 18 5 1 1 1 1 1 0 0 5 1 0 34

450–549 10 3 0 3 0 0 2 0 0 4 5 1 28

550–649 13 5 4 1 1 1 3 0 0 5 10 0 43

650–749 3 1 1 0 0 0 2 0 0 0 4 0 11

750–849 1 0 0 1 0 0 0 0 0 1 2 4 9

850–949 0 0 0 0 0 0 0 0 0 0 0 1 1

950–1049 0 0 0 0 0 1 0 0 0 0 0 1 2

total 142 41 14 10 5 4 23 0 0 25 29 7 300

overlap wrong lines topological error stuck

index 0 1 2 3 4 5+ 1 2 3 1 2 3 total

0–0.2 12 2 0 1 1 0 1 0 0 0 0 0 17

0.2–0.4 69 14 5 2 0 1 6 0 0 6 7 2 112

0.4–0.6 55 18 8 5 3 2 12 0 0 14 14 3 134

0.6–0.8 6 7 1 2 1 1 3 0 0 5 8 2 36

0.8–1 0 0 0 0 0 0 1 0 0 0 0 0 1

total 142 41 14 10 5 4 23 0 0 25 29 7 300

Table 3. Results for images with two erased discs.

Four lines correctly guessed in the other erased disc are shown in green: one is part of an H

and three are part of a hex.

Figure 18 shows an image consisting of three hexes (I have added an outline to two of

the hexes in the figure as an aid to the reader). This is successfully recognised. In a version

of this image with one erased disc the hex outlined in red is only partially recognised (this is

counted as ‘stuck – 1 wrong symbol’ in table 2). In a version with two erased discs the hex

outlined in blue is recognised but the other two are not separated (this is counted as ‘stuck –

2 wrong symbols’ in table 3).

Figure 19 shows an image consisting of one hex and two crosses, with one erased disc.

By accident the two crosses are oriented identically and positioned so that many of their lines

overlap, yet the image is successfully recognised. A version of the image with two erased discs

is not successfully recognised: the twigs of the crosses are not sorted out correctly (this counts

as ‘stuck – 2 wrong symbols’ in table 3).

Figure 20 shows an image consisting of three Hnests, with two erased discs. This is

recognised with two misplaced lines in a single H (this counts as ‘2 wrong lines’ in table 3).

The actual positions of the misplaced lines are marked in red and the correct positions in blue.

The other line in the H (correctly recognised) is marked in green.

Figure 21 shows an image consisting of one hex and two Hnests, with one erased disc

(the image is truncated in the figure). The hex is incompletely recognised: the lines marked

in blue are missed. This is the commonest type of error for a hex. (This counts as ‘topological

error – 1 wrong symbol’ in table 2.)

Figure 22 shows an image consisting of one hex and two Hnests, with two erased discs.



The algorithm recognises only part of the smaller Hnest: the H marked in red is recognised

(as an Hnest in its own right), but the parts marked in blue are overlooked. This is a common

type of error for an Hnest. (This counts as ‘topological error – 1 wrong symbol’ in table 3.)

Figure 23 shows how a bent or broken line may be represented by two or three bars joined

end to end; four such lines are shown, the bars being marked by red rectangles. Long bent

lines would be hard to recognise if this were not allowed. The brown circle outlines an erased

disc. The whole image is recognised successfully.



Figure 17. A hex, an Hnest and a cross. 557 symbols, overlap index = 0.666.

Figure 18. Three hexes. 678 symbols, overlap index = 0.432.



Figure 19. One hex and two crosses. 532 symbols, overlap index = 0.579.

Figure 20. Three Hnests. 175 symbols, overlap index = 0.563.



Figure 21. One hex and two Hnests. 662 symbols, overlap index = 0.387.

Figure 22. One hex and two Hnests. 573 symbols, overlap index = 0.502.



Figure 23. A detail of an image, showing four bent or broken lines.

12. Conclusions

The theoretical contributions of this paper are as follows.

• A new, mathematically well­founded formalism for representing the syntactic structure of

graph­like patterns declaratively, fundamentally different from conventional graph gram­

mars based on sets of production rules, in which parsing is seen as the construction of

a homomorphism between two networks (a pattern and a grammar). This offers a new

perspective on the problem of representing syntactic structure in non­string patterns, and

it helps to overcome the limitations of production rules discussed in §2; it is also amenable

to formal mathematical treatment.

• A technique for representing variable affine relationships using fleximaps (which could be

extended to projective transformations if required); this is a more uniform, general, and

mathematically well­founded concept than others in the literature (§5).

• A systematic treatment of affine invariance and symmetry (§§5.3–5.4). (Symmetry is a

neglected topic in the literature.)

• A new recognition algorithm for these grammars, which is provably correct subject to

certain qualifications (§9.5).

There is no hope of proving favourable time­complexity bounds for the recognition algorithm.

As pointed out in §2, the graph parsing problem is NP­complete, even in the absence of errors,

except for highly restricted classes of grammars. This certainly applies to my formulation of

the problem too. However, the space complexity is linear in the maximum size of the pattern

network during recognition (which may be larger than the final pattern).

The recognition algorithm has a number of desirable features:

• all aspects of pattern recognition are integrated in a single process and act synergistically,

rather than being applied as a sequence of phases;

• bottom­up and top­down inference are integrated; alternative interpretations are devel­

oped in parallel;



• the whole of the image is processed simultaneously; there is no ‘traversal’ of the image;

• because the syntactic structure of a ‘sentence’ is represented declaratively by a network,

rather than by a sequence of production rule applications, the whole structure is available

to work on throughout the recognition process.

As a result the recognition algorithm has a combination of strong recursive representational

capabilities and general error­tolerance, not achieved before in the literature. In particular it

can

• represent iterative, hierarchical and nested recursive structure, including two dimensions

of iteration,

• recognise patterns consisting of up to 1000 symbol tokens arranged in two­dimensional

space,

• distinguish overlapping, indistinct or distorted symbol tokens (e.g., bent lines or lines with

pieces missing), sometimes successfully disentangling highly cluttered images,

• restore missing lines or junctions in the most grammatically plausible position.

These features go some way towards substantiating my thesis (stated in §1) that symbol

processing is not inherently brittle but is made so by the imposition of an unwarranted

sequential order on it. When this sequentiality is discarded then robust symbol processing

becomes possible.

As further work I intend to develop an algorithm that learns the fleximaps and grammar

from example images, without supervision. I believe this can be done by extending the methods

of [48].
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1. Introduction

The purpose of this project is to develop a new graph grammar formalism for error­tolerant

syntactic pattern recognition. This paper provides the mathematical theory in full. It should

be read in conjunction with the paper A New Graph Grammar Formalism for Robust Syntactic

Pattern Recognition, available at https://doi.org/10.48550/arXiv.2504.15975, which provides a

broader account of the context, purpose and application of this project, with example grammars

and runs.

This paper develops further the mathematical framework in my 2004 technical report,

Mathematical Theory of Recursive Symbol Systems (Technical Report GEN­0401, Keele Uni­

versity, Computer Science Department, available at https://eprints.keele.ac.uk/id/eprint/63/),

which I shall cite here simply as ‘(2004)’. Sections 1–5 of (2004) are still valid, but section 6

(Networks and Homomorphisms) and section 7 (The Recognition Problem) are inadequate and

this report supersedes them. In particular, I have extended the concept of network, mainly

by the addition of subsymbols, and developed the mathematical theory to define the pattern

recognition process fully.

The contents of this report are as follows.

Section 2 develops the general theory of functions and relations that will be needed in the

subsequent sections.

Section 3 gives new definitions of network, homomorphism and definite and semi­definite

networks, superseding those in (2004, §6).

Section 4 extends the theory of embeddings, introduced in (2004, §6.4). The Match func­

tion, which was introduced in (2004, §7.3), is treated more satisfactorily here as two functions,

a definite match function DM and an indefinite match function IM (defined in §6). The subject

of symmetries is treated more thoroughly and several theorems are proved on the affine in­

variance of the grammatical framework. The theory of templates (introduced in (2004, §4)) is

extended here by introducing the concept of saturation, which expresses the notion that when

several templates overlap in the image plane they interfere with one another. The recognition

problem can now be formally stated.

Section 5 develops the theory of inclusion functions, which were introduced in (2004, §7.2).

Section 6 defines the indefinite match function IM, which applies to networks that are not

necessarily definite, with inclusion functions. The invariance theorems of §4 are generalised

to IM. The calculation of the adjustment of the embeddings by gradient ascent in (2004) is

adapted to IM.

Section 7 states the mechanism by which the inclusion functions are determined during

recognition.

Section 8 defines the structural operations by which the pattern grows during recognition.

Section 9 states the entire recognition algorithm.

The whole theory is built up by a process of stepwise refinement. The first four sections

establish the underlying framework and specify the recognition problem. Sections 5–9 develop

the algorithm for solving it incrementally, starting with an abstract account of the recognition

process and refining it step by step with each chapter. Stepwise refinement is a valuable

method for managing the complexity of the mathematical theory and the algorithm: it allows

for a separation of concerns, particularly between the structural and geometric aspects of the
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theory, and enables the theory to be built up one layer at a time, with the whole recognition

process in view at each stage, at ever­increasing levels of detail.

At each stage of the theory I shall make explicit the correctness conditions the recognition

algorithm must satisfy to solve the recognition problem, culminating in theorem 48. The ear­

lier, more fundamental stages (§§2–6) are clean, rigorous and provably correct; the subsequent

stages are progressively messier, with arbitrary parameters and algorithms not guaranteed

to converge to the optimum solution. I distinguish clearly between those properties of the

recognition process that are guaranteed to hold, those that are likely to hold, and those that

one merely hopes will hold.



2. Functions and Relations

2.1 Introduction

This section introduces some concepts involving functions and relations that will be needed

in the theory of networks to follow, especially the concept of an acyclic relation, a connected

relation relative to a function, and a minimal relation relative to a function. Relations will be

used in the following section to express the way in which subsymbols are glued to supersymbols.

2.2 Basic definitions and theorems

A function f : X → Y maps every element of the set X to a unique element of the set Y. X is

called the domain of f , dom(f ).

Definition. For any function f : X → Y and any sets A, B,

f (A) = { f (x) | x ∈ X ∩ A }, f−1(B) = { x ∈ X | f (x) ∈ B }.

The range of f , ran(f ), is defined as f (X).

Definition. For any function f : X → Y and any set A ⊆ X, the restriction of f to A, f |A: A→ Y,

is defined by

∀x∈A f |A(x) = f (x).

Definition. For any functions f : A → B and g: C → D, the composition of f and g, f ◦ g: C ∩

g−1(A)→ B, is defined by

∀x∈C ∩ g−1(A) (f ◦ g)(x) = f (g(x)).

The term relation will be understood to mean a binary relation applicable to all objects: for

any relation R and every pair of objects a, b, either R(a, b) holds or it does not.

Definition. The domain dom(R) and range ran(R) of a relation R are defined by

dom(R) = {a | ∃b R(b, a) }, ran(R) = {b | ∃a R(b, a) }.

Definition. A relation R is said to be on a set A iff dom(R) ⊆ A and ran(R) ⊆ A.

Definition. For any set A, the identity relation idA is defined by

∀a, b (idA(a, b) ⇐⇒ a = b ∈ A).

Definition. The empty relation ⊥ is defined by ∀a, b ¬⊥(a, b).

Definition. For any relations R and S,

R = S ⇐⇒ ∀a, b (R(a, b)⇐⇒ S(a, b))

R ⊆ S ⇐⇒ ∀a, b (R(a, b)⇒ S(a, b))

R ⊂ S ⇐⇒ R ⊆ S ∧ R 6= S.
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Definition. For any relations R and S, the relations R ∩ S, R ∪ S and R\S are defined by

∀a, b















(R ∩ S)(a, b) ⇐⇒ R(a, b) ∧ S(a, b),

(R ∪ S)(a, b) ⇐⇒ R(a, b) ∨ S(a, b),

(R\S)(a, b) ⇐⇒ R(a, b) ∧ ¬S(a, b).

Definition. For any relations R and S, the composed relation R ◦ S is defined by

∀a, c ((R ◦ S)(a, c) ⇐⇒ ∃b (R(a, b) ∧ S(b, c))).

(In all expressions, the composition operator ◦ has higher syntactic precedence than ∩, ∪ and

\.)

Definition. For any relation R, the inverse relation R−1 is defined by

∀a, b (R−1(b, a) ⇐⇒ R(a, b)).

Definition. The graph of a function f is the relation f defined by

∀a, b (f (b, a) ⇐⇒ a ∈ dom(f ) ∧ b = f (a)).

Theorem 1. (Obvious properties of relations.) For any relations R, S, T, any functions f , g,

and any sets A, X, Y,

(i) f ◦ g = f ◦ g, dom(f ) = dom(f ), and ran(f ) = ran(f )

(ii) if f : X → Y then f ◦ idX = f = idY ◦ f ,

(iii) if f , g: X → Y and f ⊆ g then f = g,

(iv) f |A = f ◦ idA,

(v) idA ◦ f = f ◦ idf−1(A),

(vi) idA ◦ R ⊆ R and R ◦ idA ⊆ R, with equality if R is on A,

(vii) idX ◦ idY = idX∩Y = idX ∩ idY and idX∪Y = idX ∪ idY ,

(viii) ⊥ ◦ R = ⊥ = R ◦ ⊥,

(ix) T ⊆ R ∩ S iff T ⊆ R and T ⊆ S (in particular, R ∩ S ⊆ R and R ∩ S ⊆ S),

(x) R ∪ S ⊆ T iff R ⊆ T and S ⊆ T (in particular, R ⊆ R ∪ S and S ⊆ R ∪ S),

(xi) (R ◦ S)−1 = S−1 ◦ R−1, (R ∩ S)−1 = R−1 ∩ S−1, (R ∪ S)−1 = R−1 ∪ S−1,

(xii) if R ⊆ S then R−1 ⊆ S−1, R ◦ T ⊆ S ◦ T and T ◦R ⊆ T ◦ S,

(xiii) if R ⊆ S then dom(R) ⊆ dom(S) and ran(R) ⊆ ran(S),

(xiv) if R ◦ S = ⊥ then dom(R) ∩ ran(S) = ∅,

(xv) ran(R) = dom(R−1),

(xvi) iddom(R) ⊆ R−1 ◦ R and idran(R) ⊆ R ◦ R−1,

(xvii) dom(R ◦ idA) = dom(R) ∩ A and ran(idA ◦ R) = A ∩ ran(R).

Theorem 2. If f : X → Y, and R and S are relations, then

(i) f ◦ f
−1
⊆ idY ,

(ii) idX ⊆ f
−1
◦ f ,

(iii) if R ⊆ S ◦ f then R ◦ f
−1
⊆ S ◦ idY ,

(iv) if f ◦R ⊆ S then idX ◦R ⊆ f
−1
◦ S.
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Proof. (i) For any y, y′ such that (f ◦ f
−1

)(y, y′), we have y, y′ ∈Y and ∃x∈X (y = f (x)∧ f (x) = y′),

which implies that y = y′, and hence idY(y, y′).

(ii) For any x∈X, there exists y (namely f (x)) such that f (x) = y and y = f (x), and hence

(f
−1
◦ f )(x, x).

(iii) If R ⊆ S ◦ f then R ◦ f
−1
⊆ S ◦ f ◦ f

−1
⊆ S ◦ idY , by part (i).

(iv) If f ◦R ⊆ S then idX ◦ R ⊆ f
−1
◦ f ◦ R ⊆ f

−1
◦ S, by part (ii).

Theorem 3. For any relations R, S, T and any function f ,

(i) (R ∪ S) ◦ T = R ◦ T ∪ S ◦ T,

(ii) T ◦ (R ∪ S) = T ◦R ∪ T ◦ S,

(iii) (R ∩ S) ◦ T ⊆ R ◦ T ∩ S ◦ T,

(iv) T ◦ (R ∩ S) ⊆ T ◦R ∩ T ◦ S,

(v) (R ∩ S) ◦ f = R ◦ f ∩ S ◦ f ,

(vi) f
−1
◦ (R ∩ S) = f

−1
◦R ∩ f

−1
◦ S.

Proof. (i) For any a, c,

((R ∪ S) ◦ T)(a, c) iff ∃b ((R ∪ S)(a, b) ∧ T(b, c))

iff ∃b ((R(a, b) ∨ S(a, b)) ∧ T(b, c))

iff ∃b (R(a, b) ∧ T(b, c)) ∨ ∃b (S(a, b) ∧ T(b, c))

iff (R ◦ T ∪ S ◦ T)(a, c).

(ii) For any a, c,

(T ◦ (R ∪ S))(a, c) iff ∃b (T(a, b) ∧ (R ∪ S)(b, c))

iff ∃b (T(a, b) ∧ (R(b, c) ∨ S(b, c)))

iff ∃b (T(a, b) ∧ R(b, c)) ∨ ∃b (T(a, b) ∧ S(b, c))

iff (T ◦ R ∪ T ◦ S)(a, c).

(iii) From R ∩ S ⊆ R and R ∩ S ⊆ S we infer (R ∩ S) ◦ T ⊆ R ◦ T and (R ∩ S) ◦ T ⊆ S ◦ T,

and hence (R ∩ S) ◦ T ⊆ R ◦ T ∩ S ◦ T.

(iv) From R ∩ S ⊆ R and R ∩ S ⊆ S we infer T ◦ (R ∩ S) ⊆ T ◦ R and T ◦ (R ∩ S) ⊆ T ◦ S,

and hence T ◦ (R ∩ S) ⊆ T ◦ R ∩ T ◦ S.

(v) For any a, c,

((R ∩ S) ◦ f )(a, c) iff ∃b ((R ∩ S)(a, b) ∧ c ∈ dom(f ) ∧ b = f (c))

iff c ∈ dom(f ) ∧ (R ∩ S)(a, f (c))

iff c ∈ dom(f ) ∧ R(a, f (c)) ∧ S(a, f (c))

iff ∃b (R(a, b) ∧ c ∈ dom(f ) ∧ b = f (c)) ∧ ∃b′ (S(a, b′) ∧ c ∈ dom(f ) ∧ b′ = f (c))

iff (R ◦ f )(a, c) ∧ (S ◦ f )(a, c)

iff (R ◦ f ∩ S ◦ f )(a, c).

(vi) Part (v) gives (R−1 ∩ S−1) ◦ f = R−1 ◦ f ∩ S−1 ◦ f , and taking the inverse gives

f
−1
◦ (R ∩ S) = f

−1
◦ R ∩ f

−1
◦ S.

Theorem 4. For any relations R, S, T, and any sets A, B,

(i) R ◦ S ∩ T ⊆ (R ∩ T ◦ S−1) ◦ S,
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(ii) R ◦ S ∩ T ⊆ R ◦ (S ∩ R−1 ◦ T),

(iii) R ◦ idA ∩ S = (R ∩ S) ◦ idA,

(iv) idA ◦ R ∩ S = idA ◦ (R ∩ S),

(v) if idA ◦ R ⊆ S ◦ idB then idA ◦R ⊆ R ◦ idB,

(vi) if R ◦ idA ⊆ idB ◦ S then R ◦ idA ⊆ idB ◦ R.

Proof. (i) For any x, z,

(R ◦ S ∩ T)(x, z) iff ∃y (R(x, y) ∧ S(y, z) ∧ T(x, z))

implies ∃y, z′ (R(x, y) ∧ T(x, z′) ∧ S(y, z′) ∧ S(y, z)) by taking z′ = z

iff ∃y (R(x, y) ∧ (T ◦ S−1)(x, y) ∧ S(y, z))

iff ((R ∩ T ◦ S−1) ◦ S)(x, z).

(ii) Applying part (i), with S−1 substituted for R, R−1 substituted for S, and T−1 substi­

tuted for T,

S−1 ◦R−1 ∩ T−1 ⊆ (S−1 ∩ T−1 ◦ R) ◦R−1

and then inverting this gives

R ◦ S ∩ T ⊆ R ◦ (S ∩ R−1 ◦ T).

(iii) Using part (i), R ◦ idA ∩ S ⊆ (R ∩ S ◦ idA) ◦ idA ⊆ (R ∩ S) ◦ idA. Conversely, using

theorem 3(iii), (R ∩ S) ◦ idA ⊆ R ◦ idA ∩ S ◦ idA ⊆ R ◦ idA ∩ S.

(iv) Applying part (iii) with R−1 substituted for R and S−1 substituted for S gives R−1 ◦

idA ∩ S−1 = (R−1 ∩ S−1) ◦ idA, and inverting this gives idA ◦ R ∩ S = idA ◦ (R ∩ S).

(v) If idA ◦R ⊆ S ◦ idB then, combining this with idA ◦ R ⊆ R gives

idA ◦R ⊆ S ◦ idB ∩ R

= (S ∩R) ◦ idB

⊆ R ◦ idB

by part (iii)

since S ∩ R ⊆ R.

(vi) If R ◦ idA ⊆ idB ◦ S then, combining this with R ◦ idA ⊆ R gives

R ◦ idA ⊆ idB ◦ S ∩ R

= idB ◦ (S ∩ R)

⊆ idB ◦ R

by part (iv)

since S ∩ R ⊆ R.

Theorem 5. For any relation R, R = f for some function f : X → Y iff R ◦ R−1 ⊆ idY and

idX ⊆ R−1 ◦ R.

Proof. (⇒) If R = f then R ◦R−1 ⊆ idY and idX ⊆ R−1 ◦ R by theorem 2(i),(ii).

(⇐) Suppose R◦R−1 ⊆ idY and idX ⊆ R−1◦R. For any x∈X, idX(x, x) holds, so (R−1◦R)(x, x)

holds, so there exists y such that R(y, x).

For any x∈X and any y, if R(y, x) then (R ◦ R−1)(y, y), so idY (y, y), so y∈Y.

For any x∈X and y, y′∈Y, if R(y, x) and R(y′, x) then (R ◦R−1)(y, y′), so idY (y, y′), so y = y′.

These facts show that R = f for a function f : X → Y.
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Theorem 6. A rectangle of functions
D

↑f
B

g
←−−−−

p
←−−−−

C

↑q
A

is a pullback in the category of sets iff

f
−1
◦ g = p ◦ q−1 and p−1 ◦ p ∩ q−1 ◦ q = idA.

Proof. I shall use the standard characterisation of a pullback in the category of sets, namely

f ◦ p = g ◦ q and ∀b∈B ∀c∈C (f (b) = g(c)⇒ ∃!a∈A (p(a) = b ∧ q(a) = c)).

(⇒) Suppose the rectangle is a pullback. I shall verify the two equations.

f
−1
◦ g ⊆ p ◦ q−1. For any b and c, if (f

−1
◦g)(b, c) then b∈B, c∈C and ∃d (f (b) = d∧d = g(c)),

so f (b) = g(c), so ∃a∈A (b = p(a) ∧ q(a) = c) by the pullback condition, so (p ◦ q−1)(b, c).

p ◦ q−1 ⊆ f
−1
◦ g. For any b and c, if (p ◦ q−1)(b, c) then there exists a∈A such that

b = p(a) ∧ q(a) = c, so f (b) = f (p(a)) = g(q(a)) = g(c), so (f
−1
◦ g)(b, c).

idA ⊆ p−1 ◦ p ∩ q−1 ◦ q. This follows from idA ⊆ p−1 ◦ p and idA ⊆ q−1 ◦ q, which come

from theorem 2(ii).

p−1 ◦ p ∩ q−1 ◦ q ⊆ idA. For any a, a′, if (p−1 ◦ p ∩ q−1 ◦ q)(a, a′) then a, a′ ∈ A and

∃b∈B (p(a) = b∧b = p(a′)) and ∃c∈C (q(a) = c∧ c = q(a′)), hence f (b) = f (p(a)) = g(q(a)) = g(c),

so by the pullback condition there exists only one x∈A such that p(x) = b and q(x) = c, so

a = a′, as required.

(⇐) Suppose f
−1
◦ g = p ◦ q−1 and p−1 ◦ p ∩ q−1 ◦ q = idA. I shall verify the conditions for

a pullback.

f ◦ p = g ◦ q. For any a∈A, (p ◦ q−1)(p(a), q(a)) holds, so by the equation f
−1
◦ g = p ◦ q−1

we have (f
−1
◦ g)(p(a), q(a)), which means that f (p(a)) = g(q(a)), as required.

∀b∈B ∀c∈C (f (b) = g(c)⇒ ∃a∈A (p(a) = b ∧ q(a) = c)). Consider any b∈B and c∈C such

that f (b) = g(c). Then (f
−1
◦ g)(b, c) holds, so by the equation f

−1
◦ g = p ◦ q−1 we have

(p ◦ q−1)(b, c), which means that there exists a∈A such that b = p(a) and q(a) = c as required.

∀b∈B ∀c∈C (f (b) = g(c)⇒ ∃≤1a∈A (p(a) = b ∧ q(a) = c)). Consider any b∈B and c∈C such

that f (b) = g(c). Suppose there exist a, a′∈A such that p(a) = b = p(a′) and q(a) = c = q(a′).

Then (p−1 ◦ p ∩ q−1 ◦ q)(a, a′), so by p−1 ◦ p ∩ q−1 ◦ q = idA we have a = a′, as required.

Theorem 7. For any sets A, B, C, and any functions p: A → C and q: B → C, A
p
→ C

q
← B is a

sum diagram in the category of sets iff

p ◦ p−1 ∪ q ◦ q−1
= idC, p−1 ◦ p = idA, q−1 ◦ q = idB, p−1 ◦ q = ⊥, q−1 ◦ p = ⊥.

Proof. (⇒) Assume A
p
→ C

q
← B is a sum diagram.

p ◦ p−1 ∪ q ◦ q−1
= idC. Theorem 2(i) gives p ◦ p−1 ⊆ idC and q ◦ q−1 ⊆ idC; so p ◦ p−1 ∪

q ◦ q−1 ⊆ idC. To show that this inclusion is an equality, choose a set X with more than one

element and any functions f : A→ X and g: B→ X. Since A
p
→ C

q
← B is a sum diagram, there

exists a unique function i: C → X such that i ◦ p = f and i ◦ q = g. If p ◦ p−1 ∪ q ◦ q−1 ⊂ idC

then choose c∈C such that (p ◦p−1 ∪ q ◦ q−1)(c, c) does not hold. Define j: C→ X as equal to i

except at c. Then, for all a∈A, (p ◦ p−1)(p(a), p(a)) holds, so p(a) 6= c, so j(p(a)) = i(p(a)) = f (a).

Thus j ◦ p = f . A similar argument shows that j ◦ q = g. This contradicts the uniqueness of i.

The contradiction establishes that p ◦ p−1 ∪ q ◦ q−1
= idC.

p−1 ◦ p = idA. Theorem 2(ii) gives idA ⊆ p−1 ◦ p. For the converse, choose a set X = A,

a function f : A → X equal to the identity function on A, and an arbitrary function g: B → X
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(ignoring the case A = ∅, for which p−1 ◦ p = idA is trivially true). Then by the sum property

there exists a unique function i: C → X such that i ◦ p = f and i ◦ q = g; thus i: C → A and

i ◦ p = idA. Then idA ◦ p−1 ⊆ i ◦ idC by theorem 2(iii), so p−1 ⊆ i, so p−1 ◦ p ⊆ i ◦ p = idA, as

required.

q−1 ◦ q = idB. A similar argument applies.

p−1 ◦ q = ⊥. Choose a set X with more than one element, and choose f : A → X and

g: B→ X with disjoint images, so that f
−1
◦ g = ⊥. By the sum property, there exists a unique

function i: C→ X such that i ◦ p = f and i ◦ q = g. Then

⊥ = f
−1
◦ g = (i ◦ p)−1 ◦ i ◦ q = p−1 ◦ i−1 ◦ i ◦ q ⊇ p−1 ◦ idC ◦ q = p−1 ◦ q

so ⊥ = p−1 ◦ q, as required.

q−1 ◦ p = ⊥. This follows by inverting p−1 ◦ q = ⊥.

(⇐) Assume the five equations; I shall show A
p
→ C

q
← B is a sum diagram. Given any set

X and functions f : A→ X and g: B→ X, define a relation R = f ◦p−1 ∪ g ◦q−1. First note that

R ◦ p = f ◦ p−1 ◦ p ∪ g ◦ q−1 ◦ p = f ◦ idA ∪ g ◦ ⊥ = f ,

R ◦ q = f ◦ p−1 ◦ q ∪ g ◦ q−1 ◦ q = f ◦ ⊥ ∪ g ◦ idB = g.

Then

R ◦ R−1
= R ◦ (p ◦ f

−1
∪ q ◦ g−1) = R ◦ p ◦ f

−1
∪ R ◦ q ◦ g−1

= f ◦ f
−1
∪ g ◦ g−1 ⊆ idX

by theorem 2(i), and

R−1 ◦ R = (p ◦ f
−1
∪ q ◦ g−1) ◦ (f ◦ p−1 ∪ g ◦ q−1) ⊇ p ◦ f

−1
◦ f ◦ p−1 ∪ q ◦ g−1 ◦ g ◦ q−1

⊇ p ◦ idA ◦ p−1 ∪ q ◦ idB ◦ q−1
= p ◦ p−1 ∪ q ◦ q−1

= idC

using theorem 2(ii). By theorem 5, R = i, for some function i: C→ X. The equations R ◦ p = f

and R ◦ q = g then imply i ◦ p = f and i ◦ q = g.

To show the uniqueness of i, consider any function j: C→ X satisfying j◦p = f and j◦q = g.

Then j ◦ p = f and j ◦ q = g, so by theorem 2(iii) f ◦ p−1 ⊆ j ◦ idC = j and g ◦ q−1 ⊆ j ◦ idC = j, so

i = R = f ◦ p−1 ∪ g ◦ q−1 ⊆ j. Since i and j are both functions from C to X, this is sufficient

to imply i = j, as required.

2.3 Acyclic and connected relations

Definition. A relation R is finite iff there are finitely many pairs (a, b) such that R(a, b) holds.

Definition. The ‘not­equal­to’ relation NE is defined by NE(a, b)⇐⇒ a 6= b.

Theorem 8. For any relation R,

(i) dom(R ∩ NE ◦R) = {a | ∃>1b R(b, a) },

(ii) dom(R\NE ◦ R) = {a | ∃!b R(b, a) },

(iii) dom(R ∩ NE ◦R) ∩ dom(R\NE ◦ R) = ∅,

(iv) dom(R ∩ NE ◦R) ∪ dom(R\NE ◦ R) = dom(R),

(v) ran(R ∩ R ◦NE) = {b | ∃>1a R(b, a) },

(vi) ran(R\R ◦NE) = {b | ∃!a R(b, a) },
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(vii) ran(R ∩ R ◦NE) ∩ ran(R\R ◦NE) = ∅,

(viii) ran(R ∩ R ◦NE) ∪ ran(R\R ◦NE) = ran(R).

Proof. (i) For any a,

a ∈ dom(R ∩ NE ◦ R) iff ∃b (R ∩ NE ◦ R)(b, a) iff ∃b R(b, a) ∧ ∃b′ (b 6= b′ ∧ R(b′, a))

iff ∃b, b′ (b 6= b′ ∧R(b, a) ∧R(b′, a)) iff ∃>1b R(b, a).

(ii) For any a,

a ∈ dom(R\NE ◦R) iff ∃b (R\NE ◦R)(b, a) iff ∃b R(b, a) ∧ ¬∃b′ (b 6= b′ ∧ R(b′, a))

iff ∃!b R(b, a).

(iii) and (iv) follow from (i) and (ii).

(v)–(viii) follow from (i)–(iv) respectively by substituting R−1 for R.

Theorem 9. For any relations R, S, T,

dom(R ∩ T) ∩ dom(S\NE ◦ T) ⊆ dom(R ∩ S).

Proof. For any a ∈ dom(R ∩ T) ∩ dom(S\NE ◦ T), there exists b such that R(b, a) and T(b, a)

and there exists c such that S(c, a) but not (NE ◦ T)(c, a). The last of these means that there

is no d not equal to c such that T(d, a); hence b = c. Thus we have R(b, a) and S(b, a), so

a ∈ dom(R ∩ S).

Definition. A relation R is acyclic iff

¬∃R∗ (⊥ 6= R∗ ⊆ R ∧ R∗ ⊆ (R∗ ◦NE ∩ NE ◦R∗)).

(Informally, R is acyclic iff every non­empty subrelation R∗ has an element of valency 1, i.e.,

an element related to just one element by R∗ or to just one element by R∗−1. This is equivalent

to the non­existence of a finite cyclic sequence x1, . . . xn, x1, with n even and n > 2, where the

terms are all different and and related by x1
R
→ x2

R
←x3

R
→ x4

R
←x5

R
→ · · ·

R
→ xn

R
←x1. However, we

shall not need this characterisation in the theory that follows.)

Theorem 10. If a relation R is acyclic and R′ ⊆ R then R′ is also acyclic.

Proof. This is immediate from the definition.

Theorem 11.

(i) If f : X → Y, R is a relation on X, and S is a relation on Y, such that

S = f ◦R ◦ f
−1

, f
−1
◦ f ∩ R−1 ◦R ⊆ idX , R ⊆ R ◦NE

then S ⊆ S ◦NE.

(ii) If f : X → Y, R is a relation on X, and S is a relation on Y, such that

S = f ◦R ◦ f
−1

, f
−1
◦ f ∩ R ◦R−1 ⊆ idX , R ⊆ NE ◦ R

then S ⊆ NE ◦ S.
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Proof. (i) Define the universal relations UX on X and UY on Y by

∀a, b (UX (a, b) iff a ∈ X ∧ b ∈ X, UY (a, b) iff a ∈ Y ∧ b ∈ Y).

Then UY ⊆ idY ∪NE, so

UX = f
−1
◦UY ◦ f ⊆ f

−1
◦ (idY ∪NE) ◦ f = f

−1
◦ idY ◦ f ∪ f

−1
◦NE ◦ f

= f
−1
◦ f ∪ f

−1
◦NE ◦ f

so

UX\f
−1
◦ f ⊆ f

−1
◦NE ◦ f . (1)

Also, R−1 ◦R ⊆ UX , since R is on X, and

f
−1
◦ f ∩ R−1 ◦ R ∩ NE ⊆ idX ∩NE = ⊥

so

R−1 ◦ R ∩ NE ⊆ UX\f
−1
◦ f

⊆ f
−1
◦NE ◦ f by (1) (2)

so

S = f ◦ R ◦ f
−1

= f ◦ (R ∩R) ◦ f
−1

⊆ f ◦ (R ∩ R ◦NE) ◦ f
−1

⊆ f ◦ R ◦ (R−1 ◦R ∩ NE) ◦ f
−1

⊆ f ◦ R ◦ f
−1
◦NE ◦ f ◦ f

−1

= S ◦NE ◦ f ◦ f
−1

⊆ S ◦NE ◦ idY

⊆ S ◦NE

since R ⊆ R ◦NE

by theorem 4(ii)

by (2)

since S = f ◦ R ◦ f
−1

by theorem 2(i)

as required.

(ii) Inverting the hypotheses S = f ◦R ◦ f
−1

and R ⊆ NE ◦R gives S−1 = f ◦R−1 ◦ f
−1

and

R−1 ⊆ R−1 ◦NE. Applying part (i) of the theorem, with R−1 and S−1 substituted for R and S,

gives S−1 ⊆ S−1 ◦NE, which can be inverted to S ⊆ NE ◦ S.

Theorem 12. If f : X → Y, R is a relation on X, and S is a relation on Y, such that

f ◦R ⊆ S ◦ f , f
−1
◦ f ∩ R−1 ◦ R ⊆ idX , f

−1
◦ f ∩ R ◦ R−1 ⊆ idX

then R is acyclic if S is.

Proof. Assuming S is acyclic, we shall infer that R is. Consider any relation R∗ such that

⊥ 6= R∗ ⊆ R; we must show R∗ 6⊆ R∗◦NE ∩ NE◦R∗. Define a relation S∗ = f ◦R∗◦f
−1

on Y. Then

S∗ 6= ⊥ (choose any x, x′ such that R∗(x, x′); then S∗(f (x), f (x′))). Also, f ◦ R∗ ⊆ f ◦ R ⊆ S ◦ f ,

so S∗ = f ◦ R∗ ◦ f
−1
⊆ S ◦ idY = S by theorem 2(iii). Since S is acyclic we conclude that

S∗ 6⊆ S∗ ◦NE ∩ NE ◦ S∗.
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Now, if R∗ ⊆ R∗ ◦NE ∩ NE ◦ R∗ then R∗ ⊆ R∗ ◦NE and R∗ ⊆ NE ◦ R∗. Also,

f
−1
◦ f ∩ R∗

−1 ◦ R∗ ⊆ f
−1
◦ f ∩ R−1 ◦ R ⊆ idX

and

f
−1
◦ f ∩ R∗ ◦ R∗

−1 ⊆ f
−1
◦ f ∩ R ◦ R−1 ⊆ idX

so, by theorem 11, S∗ ⊆ S∗ ◦NE and S∗ ⊆ NE ◦S∗. This gives S∗ ⊆ S∗ ◦NE ∩ NE ◦S∗, which

is not true.

This contradiction establishes that R∗ 6⊆ R∗ ◦NE ∩ NE ◦ R∗, as required.

Definition. If f : X → Y and R is a relation on X then R is connected relative to f iff, for any

set Z and function g: X → Z such that g ◦ R ⊆ g, there exists a function i: f (X) → Z such that

i ◦ f = g.

(Informally, R is connected relative to f iff, for any x, x′∈X such that f (x) = f (x′), there exists

a finite sequence x = x0, x1, . . . xn = x′ such that, for each i∈{1, . . . n}, R(xi−1, xi) or R(xi, xi−1)

holds.)

Theorem 13. Given sets N, Σ, a function P: N → Σ, and a finite relation G on N such that

(a) G ◦G = ⊥,

(b) G is acyclic,

(c) P ◦G ⊆ P,

then

(i) ∀X ⊆ Σ |P−1(X)| − |G ◦ idP−1(X)| ≥ 0,

(ii) for any X ⊆ Σ, if |P−1(X)| − |G ◦ idP−1(X)| = 0 then P−1(X) = ∅,

(iii) if ∀X ⊆ Σ |P−1(X)| − |G ◦ idP−1(X)| ≤ |X| then G is connected relative to P.

Proof. The proof is by induction on |G|. For the induction basis, suppose |G| = 0; then we can

verify (i), (ii) and (iii) directly, as follows.

(i) For any X ⊆ Σ, |P−1(X)| − |G ◦ idP−1(X)| = |P
−1(X)| ≥ 0.

(ii) For any X ⊆ Σ such that |P−1(X)| − |G ◦ idP−1(X)| = 0, we have |P−1(X)| = 0 and hence

P−1(X) = ∅, as required.

(iii) If ∀X ⊆ Σ |P−1(X)| − |G ◦ idP−1(X)| ≤ |X| then

∀σ∈Σ |P−1({σ})| ≤ 1

which means that P is injective. In that case, given any Z and Q: N → Z, the unique function

i: P(N)→ Z such that i ◦ P = Q is defined by ∀n∈N i(P(n)) = Q(n).

For the induction step, suppose that |G| > 0, and define

G′ = G ∩ G ◦NE ∩ NE ◦G

S1 = ran(G\G ◦NE)

S2 = dom((G ∩ G ◦NE)\NE ◦G)

S = S1 ∪ S2

N′ = N\S

P′ = P|N′ .
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These have the following properties.

(α) G′ ⊂ G.

Proof. This follows since G is acyclic and not equal to ⊥.

(β) G′ is a finite relation on N′.

Proof. G′ is finite since G′ ⊂ G and G is finite. To show that G′ is on N′,

dom(G′) ∩ S1 ⊆ dom(G) ∩ ran(G) = ∅

dom(G′) ∩ S2 ⊆ dom(G ∩NE ◦G) ∩ dom(G\NE ◦G) = ∅

ran(G′) ∩ S1 ⊆ ran(G ∩G ◦NE) ∩ ran(G\G ◦NE) = ∅

ran(G′) ∩ S2 ⊆ ran(G) ∩ dom(G) = ∅

since G ◦G = ⊥

by theorem 8(iii)

by theorem 8(vii)

since G ◦G = ⊥

thus dom(G′) ⊆ N\S = N′ and ran(G′) ⊆ N\S = N′, as required.

(γ) For every x∈S, there exists a unique y such that (G\G′)(x, y) or (G\G′)(y, x) (these two

cases being mutually exclusive).

Proof. (G\G′)(x, y) and (G\G′)(y, x) are mutually exclusive by (G\G′) ◦ (G\G′) ⊆ G ◦G = ⊥.

We have G\G ◦NE ⊆ G\G′, so

S1 ⊆ ran(G\G′), (1)

and

S1 ∩ ran
(

(G\G′) ∩ (G\G′) ◦NE
)

⊆ S1 ∩ ran(G ∩G ◦NE) = ∅ (2)

by theorem 8(vii), so from (1), (2) and theorem 8(viii)

S1 ⊆ ran
(

(G\G′)\(G\G′) ◦NE
)

.

Using theorem 8(vi), this can be written as

∀x∈S1 ∃!y (G\G′)(x, y). (3)

Similarly, (G ∩G ◦NE)\NE ◦G ⊆ G\G′, so

S2 ⊆ dom(G\G′), (4)

and

S2 ∩ dom
(

(G\G′) ∩NE ◦ (G\G′)
)

⊆ dom(G\NE ◦G) ∩ dom(G ∩NE ◦G) = ∅ (5)

by theorem 8(iii), so from (4), (5) and theorem 8(iv)

S2 ⊆ dom
(

(G\G′)\NE ◦ (G\G′)
)

.

Using theorem 8(ii) this can be written as

∀x∈S2 ∃!y (G\G′)(y, x). (6)

Consequently, from (3), (6), and (G\G′) ◦ (G\G′) = ⊥,

∀x∈S ∃!y ((G\G′)(x, y) ∨ (G\G′)(y, x))
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as required.

(δ) ∀x, y (G(x, y)⇒ x ∈N′ ∨ y ∈N′).

Proof. First,

ran(G ∩G ◦NE) ∩ S1 = ran(G ∩G ◦NE) ∩ ran(G\G ◦NE) = ∅ (7)

by theorem 8(vii). Secondly,

ran(G∩G◦NE) ∩ S2 = ran(G∩G◦NE) ∩ dom((G ∩ G◦NE)\NE◦G) ⊆ ran(G) ∩ dom(G) = ∅. (8)

Combining (7) and (8) gives

ran(G ∩G ◦NE) ∩ S = ∅. (9)

Next,

dom(G\G ◦NE) ∩ S1 = dom(G\G ◦NE) ∩ ran(G\G ◦NE) ⊆ dom(G) ∩ ran(G) = ∅. (10)

Also, applying theorem 9, with R = G\G ◦NE, S = G ∩G ◦NE, and T = G, gives

dom(G\G ◦NE) ∩ dom((G ∩G ◦NE)\NE ◦G) ⊆ dom((G\G ◦NE) ∩ (G ∩G ◦NE)).

The right­hand side is dom(⊥), so this simplifies to

dom(G\G ◦NE) ∩ S2 = ∅. (11)

Combining (10) and (11) gives

dom(G\G ◦NE) ∩ S = ∅. (12)

Finally, given any x, y such that G(x, y) holds, either (G ◦NE)(x, y) holds, in which case x /∈ S

by (9), or (G ◦NE)(x, y) does not hold, in which case y /∈ S by (12). Thus x ∈N′ or y ∈N′.

(ε) For every x, y such that (G\G′)(x, y) holds, either x ∈ S or y ∈ S.

Proof. Using the definition G′ = G ∩ G ◦NE ∩ NE ◦G,

G\G′ = (G\G ◦NE) ∪ ((G ∩G ◦NE)\NE ◦G)

so if (G\G′)(x, y) then x∈ ran(G\G ◦NE) = S1 or y∈ dom((G∩G ◦NE)\NE ◦G) = S2; thus x∈S

or y ∈ S.

By (δ), we cannot have both x ∈ S and y ∈ S.

(ζ) ∀x∈S ∃y∈N′ (G(x, y) ∨G(y, x)).

Proof. Given x∈S, the existence of y satisfying G(x, y) ∨ G(y, x) is assured by (γ), and it

must be in N′ because of (δ).

(η) ∀x, y∈N (G(x, y)⇒ P(x) = P(y)).

Proof. The hypothesis P ◦G ⊆ P means

∀σ, y ((P ◦G)(σ, y)⇒ P(σ, y))
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which may be expanded to

∀σ, y (∃x (σ = P(x) ∧G(x, y))⇒ σ = P(y))

which is logically equivalent to

∀x, y∈N (G(x, y)⇒ P(x) = P(y))

since dom(P) = N and G is on N.

(θ) ∀X ⊆ Σ |(G\G′) ◦ idP−1(X)| = |S ∩ P−1(X)|.

Proof. By (γ) and (ε), there is a bijection ω between pairs (x, y) such that (G\G′)(x, y) holds

and elements of S:

ω(x, y) = x or y, whichever one is in S.

This gives |G\G′| = |S|. Moreover, for any X ⊆ Σ, and any x, y satisfying (G\G′)(x, y), ((G\G′) ◦

idP−1(X))(x, y) iff y ∈ P−1(X) iff x ∈ P−1(X) (this is because P(x) = P(y), from (η)), so this in turn

is equivalent to ω(x, y) ∈P−1(X). Thus ω maps the pairs (x, y) satisfying ((G\G′) ◦ idP−1(X))(x, y)

onto S ∩ P−1(X). The conclusion follows.

(ι) G′ ◦G′ = ⊥.

Proof. This follows since G′ ⊂ G and G ◦G = ⊥.

(κ) G′ is acyclic.

Proof. This follows from G′ ⊂ G by theorem 10.

(λ) P′ ◦G′ ⊆ P′.

Proof. We have G′ = G′ ◦ idN′ , P′ = P ◦ idN′ ⊆ P, G′ ⊂ G, and P ◦G ⊆ P, so

P′ ◦G′ = P′ ◦G′ ◦ idN′ ⊆ P ◦G ◦ idN′ ⊆ P ◦ idN′ = P′.

(µ) |G′| < |G|.

Proof. This follows from G′ ⊂ G.

(ν) ∀X ⊆ Σ |P′−1(X)| − |G′ ◦ idP′−1(X)| = |P
−1(X)| − |G ◦ idP−1(X)|.

Proof. We have P′−1(X) = P−1(X) ∩N′ = P−1(X)\S and hence

|P′−1(X)| = |P−1(X)| − |S ∩ P−1(X)|.

Also, G′ ◦ idP′−1(X) = G′ ◦ idN′ ◦ idP−1(X) = G′ ◦ idP−1(X), since G′ is on N′, so

|G′ ◦ idP′−1(X)| = |G
′ ◦ idP−1(X)| = |G ◦ idP−1(X)| − |(G\G

′) ◦ idP−1(X)| = |G ◦ idP−1(X)| − |S ∩ P−1(X)|

by (θ). Hence

|P′−1(X)| − |G′ ◦ idP′−1(X)| = |P
−1(X)| − |G ◦ idP−1(X)|.

(ξ) P−1(X) = ∅ if P′−1(X) = ∅.
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Proof. I shall prove the contrapositive. If P−1(X) 6= ∅ then there exists x∈N such that

P(x) ∈ X. If x ∈N′ then x ∈ P′−1(X), whereas if x /∈ N′ then x ∈ S, so by (ζ) there exists y∈N′

such that G(x, y) or G(y, x). By (η), P(y) = P(x) ∈X, so y ∈ P′−1(X). In either case, P′−1(X) 6= ∅.

(ο) P′(N′) = P(N).

Proof. Recall that P′ = P|N′ , so P′(N′) = P(N′). By (ζ), for every x∈S there exists y∈N′

such that G(x, y) or G(y, x); by (η), this implies P(x) = P(y). This shows that P(S) ⊆ P(N′).

Since N = S ∪N′, this gives P(N) = P(S) ∪ P(N′) = P(N′). Hence P′(N′) = P(N).

(π) G is connected relative to P if G′ is connected relative to P′.

Proof. Consider any set Z and any function Q: N → Z such that Q ◦ G ⊆ Q. Define

Q′ = Q|N′ : N′ → Z, and note that

Q′ ◦G′ = Q′ ◦G′ ◦ idN′ ⊆ Q ◦G ◦ idN′ ⊆ Q ◦ idN′ = Q′.

Assuming G′ is connected relative to P′, there exists a function i: P′(N′) → Z such that

i ◦P′ = Q′; this means that i ◦P agrees with Q on N′. By (ο), we have i: P(N)→ Z. Moreover I

claim that i ◦ P = Q. For any x ∈ S, by (ζ) there exists y∈N′ such that G(x, y) or G(y, x). Then

(η) gives P(x) = P(y), and by similar reasoning the hypothesis Q ◦ G ⊆ Q gives Q(x) = Q(y).

Then

i(P(x)) = i(P(y)) = Q(y) = Q(x).

So i ◦ P = Q holds on S as well as on N′, i.e., it holds on the whole of N. Thus we conclude

that i: P(N)→ Z and i ◦ P = Q, as required.

Now we are ready to apply the induction step of the theorem. By (β), (ι)–(µ), we can apply

the inductive hypothesis to N′, P′, G′, and thereby verify (i), (ii) and (iii) for N, P, G:

(i) for any X ⊆ Σ, applying (ν), |P−1(X)| − |G ◦ idP−1(X)| = |P
′−1(X)| − |G′ ◦ idP′−1(X)| ≥ 0 by

inductive hypothesis;

(ii) for any X ⊆ Σ, if |P−1(X)| − |G ◦ idP−1(X)| = 0 then |P′−1(X)| − |G′ ◦ idP′−1(X)| = 0 by (ν),

so P′−1(X) = ∅ by inductive hypothesis, so P−1(X) = ∅ by (ξ);

(iii) if ∀X ⊆ Σ |P−1(X)| − |G ◦ idP−1(X)| ≤ |X| then ∀X ⊆ Σ |P′−1(X)| − |G′ ◦ idP′−1(X)| ≤ |X| by

(ν), so G′ is connected relative to P′ by inductive hypothesis, so G is connected relative to P

by (π).

2.4 Minimal relations relative to a function

Definition. If f : X → Y and R is a relation on X then R is minimal relative to f iff

∀R∗ ⊆ R (f ◦R∗ = f ◦ R⇒ R∗ = R).

(Informally, R is minimal relative to f iff, for any x∈X and y∈Y, there exists at most one

x′∈X such that f (x′) = y and R(x′, x).)

Theorem 14. If f : X → Y and R is a relation on X then R is minimal relative to f iff

f
−1
◦ f ∩ R ◦ R−1 ⊆ idX .
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Proof. (⇒) Suppose R is minimal relative to f . For any x, x′ such that (f
−1
◦ f ∩R ◦R−1)(x, x′),

we have x, x′ ∈ X, f (x) = f (x′), and there exists z such that R(x, z) and R(x′, z). Now suppose

x 6= x′. Define a relation R∗ equal to R except that R∗(x, z) does not hold. Thus R∗ ⊂ R,

but f ◦ R∗ = f ◦ R, since (f ◦ R∗)(f (x), z) still holds (via x′) and f ◦ R∗ is identical to f ◦ R in

all other respects. The existence of R∗ contradicts the minimality of R. This contradiction

demonstrates that x = x′, as required.

(⇐) Suppose f
−1
◦ f ∩ R ◦ R−1 ⊆ idX . Consider any R∗ ⊆ R such that f ◦ R∗ = f ◦ R. Then

R = idX ◦ R ∩ R

⊆ f
−1
◦ f ◦R ∩ R

= f
−1
◦ f ◦R∗ ∩ R

⊆ (f
−1
◦ f ∩ R ◦R∗

−1
) ◦ R∗

⊆ (f
−1
◦ f ∩ R ◦R−1) ◦ R∗

⊆ idX ◦ R∗

= R∗

by theorem 2(ii)

since f ◦ R∗ = f ◦ R

by theorem 4(i)

since R∗ ⊆ R

since f
−1
◦ f ∩R ◦ R−1 ⊆ idX

so R∗ = R, as required.



3. Networks and Homomorphisms

3.1 Introduction

My aim is to state formally the recognition problem (the problem of interpreting an image

using a grammar) and to define the recognition process that solves the problem. Because the

theory is complex I shall develop it by stepwise refinement, beginning in this section with

an outline statement of the recognition problem and refining it in the following section, then

building up the recognition process incrementally.

A grammar will be represented by a formal structure called a network, containing symbol

types. Parsing consists of constructing another network called a pattern, containing symbol

tokens, and establishing a homomorphism from the pattern network to the grammar network.

The grammar must satisfy certain conditions: it must be a semi­definite network. The pattern

is not bound by these conditions during recognition, but by the end it must satisfy a stronger

set of conditions: it must be a definite network. All these concepts are defined in this section.

3.2 Definition of network and homomorphism

Definition. A network is a 12­tuple (Σ, N, H, E, K, W, P, A, F, S, C, G), where Σ, N, H, E, K are

disjoint finite sets; W: N ∪ Σ → Σ, P: N → Σ, A: H → N ∪ Σ, F, S: E → H and C: K → E are

functions such that ∀σ∈Σ W(σ) = σ; and G is a relation on Σ ∪N ∪H ∪ E ∪ K such that

(1) idΣ ◦G = G ◦ idΣ, idN ◦G = G ◦ idN, idH ◦G = G ◦ idH, idE ◦G = G ◦ idE, idK ◦G = G ◦ idK ;

(2) W ◦G = G ◦W, P ◦G ⊆ P, A ◦G ⊆ G ◦ A, F ◦G ⊆ G ◦ F, S ◦G ⊆ G ◦ S, C ◦G ⊆ G ◦C;

(3) GH and G−1
H

are minimal relative to A; GK and G−1
K

are minimal relative to C; GE and

G−1
E are minimal relative to F and S (where GH = G◦ idH, GK = G◦ idK and GE = G◦ idE);

(4) G ◦G = ⊥.

The elements of Σ, N, H, E, K are called symbols, nodes, hooks, edges and facets, respectively. G

is called the gluing relation; G(x, y) means that y is glued to x, i.e., y is a subsymbol, subnode,

subhook, subedge or subfacet of x, i.e., x is a supersymbol, supernode, superhook, superedge

or superfacet of y. The functions W, P, A, F, S, C express the incidence relations: a node n

connects a part P(n) to a whole W(n); a hook h is attached to a node (or possibly a symbol)

A(h); an edge e runs from its first hook F(e) to its second hook S(e); a facet k belongs to the

edge C(k).

The clauses of the definition may be paraphrased informally as follows.

(1) The gluing relation G may be considered as the disjoint union of a relation GΣ = G◦idΣ

on symbols, a relation GN = G ◦ idN on nodes, a relation GH = G ◦ idH on hooks, a relation

GE = G ◦ idE on edges, and a relation GK = G ◦ idK on facets. I shall always use similar

notation below for the parts of a gluing relation of a network: e.g., if (Σ2, N2, H2, E2, K2, W2,

P2, A2, F2, S2, C2, G2) is a network then G2Σ = G2 ◦ idΣ2
(the symbol part of G2), G2N = G2 ◦ idN2

(the node part of G2), etc..

(2) G preserves incidence. e.g., if a hook h1 is glued to a hook h2 then the node A(h1)

is glued to the node A(h2). (The first equation also says that every node of a subsymbol is a

subnode.)

(3) A hook is glued to at most one hook of any given node; a facet is glued to at most one

facet of any given edge; and an edge is glued to at most one edge of any given hook (for each

edge direction).
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(4) A subsymbol, subnode, subhook, subedge or subfacet cannot be also be a supersymbol,

supernode, superhook, superedge or superfacet.

Definition. If N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) and N0 = (Σ0, N0, H0, E0, K0,

W0, P0, A0, F0, S0, C0, G0) are networks, a homomorphism p:N1 → N0 is a function from Σ1 ∪

N1 ∪H1 ∪ E1 ∪ K1 to Σ0 ∪N0 ∪H0 ∪ E0 ∪ K0 such that

(1) p(Σ1) ⊆ Σ0, p(N1) ⊆ N0, p(H1) ⊆ H0, p(E1) ⊆ E0, p(K1) ⊆ K0;

(2) W0 ◦ p = p ◦W1, P0 ◦ p = p ◦ P1, F0 ◦ p = p ◦ F1, S0 ◦ p = p ◦ S1;

(3)
N0∪Σ0
x

A0

H0

p|N1∪Σ1
←−−−−−

p|H1
←−−−−−

N1∪Σ1
x

A1

H1

and
E0
x

C0

K0

p|E1
←−−−−−

p|K1
←−−−−−

E1
x

C1

K1

are pullbacks in the category of sets;

(4) p ◦G1 = G0 ◦ p;

(5) G1 is minimal relative to p.

The clauses of this definition may be paraphrased informally as follows.

(1) p maps symbols to symbols, nodes to nodes, hooks to hooks, edges to edges, and facets

to facets.

(2) p preserves the W, P, F, S incidence functions.

(3) p maps the hooks of any node n bijectively onto the hooks of p(n), and maps the facets

of any edge e bijectively onto the facets of p(e).

(4) p preserves gluing (i.e., if G1(x, y) then G0(p(x), p(y))), and if p(x) is a subsymbol,

subnode, subhook, subedge or subfacet then so is x.

(5) The gluings in N1 are induced by those in N0, i.e., two things are glued in N1 only if

they are forced to be by condition (4).

Theorem 15. If p:N1 → N0 and q:N2 → N1 are homomorphisms then so is p ◦ q:N2 → N0.

Proof.

First,

p(q(Σ2)) ⊆ p(Σ1) ⊆ Σ0, p(q(N2)) ⊆ p(N1) ⊆ N0, p(q(H2)) ⊆ p(H1) ⊆ H0,

p(q(E2)) ⊆ p(E1) ⊆ E0, p(q(K2)) ⊆ p(K1) ⊆ K0,

as required.

Secondly,

W0 ◦ p ◦ q = p ◦W1 ◦ q = p ◦ q ◦W2, P0 ◦ p ◦ q = p ◦ P1 ◦ q = p ◦ q ◦ P2,

F0 ◦ p ◦ q = p ◦ F1 ◦ q = p ◦ q ◦ F2, S0 ◦ p ◦ q = p ◦ S1 ◦ q = p ◦ q ◦ S2,

as required.

Thirdly,
N0∪Σ0
x

A0

H0

p|N1∪Σ1
←−−−−−

p|H1
←−−−−−

N1∪Σ1
x

A1

H1

and
N1∪Σ1
x

A1

H1

q|N2∪Σ2
←−−−−−

q|H2
←−−−−−

N2∪Σ2
x

A2

H2

are pullbacks, and therefore so is

N0∪Σ0
x

A0

H0

(p◦q)|N2∪Σ2
←−−−−−

(p◦q)|H2
←−−−−−

N2∪Σ2
x

A2

H2

. This is proved as follows. We have

A0 ◦ (p ◦ q)|H2
= A0 ◦ p|H1

◦ q|H2
= p|N1∪Σ1

◦ A1 ◦ q|H2
= p|N1∪Σ1

◦ q|N2∪Σ2
◦ A2 = (p ◦ q)|N2∪Σ2

◦ A2.

Also, for any set X and functions f : X → H0 and g: X → N2∪Σ2 such that A0◦f = (p◦q)|N2∪Σ2
◦g,

by the first pullback there exists a unique i: X → H1 such that p|H1
◦i = f and A1◦i = q|N2∪Σ2

◦g.
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Then, by the second pullback, there exists a unique j: X → H2 such that q|H2
◦j = i and A2◦j = g.

Thus j satisfies the desired equations (p ◦q)|H2
◦ j = f and A2 ◦ j = g. To show that j is the only

such function, consider any function k: X → H2 such that (p ◦q)|H2
◦k = f and A2 ◦k = g. Then

p|H1
◦q|H2

◦k = f and A1 ◦q|H2
◦k = q|N2∪Σ2

◦A2 ◦k = q|N2∪Σ2
◦g, so, by the uniqueness clause in

the first pullback, q|H2
◦ k = i. Then, by the uniqueness clause in the second pullback, k = j.

This verifies the required pullback condition.

Similarly,
E0
x

C0

K0

p|E1
←−−−−−

p|K1
←−−−−−

E1
x

C1

K1

and
E1
x

C1

K1

q|E2
←−−−−−

q|K2
←−−−−−

E2
x

C2

K2

are pullbacks, and hence so is
E0
x

C0

K0

(p◦q)|E2
←−−−−−

(p◦q)|K2
←−−−−−

E2
x

C2

K2

.

Fourthly, p ◦ q ◦G2 = p ◦ q ◦G2 = p ◦G1 ◦ q = G0 ◦ p ◦ q = Go ◦ p ◦ q.

Fifthly, G1 is minimal relative to p and G2 is minimal relative to q; we must show that

G2 is minimal relative to p ◦ q. By theorem 14, p−1 ◦ p ∩ G1 ◦ G−1
1 ⊆ idΣ1∪N1∪H1∪E1∪K1

and

q−1 ◦ q ∩ G2 ◦G−1
2 ⊆ idΣ2∪N2∪H2∪E2∪K2

. Hence,

p ◦ q−1 ◦ p ◦ q ∩ G2 ◦G−1
2

= q−1 ◦ p−1 ◦ p ◦ q ∩ G2 ◦G−1
2

⊆ q−1 ◦
(

p−1 ◦ p ∩ q ◦G2 ◦G−1
2 ◦ q−1

)

◦ q

= q−1 ◦
(

p−1 ◦ p ∩ G1 ◦ q ◦ q−1 ◦G−1
1

)

◦ q

⊆ q−1 ◦
(

p−1 ◦ p ∩ G1 ◦G−1
1

)

◦ q

⊆ q−1 ◦ idΣ1∪N1∪H1∪E1∪K1
◦ q

= q−1 ◦ q.

by theorem 4(i),(ii)

since q is a homomorphism

by theorem 2(i)

Hence
p ◦ q−1 ◦ p ◦ q ∩ G2 ◦G−1

2 ⊆ q−1 ◦ q ∩ G2 ◦G−1
2

⊆ idΣ2∪N2∪H2∪E2∪K2
.

By theorem 14 again, G2 is minimal relative to p ◦ q, as required.

Theorem 16. If f :N → N ′ is a homomorphism and is also a bijective function then the inverse

function f−1:N ′ → N is a homomorphism (called the inverse homomorphism of f ).

Proof. First, the condition f−1(Σ′) ⊆ Σ follows from f (N) ⊆ N′, f (H) ⊆ H′, f (E) ⊆ E′ and

f (K) ⊆ K ′. The similar conditions f−1(N′) ⊆ N, f−1(H′) ⊆ H, f−1(E′) ⊆ E and f−1(K ′) ⊆ K

follow similarly.

Secondly, the condition W ◦ f−1 = f−1 ◦ W′ is verified by W ◦ f−1 = f−1 ◦ f ◦ W ◦ f−1 =

f−1 ◦W′ ◦ f ◦ f−1 = f−1 ◦W′. The similar conditions P ◦ f−1 = f−1 ◦ P′, F ◦ f−1 = f−1 ◦ F′ and

S ◦ f−1 = f−1 ◦ S′ follow similarly.

Thirdly, the pullback
N∪Σ
↑A
H

f−1|N′∪Σ′
←−−−−

f−1|H′

←−−−−

N′∪Σ′

↑A′

H′

is verified as follows. The equation A ◦ f−1|H′ =

f−1|N′∪Σ′ ◦ A′ is verified as in the previous paragraph. To verify the other half of the pullback

property, given any set X and functions p: X → H and q: X → N′ ∪ Σ′ such that A ◦ p =

f−1|N′∪Σ′ ◦ q, define i = f |H ◦ p: X → H′, giving f−1|H′ ◦ i = f−1|H′ ◦ f |H ◦ p = p and A′ ◦ i =

A′ ◦ f |H ◦ p = f |N∪Σ ◦A ◦ p = f |N∪Σ ◦ f−1|N′∪Σ′ ◦ q = q, as required. To show i is unique, consider

any j: X → H′ such that f−1|H′ ◦ j = p and A′ ◦ j = q; then j = f |H ◦ p = i, as required.

The pullback
E

↑C
K

f−1|E′

←−−−−

f−1|K′

←−−−−

E′

↑C′

K′

is verified similarly.
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Fourthly, the condition f−1 ◦G′ = G ◦ f−1 is verified by

f−1 ◦G′ = f−1 ◦G′ ◦ f ◦ f−1 = f−1 ◦G′ ◦ f ◦ f−1 = f−1 ◦ f ◦G ◦ f−1 = f−1 ◦ f ◦G ◦ f−1 = G ◦ f−1.

Finally the condition that G′ be minimal relative to f−1 is verified as follows. For any

relation R∗ ⊆ G′, if f−1 ◦R∗ = f−1 ◦G′ then f ◦ f−1 ◦R∗ = f ◦ f−1 ◦G′, so, since f ◦ f−1 = f ◦ f−1 =

idΣ′∪N′∪H′∪E′∪K′ , we have R∗ = G′, as required.

Definition. An isomorphism is a homomorphism f :N → N ′ with an inverse homomorphism

f−1:N ′ → N . An automorphism of N is an isomorphism from N to N .

3.3 Minimal relations relative to a network

Definition. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a network then its gluing relation G is

minimal relative to N iff

idK ⊆ GK ◦G−1
K ∪G−1

K ◦GK

and, for any relation G∗ ⊆ G such that

• W ◦ G∗ ⊆ G∗ ◦ W, P ◦ G∗ ⊆ P, A ◦ G∗ ⊆ G∗ ◦ A, F ◦ G∗ ⊆ G∗ ◦ F, S ◦ G∗ ⊆ G∗ ◦ S,

C ◦G∗ ⊆ G∗ ◦ C,

• idK ⊆ G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K (where G∗K = G∗ ◦ idK ),

we have G∗ = G.

(Informally, the condition that G be minimal relative to N means that every facet is glued

to another facet (i.e., it is either a subfacet or a superfacet) and G is as small as it can be,

subject to this constraint.)

Theorem 17. For any network N = (Σ, N, H, E, K, W, P, A, F, S, C, G),

(i) if G is minimal relative to N then

GΣ = W ◦GN ◦W
−1
∪ idΣ ◦ A ◦GH ◦ A

−1
,

GH = F ◦GE ◦ F
−1
∪ S ◦GE ◦ S

−1
,

GN = idN ◦ A ◦GH ◦ A
−1

,

GE = C ◦GK ◦C
−1

;
(∗)

(ii) if GK ◦G−1
K ⊆ idK ⊆ GK ◦G−1

K ∪ G−1
K ◦GK then the converse of (i) holds, i.e., equations (∗)

imply that G is minimal relative to N .

Proof. (i) Suppose G is minimal relative to N . Define a relation G∗ = G∗K ∪G∗E ∪G∗H ∪G∗N ∪G∗Σ,

where
G∗K = GK

G∗E = C ◦G∗K ◦C
−1

G∗H = F ◦G∗E ◦ F
−1
∪ S ◦G∗E ◦ S

−1

G∗N = idN ◦ A ◦G∗H ◦ A
−1

G∗Σ = W ◦G∗N ◦W
−1
∪ idΣ ◦ A ◦G∗H ◦ A

−1
.
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First I shall show that G∗ ⊆ G. We already have G∗K = GK , but also

G∗E = C ◦G∗K ◦ C
−1

= C ◦GK ◦C
−1

= C ◦G ◦ C
−1
⊆ G ◦ C ◦ C

−1
⊆ G ◦ idE = GE

G∗H = F ◦G∗E ◦ F
−1
∪ S ◦G∗E ◦ S

−1
⊆ F ◦GE ◦ F

−1
∪ S ◦GE ◦ S

−1
= F ◦G ◦ F

−1
∪ S ◦G ◦ S

−1

⊆ G ◦ F ◦ F
−1
∪G ◦ S ◦ S

−1
⊆ G ◦ idH ∪G ◦ idH = GH

G∗N = idN ◦ A ◦G∗H ◦ A
−1
⊆ idN ◦ A ◦GH ◦ A

−1
= idN ◦ A ◦G ◦ A

−1
⊆ idN ◦G ◦ A ◦ A

−1

⊆ idN ◦G ◦ idN∪Σ = GN

G∗Σ = W ◦G∗N ◦W
−1
∪ idΣ ◦ A ◦G∗H ◦ A

−1
⊆W ◦GN ◦W

−1
∪ idΣ ◦ A ◦GH ◦ A

−1

⊆ W ◦G ◦W
−1
∪ idΣ ◦ A ◦G ◦ A

−1
⊆ G ◦W ◦W

−1
∪ idΣ ◦G ◦ A ◦ A

−1

⊆ G ◦ idΣ ∪ idΣ ◦G ◦ idN∪Σ = GΣ ∪GΣ = GΣ.

Thus G∗ ⊆ G as claimed. Note also that G∗K is on K, G∗E is on E, G∗H is on H, G∗N is on N, and

G∗Σ is on Σ.

Secondly I shall show that G∗ is homomorphic. This follows from

W ◦G∗ = W ◦ (G∗Σ ∪G∗N) ◦ idΣ∪N

⊆ W ◦ (G∗Σ ∪G∗N) ◦W
−1
◦W

= W ◦G∗Σ ◦W
−1
◦W ∪ W ◦G∗N ◦W

−1
◦W

⊆ idΣ ◦G∗Σ ◦ idΣ ◦W ∪ G∗Σ ◦W

= G∗Σ ◦W ∪ G∗Σ ◦W

= G∗ ◦W

by theorem 2(ii)

by theorem 3(i),(ii)

since W|Σ = idΣ and W ◦G∗N ◦W
−1
⊆ G∗Σ

and

A ◦G∗ = idN∪Σ ◦ A ◦G∗H ◦ idH

⊆ idN∪Σ ◦ A ◦G∗H ◦ A
−1
◦ A

⊆ idN ◦ A ◦G∗H ◦ A
−1
◦ A ∪ idΣ ◦ A ◦G∗H ◦ A

−1
◦ A

⊆ G∗N ◦ A ∪ G∗Σ ◦ A

= G∗ ◦ A

by theorem 2(ii)

by theorem 3(i)

by definition of G∗N and G∗Σ

and
P ◦G∗ ⊆ P ◦G ⊆ P

F ◦G∗ = F ◦G∗E ◦ idE ⊆ F ◦G∗E ◦ F
−1
◦ F ⊆ G∗H ◦ F = G∗ ◦ F

S ◦G∗ = S ◦G∗E ◦ idE ⊆ S ◦G∗E ◦ S
−1
◦ S ⊆ G∗H ◦ S = G∗ ◦ S

C ◦G∗ = C ◦G∗K ◦ idK ⊆ C ◦G∗K ◦ C
−1
◦ C = G∗E ◦ C = G∗ ◦ C.

The relation G∗ satisfies the condition

idK ⊆ G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K

just like G. Hence, by the minimality condition, G∗ = G. This shows that G satisfies the

equations (∗).

(ii) Suppose that GK ◦G
−1
K
⊆ idK ⊆ GK ◦G

−1
K
∪G−1

K
◦GK and G satisfies the equations (∗); we

must show that G is minimal relative to N . Consider any homomorphic relation G∗ ⊆ G; we
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can split G∗ into its five parts, G∗K = G∗ ◦ idK ⊆ GK , G∗E = G∗ ◦ idE ⊆ GE, G∗H = G∗ ◦ idH ⊆ GH,

G∗N = G∗ ◦ idN ⊆ GN, and G∗Σ = G∗ ◦ idΣ ⊆ GΣ, which are on K, E, H, N and Σ respectively.

Assume that idK ⊆ G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K . We must show G∗ = G.

First we show G∗K = GK . This follows from G∗K ⊆ GK and

GK = GK ◦ idK ⊆ GK ◦ (G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K)

= GK ◦G∗K ◦G∗K
−1 ∪ GK ◦G∗K

−1 ◦G∗K

⊆ G ◦G ◦G∗K
−1 ∪ GK ◦G−1

K ◦G∗K

⊆ ⊥ ∪ idK ◦G∗K

= G∗K .

since idK ⊆ G∗K ◦G∗K
−1 ∪G∗K

−1 ◦G∗K

since G ◦G = ⊥ and GK ◦G−1
K ⊆ idK

Next we have G∗E = GE, since G∗E ⊆ GE and

GE = C ◦GK ◦C
−1

= C ◦G∗K ◦C
−1

= C ◦G∗ ◦ C
−1
⊆ G∗ ◦ C ◦C

−1
⊆ G∗ ◦ idE = G∗E.

Then G∗H = GH, since G∗H ⊆ GH and

GH = F ◦GE ◦ F
−1
∪ S ◦GE ◦ S

−1
= F ◦G∗E ◦ F

−1
∪ S ◦G∗E ◦ S

−1
= F ◦G∗ ◦ F

−1
∪ S ◦G∗ ◦ S

−1

⊆ G∗ ◦ F ◦ F
−1
∪G∗ ◦ S ◦ S

−1
⊆ G∗ ◦ idH ∪G∗ ◦ idH = G∗H.

Then G∗N = GN, since G∗N ⊆ GN and

GN = idN ◦ A ◦GH ◦ A
−1

= idN ◦ A ◦G∗H ◦ A
−1

= idN ◦ A ◦G∗ ◦ A
−1
⊆ idN ◦G∗ ◦ A ◦ A

−1

⊆ idN ◦G∗ ◦ idN∪Σ = G∗N.

Then G∗Σ = GΣ, since G∗Σ ⊆ GΣ and

GΣ = W ◦GN ◦W
−1
∪ idΣ ◦ A ◦GH ◦ A

−1
= W ◦G∗N ◦W

−1
∪ idΣ ◦ A ◦G∗H ◦ A

−1

⊆ W ◦G∗ ◦W
−1
∪ idΣ ◦ A ◦G∗ ◦ A

−1
⊆ G∗ ◦W ◦W

−1
∪ idΣ ◦G∗ ◦ A ◦ A

−1

⊆ G∗ ◦ idΣ ∪ idΣ ◦G∗ ◦ idN∪Σ = G∗Σ ∪G∗Σ = G∗Σ.

This completes the proof that G∗ = G, and so verifies that G is minimal relative to N .

3.4 Semi­definite and definite networks

Definition. A network (Σ, N, H, E, K, W, P, A, F, S, C, G) is semi­definite iff

(1a) W ◦ A ◦ F = W ◦ A ◦ S,

(3) GN is acyclic,

(4a) H = F(E) ∪ S(E),

(5a) GK ◦G−1
K ⊆ idK ,

(6) G is minimal relative to N ,

(7a) F ◦G = G ◦ F and S ◦G = G ◦ S,

(8a) ∀R (A
−1
◦R = (F ∪ S) ◦ R ⇒ GΣ ◦ R ⊆ W ◦GN ◦ R ∪ idΣ ◦ A ◦GH ◦ A

−1
◦R).

Definition. A network (Σ, N, H, E, K, W, P, A, F, S, C, G) is definite iff

(1b) E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser diagram in the category of sets,
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(2b) GN is connected relative to P,

(3) GN is acyclic,

(4b) E
F
→ H

S
← E is a sum diagram in the category of sets,

(5b) idK = GK ◦G−1
K
∪G−1

K
◦GK ,

(6) G is minimal relative to N .

The grammar is required to be semi­definite, whereas the pattern is required to be definite.

The clauses of these two definitions may be paraphrased informally as follows.

(1a) The two nodes at the ends of any edge belong to the same whole.

(1b) The nodes and edges belonging to any whole form a connected graph.

(2b) Two nodes share the same part only when they are glued together (directly or in­

directly). (This condition prevents the same symbol from being interpreted as part of two

unrelated wholes.)

(3) There is no cyclic sequence of gluings. This is a technical condition for ensuring that

condition (2b) holds in the pattern at the end of recognition (see §3.6).

(4a) Every hook has at least one incident edge.

(4b) Every hook has exactly one incident edge.

(5a) Every facet has at most one superfacet.

(5b) Every facet has exactly one subfacet or superfacet.

(6) Every facet is glued to another facet, but the gluings are minimal subject to this

constraint.

(7a) If any hook is a subhook then all its incident edges are subedges.

(8a) Whenever a subsymbol is glued to a supersymbol, there are sufficiently many nodes

and hooks belonging to the subsymbol that are glued to nodes and hooks belonging to the

supersymbol. This is another technical condition for ensuring that condition (2b) holds in the

pattern at the end of recognition (it is used directly in theorem 22 below).

The definiteness conditions subsume the semi­definiteness conditions, as the following

theorem shows.

Theorem 18. Any definite network is semi­definite.

Proof. Consider any definite network N = (Σ, N, H, E, K, W, P, A, F, S, C, G). We shall verify

each of the conditions for semi­definiteness in turn (reordering them to leave the harder ones

until last).

W ◦ A ◦ F = W ◦ A ◦ S. This follows from the fact that E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser

diagram.

GN is acyclic. This is given.

H = F(E) ∪ S(E). This follows from the fact that E
F
→ H

S
← E is a sum diagram.

GK ◦G−1
K
⊆ idK . This follows from the given condition idK = GK ◦G−1

K
∪G−1

K
◦GK .

G is minimal relative to N . This is given.
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F ◦G = G ◦ F and S ◦G = G ◦ S. This follows by

G ◦ F = G ◦ idH ◦ F

= GH ◦ F

=
(

F ◦GE ◦ F
−1
∪ S ◦GE ◦ S

−1)
◦ F

= F ◦GE ◦ F
−1
◦ F ∪ S ◦GE ◦ S

−1
◦ F

= F ◦GE ◦ idE ∪ S ◦GE ◦ ⊥

= F ◦G

by theorem 17 (G is minimal relative to N )

by theorem 7 (E
F
→ H

S
← E is a sum)

with a similar proof for S ◦G = G ◦ S.

∀R (A
−1
◦ R = (F ∪ S) ◦ R ⇒ GΣ ◦ R ⊆ W ◦GN ◦R ∪ idΣ ◦ A ◦GH ◦ A

−1
◦ R). Consider any

relation R such that A
−1
◦R = (F ∪ S) ◦ R. Then

F
−1
◦ A
−1
◦ R = F

−1
◦ (F ∪ S) ◦ R

= F
−1
◦ F ◦ R ∪ F

−1
◦ S ◦R

= idE ◦R ∪ ⊥ ◦ R

= idE ◦R

by theorem 7 (E
F
→ H

S
← E is a sum)

and similarly S
−1
◦ A
−1
◦ R = idE ◦ R. Consequently F

−1
◦ A
−1
◦ R = S

−1
◦ A
−1
◦ R.

Define a function f : N ∪ Σ → P(dom(R)) (where P(dom(R)) is the power­set of dom(R)) by

∀x∈N ∪ Σ f (x) = { y | R(x, y) }.

Then

∀e∈E f (A(F(e))) = { y | R(A(F(e)), y) } = { y | (F
−1
◦ A
−1
◦ R)(e, y) }

= { y | (S
−1
◦ A
−1
◦ R)(e, y) } = { y | R(A(S(e)), y) } = f (A(S(e)))

i.e., f ◦ A ◦ F = f ◦ A ◦ S. Since E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser diagram, there exists a

unique function i: Σ → P(dom(R)) such that i ◦W = f . Bearing in mind that ∀σ∈Σ W(σ) = σ,

this implies

∀n∈N { y | (W
−1
◦R)(n, y) } = { y | R(W(n), y) } = f (W(n)) = i(W(W(n))) = i(W(n))

= f (n) = { y | R(n, y) }

so idN◦W
−1
◦R = idN◦R, so W◦G◦idN◦W

−1
◦R = W◦G◦idN◦R, i.e., W◦GN◦W

−1
◦R = W◦GN◦R.

Also, G is minimal relative to N , and therefore, by theorem 17,

GΣ = W ◦GN ◦W
−1
∪ idΣ ◦ A ◦GH ◦ A

−1
.

Hence

GΣ ◦ R = W ◦GN ◦W
−1
◦ R ∪ idΣ ◦ A ◦GH ◦ A

−1
◦ R = W ◦GN ◦ R ∪ idΣ ◦ A ◦GH ◦ A

−1
◦ R

which is stronger than the required condition.



3. Networks and homomorphisms

3.5 Properties preserved by homomorphisms

Parsing involves constructing a pattern network N1 and a homomorphism p from N1 to the

grammar network N0. The fact that N1 and N0 are linked by a homomorphism implies some

tight relationships between the two networks; these relationships are stated in theorem 19

below. In particular, the fact that N0 is semi­definite implies that some of the semi­definiteness

properties are carried over to N1, as shown in theorem 20; these properties therefore hold true

for the pattern throughout recognition, not just at the end.

Theorem 19. If p:N1 → N0 is a homomorphism from a network N1 = (Σ1, N1, H1, E1, K1, W1,

P1, A1, F1, S1, C1, G1) to a network N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0) then

(i) p−1 ◦ p ∩ G1 ◦G−1
1 ⊆ idΣ1∪N1∪H1∪E1∪K1

,

(ii) p−1 ◦G0H ◦ p ∩ A1

−1
◦ (G1N ∪G1Σ) ◦ A1 = G1H,

(iii) p−1 ◦G0K ◦ p ∩ C1
−1
◦G1E ◦ C1 = G1K ,

(iv) A0

−1
◦ p = p ◦ A1

−1
,

(v) C0
−1
◦ p = p ◦ C1

−1
.

Proof. (i) This follows by theorem 14 since G1 is minimal relative to p (by the definition of a

homomorphism).

(ii) I shall use the abbreviations G1NΣ = G1N∪G1Σ and pH = p|H1
(so pH = p◦idH1

= idH0
◦p).

G1H ⊆ p−1 ◦G0H ◦ p ∩ A1
−1
◦G1NΣ ◦ A1. The definition of a homomorphism gives p◦G1 =

G0◦p and hence p◦G1H = G0H ◦p (in detail, p◦G1H = p◦idH1
◦G1 = idH0

◦p◦G1 = idH0
◦G0◦p =

G0H ◦ p). Hence by theorem 2(iv) G1H ⊆ p−1 ◦ G0H ◦ p. Also, by the definition of a network,

A1 ◦G1 ⊆ G1 ◦A1, hence by theorem 2(iv) idH1
◦G1 ⊆ A1

−1
◦G1 ◦A1, i.e., G1H ⊆ A1

−1
◦G1NΣ ◦A1.

Combining these two gives G1H ⊆ p−1 ◦G0H ◦ p ∩ A1

−1
◦G1NΣ ◦ A1.

p−1 ◦G0H ◦ p ∩ A1
−1
◦G1NΣ ◦ A1 ⊆ G1H. Now,

p−1 ◦G0H ◦ p = p−1 ◦ idH0
◦G0 ◦ p

= pH
−1 ◦ idH0

◦ p ◦G1

= pH
−1 ◦ pH ◦ idH1

◦G1

= pH
−1 ◦ pH ◦G1H.

since G0 ◦ p = p ◦G1 (p is a homomorphism)

(1)

Also, from the definition of a network, A1◦G1 ⊆ G1◦A1, so by theorem 2(iii),(iv) idH1
◦G1◦A1

−1
⊆

A1
−1
◦G1 ◦ idN1∪Σ1

, i.e., G1H ◦ A1
−1
⊆ A1

−1
◦G1NΣ. Inverting this gives

A1 ◦G−1
1H ⊆ G−1

1NΣ ◦ A1. (2)

Furthermore,

pH
−1 ◦ pH = p−1 ◦ idH0

◦ p

⊆ p−1 ◦ A0
−1
◦ A0 ◦ p

= A1

−1
◦ p−1 ◦ p ◦ A1

by theorem 2(ii)

since A0 ◦ p = p ◦ A1 (p is a homomorphism). (3)
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Using (1)–(3),

p−1 ◦G0H ◦ p ∩ A1
−1
◦G1NΣ ◦ A1

= pH
−1 ◦ pH ◦G1H ∩ A1

−1
◦G1NΣ ◦ A1

⊆ (pH
−1 ◦ pH ∩ A1

−1
◦G1NΣ ◦ A1 ◦G−1

1H) ◦G1H

⊆ (pH
−1 ◦ pH ∩ A1

−1
◦G1NΣ ◦G−1

1NΣ ◦ A1) ◦G1H

= (pH
−1 ◦ pH ∩ A1

−1
◦ p−1 ◦ p ◦ A1 ∩ A1

−1
◦G1NΣ ◦G−1

1NΣ ◦ A1) ◦G1H

=
(

pH
−1 ◦ pH ∩ A1

−1
◦ (p−1 ◦ p ∩ G1NΣ ◦G−1

1NΣ) ◦ A1

)

◦G1H

⊆
(

pH
−1 ◦ pH ∩ A1

−1
◦ (p−1 ◦ p ∩ G1 ◦G−1

1 ) ◦ A1

)

◦G1H

⊆ (pH
−1 ◦ pH ∩ A1

−1
◦ idΣ1∪N1∪H1∪E1∪K1

◦ A1) ◦G1H

= (pH
−1 ◦ pH ∩ A1

−1
◦ A1) ◦G1H

⊆ idH1
◦G1H

= G1H

by (1)

by theorem 4(i)

by (2)

by (3)

by theorem 3(v),(vi)

by part (i)

by theorem 6 (p is a homomorphism)

as required.

(iii) The argument is as in part (ii), with hooks replaced by facets, G1NΣ replaced by G1E,

and idN1∪Σ1
replaced by idE1

.

(iv) We have

A0

−1
◦ p = A0

−1
◦ idN0∪Σ0

◦ p

= A0

−1
◦ p ◦ idN1∪Σ1

= A0
−1
◦ p|N1∪Σ1

= p|H1
◦ A1

−1

= p ◦ idH1
◦ A1

−1

= p ◦ A1

−1

since A0: H0 → N0 ∪ Σ0

since N1 ∪ Σ1 = p−1(N0 ∪ Σ0)

by theorem 6 (p is a homomorphism)

since A1: H1 → N1 ∪ Σ1.

(v) The argument is as in part (iv).

Theorem 20. If p:N1 → N0 is a homomorphism from a network N1 = (Σ1, N1, H1, E1, K1, W1,

P1, A1, F1, S1, C1, G1) to a semi­definite network N0, then

(i) G1K ◦G−1
1K ⊆ idK1

,

(ii) F1 ◦G1 = G1 ◦ F1 and S1 ◦G1 = G1 ◦ S1,

(iii) G1N = idN1
◦ A1 ◦G1H ◦ A

−1

1 ,

(iv) G1E = C1 ◦G1K ◦ C1

−1
.

Proof. We shall use the usual notation, N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0).
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(i) Now,

G1K ◦G−1
1K

= idΣ1∪N1∪H1∪E1∪K1
◦G1 ◦ idK1

◦G−1
1 ◦ idΣ1∪N1∪H1∪E1∪K1

⊆ p−1 ◦ p ◦G1 ◦ idK1
◦G−1

1 ◦ p−1 ◦ p

= p−1 ◦G0 ◦ p ◦ idK1
◦ p−1 ◦G−1

0 ◦ p

= p−1 ◦G0 ◦ idK0
◦ p ◦ p−1 ◦G−1

0 ◦ p

⊆ p−1 ◦G0 ◦ idK0
◦ idΣ0∪N0∪H0∪E0∪K0

◦G−1
0 ◦ p

= p−1 ◦G0K ◦G−1
0K ◦ p

⊆ p−1 ◦ p

by theorem 2(ii)

since p ◦G1 = G0 ◦ p (p is a homomorphism)

since K1 = p−1(K0)

by theorem 2(i)

since G0K ◦G−1
0K ⊆ idK0

(N0 is semi­definite)

so

G1K ◦G−1
1K = p−1 ◦ p ∩ G1K ◦G−1

1K

= idK1
◦
(

p−1 ◦ p ∩ G1 ◦G−1
1

)

◦ idK1

⊆ idK1
◦ idΣ1∪N1∪H1∪E1∪K1

◦ idK1

= idK1

by theorem 4(iii),(iv)

by theorem 19(i)

as required.

(ii) I shall just show F1 ◦G1 = G1 ◦ F1; the proof for S1 ◦G1 = G1 ◦ S1 is similar. First,

G1 ◦ F1 = idΣ1∪N1∪H1∪E1∪K1
◦G1 ◦ F1

⊆ p−1 ◦ p ◦G1 ◦ F1

= p−1 ◦G0 ◦ p ◦ F1

= p−1 ◦G0 ◦ F0 ◦ p

= p−1 ◦ F0 ◦G0 ◦ p

= p−1 ◦ F0 ◦ p ◦G1

= p−1 ◦ p ◦ F1 ◦G1

by theorem 2(ii)

since p ◦G1 = G0 ◦ p (p is a homomorphism)

since p ◦ F1 = F0 ◦ p (p is a homomorphism)

since G0 ◦ F0 = F0 ◦G0 (N0 is semi­definite)

since G0 ◦ p = p ◦G1 (p is a homomorphism)

since F0 ◦ p = p ◦ F1 (p is a homomorphism).

Hence

G1 ◦ F1 = p−1 ◦ p ◦ F1 ◦G1 ∩ G1 ◦ F1

⊆ (p−1 ◦ p ∩ G1 ◦ F1 ◦ (F1 ◦G1)−1) ◦ F1 ◦G1

⊆ (p−1 ◦ p ∩ G1 ◦ F1 ◦ (G1 ◦ F1)−1) ◦ F1 ◦G1

= (p−1 ◦ p ∩ G1 ◦ F1 ◦ F1

−1
◦G−1

1 ) ◦ F1 ◦G1

⊆ (p−1 ◦ p ∩ G1 ◦ idH1
◦G−1

1 ) ◦ F1 ◦G1

⊆ (p−1 ◦ p ∩ G1 ◦G−1
1 ) ◦ F1 ◦G1

⊆ idΣ1∪N1∪H1∪E1∪K1
◦ F1 ◦G1

= F1 ◦G1.

by theorem 4(i)

since F1 ◦G1 ⊆ G1 ◦ F1 (N1 is a network)

by theorem 2(i)

by theorem 19(i)

Since the converse F1 ◦ G1 ⊆ G1 ◦ F1 is given by the definition of a network, this establishes

that F1 ◦G1 = G1 ◦ F1, as required.

(iii) The definition of a network gives A1 ◦ G1 ⊆ G1 ◦ A1, and hence by theorem 2(iii)

A1 ◦G1 ◦ A1

−1
⊆ G1 ◦ idN1∪Σ1

, and hence idN1
◦ A1 ◦G1H ◦ A1

−1
⊆ G1N.
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For the converse, the fact that p is a homomorphism gives p ◦ G1 = G0 ◦ p, and hence

p ◦G1N = G0N ◦ p. Thus

G1N ⊆ p−1 ◦G0N ◦ p

= p−1 ◦ idN0
◦ A0 ◦G0H ◦ A0

−1
◦ p

⊆ p−1 ◦ A0 ◦G0H ◦ A0
−1
◦ p

= A1 ◦ p−1 ◦G0H ◦ p ◦ A1

−1

by theorem 2(iv)

by theorem 17 (N0 is semi­definite)

by theorem 19(iv).

Hence

G1N = A1 ◦ p−1 ◦G0H ◦ p ◦ A1

−1
∩ G1N

⊆
(

A1 ◦ p−1 ◦G0H ◦ p ∩ G1N ◦ A1

)

◦ A1

−1

⊆ A1 ◦
(

p−1 ◦G0H ◦ p ∩ A1

−1
◦G1N ◦ A1

)

◦ A1

−1

⊆ A1 ◦
(

p−1 ◦G0H ◦ p ∩ A1
−1
◦ (G1N ∪G1Σ) ◦ A1

)

◦ A1
−1

= A1 ◦G1H ◦ A1

−1

by theorem 4(i)

by theorem 4(ii)

by theorem 19(ii)

so G1N = idN1
◦G1N ⊆ idN1

◦ A1 ◦G1H ◦ A1

−1
, as required.

(iv) The argument is similar to part (iii), with hooks replaced by facets, nodes replaced by

edges, A1, A0 replaced by C1, C0, and with idN1
, idN0

and G1Σ removed.

3.6 Theorems on definiteness

The recognition process aims to achieve a definite pattern N1. Theorem 23 below provides

sufficient conditions through which definiteness is ensured. Theorem 21 and theorem 22 are

more general results, with weaker hypotheses and conclusions, which are used in the proof of

theorem 23 and also later in §8.

Theorem 21. If p:N1 → N0 is a homomorphism from a network N1 = (Σ1, N1, H1, E1, K1, W1,

P1, A1, F1, S1, C1, G1) to a semi­definite network N0, and Y is a set, such that

(a) Y ⊆ Σ1 and E1
F1→ A1

−1(N1 ∪ Y)
S1← E1 is a sum diagram in the category of sets,

(b) ∃f : K1\dom(G1)→ K1 G−1
1K = f ,

then

(i) G1 ◦ idA1
−1(N1∪Y) = F1 ◦G1E ◦ F1

−1
∪ S1 ◦G1E ◦ S1

−1
,

(ii) idK1
= G1K ◦G−1

1K ∪ G−1
1K ◦G1K ,

(iii) p−1 ◦ p ∩ G−1
1E ◦G1E ⊆ idE1

,

(iv) p−1 ◦ p ∩ idA1
−1(N1) ◦G−1

1 ◦G1 ◦ idA1
−1(N1) ⊆ idA1

−1(N1),

(v) p−1 ◦ p ∩ G−1
1N ◦G1N ⊆ idN1

,

(vi) G1N is acyclic.

Proof. We shall use the usual notation, N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0).

(i) We have

G1 ◦ idA1
−1(N1∪Y) = G1 ◦

(

F1 ◦ F1

−1
∪ S1 ◦ S1

−1)

= G1 ◦ F1 ◦ F1
−1
∪ G1 ◦ S1 ◦ S1

−1

= F1 ◦G1 ◦ F1

−1
∪ S1 ◦G1 ◦ S1

−1

= F1 ◦G1E ◦ F1
−1
∪ S1 ◦G1E ◦ S1

−1

by theorem 7 and hypothesis (a)

by theorem 3(ii)

by theorem 20(ii)

since F1, S1: E1 → H1.
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(ii) By hypothesis (b) there is a function f : K1\dom(G1)→ K1 such that G−1
1K = f . Hence

G−1
1K ◦G1K ⊆ idK1

,

idK1\ dom(G1) ⊆ G1K ◦G−1
1K

by theorem 2(i),(ii). But we also have

iddom(G1K ) ⊆ G−1
1K ◦G1K

G1K ◦G−1
1K ⊆ idK1

since this holds for all relations,

by theorem 20(i).

Combining these four in pairs gives

G1K ◦G−1
1K
∪ G−1

1K
◦G1K ⊆ idK1

,

idK1
= idK1\ dom(G1) ∪ iddom(G1K ) ⊆ G1K ◦G−1

1K ∪ G−1
1K ◦G1K

and hence idK1
= G1K ◦G−1

1K ∪ G−1
1K ◦G1K , as required.

(iii) Theorem 20(iv) says G1E = C1 ◦G1K ◦ C1

−1
, and hence

G−1
1E = C1 ◦G−1

1K ◦C1

−1
. (1)

Also, from the definition of a homomorphism, p◦G1K = G0K ◦p, and hence by theorem 2(iii),(iv),

G1K ◦ p−1 ⊆ p−1 ◦G0K . (2)

This gives

p−1 ◦ p ∩ G−1
1E
◦G1E

= p−1 ◦ p ∩ C1 ◦G−1
1K ◦C1

−1
◦G1E

⊆ C1 ◦
(

C1
−1
◦ p−1 ◦ p ∩ G−1

1K
◦ C1

−1
◦G1E

)

= C1 ◦
(

p−1 ◦C0

−1
◦ p ∩ G−1

1K ◦ C1

−1
◦G1E

)

= C1 ◦
(

p−1 ◦ p ◦C1
−1
∩ G−1

1K
◦ C1

−1
◦G1E

)

⊆ C1 ◦
(

p−1 ◦ p ∩ G−1
1K ◦C1

−1
◦G1E ◦ C1

)

◦ C1

−1

⊆ C1 ◦G−1
1K ◦

(

G1K ◦ p−1 ◦ p ∩ C1

−1
◦G1E ◦C1

)

◦ C1

−1

⊆ C1 ◦G−1
1K ◦

(

p−1 ◦G0K ◦ p ∩ C1

−1
◦G1E ◦C1

)

◦ C1

−1

= C1 ◦G−1
1K ◦G1K ◦ C1

−1

⊆ C1 ◦ idK1
◦C1

−1

= C1 ◦C1

−1

⊆ idE1

by (1)

by theorem 4(ii)

since p ◦ C1 = C0 ◦ p (p is a homomorphism)

by theorem 19(v)

by theorem 4(i)

by theorem 4(ii)

by (2)

by theorem 19(iii)

by part (ii)

since C1: K1 → E1

by theorem 2(i).

(iv) First, the definition of a homomorphism gives p ◦ G1E = G0E ◦ p, and so by theo­

rem 2(iii),(iv)

G1E ◦ p−1 ⊆ p−1 ◦G0E. (3)
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This is used in the following:

F1
−1
◦ p−1 ◦ p ◦ F1 ∩ G−1

1E ◦G1E

= p−1 ◦ F0

−1
◦ F0 ◦ p ∩ G−1

1E ◦G1E

⊆ p−1 ◦
(

F0
−1
◦ F0 ∩ p ◦G−1

1E
◦G1E ◦ p−1

)

◦ p

⊆ p−1 ◦
(

F0

−1
◦ F0 ∩ G−1

0E ◦ p ◦ p−1 ◦G0E

)

◦ p

⊆ p−1 ◦
(

F0
−1
◦ F0 ∩ G−1

0E
◦ idΣ0∪N0∪H0∪E0∪K0

◦G0E

)

◦ p

= p−1 ◦
(

F0

−1
◦ F0 ∩ G−1

0E ◦G0E

)

◦ p

⊆ p−1 ◦ idE0
◦ p

⊆ p−1 ◦ p.

since p ◦ F1 = F0 ◦ p (p is a homomorphism)

by theorem 4(i),(ii)

by (3)

by theorem 2(i)

by theorem 14 (G−1
0E is minimal relative to F0)

(4)

Using this we derive

p−1 ◦ p ∩ F1 ◦G−1
1E
◦G1E ◦ F1

−1

⊆ F1 ◦
(

F1

−1
◦ p−1 ◦ p ◦ F1 ∩ G−1

1E ◦G1E

)

◦ F1

−1

= F1 ◦
(

F1
−1
◦ p−1 ◦ p ◦ F1 ∩ G−1

1E
◦G1E ∩ G−1

1E
◦G1E

)

◦ F1
−1

⊆ F1 ◦ (p−1 ◦ p ∩ G−1
1E ◦G1E) ◦ F1

−1

⊆ F1 ◦ idE1
◦ F1

−1

= F1 ◦ F1

−1

⊆ idH1

by theorem 4(i),(ii)

by (4)

by part (iii)

since F1: E1 → H1

by theorem 2(i). (5)

By a similar argument,

p−1 ◦ p ∩ S1 ◦G−1
1E ◦G1E ◦ S1

−1
⊆ idH1

. (6)

We also have, using the abbreviation I = idA1
−1(N1),

I ◦G−1
1 ◦G1 ◦ I ⊆ idA1

−1(N1∪Y) ◦G−1
1 ◦G1 ◦ idA1

−1(N1∪Y)

=
(

F1 ◦G−1
1E ◦ F1

−1
∪ S1 ◦G−1

1E ◦ S1

−1)
◦
(

F1 ◦G1E ◦ F1

−1
∪ S1 ◦G1E ◦ S1

−1)

= F1 ◦G−1
1E ◦ idE1

◦G1E ◦ F1

−1
∪ ⊥ ∪ ⊥ ∪ S1 ◦G−1

1E ◦ idE1
◦G1E ◦ S1

−1

= F1 ◦G−1
1E
◦G1E ◦ F1

−1
∪ S1 ◦G−1

1E
◦G1E ◦ S1

−1
.

by part (i)

by theorem 7 and hypothesis (a)

(7)

Then, by (5), (6) and (7),

p−1 ◦ p ∩ I ◦G−1
1 ◦G1 ◦ I ⊆ idH1

(8)

and so

p−1 ◦ p ∩ I ◦G−1
1 ◦G1 ◦ I = p−1 ◦ p ∩ I ◦G−1

1 ◦G1 ◦ I ◦ I

=
(

p−1 ◦ p ∩ I ◦G−1
1 ◦G1 ◦ I

)

◦ I

⊆ idH1
◦ I

= I

by theorem 4(iii)

by (8)

since A1
−1(N1) ⊆ H1
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as required.

(v) From the definition of a homomorphism, p ◦ G1H = G0H ◦ p, and hence by theo­

rem 2(iii),(iv),

G1H ◦ p−1 ⊆ p−1 ◦G0H. (9)

Also (with I = idA1
−1(N1) again),

I ◦G1 = I ◦ idH1
◦G1

⊆ I ◦ A1
−1
◦ A1 ◦G1

⊆ I ◦ A1

−1
◦G1 ◦ A1

= A1
−1
◦ idN1

◦G1 ◦ A1

= A1

−1
◦G1 ◦ idN1

◦ A1

= A1
−1
◦G1 ◦ A1 ◦ I

since A1
−1(N1) ⊆ H1

by theorem 2(ii)

since A1 ◦G1 ⊆ G1 ◦ A1 (N1 is a network)

since I = idA1
−1(N1)

since I = idA1
−1(N1)

so by theorem 4(v)

I ◦G1 ⊆ G1 ◦ I

and inverting this gives

G−1
1 ◦ I ⊆ I ◦G−1

1 . (10)

Also, theorem 20(iii) says G1N = idN1
◦ A1 ◦G1H ◦ A1

−1
, and hence

G−1
1N

= A1 ◦G−1
1H
◦ A1

−1
◦ idN1

. (11)

Then,

p−1 ◦ p ∩ G−1
1H
◦ A1

−1
◦G1N ◦ A1

= p−1 ◦ p ∩ p−1 ◦ p ∩ G−1
1H ◦ A1

−1
◦ idN1

◦G1N ◦ idN1
◦ A1

= p−1 ◦ p ∩ p−1 ◦ p ∩ G−1
1H
◦ I ◦ A1

−1
◦G1N ◦ A1 ◦ I

⊆ p−1 ◦ p ∩ G−1
1H ◦

(

G1H ◦ p−1 ◦ p ∩ I ◦ A1

−1
◦G1N ◦ A1 ◦ I

)

= p−1 ◦ p ∩ G−1
1H
◦ I ◦

(

G1H ◦ p−1 ◦ p ∩ A1
−1
◦G1N ◦ A1

)

◦ I

⊆ p−1 ◦ p ∩ G−1
1H ◦ I ◦

(

p−1 ◦G0H ◦ p ∩ A1

−1
◦G1N ◦ A1

)

◦ I

⊆ p−1 ◦ p ∩ G−1
1H ◦ I ◦G1H ◦ I

= p−1 ◦ p ∩ G−1
1 ◦ I ◦G1 ◦ I

⊆ p−1 ◦ p ∩ I ◦G−1
1 ◦G1 ◦ I

⊆ I

since I = idA1
−1(N1)

by theorem 4(ii)

by theorem 4(iii),(iv)

by (9)

by theorem 19(ii)

since idH1
◦ I = I

by (10)

by part (iv). (12)
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This gives

p−1 ◦ p ∩ G−1
1N
◦G1N

= p−1 ◦ p ∩ A1 ◦G−1
1H ◦ A1

−1
◦ idN1

◦G1N

= p−1 ◦ p ∩ A1 ◦G−1
1H
◦ A1

−1
◦G1N

⊆ A1 ◦
(

A1

−1
◦ p−1 ◦ p ∩ G−1

1H ◦ A1

−1
◦G1N

)

= A1 ◦
(

p−1 ◦ A0
−1
◦ p ∩ G−1

1H
◦ A1

−1
◦G1N

)

= A1 ◦
(

p−1 ◦ p ◦ A1

−1
∩ G−1

1H ◦ A1

−1
◦G1N

)

⊆ A1 ◦
(

p−1 ◦ p ∩ G−1
1H
◦ A1

−1
◦G1N ◦ A1

)

◦ A1
−1

⊆ A1 ◦ I ◦ A1

−1

= idN1
◦ A1 ◦ A1

−1

⊆ idN1
◦ idN1∪Σ1

= idN1

by (11)

by theorem 4(ii)

since p ◦ A1 = A0 ◦ p (p is a homomorphism)

by theorem 19(iv)

by theorem 4(i)

by (12)

since I = idA1
−1(N1)

by theorem 2(i)

as required.

(vi) Define pN = p|N1
. We already know the following.

pN ◦G1N = G0N ◦ pN

pN
−1 ◦ pN ∩ G−1

1N ◦G1N ⊆ p−1 ◦ p ∩ G−1
1N ◦G1N

⊆ idN1

pN
−1 ◦ pN ∩ G1N ◦G−1

1N = idN1
◦
(

p−1 ◦ p ∩ G1 ◦G−1
1

)

◦ idN1

⊆ idN1

G0N is acyclic

since p is a homomorphism;

by part (v);

by theorem 4(iii),(iv)

by theorem 19(i);

since N0 is semi­definite.

Then by theorem 12 G1N is also acyclic.

Theorem 22. If p:N1 → N0 is a homomorphism from a network N1 = (Σ1, N1, H1, E1, K1, W1,

P1, A1, F1, S1, C1, G1) to a semi­definite network N0, and Y is a set, such that

(a) W1(N1) ⊆ Y ⊆ Σ1 and E1
F1→ A1

−1(N1 ∪ Y)
S1← E1 is a sum diagram in the category of sets,

(b) W1 ◦ A1 ◦ F1 = W1 ◦ A1 ◦ S1,

then

(i) idΣ1
◦ A1 ◦G1H ◦ A1

−1
= A1 ◦G1H ◦ A1

−1
◦ idΣ1

,

(ii) G1 ◦ idY =
(

W1 ◦G1N ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1
−1)
◦ idY ,

(iii) G1 ◦ idY ⊆ idY ◦G1.

Proof. We shall use the usual notation, N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0). We

begin with two observations.

First, note that W1(N1) ⊆ Y and W1(Y) = Y, so N1∪Y ⊆ W1
−1(Y). Conversely, any element

of W1
−1(Y) is either a node or a symbol in Y, so W1

−1(Y) ⊆ N1 ∪ Y. Hence

W1
−1(Y) = N1 ∪ Y. (1)
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Secondly, from A1 ◦G1 ⊆ G1 ◦ A1, theorem 2(iii) implies A1 ◦G1 ◦ A1

−1
⊆ G1 ◦ idN1∪Σ1

, and

hence

idΣ1
◦ A1 ◦G1 ◦ A1

−1
⊆ idΣ1

◦G1 ◦ idN1∪Σ.

which may be rewritten as

idΣ1
◦ A1 ◦G1H ◦ A1

−1
⊆ G1 ◦ idΣ1

. (2)

(i) Applying theorem 4(v) to (2),

idΣ1
◦ A1 ◦G1H ◦ A1

−1
⊆ A1 ◦G1H ◦ A1

−1
◦ idΣ1

.

The converse is proved similarly, and hence

idΣ1
◦ A1 ◦G1H ◦ A1

−1
= A1 ◦G1H ◦ A1

−1
◦ idΣ1

as required.

(ii) From W1 ◦G1 = G1 ◦W1, theorem 2(iii) implies

W1 ◦G1N ◦W1

−1
⊆ W1 ◦G1 ◦W1

−1
= G1 ◦W1 ◦W1

−1
⊆ G1 ◦ idΣ1

.

Combining this with (2),

W1 ◦G1N ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1
−1
⊆ G1 ◦ idΣ1

⊆ G1. (3)

Define a relation R = p ◦W1

−1
◦ idY ∪ p ◦W1 ◦ A1 ◦ F1

−1
. Then

idN0∪Σ0
◦ R = idN0∪Σ0

◦ p ◦W1

−1
◦ idY ∪ idN0∪Σ0

◦ p ◦W1 ◦ A1 ◦ F1

−1

= p ◦ idN1∪Σ1
◦ idN1∪Y ◦W1

−1
∪ p ◦ idN1∪Σ1

◦ idE1
◦W1 ◦ A1 ◦ F1

−1

= p ◦ idN1∪Y ◦W1

−1
∪ ⊥

= p ◦W1
−1
◦ idY

by (1)

by (1). (4)

idN0
◦R = idN0

◦ idN0∪Σ0
◦R

= idN0
◦ p ◦W1

−1
◦ idY

= p ◦ idN1
◦W1

−1
◦ idY .

by (4)

(5)

idΣ0
◦ R = idΣ0

◦ idN0∪Σ0
◦ R

= idΣ0
◦ p ◦W1

−1
◦ idY

= p ◦ idΣ1
◦W1

−1
◦ idY

= p ◦ idΣ1
◦ idY

= p ◦ idY .

by (4)

since ∀σ∈Σ1 W1(σ) = σ

(6)

idE0
◦ R = idE0

◦ p ◦W1

−1
◦ idY ∪ idE0

◦ p ◦W1 ◦ A1 ◦ F1

−1

= p ◦ idE1
◦ idN1∪Y ◦W1

−1
∪ p ◦ idE1

◦W1 ◦ A1 ◦ F1
−1

= ⊥ ∪ p ◦W1 ◦ A1 ◦ F1

−1

= p ◦W1 ◦ A1 ◦ F1
−1

.

by (1)

(7)
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Hence

A0
−1
◦R = A0

−1
◦ idN0∪Σ0

◦ R

= A0

−1
◦ p ◦W1

−1
◦ idY

= p ◦ A1
−1
◦ idN1∪Y ◦W1

−1

= p ◦ idA1
−1(N1∪Y) ◦ A1

−1
◦W1

−1

= p ◦
(

F1 ◦ F1
−1
∪ S1 ◦ S1

−1)
◦ A1

−1
◦W1

−1

= p ◦ F1 ◦ F1

−1
◦ A1

−1
◦W1

−1
∪ p ◦ S1 ◦ S1

−1
◦ A1

−1
◦W1

−1

= F0 ◦ p ◦W1 ◦ A1 ◦ F1
−1
∪ S0 ◦ p ◦W1 ◦ A1 ◦ S1

−1

= F0 ◦ p ◦W1 ◦ A1 ◦ F1

−1
∪ S0 ◦ p ◦W1 ◦ A1 ◦ F1

−1

=
(

F0 ∪ S0

)

◦ p ◦W1 ◦ A1 ◦ F1
−1

=
(

F0 ∪ S0

)

◦ idE0
◦ R

=
(

F0 ∪ S0

)

◦ R.

by (4)

by theorem 19(iv) and (1)

by theorem 7 and (a)

since p is a homomorphism

by hypothesis (b)

by (7)

Since N0 is semi­definite we may infer

G0Σ ◦R ⊆ W0 ◦G0N ◦R ∪ idΣ0
◦ A0 ◦G0H ◦ A0

−1
◦ R. (8)

Then

p ◦G1 ◦ idY

= G0 ◦ p ◦ idY

= G0 ◦ idΣ0
◦R

= G0Σ ◦ R

⊆ W0 ◦G0N ◦ R ∪ idΣ0
◦ A0 ◦G0H ◦ A0

−1
◦R

= W0 ◦G0 ◦ idN0
◦ R ∪ idΣ0

◦ A0 ◦G0 ◦ A0
−1
◦ idN0∪Σ0

◦ R

= W0 ◦G0 ◦ p ◦ idN1
◦W1

−1
◦ idY ∪ idΣ0

◦ A0 ◦G0 ◦ A0

−1
◦ p ◦W1

−1
◦ idY

= W0 ◦G0 ◦ p ◦ idN1
◦W1

−1
◦ idY ∪ idΣ0

◦ A0 ◦G0 ◦ p ◦ A1
−1
◦W1

−1
◦ idY

= p ◦W1 ◦G1 ◦ idN1
◦W1

−1
◦ idY ∪ p ◦ idΣ1

◦ A1 ◦G1 ◦ A1

−1
◦W1

−1
◦ idY

= p ◦
(

W1 ◦G1N ◦W1

−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1

−1
◦W1

−1)
◦ idY

= p ◦
(

W1 ◦G1N ◦W1
−1
∪ A1 ◦G1H ◦ A1

−1
◦ idΣ1

◦W1
−1)
◦ idY

= p ◦
(

W1 ◦G1N ◦W1

−1
∪ A1 ◦G1H ◦ A1

−1
◦ idΣ1

)

◦ idY

= p ◦
(

W1 ◦G1N ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1
−1)
◦ idY

since p is a homomorphism

by (6)

by (8)

by (5) and (4)

by theorem 19(iv)

since p is a homomorphism

by part (i)

since ∀σ∈Σ1 W1(σ) = σ

by part (i). (9)

Define a relation

G∗ =
(

W1 ◦G1N ◦W1

−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1

−1)
◦ idY ∪ G1 ◦ id(Σ1\Y)∪N1∪H1∪E1∪K1

.
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Comparing G∗ with G1 = G1 ◦ idY ∪ G1 ◦ id(Σ1\Y)∪N1∪H1∪E1∪K1
, we have G∗ ⊆ G1 by (3), and

hence p ◦G∗ ⊆ p ◦G1, but also p ◦ G1 ⊆ p ◦ G∗ by (9), and hence p ◦G∗ = p ◦G1. Since p is a

homomorphism, G1 is minimal relative to p, so G∗ = G1. Hence

G1 ◦ idY = G∗ ◦ idY =
(

W1 ◦G1N ◦W1

−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1

−1)
◦ idY

as required.

(iii) We have

G1 ◦ idY = W1 ◦G1N ◦W1

−1
◦ idY ∪ idΣ1

◦ A1 ◦G1H ◦ A1

−1
◦ idY

= W1 ◦G1N ◦ idN1∪Y ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ idA1
−1(Y) ◦ A1

−1

⊆ W1 ◦G1N ◦W1

−1
∪ idΣ1

◦ A1 ◦G1H ◦ F1 ◦ F1

−1
◦ A1

−1

∪ idΣ1
◦ A1 ◦G1H ◦ S1 ◦ S1

−1
◦ A1

−1

by part (ii)

by (1)

by theorem 7 and (a). (10)

Let us consider each of the three terms on the right­hand side in turn. First,

W1 ◦G1N ◦W1

−1
= W1 ◦ idN1∪Y ◦G1N ◦W1

−1

= idY ◦W1 ◦G1N ◦W1

−1
by (1).

Secondly,

idΣ1
◦ A1 ◦G1H ◦ F1 ◦ F1

−1
◦ A1

−1

= idΣ1
◦ A1 ◦G1 ◦ F1 ◦ F1

−1
◦ A1

−1

= idΣ1
◦ A1 ◦ F1 ◦G1 ◦ F1

−1
◦ A1

−1

= idΣ1
◦ A1 ◦ idA1

−1(N1∪Y) ◦ F1 ◦G1 ◦ F1

−1
◦ A1

−1

= idΣ1
◦ idN1∪Y ◦ A1 ◦ F1 ◦G1 ◦ F1

−1
◦ A1

−1

= idY ◦ A1 ◦ F1 ◦G1 ◦ F1

−1
◦ A1

−1
.

since F1: E1 → H1

by theorem 20(ii)

since ran(F1) ⊆ A1
−1(N1 ∪ Y), by (a)

By a similar argument,

idΣ1
◦ A1 ◦G1H ◦ S1 ◦ S1

−1
◦ A1

−1
= idY ◦ A1 ◦ S1 ◦G1 ◦ S1

−1
◦ A1

−1
.

Using these last three equations in (10),

G1 ◦ idY ⊆ idY ◦
(

W1 ◦G1N ◦W1
−1
∪ A1 ◦ F1 ◦G1 ◦ F1

−1
◦ A1

−1
∪ A1 ◦ S1 ◦G1 ◦ S1

−1
◦ A1

−1)
.

Hence by theorem 4(vi)

G1 ◦ idY ⊆ idY ◦G1

as required.

Theorem 23. If p:N1 → N0 is a homomorphism from a network N1 = (Σ1, N1, H1, E1, K1, W1,

P1, A1, F1, S1, C1, G1) satisfying

(a) ∀X ⊆ Σ1 |P1
−1(X)| − |G1N ◦ idP1

−1(X)| ≤ |X|,

(b) E1
F1→ H1

S1← E1 is a sum diagram in the category of sets,

(c) ∃f : K1\dom(G1)→ K1 G−1
1K = f ,
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(d) E1

A1◦F1−−→
−−→
A1◦S1

N1 ∪ Σ1
W1→ Σ1 is a coequaliser diagram in the category of sets,

to a semi­definite network N0, then N1 is definite.

Proof. We shall use the usual notation, N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0).

First note that the hypotheses of theorem 21 and theorem 22 hold, taking Y = Σ1 (since

H1 = A1
−1(N1∪Σ1)), so we can apply these theorems in what follows. In particular, theorem 22

gives

G1Σ = G1 ◦ idΣ1

=
(

W1 ◦G1N ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1
−1)
◦ idΣ1

= W1 ◦G1N ◦W1

−1
◦ idΣ1

∪ idΣ1
◦ A1 ◦G1H ◦ A1

−1
◦ idΣ1

= W1 ◦G1N ◦W1
−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1
−1

by theorem 22(ii)

by theorem 22(i) (1)

and theorem 21(i) gives

G1H = G1 ◦ idH1
= F1 ◦G1E ◦ F1

−1
∪ S1 ◦G1E ◦ S1

−1
. (2)

Next we shall show that G1N is connected relative to P1. We already know the following.

G1N is finite

G1N ◦G1N ⊆ G1 ◦G1 = ⊥

G1N is acyclic

P1 ◦G1N ⊆ P1 ◦G1 ⊆ P1

∀X ⊆ Σ1 |P1
−1(X)| − |G1N ◦ idP1

−1(X)| ≤ |X|

since N1 is finite

since N1 is a network

by theorem 21(vi)

since N1 is a network

by hypothesis (a)

So G1N is connected relative to P1, by theorem 13(iii).

Next we shall show that G1 is minimal relative to N1. We already know the following.

G1K ◦G−1
1K ⊆ idK1

⊆ G1K ◦G−1
1K ∪G−1

1K ◦G1K

G1Σ = W1 ◦G1N ◦W1

−1
∪ idΣ1

◦ A1 ◦G1H ◦ A1

−1

G1N = idN1
◦ A1 ◦G1H ◦ A1

−1

G1H = F1 ◦G1E ◦ F1

−1
∪ S1 ◦G1E ◦ S1

−1

G1E = C1 ◦G1K ◦ C1
−1

by theorem 21(ii)

by (1)

by theorem 20(iii)

by (2)

by theorem 20(iv)

Then G1 is minimal relative to N1 by theorem 17.

Finally we shall check the conditions for N1 to be definite.

E1

A1◦F1−−→
−−→
A1◦S1

N1 ∪ Σ1
W1→ Σ1 is a coequaliser diagram

G1N is connected relative to P1

G1N is acyclic

E1
F1→ H1

S1← E1 is a sum diagram

idK1
= G1K ◦G−1

1K
∪G−1

1K
◦G1K

G1 is minimal relative to N1

by hypothesis (d)

as just shown

by theorem 21(vi)

by hypothesis (b)

by theorem 21(ii)

as just shown

Thus N1 is definite.
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3.7 Subnetworks

Definition. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a network, a subnetwork of N is a

12­tuple (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), where

Σ′ ⊆ Σ, N′ ⊆ N, H′ ⊆ H, E′ ⊆ E, K ′ ⊆ K

W(N′) ⊆ Σ′, P(N′) ⊆ Σ′, H′ = A−1(N′ ∪ Σ′), F(E′) ⊆ H′, S(E′) ⊆ H′, K ′ = C−1(E′)

W′ = W|N′∪Σ′ , P′ = P|N′ , A′ = A|H′ , F′ = F|E′ , S′ = S|E′ , C′ = C|K′

G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦G, G′ = idΣ′∪N′∪H′∪E′∪K′ ◦G ◦ idΣ′∪N′∪H′∪E′∪K′ .

A proper subnetwork of N is a subnetwork N ′ such that N ′ 6= N .

Theorem 24. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a network and N ′ = (Σ′, N′, H′, E′, K ′,

W′, P′, A′, F′, S′, C′, G′) is a subnetwork of N then

(i) G′ = G ◦ idΣ′∪N′∪H′∪E′∪K′ ,

(ii) N ′ is a network,

(iii) K ′\dom(G′) ⊆ K\dom(G),

(iv) the function f : Σ′∪N′∪H′∪E′∪K ′ → Σ∪N∪H∪E∪K defined by ∀x∈Σ′∪N′∪H′∪E′∪K ′ f (x) = x

is a homomorphism from N ′ to N , called the inclusion homomorphism.

Proof. Define I = idΣ′∪N′∪H′∪E′∪K′ .

(i) By definition, G′ = I ◦G ◦ I, which equals G ◦ I by

I ◦G ◦ I ⊆ G ◦ I = G ◦ I ◦ I ⊆ I ◦G ◦ I.

(ii) The conditions

W(N′) ⊆ Σ′, P(N′) ⊆ Σ′, H′ = A−1(N′ ∪ Σ′), F(E′) ⊆ H′, S(E′) ⊆ H′, K ′ = C−1(E′),

together with ∀σ∈Σ W(σ) = σ, give us

W′: N′ ∪ Σ′ → Σ′, P′: N′ → Σ′, A′: H′ → N′ ∪ Σ′, F′, S′: E′ → H′, C′: K ′ → E′

and ∀σ∈Σ′ W′(σ) = σ. Note for later use that these conditions can also be expressed in relation

notation as
W′ = W ◦ I ⊆ I ◦W, P′ = P ◦ I ⊆ I ◦ P, A′ = A ◦ I = I ◦ A,

F′ = F ◦ I ⊆ I ◦ F, S′ = S ◦ I ⊆ I ◦ S, C′ = C ◦ I = I ◦ C.

Hence

I ◦W ◦ I ⊆ W ◦ I = W ◦ I ◦ I ⊆ I ◦W ◦ I,

so W′ = W ◦ I = I ◦W ◦ I.

Since G′ = I ◦G ◦ I, G′ is a relation on Σ′ ∪N′ ∪H′ ∪ E′ ∪ K ′.

To verify idΣ′ ◦G′ = G′ ◦ idΣ′ :

idΣ′ ◦G′ = idΣ′ ◦ I ◦G ◦ I = I ◦ idΣ ◦G ◦ I = I ◦G ◦ idΣ ◦ I = I ◦G ◦ I ◦ idΣ′ = G′ ◦ idΣ′

and similarly for the conditions idN′ ◦G′ = G′ ◦ idN′ , idH′ ◦G′ = G′ ◦ idH′ , idE′ ◦G′ = G′ ◦ idE′

and idK′ ◦G′ = G′ ◦ idK′ .

To verify that G′ preserves incidence:

W′ ◦G′ = W ◦ I ◦G ◦ I = W ◦G′ = W ◦G ◦ I = G ◦W ◦ I = G ◦ I ◦W ◦ I = G′ ◦W′
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and

P′ ◦G′ = P ◦ I ◦G ◦ I = P ◦G′ = P ◦G ◦ I ⊆ P ◦ I = P′

and

F′ ◦G′ = F ◦ I ◦G ◦ I = F ◦G′ = F ◦G ◦ I ⊆ G ◦ F ◦ I = G ◦ F ◦ I ◦ I ⊆ G ◦ I ◦ F ◦ I = G′ ◦ F′

and similarly for the conditions for A, S and C.

Next we verify the minimality conditions. We have

A′
−1
◦ A′ ∩ G′H ◦G′

−1
H = idH′ ◦ A

−1
◦ A ◦ idH′ ∩ G′H ◦G′

−1
H

= idH′ ◦
(

A
−1
◦ A ∩ G′H ◦G′

−1
H

)

◦ idH′

⊆ idH′ ◦
(

A
−1
◦ A ∩ GH ◦G−1

H

)

◦ idH′

⊆ idH′ ◦ idH ◦ idH′

= idH′

by theorem 4(iii),(iv)

by theorem 14

so by theorem 14 G′H is minimal relative to A′. The other minimality conditions follow similarly.

For the final condition, G′ ◦G′ ⊆ G ◦G = ⊥.

(iii) Using G′ = G ◦ I,

dom(G′) ∩ K ′ = dom(G′ ◦ idK′) = dom(G ◦ I ◦ idK′) = dom(G ◦ idK′) = dom(G) ∩K ′

so K ′\dom(G′) = K ′\dom(G) ⊆ K\dom(G), as required.

(iv) The conditions

f (Σ′) ⊆ Σ, f (N′) ⊆ N, f (H′) ⊆ H, f (E′) ⊆ E, f (K ′) ⊆ K

are immediate, as are

W ◦ f = f ◦W′, P ◦ f = f ◦ P′, F ◦ f = f ◦ F′, S ◦ f = f ◦ S′.

The pullback
N∪Σ
x

A

H

f |N′∪Σ′
←−−−−−

f |H′

←−−−−−

N′∪Σ′

x

A′

H′

is verified as follows. First, A◦f |H′ = A|H′ = A′ = f |N′∪Σ′ ◦A′.

Secondly, given any set X and functions p: X → H and q: X → N′∪Σ′ such that A◦p = f |N′∪Σ′ ◦q,

this means A ◦ p = q, so A(p(X)) ⊆ N′ ∪ Σ′, so p(X) ⊆ A−1(N′ ∪ Σ′) = H′, so p: X → H′ and

A′ ◦ p = q, so there exists a unique function i: X → H′ such that f |H′ ◦ i = p and A′ ◦ i = q,

namely i = p.

The pullback
E

↑C
K

f |E′

←−−−−

f |K′

←−−−−

E′

↑C′

K′

is verified similarly.

Note that f = I, and so, using G′ = G ◦ I = I ◦G ◦ I,

f ◦G′ = I ◦G ◦ I = G ◦ I = G ◦ f

as required.

To verify that G′ is minimal relative to f , consider any relation R ⊆ G′ such that f ◦ R =

f ◦ G′. Now, G′ is on Σ′ ∪N′ ∪H′ ∪ E′ ∪ K ′ and therefore so is R. Hence R = I ◦ R = f ◦ R =

f ◦G′ = I ◦G′ = G′, as required.

Definition. If N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′) is a subnetwork of N , with inclusion

homomorphism f :N ′ → N , the restriction of a homomorphism p:N → N ∗ to N ′, denoted

p|N ′ :N ′ → N ∗, is defined as p ◦ f = p|Σ′∪N′∪H′∪E′∪K′ ; this is a homomorphism by theorem 15.
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3.8 The recognition problem and process (initial statement)

A grammar and a pattern are both represented as networks. Given a semi­definite network

N0 (representing a grammar) and an image, the recognition problem is to construct a definite

network N1 (representing a pattern) and a homomorphism p:N1 → N0 (called the parse). (This

statement will be refined in §4.7.)

The pattern is constructed by a process of successive extension, pruning, merging and

partitioning; the pattern is not definite during this process but at the end the hypotheses of

theorem 23 are satisfied and so the pattern is definite.
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4.1 Introduction

The account of the recognition problem given in the previous sections has one very obvious

deficiency: it does not say what relation should hold between the pattern and the image to

make the pattern a good interpretation of the image. Indeed, it does not make any use of the

image at all, nor does it involve any geometry.

In this section this deficiency will be rectified. Each symbol (and node) in the pattern

must be embedded in the image plane using an affine transformation; the collection of all

these affine transformations is called an embedding token. The grammar imposes constraints

on the embedding token, stipulating that if two symbols are grammatically related then

their embedding transformations must be geometrically related; the collection of all these

constraints is called an embedding type. Embedding types make use of the concept of a

fleximap, introduced in (2004, §5).

The aim of recognition is to construct a definite pattern and embedding token that match,

or satisfy the constraints of, the image, the grammar and embedding type. The degree of

match is expressed by the definite match function DM.

This section defines embedding tokens and types (slightly modifying the definitions in

(2004, §6.4)), and the DM function. It also refines the use of templates (introduced in (2004,

§4)), defines a symmetry of the grammar, and demonstrates the affine invariance of the whole

framework.

4.2 Embedding tokens and types

As in (2004), G is the group of affine transformations on the plane, a six­dimensional Lie group.

The composition or product of two affine transformations is written as g · g′. Composition of

two higher­level functions such as homomorphisms, embedding tokens or embedding types will

be written using the ‘◦’ symbol.

Definition. An embedding token for a network (Σ, N, H, E, K, W, P, A, F, S, C, G) is a function

u: Σ ∪N → G such that

∀n, n∗∈N (G(n, n∗)⇒ u(n) = u(n∗)).

The product u1 · u2 of embedding tokens u1 and u2 is defined as in (2004, §6.4):

∀x∈Σ ∪N (u1 · u2)(x) = u1(x) · u2(x).

It follows immediately that u1 · u2 is an embedding token. As before we can also define the

induced embedding token u ◦ f on N ′, where u is an embedding token on N and f :N ′ → N is

a homomorphism. However, we must check that u ◦ f satisfies the definition of an embedding

token, as follows.

Theorem 25. If u is an embedding token for N and f :N ′ → N is a homomorphism then u ◦ f

is an embedding token for N ′.

Proof. We shall use the notation N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), N = (Σ, N, H,

E, K, W, P, A, F, S, C, G) and u′ = u ◦ f . Clearly u′: Σ′ ∪ N′ → G. Consider any n, n∗∈N′ such

that G′(n, n∗). We have f ◦ G′ = G ◦ f , and hence G′(n, n∗) implies (f ◦ G′)(f (n), n∗), which
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implies (G ◦ f )(f (n), n∗), i.e., G(f (n), f (n∗)). Since u is an embedding token for N this implies

u(f (n)) = u(f (n∗)), i.e., u′(n) = u′(n∗). Thus u′ is an embedding token for N ′.

Definition. An embedding type for a network (Σ, N, H, E, K, W, P, A, F, S, C, G) is a sextuple

(sub, con, rel, symm, tem, in), in which sub: { (σ, σ∗)∈Σ × Σ | G(σ, σ∗) } → Flex, con: N → Flex,

rel: E → Flex, symm: Σ → Sub(G), tem: Σ → Tem, and in: Σ → Flex where Flex is the set of

all fleximaps, Sub(G) is the set of all subgroups of G, and Tem is the set of all templates;

moreover, for every σ ∈ Σ, the fleximap in(σ) must have nominal part equal to the identity

transformation.

This definition of embedding type is just as in (2004, §6.4), except for the presence of sub. The

meaning of sub is that if σ∗ is a subsymbol of σ then sub(σ, σ∗) is a fleximap describing the

relationship between the embeddings of σ∗ and σ.

Embedding tokens are constrained by a symmetry condition. If u is an embedding token

for N and v is an embedding type for N , where N = (Σ, N, H, E, K, W, P, A, F, S, C, G), the

symmetry condition for N , u, v is

∀n∈N u(P(n))−1 · u(n) ∈ symm(P(n)).

This states that each node n is embedded in the image plane in the same way as the part

P(n), up to a symmetry of P(n).

Given an embedding type v = (sub1, con1, rel1, symm1, tem1, in1) and an embedding token

u for a network (Σ, N, H, E, K, W, P, A, F, S, C, G), we can define an embedding type v ·u for the

same network by v · u = (sub2, con2, rel2, symm1, tem2, in2), where

∀σ, σ∗∈Σ (G(σ, σ∗) ⇒ sub2(σ, σ∗) = u(σ)−1 · sub1(σ, σ∗) · u(σ∗))

∀n∈N con2(n) = u(W(n))−1 · con1(n) · u(n)

∀e∈E rel2(e) = u(A(S(e)))−1 · rel1(e) · u(A(F(e)))

∀σ∈Σ tem2(σ) = tem1(σ) ◦ u(σ)

∀σ∈Σ in2(σ) = u(σ)−1 · in1(σ) · u(σ)

Given an embedding type v = (sub, con, rel, symm, tem, in) for a network N and a homo­

morphism f :N ′ → N , there is an induced embedding type v ◦ f for N ′ defined by

v ◦ f = (sub′, con ◦ f , rel ◦ f , symm ◦ f , tem ◦ f , in ◦ f ).

where

∀σ, σ∗∈Σ (G(σ, σ∗) ⇒ sub′(σ, σ∗) = sub(f (σ), f (σ∗))).

Theorem 26. (Lemma 1 of (2004, §6.4)) If f :N ′ → N is a homomorphism, v is an embedding

type for N , and u is an embedding token for N , then

(v · u) ◦ f = (v ◦ f ) · (u ◦ f ).

Proof. The proof is a slightly adapted version of the one in (2004, §6.4). Let N ′ = (Σ′, N′,

H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), N = (Σ, N, H, E, K, W, P, A, F, S, C, G) and v = (sub1, con1, rel1,
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symm1, tem1, in1). Then v · u = (sub2, con2, rel2, symm1, tem2, in2), where

∀σ, σ∗∈Σ (G(σ, σ∗) ⇒ sub2(σ, σ∗) = u(σ)−1 · sub1(σ, σ∗) · u(σ∗))

∀n∈N con2(n) = u(W(n))−1 · con1(n) · u(n)

∀e∈E rel2(e) = u(A(S(e)))−1 · rel1(e) · u(A(F(e)))

∀σ∈Σ tem2(σ) = tem1(σ) ◦ u(σ)

∀σ∈Σ in2(σ) = u(σ)−1 · in1(σ) · u(σ)

and hence

(v · u) ◦ f = (sub′, con2 ◦ f , rel2 ◦ f , symm1 ◦ f , tem2 ◦ f , in2 ◦ f )

where

∀σ, σ∗∈Σ′ (G′(σ, σ∗) ⇒ sub′(σ, σ∗) = sub2(f (σ), f (σ∗))).

We also have v ◦ f = (sub′′, con1 ◦ f , rel1 ◦ f , symm1 ◦ f , tem1 ◦ f , in1 ◦ f ), where

∀σ, σ∗∈Σ′ (G′(σ, σ∗) ⇒ sub′′(σ, σ∗) = sub1(f (σ), f (σ∗))).

Hence (v ◦ f ) · (u ◦ f ) = (sub3, con3, rel3, symm1 ◦ f , tem3, in3), where

∀σ, σ∗∈Σ′ (G′(σ, σ∗) ⇒ sub3(σ, σ∗) = (u ◦ f )(σ)−1 · sub′′(σ, σ∗) · (u ◦ f )(σ∗)

= u(f (σ))−1 · sub1(f (σ), f (σ∗)) · u(f (σ∗))

= sub2(f (σ), f (σ∗)) = sub′(σ, σ∗))

∀n∈N′ con3(n) = (u ◦ f )(W′(n))−1 · (con1 ◦ f )(n) · (u ◦ f )(n)

= u(f (W′(n)))−1 · con1(f (n)) · u(f (n))

= u(W(f (n)))−1 · con1(f (n)) · u(f (n))

= con2(f (n)) = (con2 ◦ f )(n)

∀e∈E′ rel3(e) = (u ◦ f )(A′(S′(e)))−1 · (rel1 ◦ f )(e) · (u ◦ f )(A′(F′(e)))

= u(f (A′(S′(e))))−1 · rel1(f (e)) · u(f (A′(F′(e))))

= u(A(S(f (e))))−1 · rel1(f (e)) · u(A(F(f (e))))

= rel2(f (e)) = (rel2 ◦ f )(e)

∀σ∈Σ′ tem3(σ) = (tem1 ◦ f )(σ) ◦ (u ◦ f )(σ)

= tem1(f (σ)) ◦ u(f (σ))

= tem2(f (σ)) = (tem2 ◦ f )(σ)

∀σ∈Σ′ in3(σ) = (u ◦ f )(σ)−1 · (in1 ◦ f )(σ) · (u ◦ f )(σ)

= u(f (σ))−1 · in1(f (σ)) · u(f (σ))

= in2(f (σ)) = (in2 ◦ f )(σ)

which shows that (v · u) ◦ f = (v ◦ f ) · (u ◦ f ).

Definition. If N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′) is a subnetwork of N , with inclusion

homomorphism f :N ′ → N ,

(i) the restriction of u, an embedding token for N , to N ′, denoted u|N ′ , is defined as u ◦ f =

u|Σ′∪N′ ; this is an embedding token for N ′ by theorem 25;

(ii) the restriction of v, an embedding type for N , to N ′, denoted v|N ′ , is defined as v ◦ f , an

embedding type for N ′.
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4.3 Symmetries

Definition. A symmetry of a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), with respect to

the embedding type v = (sub, con, rel, symm, tem, in), is a pair (a, s), where a:N → N is an

automorphism of N and s is an embedding token for N , such that

• ∀σ∈Σ s(σ) ∈ symm(σ),

• ∀n∈N s(n) ∈ symm(P(n)),

• v · s = v ◦ a.

This is just as in (2004, §7.5). However, the operation of global application of a symmetry

of the grammar to the pattern, in lemma 2, needs to be generalised to local symmetries, in

which different symmetries are applied to different symbols of the pattern

Definition. Given networks N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) and N0 = (Σ0, N0,

H0, E0, K0, W0, P0, A0, F0, S0, C0, G0), a homomorphism p:N1 → N0, and an embedding token v

on N0, define S0 as the group of symmetries of N0 with respect to v. A local symmetry of N1

with respect to N0, p, v is a function π: Σ1 → S0 such that

• ∀σ, σ∗∈Σ1 (G1(σ, σ∗)⇒ π(σ) = π(σ∗)),

• ∀e∈E1 π(W1(A1(F1(e)))) = π(W1(A1(S1(e)))),

• ∀n∈N1 a(P1(n))(p(P1(n))) = a(W1(n))(p(P1(n))),

where π is decomposed into components by ∀σ∈Σ1 π(σ) = (a(σ), s(σ)), for functions a, s.

Given a local symmetry π and an embedding token u for N1, the application of π to p, u

produces a new homomorphism p′:N1 → N0, defined by

∀σ∈Σ1

∀n∈N1

∀h∈H1

∀e∈E1

∀k∈K1

p′(σ) = a(σ)(p(σ))

p′(n) = a(W1(n))(p(n))

p′(h) = a(W1(A1(h)))(p(h))

p′(e) = a(W1(A1(F1(e))))(p(e))

p′(k) = a(W1(A1(F1(C1(k)))))(p(k)),

and a new embedding token u′ = u · s′ for N1, where the embedding token s′ is defined by

∀σ∈Σ1

∀n∈N1

s′(σ) = s(σ)(p(σ))

s′(n) = s(W1(n))(p(n)).

Theorem 27. In the above definition, p′:N1 → N0 is a homomorphism and s′, u′ are embedding

tokens for N1, as claimed.

Proof. We shall continue to use the above notation.

First we verify that p′:N1 → N0 is a homomorphism. The conditions

p′(Σ1) ⊆ Σ0, p′(N1) ⊆ N0, p′(H1) ⊆ H0, p′(E1) ⊆ E0, p′(K1) ⊆ K0

are immediate.
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Next we check W0 ◦ p′ = p′ ◦W1:

∀n∈N1 W0(p′(n)) = W0

(

a(W1(n))(p(n))
)

= a(W1(n))
(

W0(p(n))
)

= a(W1(n))
(

p(W1(n))
)

= p′(W1(n)),

since a(W1(n)) is an automorphism

since p is an homomorphism

∀σ∈Σ1 W0(p′(σ)) = p′(σ) = p′(W1(σ)).

Next we check P0 ◦ p′ = p′ ◦ P1:

∀n∈N1 P0(p′(n)) = P0

(

a(W1(n))(p(n))
)

= a(W1(n))
(

P0(p(n))
)

= a(W1(n))
(

p(P1(n))
)

= a(P1(n))
(

p(P1(n))
)

= p′(P1(n)).

since a(W1(n)) is an automorphism

since p is an homomorphism

since π is a local symmetry

Next we check F0 ◦ p′ = p′ ◦ F1:

∀e∈E1 F0(p′(e)) = F0

(

a(W1(A1(F1(e))))(p(e))
)

= a(W1(A1(F1(e))))
(

F0(p(e))
)

= a(W1(A1(F1(e))))
(

p(F1(e))
)

= p′(F1(e)).

since a(W1(A1(F1(e)))) is an automorphism

since p is a homomorphism

Next we check S0 ◦ p′ = p′ ◦ S1:

∀e∈E1 S0(p′(e)) = S0

(

a(W1(A1(F1(e))))(p(e))
)

= a(W1(A1(F1(e))))
(

S0(p(e))
)

= a(W1(A1(F1(e))))
(

p(S1(e))
)

= a(W1(A1(S1(e))))
(

p(S1(e))
)

= p′(S1(e)).

since a(W1(A1(F1(e)))) is an automorphism

since p is a homomorphism

since π is a local symmetry

Next we check that
N0∪Σ0

↑A0

H0

p′|N1∪Σ1
←−−−−

p′|H1
←−−−−

N1∪Σ1

↑A1

H1

is a pullback in the category of sets. The equation

A0 ◦ p′|H1
= p′|N1∪Σ1

◦ A1 follows by

∀h∈H1 A0(p′(h)) = A0

(

a(W1(A1(h)))(p(h))
)

= a(W1(A1(h)))
(

A0(p(h))
)

= a(W1(A1(h)))
(

p(A1(h))
)

= p′(A1(h)).

since a(W1(A1(h))) is an automorphism

since p is an homomorphism

The other half of the pullback condition is

∀h0∈H0 ∀x1∈N1 ∪ Σ1 (A0(h0) = p′(x1) ⇒ ∃!h1∈H1 (A1(h1) = x1 ∧ p′(h1) = h0)). (1)
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To prove this, consider any h0∈H0 and any x1∈N1∪Σ1. Define a∗ = a(W1(x1)), an automorphism

of N0. By theorem 15, a∗◦p:N1 → N0 is a homomorphism, so the pullback
N0∪Σ0

↑A0

H0

(a∗◦p)|N1∪Σ1
←−−−−−−−−

(a∗◦p)|H1
←−−−−−−−−

N1∪Σ1

↑A1

H1

implies

A0(h0) = a∗(p(x1)) ⇒ ∃!h1∈H1 (A1(h1) = x1 ∧ a∗(p(h1)) = h0). (2)

Now, p′(x1) = a∗(p(x1)); and, for any h1∈H1, if A1(h1) = x1 then p′(h1) = a(W1(A1(h1)))(p(h1)) =

a∗(p(h1)). Thus (2) may be rewritten, and quantifiers over h0 and x1 added, to give (1). This

completes the proof of the pullback.

The pullback
E0

↑C0

K0

p′|E1
←−−−−

p′|K1
←−−−−

E1

↑C1

K1

is verified similarly.

Next we check that G0 ◦ p′ = p′ ◦G1 and G1 is minimal relative to p′. Let us restrict our

attention to nodes in the first instance. In view of theorem 14, we have to show

∀n0∈N0 ∀n
∗
1∈N1 (G0(n0, p′(n∗1)) ⇔ ∃n1∈N1 (n0 = p′(n1) ∧G1(n1, n∗1)));

∀n0∈N0 ∀n
∗
1∈N1 ∃

≤1n1∈N1 (n0 = p′(n1) ∧G1(n1, n∗1)).
(3)

To prove these, consider any n0∈N0 and any n∗1∈N1. Define a∗ = a(W1(n∗1)), an automorphism

of N0. By theorem 15, a∗ ◦ p:N1 → N0 is a homomorphism, so

G0(n0, a∗(p(n∗1))) ⇔ ∃n1∈N1 (n0 = a∗(p(n1)) ∧G1(n1, n∗1));

∃≤1n1∈N1 (n0 = a∗(p(n1)) ∧G1(n1, n∗1)).
(4)

Now, the condition G0(n0, a∗(p(n∗1))) is equivalent to G0(n0, p′(n∗1)), since a∗(p(n∗1)) = p′(n∗1).

Moreover, for any n1∈N1, if G1(n1, n∗1) then G1(W1(n1), W1(n∗1)), by W1 ◦ G1 ⊆ G1 ◦ W1, so

π(W1(n1)) = π(W1(n∗1)), so a(W1(n1)) = a(W1(n∗1)) = a∗, so p′(n1) = a(W1(n1))(p(n1)) = a∗(p(n1)).

Thus the condition n0 = a∗(p(n1)) ∧ G1(n1, n∗1) is equivalent to n0 = p′(n1) ∧ G1(n1, n∗1). Hence

(4) may be rewritten (quantifying over n0 and n∗1) as (3), as required. This deals with the

node case. Statements similar to (3) for symbols, hooks, edges and facets can be proved in the

same way, completing the proof that G0 ◦ p′ = p′ ◦G1 and G1 is minimal relative to p′.

This completes the proof that p′:N1 → N0 is a homomorphism.

Next we verify that s′ is an embedding token for N1. Consider any n, n∗∈N1 such that

G1(n, n∗) holds. We must show that s′(n) = s′(n∗).

First, π(W1(n)) is a symmetry of N0, so s(W1(n)) is an embedding token for N0; moreover,

G0(p(n), p(n∗)) holds; so s(W1(n))(p(n)) = s(W1(n))(p(n∗)).

Secondly, we have G1(W1(n), W1(n∗)), so π(W1(n)) = π(W1(n∗)), so s(W1(n)) = s(W1(n∗)).

Putting these two observations together,

s′(n) = s(W1(n))(p(n)) = s(W1(n))(p(n∗)) = s(W1(n∗))(p(n∗)) = s′(n∗)

as required. It follows now that u′ = u · s′ is an embedding token for N1.
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4.4 Templates and saturation

The concepts of an image, a template, and the correlation function ρI,T are carried over from

(2004, §4), with two modifications.

The first modification is intended to prevent two identical symbol tokens from forming at

the same place in the image, or more generally to prevent two or more symbol tokens from

claiming credit for the same patch of the image. If two or more symbol tokens’ templates over­

lap in the image plane, i.e., if there are points x in the image plane where tem(σ)(u(σ)−1(x)) > 0

for two or more symbol tokens σ, then the point x should become saturated and the contribu­

tion it makes to the correlation function should be reduced. For this it is necessary to calculate

the saturation sat(x) of each point x, which is roughly the sum of tem(σ)(u(σ)−1(x)) over each

symbol token σ. (However, this needs modification for subsymbols to avoid double­counting.)

The formal definition of saturation follows.

Suppose we are given a definite network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), an em­

bedding token u for N , and a function tem: Σ → Tem. The (definite) saturation function,

sat:R2 → R, is defined by

∀x∈R2 sat(x) =
∑

σ∈Σ

(1− gσ) tem(σ)(u(σ)−1(x))

where gσ =
∣

∣{σ∗∈Σ | G(σ∗, σ) }
∣

∣. We call sat(x) the saturation at x.

The correlation function ρI,T, between an image I and a template T, was defined in (2004,

§4.2) by

ρI,T(g) = |det(g )|

∫

T(u) (I(g(u))− I0) d2
u =

∫

T(g−1(x)) (I(x) − I0) d2
x

for any affine transformation g, where g is the matrix representation of g and I0 is a positive

real constant associated with T. This must now be modified to take account of saturation:

ρI,T,sat(g) = |det(g )|

∫

w(sat(g(u))) T(u) (I(g(u)) − I0) d2
u =

∫

w(sat(x)) T(g−1(x)) (I(x) − I0) d2
x

where w is a weighting function that suppresses the integrand at points x where sat(x) is

above 1. A suitable definition of w is

∀s∈R w(s) =

{

1 if s ≤ 1,

(1.6− s)/0.6 if 1 < s < 1.6,

0 if 1.6 ≤ s.

The second modification is to give the factor of |det(g )| that occurs in the formula for

ρI,T,sat(g) an adjustable exponent:

ρI,T,sat(g) = |det(g )|1−k

∫

w(sat(g(u))) T(u) (I(g(u)) − I0) d2
u

= |det(g )|−k

∫

w(sat(x)) T(g−1(x)) (I(x) − I0) d2
x

where k is a constant characteristic of the template, with 0 ≤ k ≤ 1 normally.
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The calculation of template force in (2004, §4.3) is affected by these two changes as follows.

For any g∈G and A∈A,

ρI,T,sat(g · exp A) = |det(g · exp A)|−k

∫

w(sat(x)) T((g · exp A)−1(x))(I(x) − I0) d2x

= |det(g · exp A )|−k

∫

w(sat(x)) T ((g exp A)−1 x)(I(x) − I0) d2
x

= |det(g )|−ke−k tr(A )

∫

w(sat(x)) T (exp(−A)g−1 x)(I(x)− I0) d2
x

= |det(g )|−k(I− k tr(A) + o(A))

∫

w(sat(x)) T ((I− A + o(A))g−1 x )(I(x)− I0) d2
x

= |det(g )|−k(I− k tr(A) + o(A))·
∫

w(sat(x))
(

T (g−1 x)− (∇T(g−1x))A g−1 x + o(A)
)

(I(x)− I0) d2
x

= ρI,T,sat(g)− k tr(A )ρI,T,sat(g)

− |det(g )|−k

∫

w(sat(x))
(

(∇T(g−1x))A g−1 x
)

(I(x)− I0) d2
x + o(A)

where I is the 6× 6 identity matrix. Hence the derivative ρI,T,sat∗:G → (A → R) is defined by

∀g∈G ∀A∈A ρI,T,sat∗(g)(A) = − k tr(A)ρI,T,sat(g)

− |det(g )|−k

∫

w(sat(x))
(

(∇T(g−1x))A g−1 x
)

(I(x)− I0) d2
x

= − k tr(A)ρI,T,sat(g)

− |det(g )|1−k

∫

w(sat(g(u)))
(

(∇T(u))A u
)

(I(g(u))− I0) d2
u.

This gives a matrix representation for the force,

∀g∈G ρI,T,sat∗(g) = − kρI,T,sat(g)I− |det(g )|−k

∫

w(sat(x))
(

g−1 x(∇T(g−1(x)))
)

(I(x)− I0) d2
x

= − kρI,T,sat(g)I− |det(g )|1−k

∫

w(sat(g(u)))
(

u (∇T(u))
)

(I(g(u))− I0) d2
u.

4.5 The definite match function

The definite match function DM measures how well a definite network N = (Σ, N, H, E, K, W,

P, A, F, S, C, G) matches an image I, given an embedding token u for N , and an embedding

type v = (sub, con, rel, symm, tem, in) for N . It is defined by

DM(I,N , u, v) =
∑

σ∈Σ

ρI,tem(σ),sat(u(σ)) − θ|Σ\P(N)| −
∑

(σ,σ∗)|G(σ,σ∗)

Esub(σ,σ∗)

(

u(σ)−1 · u(σ∗)
)

−
∑

n∈N

Econ(n)

(

u(W(n))−1 · u(n)
)

−
∑

e∈E

Erel(e)

(

u(A(S(e)))−1 · u(A(F(e)))
)

where θ is a positive real constant and sat is the definite saturation function, as defined in

the previous section.

The first term on the right­hand side is a sum over all symbols; tem(σ) is the template

for σ, and ρI,tem(σ),sat(u(σ)) measures the correlation between the template (embedded in the

image using u(σ)) and the image I.
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The second term on the right­hand side applies a fixed penalty of θ for each ‘bare’ symbol,

i.e., each symbol that is not a part of another symbol. This term encourages the symbols to

connect themselves together rather than remaining separate.

The third term measures how well each subsymbol matches its supersymbol geometrically.

The summation is over all pairs (σ, σ∗) such that σ is a supersymbol of σ∗; sub(σ, σ∗) is a

fleximap that defines what the geometric relationship between σ∗ and σ should be; u(σ)−1·u(σ∗)

is the actual relationship between them; the quadratic penalty function Eτ(G) calculates the

penalty for the deviation between an affine transformation G and a fleximap τ, as defined in

(2004, §5.3).

The fourth term measures how well each part matches its whole geometrically. The

summation is over all nodes n; P(n) is the part symbol and W(n) is the whole symbol. The

node n has its own embedding u(n), which equals u(P(n)) up to a symmetry; u(W(n))−1 ·u(n) is

the actual geometric relationship between the part (or rather the node) and the whole; con(n)

is a fleximap specifying what the relationship should be.

The final term measures how well each pair of siblings match geometrically. The sum is

over every edge e, representing a sibling relationship between two nodes A(F(e)) and A(S(e));

u(A(S(e)))−1 ·u(A(F(e))) is the actual relationship and rel(e) is the fleximap specifying what the

relationship should be.

All these fleximaps are provided by the embedding type v; the final component in of v is

not used yet.

The way DM will be used in the statement of the recognition problem is as follows. An

embedding type v for the grammar N0 is given at the outset. The parsing homomorphism

p:N1 → N0 induces an embedding type v◦p for N1. An embedding token u for N1 is constructed

by the parser, satisfying the symmetry condition for N1, u, v ◦ p. At the end of recognition,

when N1 is definite, we measure how well u matches v ◦ p by calculating DM(I,N1, u, v ◦ p).

4.6 Invariance theorems

Lemmas 1 and 2 from (2004, §7) hold for the definite match function DM; I shall restate them

here, but with lemma 2 generalised from global symmetries to local symmetries. I shall also

add two new theorems on the affine invariance of the ρ and match functions.

Theorem 28. (Lemma 1 of (2004, §7.3): invariance under affine transformation of the symbols’

internal frames of reference.) For any image I, definite network N , embedding tokens u, u′

for N , and embedding type v for N , then

DM(I,N , u · u′, v · u′) = DM(I,N , u, v);

Proof. The proof is very similar to the one in (2004), but I shall restate it in full. Let

v = (sub1, con1, rel1, symm1, tem1, in1); then v · u′ = (sub2, con2, rel2, symm1, tem2, in2), where

∀σ, σ∗∈Σ (G(σ, σ∗) ⇒ sub2(σ, σ∗) = u′(σ)−1 · sub1(σ, σ∗) · u′(σ∗))

∀n∈N con2(n) = u′(W(n))−1 · con1(n) · u′(n)

∀e∈E rel2(e) = u′(A(S(e)))−1 · rel1(e) · u′(A(F(e)))

∀σ∈Σ tem2(σ) = tem1(σ) ◦ u′(σ)

∀σ∈Σ in2(σ) = u′(σ)−1 · in1(σ) · u′(σ)
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Now, first, for any σ∈Σ,

ρI,tem2(σ),sat((u · u
′)(σ)) = ρI,tem1(σ)◦u′(σ),sat(u(σ) · u′(σ)) = ρI,tem1(σ),sat(u(σ))

using lemma 1 of (2004, §4.2). Note that the saturation function sat is unchanged by the

application of u′. This is because

∀σ∈Σ ∀x∈R2 tem2(σ)((u · u′)(σ)−1(x)) = (tem1(σ) ◦u′(σ))(u′(σ)−1(u(σ)−1(x))) = tem1(σ)(u(σ)−1(x))

and so the calculation of sat(x) is unaffected.

Secondly, for any σ, σ∗∈Σ such that G(σ, σ∗),

Esub2(σ,σ∗)((u · u
′)(σ)−1 · (u · u′)(σ∗)) = Eu′(σ)−1·sub1(σ,σ∗)·u′(σ∗)(u

′(σ)−1 · u(σ)−1 · u(σ∗) · u′(σ∗))

= Esub1(σ,σ∗)(u(σ)−1 · u(σ∗))

by lemma 1 of (2004, §5.3).

Thirdly, for any n∈N,

Econ2(n)((u · u
′)(W(n))−1 · (u · u′)(n))

= Eu′(W(n))−1·con1(n)·u′(n)(u
′(W(n))−1 · u(W(n))−1 · u(n) · u′(n))

= Econ1(n)(u(W(n))−1 · u(n))

by lemma 1 of (2004, §5.3).

Fourthly, for any e∈E, using the abbreviations n1 = A(F(e)) and n2 = A(S(e)),

Erel2(e)((u · u
′)(n2)−1 · (u · u′)(n1)) = Eu′(n2)−1·rel1(e)·u′(n1)(u

′(n2)−1 · u(n2)−1 · u(n1) · u′(n1))

= Erel1(e)(u(n2)−1 · u(n1))

and, using the abbreviations σ1 = W(A(F(e))) and σ2 = W(A(S(e))),

Ein2(σ1)((u · u
′)(σ2)−1 · (u · u′)(σ1)) = Eu′(σ1)−1·in1(σ1)·u′(σ1)(u

′(σ2)−1 · u(σ2)−1 · u(σ1) · u′(σ1))

= Ein1(σ1)(u(σ2)−1 · u(σ1))

by lemma 1 of (2004, §5.3) again, using the assumption that u′(σ1) = u′(σ2) (which holds under

the conditions of (i) or (ii)).

Thus each term of DM(I,N , u ·u′, v ·u′) equals the corresponding term of DM(I,N , u, v).

Theorem 29. (Invariance of DM under a local symmetry.) Given an image I, a semi­definite

network N0, a definite network N1, a homomorphism p:N1 → N0, an embedding token u for

N1, an embedding type v for N0, and a local symmetry π of N1 with respect to N0, p, v, the

application of π to p, u produces a homomorphism p′:N1 → N0 and an embedding token u′ for

N1.

Then

(i) DM(I,N1, u′, v ◦ p′) = DM(I,N1, u, v ◦ p),

(ii) The symmetry condition holds for N1, u′, v ◦ p′ iff it holds for N1, u, v ◦ p.

Proof. We begin by recapitulating the relevant definitions and notation. Define functions a, s

by ∀σ∈Σ1 π(σ) = (a(σ), s(σ)). Then p′ is given by

∀σ∈Σ1

∀n∈N1

∀h∈H1

∀e∈E1

∀k∈K1

p′(σ) = a(σ)(p(σ))

p′(n) = a(W1(n))(p(n))

p′(h) = a(W1(A1(h)))(p(h))

p′(e) = a(W1(A1(F1(e))))(p(e))

p′(k) = a(W1(A1(F1(C1(k)))))(p(k))

(1)
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and u′ = u · s′, where s′ is an embedding token for N1 defined by

∀σ∈Σ1

∀n∈N1

s′(σ) = s(σ)(p(σ))

s′(n) = s(W1(n))(p(n)).
(2)

Also, v = (sub, con, rel, symm, tem, in), and, for any σ†∈Σ1, (a(σ†), s(σ†)) is a symmetry of N0

with respect to v, so v ◦ a(σ†) = v · s(σ†); in terms of components this means

(sub‡, con ◦ a(σ†), rel ◦ a(σ†), symm ◦ a(σ†), tem ◦ a(σ†), in ◦ a(σ†)) = v ◦ a(σ†)

= v · s(σ†) = (sub†, con†, rel†, symm, tem†, in†)
(3)

where sub‡, sub†, con†, rel†, tem†, in† are defined by

∀σ, σ∗∈Σ0 (G0(σ, σ∗) ⇒ sub‡(σ, σ∗) = sub(a(σ†)(σ), a(σ†)(σ∗)))

∀σ, σ∗∈Σ0 (G0(σ, σ∗) ⇒ sub†(σ, σ∗) = (s(σ†)(σ))−1 · sub(σ, σ∗) · s(σ†)(σ∗))

∀n∈N0 con†(n) = (s(σ†)(W0(n)))−1 · con(n) · s(σ†)(n)

∀e∈E0 rel†(e) = (s(σ†)(A0(S0(e))))−1 · rel(e) · s(σ†)(A0(F0(e)))

∀σ∈Σ0 tem†(σ) = tem(σ) ◦ s(σ†)(σ)

∀σ∈Σ0 in†(σ) = (s(σ†)(σ))−1 · in(σ) · s(σ†)(σ).

(4)

I claim that v ◦ p′ = (v ◦ p) · s′. To verify the claim we may write the left­hand side as

v ◦ p′ = (sub′, con ◦ p′, rel ◦ p′, symm ◦ p′, tem ◦ p′, in ◦ p′)

where

∀σ, σ∗∈Σ1 (G1(σ, σ∗)⇒ sub′(σ, σ∗) = sub(p′(σ), p′(σ∗))) (5)

and the right­hand side as

(v ◦ p) · s′ = (sub′′, con′′, rel′′, symm ◦ p, tem′′, in′′)

where

∀σ, σ∗∈Σ1 (G1(σ, σ∗) ⇒ sub′′(σ, σ∗) = s′(σ)−1 · sub(p(σ), p(σ∗)) · s′(σ∗))

∀n∈N1 con′′(n) = s′(W1(n))−1 · con(p(n)) · s′(n)

∀e∈E1 rel′′(e) = s′(A1(S1(e)))−1 · rel(p(e)) · s′(A1(F1(e)))

∀σ∈Σ1 tem′′(σ) = tem(p(σ)) ◦ s′(σ)

∀σ∈Σ1 in′′(σ) = s′(σ)−1 · in(p(σ)) · s′(σ).

(6)

Now we can verify the claim by comparing the six components of v ◦ p′ and (v ◦ p) · s′.

∀σ, σ∗∈Σ1 (G1(σ, σ∗)⇒

sub′(σ, σ∗) = sub(p′(σ), p′(σ∗))

= sub
(

a(σ)(p(σ)), a(σ∗)(p(σ∗))
)

= sub
(

a(σ)(p(σ)), a(σ)(p(σ∗))
)

= sub‡(p(σ), p(σ∗))

= sub†(p(σ), p(σ∗))

=
(

s(σ)(p(σ))
)−1
· sub(p(σ), p(σ∗)) · s(σ)(p(σ∗))

=
(

s(σ)(p(σ))
)−1
· sub(p(σ), p(σ∗)) · s(σ∗)(p(σ∗))

= s′(σ)−1 · sub(p(σ), p(σ∗)) · s′(σ∗)

= sub′′(σ, σ∗))

by (5)

by (1)

since π is a local symmetry

by (4) with σ† = σ

by (3)

by (4)

since π is a local symmetry

by (2)

by (6)
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∀n∈N1 (con ◦ p′)(n) = con(p′(n)) = con(a(W1(n))(p(n)))

= con†(p(n))

=
(

s(W1(n))(W0(p(n)))
)−1
· con(p(n)) · s(W1(n))(p(n))

=
(

s(W1(n))(p(W1(n)))
)−1
· con(p(n)) · s(W1(n))(p(n))

= s′(W1(n))−1 · con(p(n)) · s′(n)

= con′′(n)

by (1)

by (3) with σ† = W1(n)

by (4)

since W0 ◦ p = p ◦W1

by (2)

by (6)

∀e∈E1 (rel ◦ p′)(e) = rel(p′(e)) = rel
(

a(W1(A1(F1(e))))(p(e))
)

= rel†(p(e))

=
(

s(σ†)(A0(S0(p(e))))
)−1
· rel(p(e)) · s(σ†)(A0(F0(p(e))))

=
(

s(σ†)(p(A1(S1(e))))
)−1
· rel(p(e)) · s(σ†)(p(A1(F1(e))))

=
(

s(W1(A1(S1(e))))(p(A1(S1(e))))
)−1
· rel(p(e)) · s(σ†)(p(A1(F1(e))))

= s′(A1(S1(e)))−1 · rel(p(e)) · s′(A1(F1(e)))

= rel′′(e)

by (1)

by (3) with σ† = W1(A1(F1(e)))

by (4)

since p is a homomorphism

since π is a local symmetry

by (2)

by (6)

∀σ∈Σ1 (symm ◦ p′)(σ) = symm(p′(σ)) = symm(a(σ)(p(σ)))

= symm(p(σ))

= (symm ◦ p)(σ)

by (1)

by (3), with σ† = σ

∀σ∈Σ1 (tem ◦ p′)(σ) = tem(p′(σ)) = tem(a(σ)(p(σ)))

= tem†(p(σ))

= tem(p(σ)) ◦ s(σ)(p(σ))

= tem(p(σ)) ◦ s′(σ)

= tem′′(σ)

by (1)

by (3) with σ† = σ

by (4)

by (2)

by (6)

∀σ∈Σ1 (in ◦ p′)(σ) = in(p′(σ)) = in(a(σ)(p(σ)))

= in†(p(σ))

= (s(σ)(p(σ)))−1 · in(p(σ)) · s(σ)(p(σ))

= s′(σ)−1 · in(p(σ)) · s′(σ)

= in′′(σ)

by (1)

by (3) with σ† = σ

by (4)

by (2)

by (6).

This completes the verification of the claim that v ◦ p′ = (v ◦ p) · s′.

Now we are in a position to prove part (i) of the theorem:

DM(I,N1, u′, v ◦ p′) = DM(I,N1, u · s′, v ◦ p′)

= DM(I,N1, u · s′, (v ◦ p) · s′)

= DM(I,N1, u, v ◦ p)

by the claim

by theorem 28(i).
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For part (ii), consider any n∈N1. Recall that, for any σ†∈Σ1, symm ◦ a(σ†) = symm, by

(3), so, taking σ† = P1(n), symm(a(P1(n))(p(P1(n)))) = symm(p(P1(n))) and hence

symm(p′(P1(n))) = symm(p(P1(n))). (7)

Secondly, since (a(P1(n)), s(P1(n))) is a symmetry of N0 with respect to v,

s(P1(n))(p(P1(n))) ∈ symm(p(P1(n))) (8)

and, since (a(W1(n)), s(W1(n))) is a symmetry of N0 with respect to v,

s(W1(n))(p(n)) ∈ symm(P0(p(n))) = symm(p(P1(n))). (9)

Now, suppose that the symmetry condition holds for N1, u, v ◦ p. Then, for any n∈N1,

u(P1(n))−1 · u(n) ∈ symm(p(P1(n))), so

u′(P1(n))−1 · u′(n) =
(

s(P1(n))(p(P1(n)))
)−1
· u(P1(n))−1 · u(n) · s(W1(n))(p(n))

∈ symm(p(P1(n)))

= symm(p′(P1(n)))

by (8) and (9)

by (7)

so the symmetry condition for N1, u′, v ◦ p′ holds. Conversely, suppose that the symmetry

condition for N1, u′, v ◦ p′ holds. Then, for any n∈N1, u′(P1(n))−1 · u′(n) ∈ symm(p′(P1(n))) =

symm(p(P1(n))), by (7), so from

u′(P1(n))−1 · u′(n) =
(

s(P1(n))(p(P1(n)))
)−1
· u(P1(n))−1 · u(n) · s(W1(n))(p(n))

we have

u(P1(n))−1 · u(n) = s(P1(n))(p(P1(n))) · u′(P1(n))−1 · u′(n) ·
(

s(W1(n))(p(n))
)−1

∈ symm(p(P1(n))) by (8) and (9)

so the symmetry condition for N1, u, v ◦ p holds.

Theorem 30. (Affine invariance of the ρ function.) For any template T, any image I, and any

affine transformations g, g′,

ρI◦g−1 ,T,sat◦g−1(g · g′) = |det(g )|1−k ρI,T,sat(g
′).

(Recall that g is the matrix representation of g.)

Proof. Recall the definition

ρI,T,sat(g) = |det(g )|1−k

∫

w(sat(g(u))) T(u) (I(g(u)) − I0) d2
u.

Now,

ρI◦g−1,T,sat◦g−1(g · g′) = |det(g · g′ )|1−k

∫

w((sat ◦ g−1)((g · g′)(u))) T(u) ((I ◦ g−1)((g · g′)(u))− I0) d2
u

= |det(g )|1−k |det(g′ )|1−k

∫

w(sat(g′(u))) T(u) (I(g′(u))− I0) d2
u

= |det(g )|1−k ρI,T,sat(g
′).
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Theorem 31. (Affine invariance of DM.) For any affine g such that |det(g)| = 1, any image

I, any definite network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), any embedding token u for N ,

and any embedding type v for N , define a new, affine­transformed image I′ = I ◦ g−1, and a

new, affine­transformed embedding token u′ for N by ∀x∈Σ ∪N u′(x) = g · u(x). Then

DM(I′,N , u′, v) = DM(I,N , u, v).

Proof. Let sat be the definite saturation function calculated using the embedding token u.

Then the saturation function calculated using u′ is sat′ = sat ◦ g−1, by the definition of sat in

§4.4. By theorem 30

∀σ∈Σ ρI′,tem(σ),sat′(u
′(σ)) = ρI,tem(σ),sat(u(σ)).

Also,

∀σ, σ∗∈Σ u′(σ)−1 · u′(σ∗) = u(σ)−1 · g−1 · g · u(σ∗) = u(σ)−1 · u(σ∗)

and similarly

∀n ∈N u′(W(n))−1 · u′(n) = u(W(n))−1 · u(n)

∀e ∈ E u′(A(S(e)))−1 · u′(A(F(e))) = u(A(S(e)))−1 · u(A(F(e)))

∀e ∈ E u′(W(A(S(e))))−1 · u′(W(A(F(e)))) = u(W(A(S(e))))−1 · u(W(A(F(e))))

Thus the each term of DM(I′,N , u′, v) equals the corresponding term of DM(I,N , u, v).

4.7 The recognition problem – definitive statement

With the help of the theory developed so far we can now give a definitive statement of the

recognition problem, taking account of embeddings.

Given a semi­definite network N0 (representing a grammar), an embedding type v for N0,

and an image I, the recognition problem is to construct a definite network N1 (representing

a pattern), a homomorphism p:N1 → N0, and an embedding token u for N1, maximising

DM(I,N1, u, v ◦ p), subject to the symmetry condition for N1, u, v ◦ p.
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5.1 Introduction

During recognition, when many competing grammatical possibilities are being considered in

parallel in the same pattern, some possibilities are evaluated as better than others. That is,

each symbol token σ in the pattern has associated with it a real number i(σ)∈[0, 1] (called

an inclusion value) indicating the algorithm’s degree of confidence that σ should be present

in the final pattern. If i(σ) = 1 then the algorithm has decided definitely to include it in the

final pattern; if i(σ) = 0 the algorithm has decided definitely to prune it (but hasn’t yet done

so); intermediate values indicate uncertainty about whether to keep it. Similarly each node

token n and edge token e has an inclusion value i(n) or i(e) indicating the algorithm’s degree

of confidence that it should be included in the final pattern. (Hooks and facets do not need

their own inclusion values as they stand or fall with the symbol, node or edge they belong to.)

The function i is called an inclusion function and is accompanied by a second inclusion

function j, defined below.

By the end of the recognition process, each inclusion value have been driven to the

extremes, 0 or 1, and the symbols, nodes and edges with inclusion value 0 have all been

pruned.

5.2 Definition of inclusion functions

Definition. A pair of inclusion functions on a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is

defined as (i, j), where i: Σ ∪N ∪ E→ [0, 1] and j: Σ ∪N ∪H ∪ (K\dom(G))→ [0, 1], such that

∀σ∈Σ i(σ) = j(σ) +
∑

n∈P−1({σ})

(1− gn)i(n), where gn =
∣

∣{n∗∈N | G(n∗, n) }
∣

∣ (1)

∀n∈N i(W(n)) = j(n) + i(n) (2)

∀h∈H i(A(h)) = j(h) +
∑

e∈F−1({h})

i(e) +
∑

e∈S−1({h})

i(e) (3)

∀k∈K\dom(G) i(C(k)) = j(k) +
∑

k∗|G(k,k∗)

i(C(k∗)). (4)

(This is a slightly modified version of the definition in (2004, §7.2), taking account of subsym­

bols. The summation notation in (4) means a sum over all k∗ such that G(k, k∗).)

This definition may be interpreted informally as follows. (In the following explanation I

shall use the future tense to state conditions that will hold at the end of recognition when the

pattern is definite, and the present tense for what holds during recognition when the pattern

is indefinite.)

Line (1). At the end of recognition each symbol σ will be either a ‘bare’ symbol (with

P−1({σ}) = ∅) or a part of one larger symbol (with |P−1({σ})| = 1). Hence the nodes presently

in P−1({σ}) are in competition with one another; at most one will survive to the end. i(σ) is

interpreted as the degree of confidence in σ, j(σ) is the degree of confidence that σ will be a

bare symbol, and i(n) is the degree of confidence in n. An exception to this competition is that

if n is a subnode of n∗ (i.e., G(n∗, n)) then they may both be correct; the 1 − gn factor allows

for this co­existence.
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Line (2). i(W(n)) is the degree of confidence in W(n), j(n) is the degree of confidence that

W(n) will survive to the end but n will not, and i(n) is the degree of confidence in n.

Line (3) expresses the fact that each hook h will have a single edge incident to it (i.e.,

|F−1({h})|+|S−1({h})| = 1); hence the edges presently in F−1({h})∪S−1({h}) are in competition

with one another. Thus i(A(h)) is the degree of confidence in the node or symbol A(h), i(e) is

the degree of confidence in e, and j(h) is the degree of confidence that A(h) will survive to the

end but that none of its present edges will (i.e., the correct edge has yet to be created).

Line (4) expresses the fact that each facet k that is not itself a sub­facet will be glued

to a single sub­facet. Hence if k is presently glued to several sub­facets then they are in

competition with one another; i(C(k∗)) is the degree of confidence in the edge C(k∗), j(k) is the

degree of confidence that C(k) is correct but that none of k’s present sub­facets is.

Theorem 32. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is a definite network and (i, j) is a pair

of inclusion functions on N satisfying ∀x∈Σ ∪N ∪ E i(x) = 1, then

∀σ∈Σ j(σ) =
{

0 if σ ∈ P(N)

1 otherwise
, ∀n∈N j(n) = 0, ∀h∈H j(h) = 0, ∀k∈K\dom(G) j(k) = 0.

Proof. For any σ∈Σ,

i(σ) = j(σ) +
∑

n∈P−1({σ})

(1− gn)i(n)

where gn =
∣

∣{n∗∈N | G(n∗, n) }
∣

∣, so

1 = j(σ) + |P−1({σ})| − |GN ◦ idP−1({σ})|.

This implies j(σ) ∈ Z, and since also j(σ) ∈ [0, 1] we have j(σ) ∈ {0, 1}. Now, for any σ ∈ Σ, if

σ /∈ P(N) then P−1({σ}) = ∅, which immediately gives |P−1({σ})| − |GN ◦ idP−1({σ})| = 0 and so

j(σ) = 1. Conversely, if j(σ) = 1 then |P−1({σ})| − |GN ◦ idP−1({σ})| = 0, so by theorem 13(ii)

(applied to N, Σ, P, GN) P−1({σ}) = ∅, so σ /∈ P(N). This shows that j(σ) = 1 if σ /∈ P(N) and

j(σ) = 0 if σ ∈ P(N).

For any n∈N,

i(σ) = j(n) + i(n)

and hence j(n) = 0.

For any h∈H,

i(A(h)) = j(h) +
∑

e∈F−1({h})

i(e) +
∑

e∈S−1({h})

i(e)

and, thanks to the sum diagram E
F
→ H

S
← E, there is a unique e∈E such that either F(e) = h

or S(e) = h; so j(h) = 0.

For any k∈K\dom(G),

i(C(k)) = j(k) +
∑

k∗|G(k,k∗)

i(C(k∗)).

By the definiteness condition idK = GK ◦G−1
K
∪G−1

K
◦GK , there exists k∗∈K such that G(k, k∗)

(otherwise (GK ◦G−1
K ∪G−1

K ◦GK)(k, k) would not hold); moreover, this k∗ is unique (for if there

were a second, k∗∗, then (GK ◦G−1
K ∪G−1

K ◦GK)(k∗, k∗∗) would hold). Thus j(k) = 0.
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5.3 The recognition process

With the help of the theory developed so far we can give an initial description of the recognition

process. It constructs a pattern N1, a homomorphism p:N1 → N0 (where N0 is the grammar),

and a pair of inclusion functions (i, j) on N1, by a sequence of structural operations on the

pattern.

The recognition process must ensure that, at the end, the following conditions hold.

• ∀x∈Σ1 ∪N1 ∪E1 i(x) = 1,

• N1 is definite.
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6.1 Introduction

In section 4 we constructed the definite match function DM, which measures how well a

definite pattern (with an embedding token) matches the image, the grammar and embedding

type. Now we shall generalise it to the indefinite match function IM, which applies to patterns

that are not necessarily definite, with inclusion functions. The affine invariance theorems of

§4.6 are generalised to IM.

The recognition process attempts to maximise the value of IM during recognition, so that

the final, definite pattern will maximise DM.

6.2 Template matching

The template matching function of §4.4 is generalised as follows.

Suppose we are given a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), an embedding

token u for N , a function tem: Σ → Tem, and a pair (i, j) of inclusion functions on N . The

(indefinite) saturation function, sat:R2 → R, is defined by

∀x∈R2 sat(x) =
∑

σ∈Σ

(1− gσ) i(σ) tem(σ)(u(σ)−1(x))

where gσ =
∣

∣{σ∗∈Σ | G(σ∗, σ) }
∣

∣.

In the special case where the inclusion functions satisfy ∀σ∈Σ i(σ) = 1, as at the end of

recognition, the definition of sat reduces to the definite saturation function defined in §4.4.

The correlation function ρI,T,sat between an image I and a template T is as in §4.4, except

for using the indefinite saturation function,

ρI,T,sat(g) = |det(g )|1−k

∫

w(sat(g(u))) T(u) (I(g(u)) − I0) d2
u

= |det(g )|−k

∫

w(sat(x)) T(g−1(x)) (I(x) − I0) d2
x
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6.3 The indefinite match function

The indefinite match function IM measures how well a (not necessarily definite) network

N = (Σ, N, H, E, K, W, P, A, F, S, C, G) matches an image I, given an embedding token u for N ,

an embedding type v = (sub, con, rel, symm, tem, in) for N , a pair of inclusion functions (i, j) on

N , and a function B: Σ ∪H ∪ (K\dom(G))→ [0,∞). It is defined by

IM(I,N , u, v, i, j, B) =
∑

σ∈Σ

(

i(σ)ρI,tem(σ),sat(u(σ))− j(σ)B(σ)
)

−
∑

(σ,σ∗)|G(σ,σ∗)

i(σ∗)Esub(σ,σ∗)(u(σ)−1 · u(σ∗))

−
∑

n∈N

i(n)Econ(n)(u(W(n))−1 · u(n))−
∑

h∈H

j(h)B(h)−
∑

k∈K\ dom(G)

j(k)B(k)

−
∑

e∈E

i(e)
(

Erel(e)(u(A(S(e)))−1 · u(A(F(e)))) + Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))
)

where sat is the indefinite saturation function. Observe that the B function imposes a penalty

for each ‘bare’ symbol, hook and facet, i.e., each symbol that is not a part of any other symbol

(j(σ) = 1), each hook with no incident edges (j(h) = 1), and each facet that should be glued to

a sub­facet but is not (j(k) = 1). A function B: Σ∪H∪ (K\dom(G))→ [0,∞) is called a bareness

function for N . The final term, Ein(W(A(F(e))))(· · ·), has no counterpart in DM; it is to penalise

edges between two nodes belonging to different wholes (see §9.6).

The following theorem shows that DM is a special case of IM.

Theorem 33. If

(a) N is definite,

(b) ∀x∈Σ ∪N ∪ E i(x) = 1,

(c) ∀σ∈Σ\P(N) B(σ) = θ,

then IM(I,N , u, v, i, j, B) = DM(I,N , u, v).

Proof. By theorem 32,

∀σ∈Σ j(σ) =
{

0 if σ ∈ P(N)

1 otherwise
, ∀n∈N j(n) = 0, ∀h∈H j(h) = 0, ∀k∈K\dom(G) j(k) = 0.

It follows that each term of IM(I,N , u, v, i, j, B) simplifies to the corresponding term of DM(I,

N , u, v) or vanishes; in particular, for each e∈E, the term

Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))

vanishes since W(A(S(e))) = W(A(F(e))) by the definiteness conditions.

In the recognition process an embedding token u for N1 is constructed, along with N1

and p. An embedding type v ◦ p is induced using p from the given embedding type v for N0.

Throughout recognition we measure how well u matches v ◦ p by calculating IM(I,N1, u, v ◦

p, i, j, B), and we seek to maximise this by continually adjusting u, subject to the symmetry

condition for N1, u, v ◦ p.
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6.4 Invariance theorems

I shall generalise the invariance theorems of §4.6 from DM to IM.

Theorem 34. (Lemma 1 of (2004, §7.3): invariance under affine transformation of the symbols’

internal frames of reference.) For any image I, network N , embedding tokens u, u′ for N ,

embedding type v for N , inclusion functions i, j on N , and bareness function B for N ,

IM(I,N , u · u′, v · u′, i, j, B) = IM(I,N , u, v, i, j, B),

provided u′ ◦W ◦ A ◦ F = u′ ◦W ◦ A ◦ S.

Proof. As in theorem 28, each term of IM(I,N , u ·u′, v ·u′, i, j, B) equals the corresponding term

of IM(I,N , u, v, i, j, B).

Theorem 35. (Invariance of the match functions under a local symmetry.) Given an image I,

a semi­definite network N0, a network N1, a homomorphism p:N1 → N0, an embedding token

u for N1, an embedding type v for N0, and a local symmetry π of N1 with respect to N0, p, v,

the application of π to p, u produces a homomorphism p′:N1 → N0 and an embedding token

u′ for N1.

(i) For any inclusion functions i, j and bareness function B for N1, IM(I,N1, u′, v ◦p′, i, j, B)

= IM(I,N1, u, v ◦ p, i, j, B).

(ii) The symmetry condition holds for N1, u′, v ◦ p′ iff it holds for N1, u, v ◦ p.

Proof. The argument of theorem 29 generalises:

IM(I,N1, u′, v ◦ p′, i, j, B) = IM(I,N1, u · s′, (v ◦ p) · s′, i, j, B)

= IM(I,N1, u, v ◦ p, i, j, B)

since v ◦ p′ = (v ◦ p) · s′

by theorem 34.

To justify this use of theorem 34 we must check that s′ ◦W1 ◦ A1 ◦ F1 = s′ ◦W1 ◦ A1 ◦ S1. For

any e∈E1,

s′(W1(A1(F1(e)))) = s(W1(A1(F1(e))))(p(W1(A1(F1(e)))))

= s(W1(A1(F1(e))))(W0(A0(F0(p(e)))))

= s(W1(A1(F1(e))))(W0(A0(S0(p(e)))))

= s(W1(A1(S1(e))))(W0(A0(S0(p(e)))))

= s(W1(A1(S1(e))))(p(W1(A1(S1(e)))))

= s′(W1(A1(S1(e))))

since p is a homomorphism

since N0 is semi­definite

since π is a local symmetry

since p is a homomorphism

as required.

For part (ii), the proof in theorem 29 applies (it does not require N1 to be definite).

Theorem 36. (Affine invariance of the ρ function.) For any template T, any image I, and any

affine transformations g, g′,

ρI◦g−1 ,T,sat◦g−1(g · g′) = |det(g )|1−k ρI,T,sat(g
′).

(Recall that g is the matrix representation of g.)

Proof. This is identical to theorem 30, except using the indefinite saturation function. The

same proof applies.
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Theorem 37. (Affine invariance of IM.) For any affine g such that |det(g)| = 1, any image

I, any network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), any embedding token u for N , and any

embedding type v for N , define a new, affine­transformed image I′ = I ◦ g−1, and a new,

affine­transformed embedding token u′ for N by ∀x∈Σ ∪N u′(x) = g · u(x).

For any inclusion functions i, j and bareness function B for N ,

IM(I′,N , u′, v, i, j, B) = IM(I,N , u, v, i, j, B).

(The condition |det(g)| = 1 may be dropped if k = 1.)

Proof. Let sat be the indefinite saturation function calculated using the embedding token u.

As in the proof of theorem 31, each term of IM(I′,N , u′, v, i, j, B) equals the corresponding

term of IM(I,N , u, v, i, j, B).

6.5 Adjustment of the embedding token

During recognition the embeddings of all the symbols and nodes are continually adjusted to

maximise IM(I,N1, u, v◦p, i, j, B) (subject to the symmetry condition). This is done by a process

of gradient ascent, as defined in (2004, §§7.6–7.8), but with the calculation of the derivative of

the match function in §7.6 augmented to allow for the new terms in the match function. To be

precise, theorem 3 of §7.6 is amended as follows. We make a small change in the embedding

token from u to u · ∆u, where
∀σ∈Σ ∆u(σ) = exp(εVσ)

∀n∈N ∆u(n) = exp(εVn)

where the increments Vσ, Vn ∈ A are linked by the symmetry condition; then the value of IM

changes to

IM(I,N , u · ∆u, v, i, j, B) = IM(I,N , u, v, i, j, B) + ε
∑

σ∈Σ

Fσ(Vσ) + o(ε)

where, for each σ∈Σ,

Fσ = F0
σ + F1

σ + F2
σ + F3

σ + F4
σ

F0
σ, F1

σ, F2
σ, F3

σ are as before

F4
σ = −

∑

σ∗|G(σ,σ∗)

Ad(Sub−1
σ,σ∗)†(Fσ,σ∗ ) +

∑

σ∗|G(σ∗,σ)

Fσ∗,σ

and, for each σ, σ∗∈Σ such that G(σ, σ∗),

Fσ,σ∗ = −i(σ∗)Esub(σ,σ∗)∗(Subσ,σ∗)

Subσ,σ∗ = u(σ)−1 · u(σ∗).

The theorem is proved by the same methods as before.

6.6 The recognition process

During the recognition process IM(I,N1, u, v ◦ p, i, j, B) is maximised, and at the end the con­

ditions of theorem 33 are satisfied, so DM(I,N1, u, v ◦ p) is maximised.
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7.1 Introduction

This section refines the account of the recognition process by describing how the inclusion

functions i and j are determined during recognition. The inclusion functions are determined

by a simulated annealing process, governed by a temperature parameter that varies across the

pattern and with time. Where the structure of the pattern is changing, the temperature is

high, and this makes the inclusion functions take on mid­range values, so several alternative

interpretations can co­exist in parallel; when structural changes stop, the temperature declines

and the inclusion functions are pushed towards 0 or 1, and so a choice is forced between

alternatives and the pattern becomes definite. The temperature varies across the pattern, as

some parts of the pattern may be very active while other parts have settled down.

7.2 The inclusion vector, i

Our first step is to reformulate i, j and the constraints on them in a vector notation in order

to emphasise their linear nature (this vector notation is for use only in this section). Given

a pair of inclusion functions (i, j) on a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G), we shall

convert (i, j) into the inclusion vector i on N , with components ix, for all x ∈ X, where

X = Σ × {0, 1} ∪ N × {0, 1} ∪ H ∪ E ∪ K\dom(G).

Each component of i represents one value of i or j, as follows.

∀σ∈Σ i(σ,0) = i(σ), i(σ,1) = j(σ)

∀n∈N i(n,0) = i(n), i(n,1) = j(n)

∀h∈H ih = j(h)

∀e∈E ie = i(e)

∀k∈K\dom(G) ik = j(k)

The constraints on i and j can be expressed as a set of linear conditions on i of the form

∀y∈Y c
y · i =

∑

x∈X

c
y
xix = 0

using a set of vectors cy, for all y∈Y, where

Y = Σ ∪ N ∪ H ∪ K\dom(G)

and cy has components c
y
x for x∈X, specified as follows. For each σ∈Σ, the constraint i(σ) =

j(σ) +
∑

n∈P−1({σ})(1− gn)i(n) is expressed as cσ · i = 0, where

c
σ
x =











1 if x = (σ, 0)

−1 if x = (σ, 1)

gn − 1 if x = (n, 0) for some n∈P−1({σ})
0 otherwise
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For each n∈N, the condition i(W(n)) = j(n) + i(n) is expressed as cn · i = 0, where

c
n
x =

{

1 if x = (W(n), 0)

−1 if x = (n, 1) or x = (n, 0)

0 otherwise

For each h∈H, the condition i(A(h)) = j(h) +
∑

e∈F−1({h}) i(e) +
∑

e∈S−1({h}) i(e) is expressed as

ch · i = 0, where

c
h
x =

{

1 if x = (A(h), 0)

−1 if x = h or x ∈ F−1({h}) or x ∈ S−1({h})
0 otherwise.

(Note that this assumes that F(e) 6= S(e) for each edge e.) For each k∈K\dom(G), the constraint

i(C(k)) = j(k) +
∑

k∗|G(k,k∗) i(C(k∗)) is expressed as ck · i = 0, where

c
k
x =











1 if x = C(k)

−1 if x = k

−1 if x = C(k∗), for some k∗ such that G(k, k∗)

0 otherwise.

This completes the specification of the cy vectors.

Note that, using this vector notation, the IM function is linear in i (if we disregard the

dependence of the saturation function on i):

IM(I,N , u, v, i, j, B)

=
∑

σ∈Σ

(

i(σ)ρI′,tem(σ),sat(u(σ))− j(σ)B(σ)
)

−
∑

(σ,σ∗)|G(σ,σ∗)

i(σ∗)Esub(σ,σ∗)(u(σ)−1 · u(σ∗))

−
∑

n∈N

i(n)Econ(n)(u(W(n))−1 · u(n))−
∑

h∈H

j(h)B(h)−
∑

k∈K\ dom(G)

j(k)B(k)

−
∑

e∈E

i(e)
(

Erel(e)(u(A(S(e)))−1 · u(A(F(e)))) + Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))
)

= i ·m

where m is a vector whose components mx are given by

∀σ∈Σ m(σ,0) = ρI′,tem(σ),sat(u(σ))−
∑

σ∗|G(σ∗,σ)

Esub(σ∗,σ)(u(σ∗)−1 · u(σ)), m(σ,1) = −B(σ)

∀n∈N m(n,0) = −Econ(n)(u(W(n))−1 · u(n)), m(n,1) = 0

∀h∈H mh = −B(h)

∀e∈E me = −Erel(e)(u(A(S(e)))−1 · u(A(F(e)))) − Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))

∀k∈K\dom(G) mk = −B(k)
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7.3 How i is determined

Recall that recognition is governed by the expression IM(I,N1, u, v ◦p, i, j, B). As shown above,

this can be expressed in the form IM(I,N1, u, v ◦ p, i, j, B) = i ·m, for a suitable vector m. The

inclusion vector i is determined by maximising the expression

E =
∑

x∈X

ixmx

Tx

−
∑

x∈X

(

ix ln ix + (1− ix) ln(1− ix)
)

subject to the constraints ∀y∈Y cy · i = 0, where each Tx is a positive number, known as the

temperature of x. To be precise, every symbol, node, hook, edge and facet has a temperature,

and we define T(σ,0) = T(σ,1) = Tσ and T(n,0) = T(n,1) = Tn. (If ix = 0 we treat ix ln ix as 0, and if

ix = 1 we treat (1− ix) ln(1− ix) as 0.)

Using the method of Lagrange multipliers, we have to maximise the Lagrangian

L =
∑

x∈X

ixmx

Tx

−
∑

x∈X

(

ix ln ix + (1− ix) ln(1− ix)
)

+
∑

y∈Y

λyc
y · i

where λy is a Lagrange multiplier, for each y∈Y. This gives

∀x∈X 0 =
∂L

∂ix

=
mx

Tx

− ln
(

ix

1− ix

)

+
∑

y∈Y

λyc
y
x.

This has the solution

ix = sig
(

mx

Tx

+
∑

y∈Y

λyc
y
x

)

where the sigmoid function sig:R → (0, 1) is defined by ∀u∈R sig(u) = 1
1+e−u . By examining

the second derivatives it can be determined that this solution is a local maximum. Note that

this solution satisfies ∀x∈X ix ∈ (0, 1), and so i and j map into [0, 1], as required.

If all the temperatures are high, all ix tend to take mid­range values. If all temperatures

are at the minimum allowed value Tmin, the mx

Tx
terms will become large, and all ix are likely

to become very close to 0 or 1, in which case we will round them to 0 or 1, giving

E =

∑

x∈X ixmx

Tmin

=
IM(I,N , u, v, i, j, B)

Tmin

.

7.4 Algorithm for finding i

The inclusion vector i is determined above by

∀x∈X ix = sig
(

mx

Tx

+
∑

y∈Y

λyc
y
x

)

subject to the constraints ∀y∈Y cy · i = 0, where the λy parameters are unknown. We can split

each cy vector into two vectors cy+ and cy− by separating positive and negative components:

∀y∈Y ∀x∈X c
y+
x = max (cy

x, 0), c
y−
x = max (−c

y
x, 0),

so that the constraints may be written as ∀y∈Y cy+ · i = cy− · i. (Note that ∀y∈Y cy+, cy− 6= 0.)

Also define

∀y∈Y Cy+
= max

x∈X
c

y+
x , Cy−

= max
x∈X

c
y−
x , Cy

= Cy+
+ Cy−.

The following iterative algorithm seeks values of λy satisfying the constraints.

For each y∈Y, initialise λy to its final value last time this algorithm was run;
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repeat

for each x∈X, do ix := sig
(

mx/Tx +
∑

y∈Y λyc
y
x

)

|

for each y∈Y, do λy := λy +
1

Cy
ln
(

cy− · i

cy+ · i

)

until equilibrium;

for each x∈X, if ix is very close to 0 or 1, then round it to 0 or 1.

In this algorithm the semicolon means sequential composition, the ‘|’ symbol means parallel

composition, and the ‘for each’ loops are parallel loops. This means that all the assignment

statements in the ‘repeat’ loop body may be executed concurrently in any fair order. Note that

this loop is by far the most computationally expensive part of the entire recognition process,

so the high degree of parallelism is relevant from the point of view of time complexity.

The ‘for each y∈Y ’ loop may be expressed more explicitly as

for each σ∈Σ, do λσ := λσ +
1

C
ln
( j(σ) +

∑

n∈P−1({σ})(1− gn)i(n)

i(σ)

)

|

(where C = max (2, max {gn | n ∈ P−1({σ}) })) |

for each n∈N, do λn := λn + 1
2

ln
( i(n) + j(n)

i(W(n))

)

|

for each h∈H, do λh := λh + 1
2

ln
( j(h) +

∑

e∈F−1({h}) i(e) +
∑

e∈S−1({h}) i(e)

i(A(h))

)

|

for each k∈K\dom(G), do λk := λk +
1
2

ln
( j(k) +

∑

k∗|G(k,k∗) i(C(k∗))

i(C(k))

)

.

The rationale for this algorithm is as follows. We begin with a lemma.

Lemma. (a) For any l∈R and any δ > 0,

1 <
sig(l + δ)

sig(l)
< eδ.

(b) For any l∈R and any δ < 0,

1 >
sig(l + δ)

sig(l)
> eδ.

Proof. (a) Since δ > 0, and sig and the exponential function are strictly increasing,

1 <
sig(l + δ)

sig(l)
=

1 + e−l

1 + e−l−δ
=

el + 1

el+δ + 1
eδ < eδ.

(b) Similarly, for δ < 0,

1 >
sig(l + δ)

sig(l)
=

1 + e−l

1 + e−l−δ
=

el + 1

el+δ + 1
eδ > eδ.

Now, consider the effect of applying one of the update rules,

λy := λy + δ, where δ =
1

Cy
ln
(

cy− · i

cy+ · i

)

,

on the constraint cy+ · i = cy− · i.
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We have ix = sig(lx), where lx = mx/Tx +
∑

y∈Y λyc
y
x, for each x∈X. The update rule

λy:= λy + δ causes ix to be updated to i′x = sig(lx + δc
y
x), for each x∈X.

Case 1: cy+ · i < cy− · i. Then δ > 0.

For each x∈X such that c
y
x > 0, part (a) of the lemma gives

1 <
sig(lx + δc

y
x)

sig(lx)
< eδc

y
x ≤ eδCy+

i.e., 1 < i′x/ix < eδCy+

. Hence, taking a weighted sum over all such x,

1 <
cy+ · i′

cy+ · i
< eδCy+

.

For each x∈X such that c
y
x < 0, part (b) of the lemma gives

1 >
sig(lx + δc

y
x)

sig(lx)
> eδc

y
x ≥ e−δCy−

i.e., 1 > i′x/ix > e−δCy−

. Hence, taking a weighted sum over all such x,

1 >
cy− · i′

cy− · i
> e−δCy−

.

Dividing the inequalities gives

1 <
cy+ · i′/cy− · i′

cy+ · i/cy− · i
< eδCy

=
cy− · i

cy+ · i
.

Hence
cy+ · i

cy− · i
<

cy+ · i′

cy− · i′
< 1.

This shows that, after the update, the constraint cy+ · i = cy− · i is closer to being satisfied

than it was before.

Case 2: cy+ · i > cy− · i. Then δ < 0.

For each x∈X such that c
y
x > 0, part (b) of the lemma gives

1 >
sig(lx + δc

y
x)

sig(lx)
> eδc

y
x ≥ eδCy+

i.e., 1 > i′x/ix > eδCy+

. Hence, taking a weighted sum over all such x,

1 >
cy+ · i′

cy+ · i
> eδCy+

.

For each x∈X such that c
y
x < 0, part (a) of the lemma gives

1 <
sig(lx + δc

y
x)

sig(lx)
< eδc

y
x ≤ e−δCy−

i.e., 1 < i′x/ix < e−δCy−

. Hence, taking a weighted sum over all such x,

1 <
cy− · i′

cy− · i
< e−δCy−

.

Dividing the inequalities gives

1 >
cy+ · i′/cy− · i′

cy+ · i/cy− · i
> eδCy

=
cy− · i

cy+ · i
.

Hence
cy+ · i

cy− · i
>

cy+ · i′

cy− · i′
> 1.

This shows that, after the update, the constraint cy+ · i = cy− · i is closer to being satisfied

than it was before.

Case 3: cy+ · i = cy− · i. Then δ = 0 and no change is made.
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Thus, for each constraint cy+ · i = cy− · i, the update rule for λy moves i closer to satisfying

the constraint. This does not imply that i moves closer to satisfying all the constraints, still

less does it prove convergence to an i satisfying all the constraints, but it does provide some

motivation for the update rules used.

7.5 The recognition process

We can now refine further the account of the recognition process. During recognition i, and

hence (i, j), is determined by maximising

E =
∑

x∈X

ixmx

Tx

−
∑

x∈X

(

ix ln ix + (1− ix) ln(1− ix)
)

subject to the constraints ∀y∈Y cy · i = 0, given temperatures Tx for each x∈X. (Here, i is the

inclusion vector corresponding to the pair of inclusion functions (i, j) on the pattern N1, and m

is calculated using the image I, the embedding token u on N1, and the embedding type v ◦ p

on N1.)

In the final stages of recognition, all the temperatures will converge to the minimum

allowed temperature Tmin > 0 and so each ix is likely to approach 0 or 1, and is then rounded

to 0 or 1, giving

E =
IM(I,N1, u, v ◦ p, i, j, B)

Tmin

.

Hence maximising E reduces to maximising IM(I,N1, u, v ◦ p, i, j, B). As pointed out in §6.6,

this maximises DM(I,N1, u, v ◦ p) for the final pattern.
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8.1 Introduction

In this section I shall define the structural operations by which the pattern is incrementally

grown during recognition. There are four kinds:

• pruning operations,

• extension operations,

• merging two symbol tokens,

• partitioning a symbol token into two.

8.2 Pruning operations

Definition. Given a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) and a pair (i, j) of inclusion

functions on N , a pruning operation is a transformation from N to a subnetwork N ′ = (Σ′,

N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′) such that

∀σ∈Σ\Σ′ i(σ) = 0, ∀n∈N\N′ i(n) = 0, ∀e∈E\E′ i(e) = 0.

A pruning operation is trivial iff N ′ = N .

Theorem 38. For any pruning operation from N to N ′, given a pair (i, j) of inclusion functions

on N ,

(i) ∀σ∈Σ\Σ′ j(σ) = 0, ∀h∈H\H′ j(h) = 0, ∀k∈(K\dom(G))\(K ′\dom(G′)) j(k) = 0,

(ii) (i|Σ′∪N′∪E′ , j|Σ′∪N′∪H′∪(K′\ dom(G′))) is a pair of inclusion functions on N ′ (called the restriction

of (i, j) to N ′).

Proof. (i) For any σ∈Σ\Σ′,

i(σ) = j(σ) +
∑

n∈P−1({σ})

(1− gn)i(n)

where i(σ) = 0; moreover, the condition P(N′) ⊆ Σ′ implies that each n∈P−1({σ}) is in N\N′

and so i(n) = 0. Hence j(σ) = 0.

For any h∈H\H′, we have h /∈ H′ = A−1(N′ ∪ Σ′), so A(h) /∈ N′ ∪ Σ′, which means

A(h) ∈N\N′ ∪ Σ\Σ′, so i(A(h)) = 0. By the condition

i(A(h)) = j(h) +
∑

e∈F−1({h})

i(e) +
∑

e∈S−1({h})

i(e)

this implies j(h) = 0.

For any k∈(K\dom(G))\(K ′\dom(G′)), since dom(G′) ⊆ dom(G) we have k /∈ K ′ = C−1(E′),

so C(k) ∈ E\E′, so i(C(k)) = 0. By the condition

i(C(k)) = j(k) +
∑

k∗|G(k,k∗)

i(C(k∗))

this implies j(k) = 0.
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(ii) Define i′ = i|Σ′∪N′∪E′ , j′ = j|Σ′∪N′∪H′∪(K′\ dom(G′)), and I = idΣ′∪N′∪H′∪E′∪K′ . The condition

∀σ∈Σ i(σ) = j(σ) +
∑

n∈P−1({σ})

(1− gn)i(n)

implies the same condition for (i′, j′) on N ′. We need to check that the value of gn is the same

in both cases, i.e.,
∣

∣{n∗∈N′ | G′(n∗, n) }
∣

∣ =
∣

∣{n∗∈N | G(n∗, n) }
∣

∣ for every n∈N′. In fact, for

any n∈N′, using G′ = G ◦ I,

∣

∣{n∗∈N′ | G′(n∗, n) }
∣

∣ = |G′ ◦ id{n}| = |G ◦ I ◦ id{n}| = |G ◦ id{n}| =
∣

∣{n∗∈N | G(n∗, n) }
∣

∣

as required. Moreover,
∑

n∈P−1({σ})(1 − gn)i(n) =
∑

n∈P′−1({σ})(1 − gn)i′(n), since the right­hand

side merely omits terms (1− gn)i(n) for which i(n) = 0.

Secondly, the condition

∀n∈N i(W(n)) = j(n) + i(n)

implies the same condition for (i′, j′) on N ′.

Thirdly, the condition

∀h∈H i(A(h)) = j(h) +
∑

e∈F−1({h})

i(e) +
∑

e∈S−1({h})

i(e)

implies the same condition for (i′, j′) on N ′. We have
∑

e∈F−1({h}) i(e) =
∑

e∈F′−1({h}) i′(e), since

the right­hand side merely omits terms i(e) that are equal to 0; and similarly
∑

e∈S−1({h}) i(e) =
∑

e∈S′−1({h}) i′(e).

Fourthly, the condition

∀k∈K\dom(G) i(C(k)) = j(k) +
∑

k∗|G(k,k∗)

i(C(k∗))

implies the same condition for (i′, j′) on N ′. For any k∈K ′\dom(G′), we have k∈K\dom(G) by

theorem 24(iii), so i(C(k)) = j(k) +
∑

k∗|G(k,k∗) i(C(k∗)). Also,

{k∗ | G′(k, k∗) } = {k∗ | G(k, k∗) ∧ k∗ ∈ K ′ } = {k∗ | G(k, k∗) ∧ C(k∗) ∈ E′ }

by G′ = G ◦ I. Thus {k∗ | G′(k, k∗) } ⊆ {k∗ | G(k, k∗) }, and any k∗ in the latter set but not

in the former has C(k∗) /∈ E′ and so i(C(k∗)) = 0. This shows that
∑

k∗|G′(k,k∗) i′(C′(k∗)) =
∑

k∗|G(k,k∗) i(C(k∗)).

This completes the verification that (i′, j′) is a pair of inclusion functions on N ′.

In practice we may confine ourselves to elementary pruning operations, involving removal of

a single symbol, node or edge.

Definition. Given a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) and a pair of inclusion

functions (i, j) on N , an elementary pruning operation is one of the following operations.

(i) Pruning a symbol σ∈Σ transforms N to N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′),

where

Σ′ = Σ\
(

{σ} ∪ {σ∗ | G(σ, σ∗) }
)

, N′ = W−1(Σ′) ∩ P−1(Σ′), H′ = A−1(N′ ∪ Σ′),

E′ = F−1(H′) ∩ S−1(H′), K ′ = C−1(E′),

W′ = W|N′∪Σ′ , P′ = P|N′ , A′ = A|H′ , F′ = F|E′ , S′ = S|E′ , C′ = C|K′ ,
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G′ = idΣ′∪N′∪H′∪E′∪K′ ◦G ◦ idΣ′∪N′∪H′∪E′∪K′ .

This operation is permitted provided ∀σ∗∈Σ\Σ′ i(σ∗) = 0 and ∀n∈P−1(Σ\Σ′) i(n) = 0.

(ii) Pruning a node n∈N transforms N to N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), where

Σ′ = Σ, N′ = N\
(

{n} ∪ {n∗ | G(n, n∗) }
)

, H′ = A−1(N′ ∪ Σ′),

E′ = F−1(H′) ∩ S−1(H′), K ′ = C−1(E′),

W′ = W|N′∪Σ′ , P′ = P|N′ , A′ = A|H′ , F′ = F|E′ , S′ = S|E′ , C′ = C|K′ ,

G′ = idΣ′∪N′∪H′∪E′∪K′ ◦G ◦ idΣ′∪N′∪H′∪E′∪K′ .

This operation is permitted provided ∀n∗∈N\N′ i(n∗) = 0.

(iii) Pruning an edge e∈E transforms N to N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), where

Σ′ = Σ, N′ = N, H′ = H, E′ = E\
(

{e} ∪ { e∗ | G(e, e∗) }
)

, K ′ = C−1(E′),

W′ = W, P′ = P, A′ = A, F′ = F|E′ , S′ = S|E′ , C′ = C|K′ ,

G′ = idΣ′∪N′∪H′∪E′∪K′ ◦G ◦ idΣ′∪N′∪H′∪E′∪K′ .

This operation is permitted provided ∀e∗∈E\E′ i(e∗) = 0.

Theorem 39. All elementary pruning operations are pruning operations.

Proof. Let the network be N = (Σ, N, H, E, K, W, P, A, F, S, C, G) and the inclusion functions be

i, j.

(i) Consider pruning a symbol σ∈Σ, producing N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′,

C′, G′). We must show that N ′ is a subnetwork of N . The only condition that is not obvious

is G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦G. This is proved in five parts.

First, G ◦ idΣ′ ⊆ idΣ′ ◦ G is verified as follows. For any σ1, σ2∈Σ, if (G ◦ idΣ′)(σ1, σ2) then

G(σ1, σ2) and σ2 ∈ Σ′, so σ2 6= σ and G(σ, σ2) does not hold. This implies that σ1 6= σ and

G(σ, σ1) does not hold (by G◦G = ⊥). This gives σ1∈Σ′, and hence (idΣ′ ◦G)(σ1, σ2), as required.

The condition G ◦ idN′ ⊆ idN′ ◦G is verified as follows.

G ◦ idN′ = G ◦ idN ◦ idN′ = idN ◦G ◦ idN′ ⊆ idN∪Σ ◦G ◦ idN′

⊆ W
−1
◦G ◦W ◦ idN′

⊆ W
−1
◦G ◦ idΣ′ ◦W

⊆ W
−1
◦ idΣ′ ◦G ◦W

= idW−1(Σ′) ◦W
−1
◦G ◦W

from W ◦G ⊆ G ◦W by theorem 2(iv)

since N′ ⊆ W−1(Σ′)

since G ◦ idΣ′ ⊆ idΣ′ ◦G

so by theorem 4(vi)

G ◦ idN′ ⊆ idW−1(Σ′) ◦G

and similarly

G ◦ idN′ ⊆ idP−1(Σ′) ◦G

so

G ◦ idN′ ⊆ idW−1(Σ′) ◦G ∩ idP−1(Σ′) ◦G

= idW−1(Σ′) ◦ (G ∩ idP−1(Σ′) ◦G)

= idW−1(Σ′) ◦ idP−1(Σ′) ◦ (G ∩G)

= idN′ ◦G.

by theorem 4(iv)

by theorem 4(iv)
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The condition G ◦ idH′ ⊆ idH′ ◦G is verified as follows.

G ◦ idH′ = G ◦ idH ◦ idH′ = idH ◦G ◦ idH′

⊆ A
−1
◦G ◦ A ◦ idH′

= A
−1
◦G ◦ idN′∪Σ′ ◦ A

⊆ A
−1
◦ idN′∪Σ′ ◦G ◦ A

= idH′ ◦ A
−1
◦G ◦ A

from A ◦G ⊆ G ◦ A by theorem 2(iv)

since H′ = A−1(N′ ∪ Σ′)

since G ◦ idΣ′ ⊆ idΣ′ ◦G and G ◦ idN′ ⊆ idN′ ◦G

since H′ = A−1(N′ ∪ Σ′)

so by theorem 4(vi)

G ◦ idH′ ⊆ idH′ ◦G.

The condition G ◦ idE′ ⊆ idE′ ◦G is verified as follows.

G ◦ idE′ = G ◦ idE ◦ idE′ = idE ◦G ◦ idE′

⊆ F
−1
◦G ◦ F ◦ idE′

⊆ F
−1
◦G ◦ idH′ ◦ F

⊆ F
−1
◦ idH′ ◦G ◦ F

= idF−1(H′) ◦ F
−1
◦G ◦ F

from F ◦G ⊆ G ◦ F by theorem 2(iv)

since E′ ⊆ F−1(H′)

since G ◦ idH′ ⊆ idH′ ◦G

so by theorem 4(vi)

G ◦ idE′ ⊆ idF−1(H′) ◦G

and similarly

G ◦ idE′ ⊆ idS−1(H′) ◦G

so
G ◦ idE′ ⊆ idF−1(H′) ◦G ∩ idS−1(H′) ◦G

= idF−1(H′) ◦ (G ∩ idS−1(H′) ◦G)

= idF−1(H′) ◦ idS−1(H′) ◦ (G ∩G)

= idE′ ◦G.

by theorem 4(iv)

by theorem 4(iv)

Finally, the condition G ◦ idK′ ⊆ idK′ ◦G is verified as follows.

G ◦ idK′ = G ◦ idK ◦ idK′ = idK ◦G ◦ idK′

⊆ C
−1
◦G ◦ C ◦ idK′

= C
−1
◦G ◦ idE′ ◦ C

⊆ C
−1
◦ idE′ ◦G ◦ C

= idK′ ◦ C
−1
◦G ◦ C

from C ◦G ⊆ G ◦ C by theorem 2(iv)

since K ′ = C−1(E′)

since G ◦ idE′ ⊆ idE′ ◦G

since K ′ = C−1(E′)

so by theorem 4(vi)

G ◦ idK′ ⊆ idK′ ◦G.

It follows then that G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦ G and hence N ′ is a subnetwork

of N .

We also need to verify the conditions on the inclusion functions for a pruning operation.

The first condition, ∀σ∗∈Σ\Σ′ i(σ∗) = 0, is given.
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The second condition, ∀n∈N\N′ i(n) = 0, is verified as follows. For any n∈N\N′, we

have n /∈ W−1(Σ′) or n /∈ P−1(Σ′). In the former case, W(n) ∈ Σ\Σ′, so i(W(n)) = 0, so, by the

constraint i(W(n)) = j(n)+ i(n), we have i(n) = 0 as required. In the latter case, n∈P−1(Σ\Σ′),

so we are given that i(n) = 0 as required.

The third condition, ∀e∈E\E′ i(e) = 0, is verified as follows. For any e∈E\E′, we have

e /∈ F−1(H′) or e /∈ S−1(H′). In the former case, F(e) /∈ H′, so A(F(e)) /∈ N′ ∪Σ′, so i(A(F(e))) = 0.

Hence by the constraint ∀h∈H i(A(h)) = j(h) +
∑

e∈F−1({h}) i(e) +
∑

e∈S−1({h}) i(e) it follows that

i(e) = 0 as required. The latter case is similar.

This completes the proof that pruning σ is a pruning operation.

(ii) Consider pruning a node n∈N, producing N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′).

The verification that N ′ is a subnetwork of N is similar to the one in part (i), but simpler. We

also need to verify the conditions on the inclusion functions for a pruning operation.

The first condition, ∀σ∈Σ\Σ′ i(σ) = 0, is vacuously true because Σ′ = Σ.

The second condition, ∀n∗∈N\N′ i(n∗) = 0, is given.

The third condition, ∀e∈E\E′ i(e) = 0, is verified exactly as in part (i).

(iii) Consider pruning an edge e∈E, producing N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′,

C′, G′). The verification that N ′ is a subnetwork of N is similar to the one in part (i),

but simpler. We also need to verify the conditions on the inclusion functions for a pruning

operation.

The first two conditions, ∀σ∈Σ\Σ′ i(σ) = 0 and ∀n∈N\N′ i(n) = 0, are vacuously true

because Σ′ = Σ and N′ = N.

The third condition, ∀e∗∈E\E′ i(e∗) = 0, is given.

The following theorem shows why it is sufficient to restrict attention to elementary pruning

operations.

Theorem 40. If any non­trivial pruning operation is possible on a network then an elementary

pruning operation is possible on it.

Proof. Consider a network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) with inclusion functions i, j

and suppose that a non­trivial pruning operation is possible on it, producing a proper subnet­

work N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′). Then there exists σ∈Σ\Σ′ or n∈N\N′ or

h∈H\H′ or e∈E\E′ or k∈K\K ′. However, note that if h∈H\H′ then A(h)∈N\N′ ∪Σ\Σ′, since

H′ = A−1(N′ ∪ Σ′); and if k ∈ K\K ′ then C(k) ∈ E\E′ since K ′ = C−1(E′). So we can infer that

there exists σ∈Σ\Σ′ or n∈N\N′ or e∈E\E′.

Consider the case where there exists σ∈Σ\Σ′. Then ∀σ∗∈Σ (G(σ, σ∗)⇒ σ∗ ∈Σ\Σ′), by the

condition G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦G. Defining a set Σ0 = {σ} ∪ {σ∗ | G(σ, σ∗) },

we then have Σ0 ⊆ Σ\Σ′, so ∀σ∗∈Σ0 i(σ∗) = 0; moreover the condition P(N′) ⊆ Σ′ implies

P−1(Σ0) ⊆ N\N′ and hence ∀n∈P−1(Σ0) i(n) = 0. Hence we can perform on N the elementary

pruning operation of pruning σ, giving a subnetwork N ′′ = (Σ′′, N′′, H′′, E′′, K ′′, W′′, P′′, A′′, F′′,

S′′, C′′, G′′), with Σ′′ = Σ\Σ0.

Next consider the case where there exists n∈N\N′. Then ∀n∗∈N (G(n, n∗)⇒ n∗ ∈N\N′),

by the condition G ◦ idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦ G. Defining a set N0 = {n} ∪ {n∗ |

G(n, n∗) }, we then have N0 ⊆ N\N′, so ∀n∗∈N0 i(n∗) = 0. Hence we can perform on N the

elementary pruning operation of pruning n, giving a subnetwork N ′′ = (Σ′′, N′′, H′′, E′′, K ′′,

W′′, P′′, A′′, F′′, S′′, C′′, G′′), with N′′ = N\N0.
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Finally consider the case where there exists e∈E\E′. Then ∀e∗∈E (G(e, e∗)⇒ e∗∈E\E′), by

the condition G◦idΣ′∪N′∪H′∪E′∪K′ ⊆ idΣ′∪N′∪H′∪E′∪K′ ◦G. Defining a set E0 = {e}∪{ e∗ | G(e, e∗) },

we then have E0 ⊆ E\E′, so ∀e∗∈E0 i(e∗) = 0. Hence we can perform on N the elementary

pruning operation of pruning e, giving a subnetwork N ′′ = (Σ′′, N′′, H′′, E′′, K ′′, W′′, P′′, A′′, F′′,

S′′, C′′, G′′), with E′′ = E\E0.

Hence in all cases an elementary pruning operation is possible.

Theorem 41. If a pruning operation is carried out on a network N , given a pair of inclusion

functions (i, j) on N , resulting in a subnetwork N ′, then, for any image I and any embedding

token u, embedding type v and bareness function B for N ,

IM(I,N ′, u′, v′, i′, j′, B′) = IM(I,N , u, v, i, j, B)

where u′, v′, i′, j′, B′ are the restrictions of u, v, i, j, B to N ′. Moreover, the symmetry condition

holds for N ′, u′, v′ if it holds for N , u, v.

Proof. We use the usual notation, N = (Σ, N, H, E, K, W, P, A, F, S, C, G), N ′ = (Σ′, N′, H′,

E′, K ′, W′, P′, A′, F′, S′, C′, G′), v = (sub, con, rel, symm, tem, in), v′ = (sub′, con′, rel′, symm′, tem′,

in′). By the definition of a pruning operation and theorem 38(i),

∀σ∈Σ\Σ′ i(σ) = 0 = j(σ), ∀n∈N\N′ i(n) = 0, ∀h∈H\H′ j(h) = 0,

∀e∈E\E′ i(e) = 0, ∀k∈(K\dom(G))\(K ′\dom(G′)) j(k) = 0.

This implies that the pruning operation makes no difference to the value of IM. The only term

for which this is not obvious is
∑

(σ,σ∗)|G(σ,σ∗) i(σ∗)Esub(σ,σ∗)(u(σ)−1 · u(σ∗)). Since G′Σ = GΣ ◦ idΣ′

(by theorem 24(i)), the difference

∑

(σ,σ∗)|G(σ,σ∗)

i(σ∗)Esub(σ,σ∗)(u(σ)−1 · u(σ∗)) −
∑

(σ,σ∗)|G′(σ,σ∗)

i′(σ∗)Esub′(σ,σ∗)(u
′(σ)−1 · u′(σ∗))

is the sum of i(σ∗)Esub(σ,σ∗)(u(σ)−1 ·u(σ∗)) over pairs (σ, σ∗) having σ∗∈Σ\Σ′, and for such pairs

the term vanishes since i(σ∗) = 0.

The symmetry condition for N ′, u′, v′ immediately follows from the one for N , u, v.

Pruning is used in the recognition process as follows. We have a pattern N1, a parse p:N1 → N0,

an embedding token u for N1, and a pair of inclusion functions (i, j) on N1. We carry out an

elementary pruning operation on N1 to give a subnetwork N ′1, with a new parse p|N ′

1
:N ′1 → N0

(§3.7), a new embedding token u|N ′

1
(§4.2), and a new pair of inclusion functions, the restriction

of (i, j) to N ′1 (theorem 38(ii)).
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8.3 Unprunability and its consequences

Definition. A network N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is unprunable, given a pair of

inclusion functions (i, j) on N , iff there is no proper subnetwork N ′ = (Σ′, N′, H′, E′, K ′, W′, P′,

A′, F′, S′, C′, G′) of N satisfying

∀σ∈Σ\Σ′ i(σ) = 0, ∀n∈N\N′ i(n) = 0, ∀e∈E\E′ i(e) = 0.

(In other words, a network is unprunable iff no non­trivial pruning operation is possible on it,

or, equivalently by theorem 40, iff no elementary pruning operation is possible on it.)

Theorem 42. If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network,

(b) p:N1 → N0 is a homomorphism, where N0 is a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying ∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1},

(d) N1 is unprunable, given (i, j),

then ∀e∈E1 i(e) = 1.

Proof. Consider the pruning operation that transforms N1 to N2 = (Σ2, N2, H2, E2, K2, W2, P2,

A2, F2, S2, C2, G2), where

Σ2 = Σ1, N2 = N1, H2 = H1, E2 = { e∈E1 | i(e) = 1 }, K2 = C1
−1(E2),

W2 = W1, P2 = P1, A2 = A1, F2 = F1|E2
, S2 = S1|E2

, C2 = C1|K2
,

G2 = idΣ2∪N2∪H2∪E2∪K2
◦G1 ◦ idΣ2∪N2∪H2∪E2∪K2

.

I shall show that this is indeed a pruning operation, and then since N1 is assumed unprunable

it will follow that N2 = N1.

First we check that N2 is a subnetwork of N1. The conditions

W1(N2) ⊆ Σ2, P1(N2) ⊆ Σ2, H2 = A1
−1(N2 ∪ Σ2), F1(E2) ⊆ H2, S1(E2) ⊆ H2

are immediate, since Σ2 = Σ1, N2 = N1 and H2 = H1. The condition K2 = C1
−1(E2) holds by

definition.

The functions W2, P2, A2, F2, S2, C2 are as they ought to be for a subnetwork.

To verify G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1 we need the following derivations.

For every k, k∗∈K1 such that G1(k, k∗), we have k ∈ ran(G1), so k /∈ dom(G1), so

i(C1(k)) = j(k) +
∑

k′|G1(k,k′)

i(C1(k′)) ≥ i(C1(k∗));

thus if k∗ ∈K2 then C1(k∗) ∈E2, so i(C1(k∗)) = 1, so i(C1(k)) = 1, so C1(k) ∈E2, so k ∈K2. This

shows

G1K ◦ idK2
⊆ idK2

◦G1K . (1)

Next,

G1E ◦ idE2
= C1 ◦G1K ◦ C1

−1
◦ idE2

= C1 ◦G1K ◦ idK2
◦ C1

−1

⊆ C1 ◦ idK2
◦G1K ◦ C1

−1

= idE2
◦ C1 ◦G1K ◦ C1

−1

= idE2
◦G1E

by theorem 20(iv)

since K2 = C1
−1(E2)

by (1)

since K2 = C1
−1(E2)

by theorem 20(iv). (2)
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Next,

G1 ◦ idΣ2∪N2∪H2
= G1Σ ∪G1N ∪G1H = idΣ2∪N2∪H2

◦G1 (3)

since Σ2 = Σ1, N2 = N1 and H2 = H1. Combining (1), (2) and (3) gives

G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1

as required. Thus N2 is indeed a subnetwork of N1. The remaining conditions for a pruning

operation,

∀σ∈Σ1\Σ2 i(σ) = 0, ∀n∈N1\N2 i(n) = 0, ∀e∈E1\E2 i(e) = 0,

hold by definition of Σ2, N2, E2.

Since N1 is assumed unprunable, given (i, j), it follows that N2 = N1. This means that

E2 = E1 and so ∀e∈E1 i(e) = 1.

Theorem 43. If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network,

(b) p:N1 → N0 is a homomorphism, where N0 is a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying

∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1}, ∀h∈H1 j(h) = 0, ∀k∈K1\dom(G1) j(k) = 0,

(d) N1 is unprunable, given (i, j),

then

(i) ∀e∈E1 i(e) = 1,

(ii) ∀n∈N1 i(n) = 1,

(iii) E1
F1→ A1

−1(N1 ∪ Y)
S1← E1 is a sum diagram in the category of sets, where Y = {σ∈Σ1 |

i(σ) = 1 },

(iv) ∃f : K1\dom(G1)→ K1 G−1
1K = f ,

(v) ∀n∈N1 i(W1(n)) = 1 = i(P1(n)),

(vi) ∀X ⊆ Σ1 |P1
−1(X)| − |G1N ◦ idP1

−1(X)| ≤ |X|.

Proof. (i) is given by theorem 42.

(ii) Consider the pruning operation that transforms N1 to N2 = (Σ2, N2, H2, E2, K2, W2, P2,

A2, F2, S2, C2, G2), where

Σ2 = Σ1, N2 = {n∈N1 | i(n) = 1 }, H2 = A1
−1(N2 ∪ Σ2), E2 = E1, K2 = K1,

W2 = W1|N2∪Σ2
, P2 = P1|N2

, A2 = A1|H2
, F2 = F1, S2 = S1, C2 = C1,

G2 = idΣ2∪N2∪H2∪E2∪K2
◦G1 ◦ idΣ2∪N2∪H2∪E2∪K2

.

I shall show that this is indeed a pruning operation, and then since N1 is assumed unprunable

it will follow that N2 = N1.

First we check that N2 is a subnetwork of N1. The conditions W1(N2) ⊆ Σ2 and P1(N2) ⊆

Σ2, are immediate, since Σ2 = Σ1.

Define Y = {σ∈Σ1 | i(σ) = 1 } (as in part (iii) in the statement of the theorem). For any

h∈H1, we have the condition

i(A1(h)) = j(h) +
∑

e∈F1
−1({h})

i(e) +
∑

e∈S1
−1({h})

i(e)

where j(h) = 0; so h∈A1
−1(N2 ∪Y) iff i(A1(h)) = 1 iff there exists e∈F1

−1({h}) or e∈S1
−1({h})

(where such an e is unique and belongs to just one of the two sets). This means that

E1
F1→ A1

−1(N2 ∪ Y)
S1← E1 is a sum diagram. (1)
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This implies F1(E1) ⊆ A1
−1(N2 ∪ Y) ⊆ H2 and S1(E1) ⊆ A1

−1(N2 ∪ Y) ⊆ H2, as required.

The functions W2, P2, A2, F2, S2, C2 are as required for a subnetwork.

To verify G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1 we need the following derivations.

Since Σ2 = Σ1, E2 = E1 and K2 = K1,

G1 ◦ idΣ2
= G1Σ = idΣ2

◦G1,

G1 ◦ idE2
= G1E = idE2

◦G1,

G1 ◦ idK2
= G1K = idK2

◦G1.

(2)

Next,

G1H ◦ idA1
−1(N2) ⊆ G1H ◦ idA1

−1(N2∪Y)

= G1H ◦
(

F1 ◦ F1

−1
∪ S1 ◦ S1

−1)

= G1H ◦ F1 ◦ F1
−1
∪ G1H ◦ S1 ◦ S1

−1

= G1 ◦ F1 ◦ F1

−1
∪ G1 ◦ S1 ◦ S1

−1

= F1 ◦G1 ◦ F1

−1
∪ S1 ◦G1 ◦ S1

−1

= F1 ◦ idE1
◦G1 ◦ F1

−1
∪ S1 ◦ idE1

◦G1 ◦ S1
−1

⊆ idH2
◦ F1 ◦G1 ◦ F1

−1
∪ idH2

◦ S1 ◦G1 ◦ S1

−1

= idH2
◦G1 ◦ F1 ◦ F1

−1
∪ idH2

◦G1 ◦ S1 ◦ S1
−1

⊆ idH2
◦G1 ◦ idH1

∪ idH2
◦G1 ◦ idH1

= idH2
◦G1H.

by theorem 7 and (1)

by theorem 20(ii)

since F1(E1) ⊆ H2

by theorem 20(ii)

by theorem 2(i)

(3)

Next, from A1 ◦G1 ⊆ G1 ◦ A1 we have

G1H ◦ idA1
−1(Σ2) ⊆ A1

−1
◦G1 ◦ A1 ◦ idA1

−1(Σ2)

= A1

−1
◦G1 ◦ idΣ2

◦ A1

= A1

−1
◦ idΣ2

◦G1 ◦ A1

⊆ idH2
◦ A1

−1
◦G1 ◦ A1

by theorem 2(iv)

by (2)

since A1
−1(Σ2) ⊆ H2

so by theorem 4(vi)

G1H ◦ idA1
−1(Σ2) ⊆ idH2

◦G1H. (4)

Hence,

G1H ◦ idH2
= G1H ◦ idA1

−1(N2∪Σ2)

= G1H ◦ idA1
−1(N2) ∪ G1H ◦ idA1

−1(Σ2)

⊆ idH2
◦G1H by (3) and (4). (5)

Next,

G1N ◦ idN2
= idN1

◦ A1 ◦G1H ◦ A1

−1
◦ idN2

⊆ idN1
◦ A1 ◦G1H ◦ idH2

◦ A1

−1

⊆ idN1
◦ A1 ◦ idH2

◦G1H ◦ A1

−1

= idN1
◦ idN2∪Σ2

◦ A1 ◦G1H ◦ A1

−1

= idN2
◦ idN1

◦ A1 ◦G1H ◦ A1
−1

= idN2
◦G1N

by theorem 20(iii)

since A1
−1(N2) ⊆ H2

by (5)

since H2 = A1
−1(N2 ∪ Σ2)

by theorem 20(iii). (6)
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From (2), (5) and (6),

G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1.

Thus N2 is indeed a subnetwork of N1. The remaining conditions for a pruning operation,

∀σ∈Σ1\Σ2 i(σ) = 0, ∀n∈N1\N2 i(n) = 0, ∀e∈E1\E2 i(e) = 0,

hold by definition of Σ2, N2, E2.

Since N1 is assumed unprunable, given (i, j), it follows that N2 = N1. This means that

N2 = N1 and so ∀n∈N1 i(n) = 1.

(iii) follows from (1), bearing in mind that N2 = N1.

(iv) For any k∈K1\dom(G1),

i(C1(k)) = j(k) +
∑

k∗|G1(k,k∗)

i(C1(k∗))

where i(C1(k)) = 1, j(k) = 0, and each i(C1(k∗)) = 1, by part (i) and hypothesis (c), so there

exists a unique k∗ such that G1(k, k∗). Define f : K1\dom(G1) → K1 mapping k to this k∗. On

the other hand, for any k∈K1 ∧ dom(G1), we have k /∈ ran(G1), so there exists no k∗ such that

G1(k, k∗). Thus G−1
1K = f .

(v) ∀n∈N1 i(W1(n)) = 1 holds since, for any n∈N1,

i(W1(n)) = j(n) + i(n)

where i(n) = 1 by part (ii), so i(W1(n)) = 1.

The other equation, ∀n∈N1 i(P1(n)) = 1, is proved using theorem 21 and theorem 13. The

hypotheses of theorem 21 hold, by parts (iii) and (iv) just proved. Theorem 21 then tells us

that G1N is acyclic. The next step is to apply theorem 13 to the sets N1, Σ1, the function

P1: N1 → Σ1 and the finite relation G1N on N1. Let us check the hypotheses of theorem 13.

Hypothesis (a): G1N ◦G1N ⊆ G1 ◦G1 = ⊥ (since N1 is a network).

Hypothesis (b): G1N is acyclic (as just shown).

Hypothesis (c): P1 ◦G1N = P1 ◦G1 ⊆ P1 (since N1 is a network).

Now, for any σ∈Σ1 such that i(σ) = 0, taking X = {σ} in theorem 13(i) gives

|P1
−1({σ})| − |G1N ◦ idP1

−1({σ})| ≥ 0.

Moreover, (recalling the notation gn =
∣

∣{n∗∈N1 | G1(n∗, n) }
∣

∣)

0 = i(σ) = j(σ) +
∑

n∈P1
−1({σ})

(1− gn)i(n) = j(σ) +
∑

n∈P1
−1({σ})

(1− gn)

= j(σ) + |P1
−1({σ})| − |{ (n∗, n)∈N1 × P1

−1({σ}) | G1(n∗, n) }|

= j(σ) + |P1
−1({σ})| − |G1N ◦ idP1

−1({σ})|

so j(σ) = 0 and |P1
−1({σ})| − |G1N ◦ idP1

−1({σ})| = 0. Then by theorem 13(ii) P1
−1({σ}) = ∅. The

contrapositive of this result is that if P1
−1({σ}) 6= ∅ then i(σ) = 1. Thus ∀n∈N1 i(P1(n)) = 1,

as required.
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(vi) For any σ∈Σ1,

i(σ) = j(σ) +
∑

n∈P1
−1({σ})

(1− gn)i(n) = j(σ) + |P1
−1({σ})| − |G1N ◦ idP1

−1({σ})|

as in part (v), where i(σ) ∈ {0, 1} and j(σ) ∈ [0, 1], so

|P1
−1({σ})| − |G1N ◦ idP1

−1({σ})| ≤ 1.

For any X ⊆ Σ1, summing this inequality over all σ∈X gives

|P1
−1(X)| − |G1N ◦ idP1

−1(X)| ≤ |X|

as required.

Theorem 44. If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network,

(b) p:N1 → N0 is a homomorphism, where N0 is a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying

∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1}, ∀h∈H1 j(h) = 0, ∀k∈K1\dom(G1) j(k) = 0,

(d) N1 is unprunable, given (i, j),

(e) E1

A1◦F1−−→
−−→
A1◦S1

N1 ∪ Σ1
W1→ Σ1 is a coequaliser diagram in the category of sets,

then

(i) ∀x∈Σ1 ∪N1 ∪E1 i(x) = 1,

(ii) N1 is definite.

Proof. The hypotheses of this theorem include those of theorem 43, so we can apply theorem 43.

(i) From theorem 43(i),(ii) we already have ∀e∈E1 i(e) = 1 and ∀n∈N1 i(n) = 1. Consider

the pruning operation that transforms N1 to N2 = (Σ2, N2, H2, E2, K2, W2, P2, A2, F2, S2, C2, G2),

where

Σ2 = {σ∈Σ1 | i(σ) = 1 }, N2 = N1, H2 = A1
−1(N2 ∪ Σ2), E2 = E1, K2 = K1,

W2 = W1|N2∪Σ2
, P2 = P1, A2 = A1|H2

, F2 = F1, S2 = S1, C2 = C1,

G2 = idΣ2∪N2∪H2∪E2∪K2
◦G1 ◦ idΣ2∪N2∪H2∪E2∪K2

.

I shall show that this is indeed a pruning operation, and then since N1 is assumed unprunable

it will follow that N2 = N1.

First we check that N2 is a subnetwork. The first two conditions, W1(N2) ⊆ Σ2 and

P1(N2) ⊆ Σ2 follow from theorem 43(v).

Theorem 43(iii) tells us that

E1
F1→ H2

S1← E1 is a sum diagram (1)

since H2 = A1
−1(N2 ∪ Σ2) = A1

−1(N1 ∪ Y). This implies F1(E2) ⊆ H2 and S1(E2) ⊆ H2, as

required.

The functions W2, P2, A2, F2, S2, C2 are as required for a subnetwork.

Next we verify the condition G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1.

The hypotheses of theorem 22 are satisfied (with Y = Σ2). Theorem 22(iii) gives

G1 ◦ idΣ2
⊆ idΣ2

◦G1. (2)
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The conditions

G1 ◦ idN2
= idN2

◦G1 (3)

G1 ◦ idE2
= idE2

◦G1 (4)

G1 ◦ idK2
= idK2

◦G1 (5)

hold trivially, since N2 = N1, E2 = E1 and K2 = K1. Also,

G1 ◦ idH2
= idH1

◦G1 ◦ idH2

⊆ A1
−1
◦G1 ◦ A1 ◦ idH2

= A1

−1
◦G1 ◦ idN2∪Σ2

◦ A1

⊆ A1

−1
◦ idN2∪Σ2

◦G1 ◦ A1

= idH2
◦ A1

−1
◦G1 ◦ A1

since H2 ⊆ H1

from A1 ◦G1 ⊆ G1 ◦ A1 by theorem 2(iv)

since H2 = A1
−1(N2 ∪ Σ2)

by (3) and (2)

since H2 = A1
−1(N2 ∪ Σ2)

and hence by theorem 4(vi)

G1 ◦ idH2
⊆ idH2

◦G1. (6)

From (2), (3), (4), (5) and (6) we derive G1 ◦ idΣ2∪N2∪H2∪E2∪K2
⊆ idΣ2∪N2∪H2∪E2∪K2

◦G1. Hence N2

is indeed a subnetwork of N1.

The conditions

∀σ∈Σ1\Σ2 i(σ) = 0, ∀n∈N1\N2 i(n) = 0, ∀e∈E1\E2 i(e) = 0

follow immediately from the definitions of Σ2, N2, E2. This completes the verification that we

have a pruning operation.

Since N1 is assumed to be unprunable, given (i, j), the pruning operation must be the

trivial one, with N2 = N1. This means that Σ2 = Σ1 and so ∀σ∈Σ1 i(σ) = 1, as required.

(ii) We shall apply theorem 23; let us check its hypotheses.

Hypothesis (a) holds by theorem 43(vi).

Hypothesis (b), that E1
F1→ H1

S1← E1 is a sum diagram, follows from (1) and the fact that

N2 = N1.

Hypothesis (c) holds by theorem 27(iv).

Hypothesis (d) holds by hypothesis (e) of this theorem.

Thus it follows by theorem 23 that N1 is definite.

8.4 Extension operations

Given a grammar N0, a pattern N1, a homomorphism p:N1 → N0, and an embedding token

u for N1, an extension of (N1, p, u) is a triple (N ′1, p′, u′) where N1 is a subnetwork of N ′1,

p′:N ′1 → N0 is a homomorphism such that p = p′|N1
, and u′ is an embedding token for N ′1 such

that u = u′|N1
.

(N ′1, p′, u′) is a minimal extension of (N1, p, u) satisfying a condition P iff

(i) (N ′1, p′, u′) is an extension of (N1, p, u) satisfying P;

(ii) for any extension (N ′′1 , p′′, u′′) of (N1, p, u) satisfying P, |N ′1| ≤ |N
′′
1 |,

where the cardinality |N | of a network N is defined by |(Σ, N, H, E, K, W, P, A, F, S, C, G)| =

|Σ|+ |N|+ |H|+ |E|+ |K|.

An extension is trivial iff N ′1 = N1.
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Using these notions we can define the extension operations used in the algorithm. The

notation is as usual: we have a grammar N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0)

and an embedding type v = (sub, con, rel, symm, tem, in) on N0, a pattern N1 = (Σ1, N1, H1,

E1, K1, W1, P1, A1, F1, S1, C1, G1) with a parse p:N1 → N0, an embedding token u, a pair of

inclusion functions (i, j), and a bareness function B for N1; we shall produce an extended

network N ′1 = (Σ′1, N′1, H′1, E′1, K ′1, W′1, P′1, A′1, F′1, S′1, C′1, G′1) with a new parse p′:N ′1 → N0 and

embedding token u′. The threshold θ is the positive constant used in the DM function (see

§4.5); the thresholds θ0, θ1, θ2, θ3, θ4 are used only in the extension operations and may be

made dependent on parameters such as temperature.

In the extension operations the following additional conditions, referred to collectively as

the extension conditions, will be imposed.

• ∀σ∈Σ1 (P′1
−1({σ}) 6⊆ N1 ⇒ j(σ) > θ0 ∧ B(σ) < θ),

• ∀h∈H1 (F′1
−1({h}) ∪ S′1

−1({h}) 6⊆ E1 ⇒ j(h) > θ0),

• ∀e∈E′1 (A′1(F′1(e)) /∈ N1 ∨ A′1(S′1(e)) /∈ N1 ⇒ W′1(A′1(F′1(e))) = W′1(A′1(S′1(e)))),

• ∀n ∈N′1\N1 Econ(p′(n))(u
′(W′1(n))−1 · u′(n)) < θ1,

• the symmetry condition for N ′1, u′, v ◦ p′.

The extension operations are as follows (see figure 1 below). For each one, the extension

conditions are checked at the end and the operation is cancelled if they do not hold. (Note that

no consistent pair of inclusion functions (i′, j′) can be specified for the extended pattern N ′1, so

we recalculate them as in §7.4, using the old inclusion functions (i, j) as a starting point.)

(a) (Joining two symbols.) Given symbols σ1, σ2∈Σ1, an edge e0∈E0, and affine transformations

s1∈symm(p(σ1)) and s2∈symm(p(σ2)) such that

• P0(A0(F0(e0))) = p(σ1) and P0(A0(S0(e0))) = p(σ2),

• Erel(e0)(s
−1
2 · u(σ2)−1 · u(σ1) · s1) < θ2,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

nodes n1, n2 and an edge e for which

• p′(e) = e0, A′1(F′1(e)) = n1, A′1(S′1(e)) = n2, P′1(n1) = σ1 and P′1(n2) = σ2,

• u′(n1) = u(σ1) · s1 and u′(n2) = u(σ2) · s2.

(b) (Joining three symbols.) Given symbols σ1, σ2, σ3∈Σ1, edges e01, e02∈E0, s1∈symm(p(σ1)),

s2∈symm(p(σ2)) and s3∈symm(p(σ3)) such that

• A0(S0(e01)) = A0(F0(e02)), P0(A0(F0(e01))) = p(σ1), P0(A0(S0(e01))) = p(σ2) and P0(A0(S0(e02)))

= p(σ3),

• Erel(e01)(s
−1
2 · u(σ2)−1 · u(σ1) · s1) + Erel(e02)(s

−1
3 · u(σ3)−1 · u(σ2) · s2) < θ3,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

nodes n1, n2, n3 and edges e1, e2 for which

• p′(e1) = e01, p′(e2) = e02, A′1(F′1(e1)) = n1, A′1(S′1(e1)) = n2 = A′1(F′1(e2)), A′1(S′1(e2)) = n3,

P′1(n1) = σ1, P′1(n2) = σ2 and P′1(n3) = σ3,

• u′(n1) = u(σ1) · s1, u′(n2) = u(σ2) · s2 and u′(n3) = u(σ3) · s3.

(There are also variations of operation (b), in which the directions of e01 and e1 are reversed,

or the directions of e02 and e2 are reversed.)
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(c) (Extending from a hook.) Given a hook h∈H1, construct a minimal extension (N ′1, p′, u′) of

(N1, p, u) such that

• p′(F′1
−1

({h})) = F−1
0 (p({h})) and p′(S′1

−1
({h})) = S−1

0 (p({h})),

• ∀e∈E′1\E1 Erel(p′(e))(u
′(A′1(S′1(e)))−1 · u′(A′1(F′1(e)))) = 0.

(d) (Extending from a facet.) Given a facet k∈K1 such that

• W1(A1(F1(C1(k)))) = W1(A1(S1(C1(k))))

• j(k) > θ0,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) such that

• p′ ◦G′1
−1 ◦ id{k} = G−1

0 ◦ p ◦ id{k}.

(e) (Extending from a part to a whole.) Given a symbol σ∈Σ1, construct a minimal extension

(N ′1, p′, u′) of (N1, p, u) such that

• p′(P′1
−1({σ})) = P0

−1(p({σ})),

• ∀n∈N′1\N1 Econ(p′(n))(u
′(W′1(n))−1 · u′(n)) = 0.

(f) (Filling in a missing part between two parts.) Given nodes n1, n3∈N1, hooks h1, h3∈H1,

edges e01, e02∈E0 and an affine transformation f such that

• W1(n1) = W1(n3), A1(h1) = n1, A1(h3) = n3, A0(S0(e01)) = A0(F0(e02)), F0(e01) = p(h1) and

S0(e02) = p(h3),

• Erel(e01)(f
−1 · u(n1)) + Erel(e02)(u(n3)−1 · f ) < θ4,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) (if one exists) such that N ′1 contains

edges e1, e2 and a node n2 for which

• p′(e1) = e01, p′(e2) = e02, F′1(e1) = h1, A′1(S′1(e1)) = n2 = A′1(F′1(e2)) and S′1(e2) = h3,

• if n2 /∈ N1 then u′(n2) = f .

(There are also variations of operation (f), in which the directions of e01 and e1 are reversed,

or the directions of e02 and e2 are reversed.)

(g) (Filling in a symbol between part and whole.) Given symbols σ1, σ3∈Σ1, symbols

σ01, σ02, σ03∈Σ0, nodes n01, n02∈N0, s∈symm(σ03), and an affine transformation f such that

• p(σ1) = σ01, p(σ3) = σ03, W0(n01) = σ01, P0(n01) = σ02 = W0(n02) and P0(n02) = σ03,

• Econ(n01)(u(σ1)−1 · f ) + Econ(n02)(f
−1 · u(σ3) · s) < θ4,

construct a minimal extension (N ′1, p′, u′) of (N1, p, u) such that N ′1 contains a symbol σ2 and

nodes n1, n2 for which

• p′(n1) = n01, p′(n2) = n02, W′1(n1) = σ1, P′1(n1) = σ2 = W1(n2) and P′1(n2) = σ3,

• if n1 /∈ N1 then u′(n1) = u′(σ2) = f ,

• if n2 /∈ N1 then u′(n2) = u(σ3) · s.

These extension operations are applied concurrently, in a fair order, controlled by probabilities;

the probability is low in cases where new symbols would be created (particularly operations (a)

and (e)), to avoid the creation of too many new symbols.

These operations are depicted in figure 1. In this figure rectangles represent symbols,

circles represent nodes, small filled discs represent hooks, lines with arrowheads halfway
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along represent edges, and small crosses represent facets (shown only for operation (e)); the W

and P functions, which map each node to the whole and part symbols, are represented by lines

with arrowheads at the end. For each operation solid lines are used for the symbols, nodes,

etc., assumed to be present in the pattern before the extension operation; dashed lines are used

for the symbols, nodes, etc., added by the extension operation (if they are not already present

in N1). Thus, for example, operation (g) adds one symbol and two nodes (and their associated

hooks), unless a suitable symbol or suitable nodes already exist in N1. Note, however, that

whenever an edge is added the appropriate number of superedges must also be added, in order

that p′ satisfy the conditions for a homomorphism; and the same applies to symbols, nodes,

etc.; these are not shown in the figure.
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σ
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P’1
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1 1 1

1
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e 2e1

(f)

h h1 3
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Figure 1. The extension operations. The figure shows the relevant parts of the pattern

N ′1 after each extension operation. Solid lines depict what must be present before the

operation; dashed lines depict what is added if not already present.

8.5 Inextendability and its consequences

Definition. (N1, p, u) is inextendable, given i, j, v, B, iff none of the extension operations can be

applied to it, other than ones giving a trivial extension.

Theorem 45. If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network with an embedding token u

and a bareness function B,

(b) p:N1 → N0 is a homomorphism, where N0 is a semi­definite network with an embedding

type v,

(c) (i, j) is a pair of inclusion functions on N1 satisfying ∀x∈Σ1∪N1 i(x)∈{0, 1} and ∀e∈E1 i(e) =

1,

(d) (N1, p, u) is inextendable, given i, j, v, B,

(e) W1 ◦ A1 ◦ F1 = W1 ◦ A1 ◦ S1,

then ∀h∈H1 j(h) = 0 and ∀k∈K1\dom(G1) j(k) = 0.

Proof. For any h∈H1, we have

i(A(h)) = j(h) +
∑

e∈F1
−1({h})

i(e) +
∑

e∈S1
−1({h})

i(e). (1)

This implies that j(h) is an integer, and hence must be 0 or 1. Suppose j(h) = 1. Then

the operation of extending from h (extension operation (c)) is possible, giving an extension

(N ′1, p′, u′) such that p′(F′1
−1

({h})) = F−1
0 (p({h})) and p′(S′1

−1
({h})) = S−1

0 (p({h})). However,

we are assuming (N1, p, u) is inextendable, so (N ′1, p′, u′) = (N1, p, u). Thus p(F−1
1 ({h})) =

F−1
0 (p({h})) and p(S−1

1 ({h})) = S−1
0 (p({h})).

Now, N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0) is semi­definite and so satisfies

F0(E0)∪S0(E0) = H0. This means that F−1
0 (p({h})) 6= ∅ or S−1

0 (p({h})) 6= ∅. Hence p(F−1
1 ({h})) 6=

∅ or p(S−1
1 ({h})) 6= ∅. Hence F−1

1 ({h}) 6= ∅ or S−1
1 ({h}) 6= ∅. Any edge e in these sets has i(e) = 1,
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by hypothesis (c), so by (1) i(A(h)) ≥ 2, which is impossible. This contradiction establishes that

j(h) = 0 as required.

For any k∈K1\dom(G1), we have

i(C(k)) = j(k) +
∑

k∗|G1(k,k∗)

i(C(k∗)).

This implies that j(k) is an integer, and hence must be 0 or 1. Suppose j(k) = 1. Then
∑

k∗|G1(k,k∗) i(C(k∗)) = 0, and hence by hypothesis (c) there are no k∗ such that G1(k, k∗) holds.

This can be expressed as

G−1
1 ◦ id{k} = ⊥. (2)

Also, since k /∈ dom(G1) we have

G1 ◦ id{k} = ⊥. (3)

Now, by hypothesis (e) and since j(k) = 1, the operation of extending from k (extension

operation (d)) is possible, giving an extension (N ′1, p′, u′) such that p′◦G′1
−1◦id{k} = G−1

0 ◦p◦id{k}.

However, we are assuming (N1, p, u) is inextendable, hence (N ′1, p′, u′) = (N1, p, u). Thus

p ◦G−1
1 ◦ id{k} = G−1

0 ◦ p ◦ id{k}. (4)

Since N0 is semi­definite, G0 is minimal relative to N0 and hence idK0
⊆ G0K ◦G−1

0K
∪G−1

0K
◦G0K .

Then

p ◦ id{k} ⊆ G0K ◦G−1
0K ◦ p ◦ id{k} ∪ G−1

0K ◦G0K ◦ p ◦ id{k}

⊆ G0 ◦G−1
0 ◦ p ◦ id{k} ∪ G−1

0 ◦G0 ◦ p ◦ id{k}

= G0 ◦ p ◦G−1
1 ◦ id{k} ∪ G−1

0 ◦ p ◦G1 ◦ id{k}

= ⊥ ∪ ⊥ = ⊥

by (4) and since p is a homomorphism

by (2) and (3).

But this is absurd, since (p ◦ id{k})(p(k), k) holds. This contradiction establishes that j(k) = 0,

as required.

8.6 Merging two symbol tokens

We may merge two symbol tokens of the same type that have similar embedding transfor­

mations (up to a symmetry transformation). Two symbol tokens σ1, σ2∈Σ1 of type σ0∈Σ0

are considered to have similar embeddings up to a symmetry transformation iff there exists

s ∈ symm(σ0) such that Ein(σ0)(s
−1 · u(σ2)−1 · u(σ1)) is below a threshold. If this condition holds

then the symmetry s is applied to σ2 (this is a local symmetry operation; the other symbols

are unchanged); σ1 and σ2 are replaced by a single symbol; and the nodes and edges of σ1 and

σ2 are pooled. Local symmetry operations have already been defined in §4.3. The merging

itself is formally defined as follows.

Definition. Given a network N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1), and a homo­

morphism p:N1 → N0, and two symbols σ1, σ2∈Σ1 such that p(σ1) = p(σ2), the operation of

merging σ1 and σ2 produces a new network N ′1 = (Σ′1, N′1, H′1, E′1, K ′1, W′1, P′1, A′1, F′1, S′1, C′1, G′1)

and a homomorphism µ:N1 → N
′
1 defined as follows. First note that there are bijections

p|A1
−1({σ1}): A1

−1({σ1}) → A0
−1({p(σ1)}) and and p|A1

−1({σ2}): A1
−1({σ2}) → A0

−1({p(σ1)}) and

hence a bijection γ = p|−1
A1

−1({σ1})
◦ p|A1

−1({σ2}): A1
−1({σ2})→ A1

−1({σ1}). Now define
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Σ′1 = Σ1 \ {σ2}, N′1 = N1, H′1 = H1 \ A1
−1({σ2}), E′1 = E1, K ′1 = K1,

∀σ∈Σ1 µ(σ) =
{

σ1 if σ = σ2

σ otherwise
, ∀h∈H1 µ(h) =

{

γ(h) if A1(h) = σ2

h otherwise
,

∀x∈N1 ∪ E1 ∪ K1 µ(x) = x

∀σ∈Σ′1 W′1(σ) = σ, ∀n∈N′1 W′1(n) = µ(W1(n)),

P′1 = µ ◦ P1, A′1 = A1|H′

1
, F′1 = µ ◦ F1, S′1 = µ ◦ S1, C′1 = C1,

G′1 = µ ◦G1 ◦ µ−1.

This gives the network N ′1 and homomorphism µ:N1 → N
′
1.

Note that µ is surjective and satisfies ∀x, y∈Σ1∪N1∪H1∪E1∪K1 (µ(x) = µ(y) ⇒ p(x) = p(y)),

so there exists a unique function p′ such that p′ ◦ µ = p; this p′ is a homomorphism from N ′1
to N0. This is the new parse.

If u is the old embedding token on N1, we can define a new embedding token u′ on N ′1 by

∀σ∈Σ′1 u′(σ) =

{

G if σ = σ1

u(σ) otherwise
, ∀n∈N′1 u′(n) = u(n)

where G is an affine transformation intermediate between u(σ1) and u(σ2)·s. This is calculated

as follows. Find A∈A such that u(σ2) · s · u(σ1)−1 = exp(A); then choose G = exp(A/2) · u(σ1) =

exp(−A/2) · u(σ2) · s.

No consistent pair of inclusion functions (i′, j′) can be specified for the new network N ′1,

so we recalculate them as in §7.4, using the restriction of the old inclusion functions (i, j) to

N ′1 as a starting point.

8.7 Partitioning a symbol token into two

Consider any pattern N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1). For any σ0∈Σ1, if the

nodes and symbol in W1
−1({σ0}) can be partitioned into two disjoint non­empty subsets T1, T2,

such that there is no edge between any element T1 and any element of T2, then σ0 may be

replaced by two symbols, (σ0, 1) and (σ0, 2), with (σ0, 1) getting the nodes of T1 and (σ0, 2)

getting the nodes of T2. The subsymbols of σ0 are glued to (σ0, 1) or (σ0, 2) as appropriate (or

duplicated if necessary). The nodes above σ0 must be duplicated; i.e., n is replaced by (n, i)

and (n, j), for two indices i, j, and likewise for their hooks, edges and facets. This operation is

called partitioning σ0. It is roughly the inverse of the merging operation.

Definition. In a network (Σ, N, H, E, K, W, P, A, F, S, C, G), a symbol σ0∈Σ is partitionable iff

there exist sets T1, T2 such that T1 ∪ T2 = W−1({σ0}) and T1 ∩ T2 = ∅ and T1, T2 6= ∅ and

F−1(A−1(T1)) ∩ S−1(A−1(T2)) = ∅ and S−1(A−1(T1)) ∩ F−1(A−1(T2)) = ∅.

The network (Σ, N, H, E, K, W, P, A, F, S, C, G) is partitionable iff at least one symbol in Σ

is partitionable; otherwise it is unpartitionable.

Definition. If a symbol σ0 is partitionable in N = (Σ, N, H, E, K, W, P, A, F, S, C, G), with sets

T1, T2, then partitioning σ0 is the construction of a new network N ′ as follows.

First define a function I on Σ ∪N ∪ E by

• I(σ0) = {1, 2},

• ∀n∈N ∩ T1 (I(n) = {1} × I(P(n)) ∧ ∀n∗ (G(n, n∗) ⇒ I(n∗) = I(n)))

• ∀n∈N ∩ T2 (I(n) = {2} × I(P(n)) ∧ ∀n∗ (G(n, n∗) ⇒ I(n∗) = I(n)))

• ∀σ∗ (G(σ0, σ∗) ⇒ I(σ∗) =
⋃

n∈N∩W−1({σ∗}) proj1(I(n)))



8. The structural operations

• for all other σ∈Σ, I(σ) = {0},

• for all other n∈N, I(n) = I(W(n))× I(P(n)),

• ∀e∈E I(e) = I(A(F(e)))× I(A(S(e))),

where the function proj1 is defined by ∀(i, j) proj1(i, j) = i.

Define the new network N ′ = (Σ′, N′, H′, E′, K ′, W′, P′, A′, F′, S′, C′, G′), by

• Σ′ = { (σ, i) | σ∈Σ ∧ i ∈ I(σ) }, N′ = { (n, i) | n∈N ∧ i ∈ I(n) },

• H′ = { (h, i) | h∈H ∧ i ∈ I(A(h)) }, E′ = { (e, i) | e∈E ∧ i ∈ I(e) },

• K ′ = { (k, i) | k∈K ∧ i ∈ I(C(k)) },

• ∀(σ, i)∈Σ′ W′(σ, i) = (σ, i), ∀(n, (i, j))∈N′ W′(n, (i, j)) = (W(n), i),

• ∀(n, (i, j))∈N′ P′(n, (i, j)) = (P(n), j), ∀(h, i)∈H′ A′(h, i) = (A(h), i),

• ∀(e, (i, j))∈E′ F′(e, (i, j)) = (F(e), i), ∀(e, (i, j))∈E′ S′(e, (i, j)) = (S(e), j),

• ∀(k, i)∈K ′ C′(k, i) = (C(k), i),

• ∀(σ, i), (σ∗, j)∈Σ′ (G′((σ, i), (σ∗, j)) iff G(σ, σ∗) ∧ c(i, j)),

• ∀(n, i), (n∗, j)∈N′ (G′((n, i), (n∗, j)) iff G(n, n∗) ∧ c2(i, j)),

• ∀(h, i), (h∗, j)∈H′ (G′((h, i), (h∗, j)) iff G(h, h∗) ∧ c2(i, j)),

• ∀(e, i), (e∗, j)∈E′ (G′((e, i), (e∗, j)) iff G(e, e∗) ∧ c4(i, j)),

• ∀(k, i), (k∗, j)∈K ′ (G′((k, i), (k∗, j)) iff G(k, k∗) ∧ c4(i, j)),

where
c(i, j) iff i = j ∨ i = 0

c2((i, j), (k, l)) iff c(i, k) ∧ c(j, l)

c4((i, j), (k, l)) iff c2(i, k) ∧ c2(j, l).

Define a homomorphism π:N ′ → N by ∀(x, i)∈Σ′ ∪N′ ∪H′ ∪ E′ ∪ K ′ π(x, i) = x.

During the recognition process any partitionable symbol in the pattern N1 may be parti­

tioned, producing a new network N ′1, with a homomorphism π:N ′1 → N1. The parse p:N1 → N0

becomes p ◦ π:N ′1 → N0 and the embedding token u becomes u ◦ π. The new pair of inclusion

functions is (i ◦ π, j ◦ π).

Theorem 46. If N = (Σ, N, H, E, K, W, P, A, F, S, C, G) is an unpartitionable network satisfying

the condition W ◦ A ◦ F = W ◦ A ◦ S then E
A◦F−−→
−−→
A◦S

N ∪ Σ
W
→ Σ is a coequaliser diagram in the

category of sets.

Proof. Consider any set X and function α: N ∪ Σ → X such that α ◦A ◦ F = α ◦A ◦ S. We must

show that there exists a unique function µ: Σ → X such that α = µ ◦W.

Define µ = α|Σ. Consider any symbol σ∈Σ.

Define T1 = { x∈W−1({σ}) | α(x) = α(σ) } and T2 = { x∈W−1({σ}) | α(x) 6= α(σ) }. Then

T1 ∪ T2 = W−1({σ}) and T1 ∩ T2 = ∅. Note also that σ ∈ T1, so T1 6= ∅.

Since W ◦ A ◦ F = W ◦ A ◦ S and α ◦ A ◦ F = α ◦ A ◦ S we have, for any e∈E,

e ∈ F−1(A−1(T1)) iff A(F(e)) ∈ T1 iff W(A(F(e))) = σ ∧ α(A(F(e))) = α(σ)

iff W(A(S(e))) = σ ∧ α(A(S(e))) = α(σ) iff A(S(e)) ∈ T1

iff e ∈ S−1(A−1(T1))
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so F−1(A−1(T1)) = S−1(A−1(T1)), and similarly F−1(A−1(T2)) = S−1(A−1(T2)). Then

F−1(A−1(T1)) ∩ S−1(A−1(T2)) = F−1(A−1(T1)) ∩ F−1(A−1(T2)) = F−1(A−1(T1 ∩ T2))

= F−1(A−1(∅)) = ∅

and similarly S−1(A−1(T1)) ∩ F−1(A−1(T2)) = ∅.

So all the conditions for σ to be partitionable have been verified, except T2 6= ∅. But σ is not

partitionable, by hypothesis, so T2 = ∅. This means that ∀n∈W−1({σ}) α(n) = α(σ) = µ(W(n)).

Since we have shown this for arbitrary σ∈Σ we have ∀n∈N ∪ Σ α(n) = µ(W(n)), i.e.,

α = µ ◦W, as required.

Conversely, consider any function µ: Σ → X such that α = µ ◦ W. Then ∀σ∈Σ α(σ) =

µ(W(σ)) = µ(σ), so µ = α|Σ. This shows that µ is unique.

This completes the verification of the coequaliser condition.

8.8 The outcome of the recognition process

The recognition process must ensure that, at the end, the pattern N1, the homomorphism

p:N1 → N0, the inclusion functions i, j, and the embedding token u satisfy the conditions

• ∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1},

• N1 is unprunable, given (i, j),

• (N1, p, u) is inextendable, given i, j, v, B,

• N1 is unpartitionable,

• W1 ◦ A1 ◦ F1 = W1 ◦ A1 ◦ S1,

• ∀σ∈Σ1\P1(N1) B(σ) = θ.

It will be shown in §9.6 that these conditions imply that ∀x∈Σ1 ∪N1 ∪ E1 i(x) = 1 and N1 is

definite; hence the recognition process is finished.



9. The Whole Recognition Process

9.1 Introduction

This section completes the account of recognition by filling in some missing details: the line

operations, the determination of temperature, the determination of the bareness function, and

the halting condition.

At the end of recognition the pattern should be definite and all the symbols’, nodes’ and

edges’ inclusion values should be 1. Previous sections have stated various sufficient conditions

for this to be the case. Now I shall show that (under some mild assumptions) these conditions

are indeed satisfied at the end of recognition, and that the definite match function DM is

maximised.

9.2 Line operations

I shall assume the grammar contains a symbol type called line; symbol tokens of this type are

called lines. Geometrically they are infinitely thin line segments, and their embeddings are

always similarities. Parsing starts with a set of randomly arranged lines, symbols of other

types being built up from there. There is no necessary reason to start with lines, but it is

convenient for a wide range of examples, so I shall provide some special operations for dealing

with lines.

(a) Create a line. A line symbol token σ is created; its initial embedding u(σ) is chosen by

a random search aiming to maximise ρI,T,sat(u(σ)). This operation is applied throughout

recognition (though mostly at the start when most of the image is not covered by symbol

tokens).

(b) Randomise a line. If a line’s inclusion value falls too low, and it is bare (not part of

another symbol token), a new random embedding transformation is chosen for it by the

same method as in (a).

(c) Remove a bare line. If a line is not part of another symbol and its temperature falls below

a threshold, it has a small probability of being removed. The purpose of this is to tidy up

the pattern by removing lines that have not been incorporated into higher­level symbols.

(d) Glue two lines together, end to end. If two lines are nearly collinear, with an end of one

line close to an end of the other, as measured by a fleximap, the two lines are replaced by

a single large line. Their bars are connected together, end to end.
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9.3 How temperature is determined

Every symbol token, node token, hook token, edge token and facet token has a temperature.

These change continually by the following three processes. (There are two parameters control­

ling the spread of temperature across the network, β = 0.3 and γ = 0.2. The notation X 7⇒ Y

means the assignment statement Y := max (X, Y), and X ⇐7⇒ Y means X 7⇒ Y and Y 7⇒ X.)

1. Every symbol, node, hook, edge or facet token created by a line operation or an extension

operation is given a high initial temperature.

2. Temperature is spread through the pattern by applying the following operations periodi­

cally.

• For every hook h∈H1, do TA1(h) 7⇒ Th; βTh 7⇒ TA1(h).

• For every edge e∈E1, do TF1(e) ⇐7⇒ Te; TS1(e) ⇐7⇒ Te.

• For every node n∈N1, do

TP1(n) 7⇒ Tn; γTn 7⇒ TW1(n);

if n ∈ dom(G1) then γTW1(n) 7⇒ Tn else γTn 7⇒ TP1(n).

• For every pair k, k∗∈K1 such that G1(k, k∗), do Tk ⇐7⇒ Tk∗ .

• For each k∈K1, do TC1(k) ⇐7⇒ Tk.

3. Periodically each temperature T declines by the formula

T := a + ηT

where the constant η is slightly below 1 and the constant a is small and positive. In the

absence of other temperature changes all temperatures will converge to Tmin = a/(1− η).

The value of a is chosen so as to give a desired minimum temperature, Tmin.

The temperatures perform a simulated annealing function. Wherever the structure of the

pattern changes, temperature is increased, by process 1. These increases in temperatures are

spread to neighbouring parts of the pattern, by process 2. In the absence of changes in the

structure the temperature will decline, by process 3. The general effect of this is that rapidly

changing areas of the pattern will be hot, and areas that have settled down will become cold.

Where the pattern is hot the inclusion values will take mid­range values; this allows rival

grammatical possibilities to co­exist. Where the pattern is cold the inclusion values tend to

be driven towards 0 or 1, and this forces a choice to be made between the rival grammatical

possibilities, leading to a definite pattern.

As recognition finishes, structural and geometric changes cease and the temperature

declines to Tmin throughout the pattern. All the inclusion values are likely to approach 0 or

1. However, this is not guaranteed; it is possible to construct a network in which there is no

consistent final assignment of 0 or 1 inclusion values, except for the trivial solution in which

all inclusion values are 0 (consider, for example, the case of an edge that is connected to the

same hook at both ends where the hook has no other incident edges). Nevertheless, in realistic

cases the inclusion values do go to 0 or 1, and this will be assumed in what follows.
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9.4 How the bareness function B is determined

For each h∈H1, B(h) is initially 0 and increases by a fixed amount every time an extension

operation is applied that adds edges to F1
−1({h}) ∪ S1

−1({h}).

For each k∈K1, B(k) is initially 0 and increases by a fixed amount every time an extension

operation is applied that adds facets to {k∗∈K1 | G1(k, k∗) }.

For each σ∈Σ1, if P0
−1(p({σ})) = ∅ then B(σ) is initially set to θ (where θ is the constant

used in the DM function), and never changes thereafter. If P0
−1(p({σ})) 6= ∅ then B(σ) is

initially set to a positive value θ0 < θ; B(σ) is increased by a fixed amount every time

extension operation (a), (b), (e) or (g) is applied that adds nodes to P1
−1({σ}). The increment

is chosen so that θ − θ0 is a multiple of the increment.

The purpose of all this is to prevent the recognition algorithm from getting stuck in an

infinite loop by trying the same thing over and over again. Suppose a hook h is bare, and then

edges are added to it by the operation of extending from h, then the edges are removed by a

pruning operation; and this is repeated indefinitely. The value of B(h) will increase each time

edges are added, making the algorithm more and more unwilling to remove all the edges and

leave the hook bare. Eventually the algorithm will either keep an edge or remove the node

A(h) altogether; either way, the infinite loop is averted. Likewise, the monotonic increase in

B(k) prevents the algorithm from repeatedly adding and removing sub­facets to k forever.

The monotonic increase in B(σ) prevents the algorithm from making any further attempts

to add nodes above σ using extension operations (a), (b), (e) or (g), once B(σ) has increased to

θ. It follows that B(σ) can never increase above θ. Throughout recognition we have

∀σ∈Σ1 B(σ) ≤ θ, with equality if P0
−1(p({σ})) = ∅. (1)

At the end of recognition all the B(σ) values for bare symbol tokens σ should equal θ. This is

ensured by the following theorem.

Theorem 47. If

(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a definite network satisfying W1 ◦ A1 ◦

F1 = W1 ◦ A1 ◦ S1,

(b) p:N1 → N0 is a homomorphism, where N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0) is

a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying ∀x∈Σ1 ∪N1 ∪E1 i(x) = 1,

(d) u is an embedding token for N1 and v is an embedding type for N0,

(e) B is a bareness function for N1 satisfying ∀σ∈Σ1 B(σ) ≤ θ, with equality if P0
−1(p({σ})) =

∅,

(f) (N1, p, u) is inextendable, given i, j, v, B,

then

∀σ∈Σ1\P1(N1) B(σ) = θ.

Proof. Consider any σ∈Σ1\P1(N1). In view of hypotheses (a) and (c), and the fact that

σ /∈ P1(N1), theorem 32 tells us that j(σ) = 1. Now, if P0
−1(p({σ})) = ∅ then B(σ) = θ by

hypothesis (e). Suppose, on the other hand, P0
−1(p({σ})) 6= ∅. Then hypothesis (e) gives

B(σ) ≤ θ. Suppose that B(σ) < θ. Then, since j(σ) = 1, extension operation (e) is possible,

giving an extension (N ′1, p′, u′) of (N1, p, u) such that p′(P′1
−1({σ})) = P0

−1(p({σ})). However

hypothesis (f) tells us that this is a trivial extension, so (N ′1, p′, u′) = (N1, p, u). This means
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p(P1
−1({σ})) = P0

−1(p({σ})). But this is impossible: the left­hand side is empty, since σ /∈

P1(N1), but the right­hand side is non­empty. This contradiction establishes that B(σ) = θ, as

required.

9.5 Summary of the entire recognition process

The input to the parser is an image I, a semi­definite network N0 (representing a grammar),

and an embedding type v for N0. During recognition, a network N1 (representing a pattern),

a homomorphism p:N1 → N0, a pair of inclusion functions (i, j), an embedding token u, and a

bareness function B for N1 are constructed.

The recognition process is a sequence of steps, called cycles. In each cycle,

• i and j are recalculated (§7.4);

• u is adjusted (subject to the symmetry condition) to increase IM(I,N1, u, v◦p, i, j, B) (§6.5);

• all temperatures spread and decline a little (§9.3);

• structural operations are applied to N1 if the conditions are satisfied (elementary pruning

operations, extension operations, merging two symbol tokens, and partitioning a symbol

token into two); every new symbol, node, hook, edge or facet is given a high temperature

(§9.3), and some bareness values are increased after an extension operation (§9.4);

• line operations are applied to N1 (§9.2).

The algorithm halts when

• no further structural operations are possible (except for trivial extensions);

• the temperatures have declined very close to the minimum Tmin.

9.6 The outcome of recognition

At the end of recognition, condition (1) will hold (since it holds throughout recognition); also,

the pattern N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) and the inclusion functions i, j

are likely to satisfy the condition

∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1}. (2)

This is likely because the lowering of temperature at the end of recognition pushes all inclusion

values to 0 or 1.

Also, the condition

W1 ◦ A1 ◦ F1 = W1 ◦ A1 ◦ S1. (3)

is likely to hold. This is because the term Ein(p(W1(A1(F1(e)))))(u(W1(A1(S1(e))))−1 ·u(W1(A1(F1(e)))))

in IM(I,N1, u, v ◦ p, i, j, B) penalises any edge e∈E1 for which W1(A1(F1(e))) 6= W1(A1(S1(e))).

The penalty is large and increases in effect as temperature falls. This term generates a force

that pulls the two symbols W1(A1(F1(e))) and W1(A1(S1(e))) closer together; eventually, either

they will merge or i(e) will fall so low that e is pruned.

Conditions (2) and (3) are not guaranteed to hold, but they can be expected to hold in

practice. Assuming they do hold we can apply the following theorem.

Theorem 48. If
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(a) N1 = (Σ1, N1, H1, E1, K1, W1, P1, A1, F1, S1, C1, G1) is a network satisfying W1 ◦ A1 ◦ F1 =

W1 ◦ A1 ◦ S1,

(b) p:N1 → N0 is a homomorphism, where N0 = (Σ0, N0, H0, E0, K0, W0, P0, A0, F0, S0, C0, G0) is

a semi­definite network,

(c) (i, j) is a pair of inclusion functions on N1 satisfying ∀x∈Σ1 ∪N1 ∪E1 i(x) ∈ {0, 1},

(d) u is an embedding token for N1 and v is an embedding type for N0,

(e) B is a bareness function for N1 satisfying ∀σ∈Σ1 B(σ) ≤ θ, with equality if P0
−1(p({σ})) =

∅,

(f) N1 is unprunable, given (i, j),

(g) (N1, p, u) is inextendable, given i, j, v, B,

(h) N1 is unpartitionable,

then

(1) N1 is definite,

(2) ∀x∈Σ1 ∪N1 ∪E1 i(x) = 1,

(3) IM(I,N , u, v, i, j, B) = DM(I,N , u, v).

Proof. Theorem 46, using hypotheses (a,h), tells us that

(i) E1

A1◦F1−−→
−−→
A1◦S1

N1 ∪ Σ1
W1→ Σ1 is a coequaliser diagram in the category of sets.

Theorem 42, using hypotheses (c,f), gives

(j) ∀e∈E1 i(e) = 1.

So theorem 45, using hypotheses (a,c,g) and (j), gives

(k) ∀h∈H1 j(h) = 0 and ∀k∈K1\dom(G1) j(k) = 0.

Then theorem 44, using hypotheses (c,f) and (i,k), gives conclusions (1,2).

Theorem 47, using hypotheses (a,e,g) and (1,2), then gives

(l) ∀σ∈Σ1\P1(N1) B(σ) = θ.

Conclusion (3) then follows by theorem 33, using (l) and (1,2).

As explained in §6.6 and §7.5, the algorithm has attempted throughout to choose i, j to

maximise E and to choose u to maximise IM(I,N1, u, v ◦ p, i, j, B); as recognition ends this

amounts to choosing i, j, u to maximise IM(I,N1, u, v ◦ p, i, j, B), and this amounts to maximis­

ing DM(I,N1, u, v ◦ p) at the end of recognition. Thus the recognition problem is solved.

It should be noted that there is a number of ways in which recognition can fail. The core

of the theory is provably correct, but the more peripheral parts of the algorithm are supported

only by heuristic arguments (which I have indicated throughout by use of the word ‘likely’).

(i) The algorithm for determining the inclusion functions (§7.4) is not guaranteed to halt. It

finds only a local maximum of E, not a global maximum.

(ii) Even for low temperature, maximising E is not precisely the same as maximising IM(I,N1,

u, v ◦ p, i, j, B).

(iii) The monotonic raising of the bareness function may cut off possible structural extensions

prematurely.

(iv) Symbol tokens may be merged or not merged, or partitioned or not partitioned, wrongly.

(Errors in merging can be corrected by partitioning and vice versa.)

(v) The whole algorithm is not guaranteed to halt.

(vi) It is not guaranteed that very low temperature will force all inclusion values to 0 or 1.
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(vii) Incoherent edges may survive to the end.

(viii) Some portions of the image may have been overlooked.

In practice it is only (iii), (iv), (v) and (viii) that matter.



Summary of Notation and Terminology

Logical notation used

∧, ∨, ⇒, iff , ¬, ∀, ∃ – ‘and’, ‘or’, ‘implies’, ‘iff ’, ‘not’, ‘for all’ and ‘there exists’ (note that ∀,

∃ and ¬ have highest precedence, followed by ∧ and ∨ , followed by ⇒ and iff )

Concepts from category theory presupposed

the category of sets – its objects are sets and its morphisms are functions

sum, pullback, coequaliser – limits and colimits in the category of sets

§2. Functions and Relations

function – §2.2

dom(f ), ran(f ) – the domain and range of function f – §2.2

f (A), f−1(B) – the image and preimage of a set under a function – §2.2

f |A – the restriction of a function f to a set A – §2.2

f ◦ g – the composition of functions f and g – §2.2

(binary) relation – §2.2

dom(R), ran(R) – the domain and range of a relation R – §2.2

idA – the identity relation on a set A – §2.2

⊥ – the empty relation – §2.2

R ⊆ S – R is a sub­relation of S (the same symbol is used for the subset relation) – §2.2

R ⊂ S – R is a proper sub­relation of S (the same symbol is used for the proper subset relation)

– §2.2

R ∩ S, R ∪ S, R\S – the intersection, union and difference of two relations (or sets) – §2.2

R ◦ S – the composition of two relations – §2.2

R−1 – the inverse of a relation R – §2.2

f – the graph of a function f – §2.2

finite relation – a relation satisfied by finitely many pairs – §2.3

NE – a relation such that NE(x, y) iff x 6= y – §2.3

acyclic relation – §2.3

connected relation relative to a function – §2.3

minimal relation relative to a function – §2.4



Summary of notation and terminology

§3. Networks and Homomorphisms

network (symbols, nodes, hooks, edges, facets, gluing relation, subsymbol, subnode, subhook,

subedge, subfacet, supersymbol, supernode, superhook, superedge, superfacet) – §3.2

homomorphism (from a network to another) – §3.2

f−1 – inverse homomorphism of f – §3.2

isomorphism – an invertible homomorphism – §3.2

automorphism – an isomorphism from a network to itself – §3.2

minimal relation relative to a network – §3.3

semi­definite network – the grammar is a semi­definite network – §3.4

definite network – the pattern is definite at the end of recognition – §3.4

subnetwork (and proper subnetwork) – §3.7

the inclusion homomorphism (from a subnetwork to the whole network) – §3.7

p|N ′ – the restriction of a homomorphism p to a subnetwork N ′ – §3.7

§4. Embeddings and the Definite Match Function

G – the group of all affine transformations on the plane – (2004, §3)

g · g′ – the composition of two affine transformations – (2004, §3)

Eτ – the ‘energy’ or penalty function for a fleximap τ – (2004, §5.3)

u – an embedding token – §4.2

u1 · u2 – the product of two embedding tokens – §4.2

u ◦ f – the embedding token induced by a homomorphism f from an embedding token u – §4.2

v – an embedding type – §4.2

the symmetry condition for a network, an embedding token, and an embedding type – §4.2

v · u – an embedding token defined by an embedding type v and an embedding token u – §4.2

v ◦ f – the embedding type induced by a homomorphism f from an embedding type v – §4.2

u|N ′ – the restriction of an embedding token u to a subnetwork N ′ – §4.2

v|N ′ – the restriction of an embedding type v to a subnetwork N ′ – §4.2

(a, s) – a symmetry of a network N with respect to v – §4.3

π – a local symmetry of a network N1 with respect N0, p, v – §4.3

the application of a local symmetry to p, u – §4.3

T – a template – (2004, §4)

I – an image, I:R2 → R – (2004, §4)

sat(x) – (definite) saturation at a point x (used in ρI,T,sat) – §4.4

w – the weighting function (used in ρI,T,sat) – §4.4

ρI,T,sat – the correlation function for an image I and a template T – §4.4

k – a constant in the definition of ρI,T,sat – §4.4

DM – the definite match function – §4.5

θ – the penalty for a bare symbol (a positive real constant) – §4.5

the recognition problem (final statement) – §4.7



Summary of notation and terminology

§5. Inclusion Functions

i and j – inclusion functions – §5.2

§6. The Indefinite Match Functions

sat(x) – (indefinite) saturation at a point x – §6.2

IM – the indefinite match function – §6.3

B – the bareness function – §6.3

§7. How the Inclusion Functions are Determined

i – the inclusion vector, with typical component ix (for x∈X) – §7.2

X – the index set for the components of i – §7.2

Y – the index set for the constraints on i – §7.2

cy – one constraint vector (for one y∈Y), with typical component c
y
x (for x∈X) – §7.2

m – the vector of coefficients in IM, with typical component mx (for x∈X) – §7.2

Tx – the temperature of x (for x∈X) – §7.3

E – an expression that is maximised to determine i – §7.3

Tmin – the minimum allowed temperature – §7.3

§8. The Extension Operations

pruning operation (and trivial pruning operation) – transforming a network into a subnetwork,

given a pair of inclusion functions – §8.2

the restriction of (i, j) to a subnetwork, N ′ – §8.2

elementary pruning operation – pruning a symbol, a node or an edge – §8.2

unprunable network – i.e., no non­trivial pruning operation is possible on it – §8.3

extension of a triple (N1, p, u) – §8.4

minimal and trivial extensions – §8.4

the extension conditions – §8.4

the extension operations – §8.4

θ0, θ1, θ2, θ3, θ4 – constant thresholds used in the extension operations – §8.2

inextendable triple (N1, p, u) – §8.5

merging two symbols – §8.6

partitioning a symbol token – §8.7

partitionable and unpartitionable symbols and networks – §8.7

§9. The Whole Recognition Process

line operations – §9.2

the recognition process (full summary) – §9.5

the outcome of recognition – §9.6


