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Abstract

The study of defects in metals and ionic solids has been the subject of great theoretical 
and experimental interest, in basic as well as applied research areas. The present work 
collects two series of calculations on the energetics of a variety of defective systems, in 
a metal host matrix (Al), and in two ionic oxides (MgO and Li2O) . The energetics and 
the electronic ground state of the vacancy, of the self-interstitial, and of the hydrogen 
impurity systems in Al were investigated. The formation and migration energies of 
Schottky defects in MgO and Frenkel Defects in Li2O were also studied. All results 
are in close agreement with experiment, while the work gives new insight into the 

localisation of defects, the role played by lattice relaxation effects, and the defect- 
induced redistribution of valence electrons. The calculations are based on density 
functional and pseudopotential theory, make use the supercell approach, and employ 
in different implementations the conjugate gradients technique to minimise the total 
energy functional. For the calculations on oxides, we made use of a newly developed 
parallel computing methodology.
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Introduction.

The study of defects in metals and ionic solids has been the subject of great theoretical 
and experimental interest, in basic as well as applied research areas. The availability 

of a coherent description of the properties of isolated defects in these materials is a 
mandatory condition for almost any kind of theoretical investigation on more complex 
defective structures, or for any advanced technological application involving non-pure 
samples or temperature regimes in which the presence of intrinsic defects is statistically 
relevant.
In the present work we report on two series of calculations which we have performed on 
a variety of defective systems, in a metal host matrix (Al), and in two ionic oxides (MgO 
and Li2O). In the first series of calculations we investigated the simple vacancy, the self­
interstitial, the hydrogen impurity and the hydrogen-vacancy systems in aluminium. 
In the second one, we studied the intrinsic Schottky defect pair system in MgO and 
Frenkel defect pair system in Li2O.

Metal defects and impurity systems investigated.

The intrinsic isolated vacancy defect in aluminium is a typical example of simple defect 
in a technologically important material on which theoretical calculations and exper­
iments have for long been in serious disagreement. Al is an high density “simple” 
(sp-bonded) metal, with a free-electron-like band structure. A simple model of the iso­
lated vacancy in Al which has been extensively studied in the past consists of a Wigner 
sphere “hole” in the positive background of an otherwise uniform electron gas having 
the same average density of the metal. After solving self-consistently the electronic 
wave equation for this model system, most early theoretical models included the inter­
action of the vacancy with the metal ions lattice by means of perturbation expansions 
in the strength of the weak ionic core potential.

In more recent times, one first-principles supercell calculation of the formation energy 
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of the aluminium vacancy was attempted, at first using a model Al potential, and 
subsequently an ab initio norm-conserving pseudopotential. The disagreement of the 
results with experiment suggested the conclusion that the supercell method was not 

suited for the physical system investigated.

The physics of hydrogen impurities in metals is also of great scientific interest. Hydro­
gen atoms occupy interstitial sites in metals lattices, and diffuse much faster than any 
other atoms in solids. The technological relevance of metal systems with hydrogen in 
solid solution is due to phenomena like metal embrittlement and fatigue in the pres­
ence of impurities, and is connected with the development of solid state energy storage 
systems. Again, a detailed description of the isolated defect is necessary to provide 
quantitative estimates of technologically relevant quantities like the hydrogen heat of 
solution. Moreover, information on the lattice distortion field associated with the de­
fect self-trapped states are necessary to model the various mechanisms of hydrogen 
diffusion (e.<j. by coherent or thermally activated tunneling, or by classical over-barrier 
jumps).

For the system constituted of an isolated hydrogen atom in aluminium host, no clear 
experimental picture is available on a number of issues like (i) the exact location of 
the stablest interstitial site and the the role played by lattice relaxation in the different 
interstitial geometries, (ii) the role of vacancy defects as trapping sites for hydrogen 
impurities, and (iii) the size of the energy barriers for hydrogen diffusion.
The existing theoretical results for this system have been obtained by models based 
on the embedding of hydrogen in pure jellium. The interaction of the defect with the 
ionic lattice is again included via perturbation theory, as in the early calculations on 

the isolated vacancy, or making a spherical approximation for the potential due to the 
ions. In no case has the explicit interaction of the hydrogen atom with the metal ions 
been treated self-consistently; most of the earlier work ignores lattice relaxation effects, 
on the belief that its effects on the energetics are negligible.

The goal of the first part of the present work was to re-examine the problem of calculat­
ing point-defect energies in aluminium, avoiding as far as possible the approximations 
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made in earlier studies. Our aim was to investigate on how much the recent advances in 

total energy techniques could help us to provide supporting insight to the experimental 

activity concerning these systems.

Defects investigated in ionic solids.

The study of point defects in ionic materials is a well-assessed aspect of solid state 
theory. Ceramic oxides are materials of large (and ever increasing) technological im­
portance, as refractory materials, insulators, and catalysts, in a wide range of appli­
cations from metallurgy to solid state batteries and fusion reactors. MgO and Li2O 
are two representative examples of ceramic oxides whose physical properties (electrical 
conductivity, response to stress, high temperature behaviour) are determined by the 
energetics of intrinsic defects. The leading intrinsic defects in the two materials are the 
Schottky and Frenkel isolated pairs, respectively.
The first requirement in calculating defect parameters is to have a model of the crys­
tal forces. In the past, the treatment of the energetics of defective ionic materials 

has relied on empirical interaction models, like the “shell model”, or on the ab initio 
cluster techniques of various kind based on the Hartree-Fock method. The empirical 

models suffer to some extent from the intrinsic limitations of the chosen analytic pair 
interaction forms, and of the fitting procedure of the potentials parameters from exper­
imental data. The Hartree-Fock based models can be limited by the small cluster size 
which can be handled, and by difficulties in achieving the convergence of the energies 

with respect to the size of the localised basis sets, while the evaluation of the forces 
exerted on the ions is made difficult by the occurrence of Pulay effects. In spite of the 
mentioned difficulties, these approaches have been successful in many cases.

In the second part of the present work we report on some of the first fully ab initio 
calculations on point defect energetics in ceramic oxides performed using the super­
cell method in the framework of the Pseudopotential Density Functional Plane Waves 
formalism. One of the aims of these calculations was to investigate the adequacy of 
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this technical framework to a class of physical systems in which the ground state elec­
tronic density is strongly inhomogeneous and is expected to largely redistribute in the 
ionic solid from the isolated neutral atoms case. Moreover, the defects we investigated 

in MgO and Li2O carry net charges, and therefore have an associated long-ranged 
polarisation field. The assumption of the Local Density Approximation for the elec­
tronic exchange and correlation energy, the use of norm-conserving pseudopotentials 
to represent the core ions, and the use of the repeated cell geometry for the defective 
systems, all involve systematic errors which need investigation, testing, and, if needed, 
the application of suitable corrections.
The treatment of supercells of oxide materials within the plane wave formalism re­
quires large amounts of computer resources, in terms of processing time and memory 
allocations. An important feature of our calculations on oxides is that they have been 
performed on a parallel supercomputer (a 64-node Meiko Computing Surface), using 
a total energy minimisation code specifically designed for this kind of machine. High 
performance parallel computers able to compete (and surpass) the more conventional 
(CRAY-like) serial machines have become available only in recent times, and are ex­
pected to play an increasingly important role in all kind of large-scale scientific com­
putational applications. The use of a machine of this kind in an ab initio total energy 
calculation introduces novel technical problems. In the practice of the calculations, the 
attention is continually driven to the structural aspects of the usual algorithms which 

dictate the parallelisation strategy and dominate the expense of computing resources 
at large system sizes. One of the aims of our calculations on MgO and Li2O was to 
demonstrate in a practical application the effectiveness of total energy computations 
in this new parallel implementation.

Plan of the work.

In Chapter 1 we briefly summarise the standard theoretical background of the present 

work. The main results and approximations of Density Functional Theory are de­

scribed, and a brief introduction to the features of pseudopotentials in solid state 
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applications is given.
In Chapter 2 an outline of the computational techniques utilised in the work is provided. 
Two different procedures based on the conjugate gradients technique for accomplishing 
the total energy minimisation are presented and discussed. The adopted pseudopoten­
tial representation and optimisation in the plane waves formalism, and the non-linear 

core correction of the exchange and correlation potential, are introduced. The prob­
lems connected with the Brillouin Zone integration in metals are summarised. A novel 
analysis of the various Fermi energy smearing techniques is provided, and a general 
expression for a correction term to improve the accuracy of ground state energy values 
is presented.
In Chapter 3, after a brief historical sketch of the existing theoretical results, we report 
on our calculations on the energetics of the stable and migrating vacancy, the self­
interstitial, the interstitial and migrating hydrogen impurity, and the hydrogen-vacancy 
system in aluminium host. The problem of correctly defining the defect formation 
energies and the associated volume relaxation using periodic boundary conditions is 
discussed. When possible, the results are compared with other recent first-principles 
theoretical predictions obtained making use of different techniques.

In Chapter 4 we briefly introduce the problem of performing total energy calculations 
on parallel computing machines, and report an analysis of some possible parallelisation 
strategies, leading to the one which was used for the calculations on oxide materials.
In Chapter 5 we report on our calculations on defect energetics in MgO and Li2O. 
Some of the existing empirical models and Hartree Fock based techniques are briefly 

described, as alternative, or complementary, to our approach. The problem of studying 
the energetics of charged defects with the supercell method is addressed, and we provide 
the results of some empirical model calculations which we performed to study the 
convergence of results with respect to the size of the systems investigated. We then 
present results for the energetics and the ground state charge densities of Schottky 

defects in MgO, Frenkel defects in Li2O, and of all the associated migrating-defect 
systems.

After some brief concluding notes, we report in Appendix A the results of some further 
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calculations on some perfect lattice properties of Al, which we performed to demon­

strate the validity of the Fermi energy smearing scheme presented at the end of Chap­
ter 2 .
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1 Density Functional Theory and 
Pseudopotentials.

1.1 Introduction.

In this chapter a brief summary of the standard theoretical background of the present 
work is given. The problem of solving the many-body Schrodinger equation for the 
electrons in a solid is stated in the framework of Density Functional Theory. The 
assumptions of the theory and the approximations involved in using it for real calcu­
lations are briefly discussed. The problems connected with the representation of the 
atoms as core ions, emitting a potential field in which only the valence electrons need 
to be treated in the calculations, is also discussed.

1.2 Density Functional Theory.

The general problem of finding the ground state many-body wavefunction for a system 
of N electrons in a given external potential is reduced within the Density Functional 
Theory (DFT)[1][2) to the problem of finding a scalar field p(r) representing the ground 
state density of electrons. For any give external potential V(r) such density can be 
determined from the exact solution of the associated Schrodinger equation. The main 
result of DFT is that also the opposite is true: for any given ground state density 
p(r) for which there exist a potential V(r) such that p(r) is the ground state of the 
associated wave equation, it is possible to show that such potential is unique. Given 
the ground state density, the hamiltonian operator of the system is therefore completely 
determined, and so is its ground state expectation value £[p], expressed as a functional 
of p (Hohenberg and Kohn theorem, 1964[1]): 

E[p] =< T + V + U > (1-1)



8

where T and Ü are the kinetic energy and electron-electron interaction operators, and 
'J is the ground state many-body wavefunction.

It is important to notice that the functional E[p\ is defined only on the domain of real 
functions p(r ) which are ground state densities for some potential (v - representability).1

on DFT.
2 An accurate enough approximated expression for G[/>] to avoid such complication and solve the 

Thomas-Fermi problem directly has also not been yet found.

The functional in equation (1.1) can be regrouped cis:

E[p] = G[p] + y V(r)p(r)dr; C7[p] = < T + U > (1.2)

to isolate the kinetic and interaction contributions. For a given external potential Vo 
(in general not the one corresponding uniquely to p according to the HK theorem), it 
is also possible to show that the functional

Ev0 [p] = G[p] + y Vo(r)p(r)dr , (1.3)

defined on the same domain as in eqn. (1.1), has an absolute minimum on the 
ground state density po corresponding to Vo, so that

■Evot/’o] =-E[po] • (1.4)

The problem of minimising the expectation value in eqn. (1.1) according to the Vari­
ational Principle on 'V is therefore formally reduced to the much simpler problem of 
minimising the functional (1.3) with respect to p, for the given external potential Vo. 
Unfortunately the exact form of the functional E'fp] (or, equivalently, of the functional 
G[p] in eqn. (1.3)) is not known, so that some approximation is required to represent 
the kinetic and exchange-correlation contributions. However, the theory provides a 
way to deal with the kinetic contribution by reformulating the minimization problem 

into that of solving a set of self-consistent single-particle equations.* 2 For any density 
r/> -the-HK .theorem. identifies^. jjnyme/intential. whose jcorœjnzjndiig/’'. n/mJnterjictiry> 
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electron problem (U — 0) has p as a ground state density. The minimum property of 
the therefore uniquely defined energy functional

#v[p] = T[p] + y V(r)p(r)dr (1.5)

for any given V, states that the functional reaches its absolute minimum on the ground 
state density of the non-interacting electron system with potential V.

It is convenient to rewrite the functional in eqn. (1.3) making use of the non-interacting 
kinetic energy functional T[p] and of the classic electrostatic energy term:

£%(/>] = T[p\ + . (1.6)

This equation defines the exchange and correlation potential £7^c[p]. Imposing on the 
energy functionals in eqns. (1.5) and (1.6) that they both be minimized by the same 
electron density we get

V(r) = Vo(,) + / + M’) ; V„(r) = , (1.7)

where the exchange-correlation potential I4c(r) is in general non-local. Equation (1.7) 
shows how to construct a self-consistent potential for a non-inter acting electrons system 
having the same ground state density of the original interacting system. For a non­
interacting electron problem the ground-state solution has the form of a single Slater 
determinant of rank N:

4* = A[^i(ri),..,^(rAr)] (1.8)

where the single-particle orbitals </>,(r) satisfy the equations (Kohn and Sham, 1965[2]):

(-¿V2 + V(r))«r) = ^i(r), (1.9)

and the particle density can be calculated as

/>(>•) = D«’) P (1.10)
t=l

where the index i spans the set of N eigenstates with lowest eigenvalues et. The ground 
state density po is therefore given as in (1.10) by the the solution of equations (1.9),
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with the self-consistent potential given by (1-7). The ground state total energy of the 

interacting electrons system can then be evaluated as in (1.6), where by definition

(1-11)

The original problem of solving the wave-equation for the electron system is therefore 
reduced to the solution of a self-consistent set of single-particle equations where the 
only error introduced is due to the approximated form adopted for the exchange and 

correlation energy functional £^rc[p]. Assuming EIC[p] = 0, the problem reduces to a 
set of Hartree equations, while it is easily seen that substituting ^zc[p] in the equations 
with the exchange term

|r — r |
(1-12)

the equations obtained form an Hartree-Fock set and their solution corresponds to the 
exact minimum of the energy expectation value of the many-body hamiltonian operator 
within the variational class (1.8).

1.3 The extension to finite temperatures.

An important extension to the ground state theory results is the generalisation of the 
Hohenberg-Kohn theorem to finite temperatures (Mermin, 1965 [33]). The essential 
result is that the grand potential of a system with a given finite temperature is a 
functional of the density at that temperature. The system is treated in the standard 
grand-canonical formalism with a given chemical potential p and temperature t = 1//?. 
The proof is based on the fact that the grand potential

nip] = ir[p(A-/iJV + 1/^logp)] (1.13)

expressed as a function of a variable density matrix p subject to the constraint

ir[p] = 1 (1.14)
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(1-15)

assumes its absolute minimum on the true grand canonical density matrix

P ~ tr[e—p(H—pN)] •

Following essentially the same procedure of HK, Mermin shows that that the density 
p(r) corresponding to minimum of the grand potential (1.13), in which some v(r) is the 
external potential in the hamiltonian H acting on every single particle, also identifies 
uniquely the difference v(r) — p. This determines uniquely the operator H — pN and so 
the grand potential itself and the true density matrix p. Therefore the grand potential 
and in general all thermodynamic averages on the grand canonical ensemble for the 
given system can be written as functionals of the density of particles p(r) for the given 
temperature. Moreover, it can be proved that the functional

Wv[p] = j(v(r) - p)p(r)dr + F[p]

for a given external potential v(r), with

(1.16)

F[p] = ir{p(f + U + 1/0 log />)} = Tb] + i/[p] - rSM (1-17)

reaches its absolute minimum on its domain of definition when p'(r) = p(r), i.e. on 
the ground state particle density corresponding to v(r) — p.
Again it is possible to deal with the (unknown) kinetic and entropy functionals approx­
imating them with their correct expression for a system of non-interacting fermions:

"vW = j(»(<•) -^p'irjdr+th - rsw + / d-teUd,.- (1.18)
|r -r'|

and formally including the remainder in the definition of the exchange and correlation 
functional £rc[p]. Varying eqn. (1.18) one obtains:

which is equivalent to the minimum problem for a system of non-interacting electrons 
in the external potential

= u(r) + [ T^r-,.dr' + Kc(r) ; Kc(r) = .
J |r —r | ¿p(r)

(1-19)

(1.20)
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For such system the spectrum of energy states {e,} determines the occupation proba­
bility fi of each state via the Fermi-Dirac expression 

(1-21)
eß(ti-n) -i-1 ’

and the total number of particles is given by

oo

N = •£,/< ■ (1-22)
i

The expression for the charge density is

OO

Xr) = Ei|4O)f ,

t=l

in which the single-particle states can be calculated as the self-consistent solution 
of the equations

(-¿v!+- (1-24)

which also determine the eigenvalues e,-. The charge density obtained from (1.23) 
may be then substituted in eqn. (1.18), where the thermally averaged kinetic term is 
evaluated as

°o *2
TW = E /• < « - 2^v2^< > > (1-25)

and the entropy term S' is a function of the occupations:

s = - EW + (1 - /<) 108(1 - ¿)] • (1-26)
i

It is important to notice that the expression for the exchange and correlation potential 

defined by eqn. (1.18) for a system of interacting fermions must contain some kinetic 
and entropic contributions, and in general depends on the temperature r, though it 

must converge to the usual HK definition (eqn. (1.6)) in the limit r —> 0 . In the 
cases in which the system has a fixed number N of particles the chemical potential p 
can be adjusted as a free parameter in eqn. (1.21) to satisfy at self-consistency eqn. 
(1.22), now taken as a constraint on the occupations The Helmholtz free energy 
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of the system of N fermions can be calculated from the self-consistent value of /z from 

equation (1.18) and from the definition

(1.27)

It is, finally, worth mentioning a further generalisation of the uniqueness theorems and 
related self-consistent calculation procedures which have been described so far, which 
include spin into the general formalism. In such generalisation[106], the main results 
leading to a minimum principle on £[/>] or Q[p] for paramagnetic systems are formally 
extended to the spin-dependent case, the main change introduced being that the KS 
single-particle equations (1.9) have to be re-expressed and solved self-consistently in 
the appropriate (2x2) matrix form. The subject will not be discussed here in more 
details because it is of no relevance in the present work.

1.4 The Local Density Approximation.

To perform calculations based on DFT, an appropriate expression for the functional 
KcC[p] has to be determined. For simplicity we discuss here the case of a paramagnetic 
system at zero temperature. It has first of all to be noted that from the definition 
given in eqn. (1.6), the functional £'rC[p] must include a contribution coming from 
the true interacting kinetic energy functional T[p], which is not reproduced by the 
non-interacting term Ts[p] in the same equation. Moreover, the definition is given in 
terms of functionals which are only known to be unique, if they exist, via the HK 
theorem. The theorem itself is demonstrated through a reductio ad absurdum of the 
non-uniqueness hypothesis, and gives no insight into the structure of the functionals. 
The exact form of £^c[p] is up to date unknown, and is probably very complicated, 
while a large production of computational work based on DFT has been performed 
using approximated expressions to evaluate the functional.
The approximation which has so far been most widely used with (often surprisingly) 

good results, is the Local Density Approximation (LDA). Within LDA, it is assumed 
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that the exchange and correlation energy is a function of position which depends only 
on the value of the particle density in that position, and is therefore a local property. 
The exchange and correlation functional is then evaluated as

£zc[p] = y drero(/’(r))/’(r) , (I-28)

where the function exc{p) employed is the exchange and correlation energy for the 
uniform electron gas of density p. Given this expression, the exchange and correlation 
potential Vxc(r) defined in eqn. (1.7) is also local, and corresponds to

Vxc(r) = p(p(r)) ; p, = e'p + e . (1.29)

The analytic behaviour of e(p) has been long ago determined in the limits of very high 
and very low densities. More recently its values for several densities in the intermediate 
region have also been determined by accurate Diffusion Monte Carlo simulations[3], so 
that a number of interpolation formulas are available to be used in the calculationsf 146]. 
The LDA approximation is by definition exact in the limit of very slowly varying charge 
density, and should in principle give reliable results only for such systems as nearly 
free-electron-gas metals. However, LDA is known to produce rather accurate results 
for systems where the ground state electronic density is far from being uniform, like 
atoms, molecules, semiconductor and ionic solids. A partial account of this success 
can be probably given by the fact that the LDA exchange and correlation function 
reproduces some exact features of the exact functional. For example it is possible to 

show [5] that the exact functional can be rigorously written as

E^^^Jdrdr^-1^'), (1.30)

where the function ph(r,r'') has to fulfill the screening sum rule

y dr'ph(r,r') = -1 (1.31)

and can be pictorially thought to describe the exchange and correlation “hole”, or 
depletion, in the density expectation value in r' originating from the presence of an 



15

electron in r. The interaction between such a hole and the charge density of the 
system gives the total exchange and correlation energy value in eqn. (1.30). It is 
straightforward to expand the hole function in spherical harmonics and show that such 
value depends only on the zero (spherical) component p^(|r — r |,r) of the expansion, 
all the contributions from the non spherical terms averaging to zero in the integral. 
So, in spite of the fact that the true exchange and correlation hole may be strongly 

asymmetric in most systems, it is only its spherical component that contributes to the 
total energy value.
The local density approximated hole function, which depends only on the density value 
in r and is spherical by symmetry:

Plda{\t “’’’I,»’) = hLDA(\r -r'|,p(r)) (1.32)

has therefore the relevant structure for calculating the energy, while by comparison 
with an uniform electron gas of density p(r) it still satisfies the constraint (1.31). The 
exchange and correlation energy is, in other words, calculated within the LDA in a way 
which is formally equivalent to summing the electrostatic Coulomb interaction between 
the self-consistent charge in each point and the correct amount of hole charge around 
it, although the hole charge radial distribution is an approximation of the unknown 
exact one.

1.5 The pseudopotential approximation.

The apparatus of Density Functional Theory provides in principle a way to deal compu­

tationally with any finite system of interacting fermions in a completely arbitrary local 
external potential, the only approximation involved being the recipe used to evaluate 

the exchange and correlation energy, as discussed in the former section. A natural kind 
of system for the computational applications is represented by atoms and molecules. 
The solution of a set of atomic KS equations is by fax the simplest application, thanks 
to the enormous computational simplifications originating from the spherical symme­
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try of the self-consistent potential. The resulting atomic single-particle states, con­

veniently organised in shells and multiplets structure according to their energies and 
angular symmetries (in total similarity with the classic Hartree-Fock treatment), are 
the starting point for any further application connected with the study of polyatomic 
systems. The fast spatial oscillations of the inner states, obviously connected with 
their associated high kinetic energy, usually requires a representation based on some 
logarithmic (or equivalent) real-space mesh for solving the radial differential equations. 
Such representation is also required in the treatment of the higher states, due to their 
complicated core nodal structure imposed by the orthogonality to the low-lying states. 
Although no direct physical meaning can be attributed to these single-particle states 
within DFT, the only true physical quantity being the density calculated from them, 
most of the computational burden involved in their determination has to do with their 
detailed structure, in itself uninteresting, in the inner (core) real-space region closely 
surrounding the nucleus.
The passage from the atom to the simplest diatomic or polyatomic molecules brings 
in the computational problem of basis set representation, which becomes increasingly 
serious with the progressive loss of symmetry. At the same time, it becomes evident 
that only the outer electronic charge density of atoms actually participates in the 
formation of chemical bonds, while the core charge surrounding the nuclei maintains 
more or less exactly its size and shape while passing from the atomic to the molecular 
arrangement. From the point of view of a single-particle description, this is equivalent 
to the fact that the strongly localised core orbitals are rather insensitive to the external 
chemical environment, so that only the less bound and more extended valence orbitals 
are sensibly modified by the presence of neighbouring atoms. There are then strong 
computational and physical reasons to develop a procedure to exclude the core electrons 
from the calculations, since they are difficult to represent numerically and since they 
play a negligible part in the chemical behaviour of atoms. This clearly has to be 

achieved without losing a correct representation of the valence charge density chemical 
behaviour.

Ideally, a substitutive atomic “pseudo” potential, to be used in the calculations instead 
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of the Coulomb potential, and whose full spectrum of states {^>,} were perfectly co­
incident with the spectrum of the original atom starting from the first valence state, 
would be the solution to the technical problems connected with the core electrons, pro­
vided also that such an operator could display good “transferability” properties when 
performing calculations on the valence electrons in molecules or solids.

1.5.1 Pseudopotentials.

Various classes of pseudopotentials have been so far utilised in the practice of cal­
culations, which can generally be regrouped in the two categories of (1) empirical 
pseudopotentials fitted to experimental data, and (2) “ab initio” pseudopotentials, 
whose construction is based on some exact theoretical justification, without referring 

to observed properties.

1.5.1.1 Empirical pseudopotentials.

In the construction of empirical pseudopotentials, observed data (usually, the atomic 
energy levels) are used to fit some simple analytic form for the pseudopotential[6]. The 
simplest models consist of a Coulomb potential for distances beyond a fixed “core” 
radius rc:

r > rc

r < rc .

Inside such radius the potential function is set to a constant A which does not neces­
sarily match the potential at rc to guarantee continuity (so that the second derivatives 
of the solutions are in general discontinuous). A possible choice for A is simply to 
set it equal to zero (“empty core potential”[7]), or to adjust it to a different value Ai 
for each angular momentum eigenvalue. An effectively non-local (angular momentum 
dependent) potential is in this last case introduced in the calculation, the term “non­
local” (in a single-particle picture) meaning simply that the potential acting on the 

particle at the position r is not a function of the particle position only, but in general 
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depends on other (and therefore “non-local”) properties of the particle, such as its 
angular momentum.

Another approach is based on the direct fit of the atomic potential operator in the 

wave-number representation Va(G) to the experimental band structure. It is assumed 
that the crystal potential is a linear superposition of atomic potentials:

V<s) = 2>«(G)S(G)eiG • ' . 

G

This expression, in which the atomic positions enter through the structure factor 5(G), 
can be usefully implemented to solve the secular equation associated with the single­
particle problem in a periodic crystal:

to give as output the energy band structure en(fe) and the eigenfunctions </>nj.(r) in 
the Bloch form. If the function K(<2) is fast-decaying (i.e. if its real-space Fourier 
Transform is relatively smooth), very few coefficients on the reciprocal lattice expan­
sion will be significantly different from zero. Such coefficients can easily be optimised 
through a self-consistent procedure in which their values are updated up to the best 
fit between the output band structure and the experimental data.

This approach, known as “Empirical Pseudopotential Method”, provides surprisingly 
good results in describing the band structure of semiconductors and simple met­
als. Moreover, the idea of constructing a smooth model potential can be combined 
with the analytic requirement of the correct Coulomb tail, typical of forms such as 
(1.33), to provide parametrised potentials to be fitted again to experimental data by 

a self-consistent procedure. Using the electronic charge distribution obtained from the 
pseudo-wavefunctions, it is possible to unscreen such potentials from the Hartree and 
exchange-correlation contributions, to get atomic pseudopotentials which can assumed 
to be transferable. Such potentials can then be used in the calculations for atomic ge­
ometries such as surfaces, where the Fourier expansion coefficients of the full potential 
are known not to be negligible after the first few G-vectors, and where therefore the
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screening potential has to be calculated with some self-consistent procedure such as 
the one described in Section 1.2.

1.5.1.2 First-principles pseudopotentials.

A brief discussion about the properties and the construction of “ab initio” pseudopo­
tentials can usefully start from some considerations originally developed within the 
framework of the Orthogonalised-Plane-Wave (OPW) method for band structures[8]. 
One of the essential properties of a true valence wavefunction 0 is its orthogonality 
to the underlying core states </>c. An OPW wavefunction is expressed as the sum 
of a smooth wavefunction </> and a sum over the occupied core states </>c. From the 
orthogonality condition one gets:

(i-36) 
c

Substituting this expression into the Schrodinger equation Hip = Eip it is easy to show 
that also is

[H + Vps]</>= Ep (1.37)

with the “orthogonality” potential Vps defined as

VM = - ec) < pc\p > <t>c . (1.38)
c

This potential added to the true crystal potential in the hamiltonian H of eqn. (1-37) 
forms an “exact” pseudopotential[9], which reproduces the correct valence eigenvalue 

E. Any solution </> is a smooth function which may be represented by a fast-converging 
expansion of plane waves. It should be noted that given the angular symmetry of 
the core states, the non-local potential can be naturally decomposed into a sum of 
projections over all the angular momentum components present in the core:

Vps = V3Pa + VpPp + VdPd + ... (1.39)
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Each projection Vi includes the repulsive effect originating from the constraint of or­
thogonality to the core states of symmetry I. The degree of localisation of the pseudo­
wavefunctions is therefore much sensitive to the presence or not in the core of lower- 
lying electrons of the same angular symmetry (so that for example p pseudo-orbitals in 
second row elements like carbon or oxygen are expected to be much more contracted 
on the atomic nucleus than the third row correspondent elements silicon and sulphur). 
The potential (1.38) is short-ranged, being by definition zero in the region outside the 
atomic core. In such domain clearly and are solutions of the same differential equa­
tion, so that the “pseudofunction” <j> may be said to well represent the true solution 
in the valence region. It shold be pointed out that there is a difference in the normalisa­

tion of the two functions: if < >= 1 then must be < >== 1 + Sc I < > |2,
i.e. the smooth solution is not normalised, or alternatively if normalised puts too 
much charge in the core region and too little in the valence region. In self-consistent 
calculations this charge shift can in principle be corrected before calculating the charge 
distribution, through direct orthogonalisation of c/> to the core states, although this 
would be much time consuming in the calculations, so that the advantages of using a 
pseudopotential would be partially lost. Pseudopotential operators leading to pseudo­
wavefunctions with a built-in norm conservation (that is to say leading to single-particle 
eigenstates which when normalised distribute correctly the charge between core and 
valence regions, therefore coinciding exactly with the all-electron eigenfunctions outside 
a chosen core radius) are therefore much more convenient to use.

1.5.2 Norm-conserving pseudopotentials.

For any solution regular at the origin (not necessarily an eigenstate) of the radial atomic 
Schrodinger equation, the following identity holds (atomic units):

for any fixed radius R. It is also possible to relate the radial logarithmic derivative in 
the left term of this equation to the phase shifts which describe the potential scatter­
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ing properties, so that for two different potentials leading to solutions which coincide 
for r > R at some given energies, the scattering properties at close energy values 
will vary in the same way to leading order. A norm-conserving pseudopotential is 

by construction reproducing the all-electron eigenvalues, and the corresponding eigen­
states beyond a chosen core radius. From what said, it must therefore share with 
the all-electron potential also the scattering properties within first order in the valence 
eigenvalues shifts when the potential is transferred to chemical environments other than 
the isolated atom. Although this does not imply any exact transferability property, the 
errors from the pseudopotential approximation involved here are very often negligible 
when compared with errors originating from other sources, such as the approximations 
adopted in the underlying single-particle theory (e.g. the LDA in DFT, or the neglect 
of correlation in pure Hartree-Fock).
A detailed account on the possible construction techniques to generate effective norm­
conserving pseudopotentials is beyond our scope here, while more will be said in a 
forthcoming chapter about some recent techniques to optimise other pseudopotential 
characteristics than the norm-conservation property. We will therefore only sketch a 
standard construction procedure (the one originally followed by Bachelet et al.[11] after 
the introduction of the norm-conservation scheme by Hamann et al.[10]), suitable for 
DFT-LDA-based total energy calculations in solid state, of the kind performed in the 
present work.

A non-local “pseudo” potential is needed for reproducing a certain valence electrons 
configuration, not necessarily the ground state. An all-electron self-consistent calcula­
tion is firstly performed to generate a KS potential in this chosen configuration. The 
potential is then matched to a parametrised smooth function within a certain “core” 

radius rc, and the parameters (if more than one) are adjusted to reproduce the correct 
eigenvalue for its first eigenstate of the chosen angular symmetry. Such eigenstate is 
coincident with the correspondent all-electron state outside rc, and can be modified 

inside the core radius to get a smooth (nodeless) normalised state. Direct inversion 
of the Schrodinger equation provides then the necessary (small) correction to modify 
the pseudopotential accordingly. Finally, the potential is unscreened from the Hartree 
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and exchange-correlation contributions arising from the pseudo-valence charge, which 
leaves it in its final form.

The solution of the all-electron problems for heavy atoms normally requires a relativistic 
treatment, i.e. the description of the deep core multiplets within the Dirac’s formalism, 
implicitly including the spin-orbit interaction. Weighted averages of the self-consistent 
potentials obtained for I = 1,2,3 at various values j of the total angular momentum 
have therefore to be taken for producing a pseudopotential which can be consistently 
implemented in a non-relativistic calculation.
Norm-conserving pseudopotentials constructed in this way perform typically very well 
in DFT-LDA total energy calculations, leading to predicted values for lattice constants, 
bulk moduli and elastic constants, cohesive energies, and phonon frequencies which 
are in agreement within a few percent with experiment. The pseudopotential single­
particle band energies are typically in agreement with the all-electron values within 
few hundredths of an eV.
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2 Computational techniques.

2.1 Introduction.

In this chapter an outline of the computational techniques utilised in the present work 
is given. The solution approach to the Kohn-Sham problem through the conjugate 
gradients global minimisation of the total energy functional is presented and discussed. 
Two different procedures for accomplishing the minimisation are described. The pseu­
dopotential representation in the plane-waves formalism is discussed, together with 
the problem of obtaining a transferable pseudopotential well optimised for convergence 
with respect to energy cutoff. The non-linear core correction to the exchange and 
correlation potential is discussed. The problems related to the treatment of metals in 
total energy calculations are discussed and the subspace rotation and smearing tech­
niques utilised in the calculations for improving the efficiency of the Brillouin Zone 
(BZ) sampling are presented.

2.2 Conjugate gradients minimisation of the en­
ergy functional.

In this section we discuss the problem of performing a direct minimisation of the 

DFT energy functional, some reasons to adopt minimisation techniques based on the 
evaluation of energy “gradients” with respect to the electronic expansion coefficients on 
the plane-waves (PW) basis set, and the conjugate gradients technique for performing 
non-linear minimisations.
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2.2.1 Direct functional minimisation in the PW representa­
tion.

We have shown in the former chapter how the problem of finding the true minimum 
of the DFT energy functional (1.6), corresponding to a system of interacting electrons, 
can be reduced to the problem of determining the self-consistent solution of a set 
of single-particle equations (1.9) for a non-interacting electron gas immersed in an 
effective potential. The self-consistent electron density extracted from such procedure 
is by construction a minimum (or at least a point of null first order variation) of 
the interacting electrons problem. We want now to illustrate how a direct global 
minimisation of the energy functional can be performed without explicitly solving a 
KS set of equations (i.e. the correspondent secular problem).
The electron density can be here expressed again, as in eqn.(l.lO), as the sum of squared 
moduli of normalised single particle functions

/>(••) = £|«')P • (2.1)
t=l

By imposing mutual orthogonality between different orbitals (< >= ¿>ij) and
then varying the orbitals under such constraint to minimise the total energy functional 
(written as in eqn. (1.6), with the kinetic contribution defined as in (1.11)), it is easily 
shown that the charge density obtained at the minimum coincides with the one ob­
tained from the solution of the KS equations in the self-consistent screening potential. 
Therefore from Section (1.2) we can conclude that such minimum procedure also leads 
to the true minimum of the energy functional, independently from the representation 
of the density as a sum of orbitals implied by eqn. (2.1), while the total energy at 
the minimum can still be calculated in the normal way through the orbitals matrix 
elements.

The traditional self-consistent eigenvalue problem of inverting the hamiltonian matrix 
to solve the KS equations is therefore perfectly equivalent to the problem of performing 
a constrained search of the global minimum in the domain of the expansion coefficients 
representing the single particle orbitals on the chosen basis set. The basis set most 
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largely utilised for total energy calculations in solid state, including all the calculations 
presented in the present work, is the plane waves one. Since the calculations are 
performed using periodic boundary conditions, the single-particle orbitals representing 
the electron states can be written as Bloch expansions on the reciprocal space G-vector 
basis set

(2-2) 
G

for any given BZ vector k. The dimension of the basis set depends on the size of the 
system, and on the energy cutoff assumed for the PW kinetic energy. In any case, 
the truncation of the PW basis set will lead to an error in the value of the computed 
total energy. It is, however, possible to monitor and reduce such error by progressively 
increasing (not always necessarily up to full convergence) the value of the cutoff utilised. 
Provided that this cutoff issue is under control, the PW basis set representation has 
the advantage of being unbiased, since it is not necessary to modify and tune it for 

the particular system under examination, cis it is instead customary when employing 
localised basis sets. Moreover, the expression for the total electronic kinetic energy in 
the PW representation assumes the very simple diagonal form (atomic units)

Ek = $2 wfc |2-9~ (2-3)
k,G,i

for the given set of BZ sampling points and weights {k, } utilised (the subscript i is
the band index for each k-point), and in such form can be economically and straight­
forwardly calculated.

Systems having low translational symmetry and requiring an high cutoff treatment axe 
the hardest to deal with computationally, since large amounts of processing time and 
computer memory are necessary to operate with all the electronic orbitals present in 
the calculation, while the algorithm employed must be well balanced to deal efficiently 
with the minimisation problem when the basis set spans a very large energy interval. 
In the present work various systems of isolated defects have been studied, still adopting 
the periodic boundary conditions approach, with increasingly large repeating “super­
cells” surrounding the defects, and either with the need of a large number of orbitals 
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to deal with the problem of BZ sampling in metals, or with the need of an explicit high 

cutoff treatment to deal with ceramic materials containing oxygen.
The typical basis sets utilised can count up to 20,000 plane waves, with a number of 
electrons in the system of the order of one hundred. For these large basis dimensions, 
evaluating and storing a full Kohn-Sham hamiltonian matrix would be highly ineffi­
cient (if not impossible) because of the prohibitive memory requirements, so that some 
alternative and less memory-intensive technique has to be used. While some techniques 
for efficient iterative matrix inversion have been available for some time[18], it is only 
recently that the direct density functional minimisation approach adopted in this work 
has been proposed [16][17],[19] and has entered in the practice of ab initio calculations.

2.2.2 Energy minimisation techniques for total energy cal­
culations.

The problem of minimising a non-linear function within a parameter domain of large 
dimensionality is a traditionally difficult one[12]. Some stochastic procedures like the 
simulated annealing search are available, which are almost guaranteed to provide the 
absolute minimum of the function considered without the risk of the algorithm getting 
stuck in a local minimum. Moreover, they only require a sampling of the function 
considered, and being based on a random-walk search in the given parametric domain, 
the computer time required is formally independent from the dimensionality of the 
search domain itself. These methods, however, are more convenient than less robust 
ones only when the function considered is known to display several concurrent minima, 
the lowest of which has to be identified, and when the parameters in question are 
highly correlated and have a dishomogeneous “meaning” as variables of the function 

to be minimised.
The DFT energy functional as a function of the coefficients i G displays normally 
a unique and well identified minimum, while the values of the parameters at the mini­
mum, being the Fourier coefficients of the ground state KS orbitals, display a “smooth” 
behaviour with varying G, so that the functional variation when varying the coefficients 
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of G-vectors close to each other (for example: in the high cutoff region, dominated by 
the kinetic contribution) is expected to be homogeneous. Because of these character­

istics, a minimum search technique which relies on analytic information such as the 
functional derivatives with respect to the coefficients, and which is known to fast- 
con verge in the quadratic region surrounding the minimum in the coefficien ts space, is 
expected to be the best suited for the problem under consideration.
Writing the functional for the electronic problem in the ionic field Vo (in atomic units, 
dropping here, for simplicity, the k-point index) as

£%[{*}] = E < *1 - jV’l* > +E„W + i/ + / H(r,
(2.4) 

and formally taking the partial derivatives with respect to the complex conjugate co­
efficients „ (or equivalently, with respect to the bra orbital < ^,|), one gets the 
expression for the energy derivative (“force” on the orbital z):

/

Fi = -[t + V] |^>=

\

(2.5)

as an array with the same dimension Npiw of the PW basis set, defining the direction 
of maximum energy decrease in the subset of the z-th orbital plane waves coefficients. 
The direction is simply obtained applying the self-consistent hamiltonian H (V is the 
same as in eqn. (1.7)) to the orbital considered.
The gradient defined by eqn. (2.5) can be used to construct a direct minimisation 
algorithm for the total energy functional, simply performing a line search along its 
direction for each orbital. Provided that all the orbitals are updated in some order, and 
that the orthogonality constraint between orbitals is maintained, it does not matter in 

line of principle which exact sequence of band gradient evaluations, line minimisations, 
and orthonormalisations is adopted. An immediate possible strategy is to evaluate the
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gradients Fi for all the orbitals, therefore constructing a global gradient

/ Fi \
(2.6)

< FNorb )

and minimising the functional along the line which such vector defines in the 
NpiwNorb-dimensional space of the wavefunctions coefficients. It should be noted that 
outside convergence the single particle orbitals to be updated are not yet eigenstates 
of the self-consistent hamiltonian operator (the one calculated with the charge density 
obtained from those orbitals). More precisely, they cannot be transformed into eigen­
states through a unitary transformation within the Hilbert space which they define1. 
The normalised updated orbitals

1Such transformation would not, of course, change the value of the functional (2.4).

1
Vl + a2

(2.7)

are therefore not orthogonal to each other, and some orthogonalisation strategy must 
be applied. (On the other hand when the convergence is nearly reached the orbitals 
approximate increasingly better, still within a unitary transformation, the lowest set 
of eigenstates of the self-consistent hamiltonian.)
In any case a fine search direction defined by gradients should span an ensemble of 
orthonormal sets {V’ivarying the line coordinate a, and to achieve this orthogonality 
constraints have to be applied to the gradient expressions (2.5).
If all the bands are updated simultaneously as in (2.7), by imposing to the gradient Fi 

the condition
< Fi\^j >= 0 ; j = l,IVor6 (2.8)

we obtain a set of trial states {V’i.a} which are mutually orthogonal only within first 
order in a, so that an exact orthogonalisation has to be performed before evaluating 
(self-consistently) the energy functional on each point along the fine.
If the bands are instead updated one by one, the condition (2.8) on the direction of 
search F, ensures exact orthogonality. There are both memory and computer-time 
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reasons for which the second strategy (z.e. updating the bands one by one) is more 
efficient for the study of systems of large size. For relatively small sizes (some tens 
of atoms) the calculations are less dominated by the orthogonalisation procedure, and 
other considerations influence the choice of the optimal algorithm. In the present work 
both strategies have been applied, and the relative procedures will be both described 
and discussed in Section 2.3.
Before any further analysis of the global structure of the constrained total energy 

minimisation, it should be noted that the search directions along which the orbitals 
are updated do not have to coincide with the energy gradient of eqn. (2.5) as done in 
equation (2.7). The search directions actually used in all the calculations of the present 
work were constructed with the “conjugate gradients” technique, described in the next 
section.

2.2.3 Conjugate gradients techniques.

We discuss here briefly the conjugate gradients (CG) minimisation algorithm[13][14]. 
For simplicity, we do not include considerations regarding the orthonormality of elec­

tron states, or the self-consistent nature of the functional which has to be minimised. 
All the considerations in this section can be thought as referring to the total energy 
minimisation for a single particle in a fixed external potential, or equally well to a 
general multi-dimensional minimum search problem.
Given a function whose value is determined by a N-dimensional set of param­

eters {ûg} G = 1,2, ..,7V, and provided that for a given set of parameters the values 
of the function and of its gradient vector F = —dE/daG axe both known, the sim­
plest minimisation technique implies a search along the gradient direction to identify 
the relative line minimum. Once this is achieved, the new gradient is evaluated at 

the minimum point, and another fine search is started. This procedure is known as 
“steepest descent” algorithm[12][15], and the value of E is guaranteed to decrease at 
each minimisation. Note that any gradient is bound to be orthogonal to the preceding 
one, since it must have null projection on the direction of the old line search on whose 
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minimum it has been evaluated. Also note that this orthogonality relation is satisfied 
for successive gradients only, and that no memory of the minimisation directions before 
the last one is in fact included at each iterative step in the current search direction.
It is easy to construct examples of functions E for which this “short memory” problem 
of the steepest descent algorithm is responsible for an highly inefficient minimisation 
path. Consider the example in two dimensions of a long narrow valley with steep 

walls in one direction, and a much more shallow minimum in the orthogonal direction. 
A steepest descent path will include many steps along gradients whose components 
along the steepest direction have alternate sign. Even a simple quadratic form like 
E = aa^ + /JtZj, a, 0 > 0 will take several iterations for the minimum to be reached if 
a « 0, successive gradients having alternate sign on the direction of the minimisation 
variable a2. Clearly a more effective strategy for determining the search direction should 
inhibit such oscillatory behaviour, for example by summing at each step to the current 
gradient a small contribution of the last (and orthogonal) search direction:

Sn = Fn + anSn-i . (2.9)

Here Sn is the search direction at iteration n, and Fn is the relative gradient. A 
minimisation strategy of this kind, when completed by the definitions:

S, = ft , a = jkkL , (2.10)
Kn-lC

is called “conjugate gradients” [13] technique, and leads to a far more efficient minimi­
sation path. It can be proven that for a TV-dimensional quadratic form the method 

reaches the absolute minimum after N conjugate gradients steps only, the N associ­
ated gradient directions being all mutually orthogonal2. Therefore near an isolated 
minimum of a non-pathological function, where the second order expansion terms give 
the leading contributions to the function’s value, the conjugate gradients technique is 

guaranteed to reach the minimum in a reasonably controlled number of steps using the 

2The recipe for a in order for the algorithm to have this property is not unique: see for example 
reference [12].
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function’s gradients only, and no more than two of them at the same time. This clearly 
eliminates the necessity of ever storing an amount of information corresponding to the 
full Hessian matrix of second partial derivatives of the function at the minimum.
In the domain regions far away from the minimum, the function to be minimised 
is not in general approximately quadratic, so that the argument above concerning 
the maximum amount of gradient steps to reach the minimum does not hold if the 
minimisation procedures begins from an arbitrary starting point, for example chosen 
at random. Moreover, when the number of parameters is very large, such property is 
of no help, the algorithm being expected anyway to determine the function’s minimum 
in much less than N steps.
Finally, it should be noted that so far we have discussed the efficiency of a technique 
for choosing search directions in a parameter space, while the overall efficiency of the 
algorithm has to be discussed in terms of the global computing resources for reaching 
the function’s minimum. The cost of a multi-dimensional minimisation depends on 
how many times the function to be minimised and its gradient have to be evaluated. 
Performing the minimisation along the direction determined by eqn. (2.9) implies some 
function evaluations, and is in itself time consuming. Different strategies for performing 

the line minimisation have been adopted in this work, and will be discussed in the next 
section.
We only mention here that when using a search direction technique like the conjugate 

gradients one, based at each iteration on the local properties of the function, it is always 

possible to restart the algorithm at some intermediate point from a steepest descent 
step. This in turn permits to tune the computational effort spent in line minimisations: 
such effort can be lowered and the minimisation made much faster allowing for some 
error in the detection of the minimum. The building up of these errors would eventually 
lead the CG algorithm to select less and less efficient search directions. Restarting the 
algorithm from time to time forbids any propagation of errors to the whole descent path, 
the overall procedure resulting fast and robust without loosing its essential simplicity.
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2.3 Total energy minimisation schemes.

In the present section we describe in more detail some features of the two minimisation 
schemes utilised throughout the present work, corresponding to two separate computer 
codes of independent origin and different structure, which have been used to perform 

the calculations described in the next chapters.
The first has been explicitly designed (Gillan, 1989 [17]) for studying the energetics of 
medium sized metal systems, and performs the task of minimising a total free energy 
functional of the kind discussed in Section 1.3 . Its main features are connected with 
the finite temperature formalism which it uses. This formalism requires to deal effi­
ciently with fractionally occupied orbitals, while permitting us to keep under technical 
control the problems arising from the metal discontinuities at the Fermi level. The 
scheme has been used in the present work to perform calculations on the energetics of 
defects and impurity systems in aluminium host.
The second scheme (Teter et al., 1989 [19]) has been developed for large scale cal­
culations on semiconducting and insulating materials, and perforins the minimisation 
of the DFT energy functional using a band-by-band technique which reduces to the 

minimum the amount of memory storage required.
While the target physical systems and the general architecture of the first scheme make 
it suitable for a vectorial (Cray-like) supercomputer, the features of the second scheme 
make possible its implementation on a parallel computer, provided that a paralleli­
sation strategy is designed in the most compatible way with the program tasks and 
purposes. The calculations on ceramic insulators described in the present work have 
all been performed on a parallel supercomputing device (a 64-nodes Meiko Computing 
Surface, in Edinburgh University). A description of some relevant technical features of 

the two calculation strategies is given hereafter.
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2.3.1 Calculation features, first strategy.

The starting point of a self-consistent energy minimisation run consists of a full initial 
set of electronic orbitals In this scheme such set is generated by solving the KS
eigenvalues problem in the fixed screening potential derived by the superposition of 
atomic densities, considering only the plane wave components up to some small cutoff 
(two or three Ry). Along the minimisation, the conjugate gradients (initially: steepest 
descent) directions are recursively used to lower the total free energy updating each 

time the “current” set of orbitals {$*}.
At each step the “force” gradient on the electronic degrees of freedom is evaluated as 
in eqn. (2.6) from the self-consistent hamiltonian generated with such orbitals. For 
each BZ vector k each gradient F, has components both in the “parallel” Hilbert space 
spanned by the {</>£ } and in the “orthogonal” space of wavefunctions which are not 
linear combinations of them.

2.3.1.1 Minimisation within the parallel subspace.

For total energy calculations on semiconducting and insulating materials, in which no 
fractional band occupation is needed, we could just ignore any band updating within 
the parallel subspace, which would correspond to a unitary rotation leaving the ground 
state density (and therefore the energy functional) unchanged.

Introducing the fractional occupation of orbitals we also introduce the possibility of 
changing the charge density when rotating the orbitals and re-computing their occupa­

tion numbers accordingly to their new energy expectation values. This can obviously 

lower the value of the total energy. At each iteration n, the relevant object taking part 
in this procedure is the Hamiltonian matrix

Afc,.j = < > i,j = l,..,7Vorb , (2.11)

the elements of which are easily calculated as a subproduct of the gradient evalua­
tion (2.5). Such matrix is not diagonal out of convergence, and being of a compar­
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atively small size it could for example be directly diagonalised. However, this would 
not give any evident advantage towards the final goal of reaching the global eigen­

functions set, since the diagonalisation (i) would take place within a Hilbert subspace 
being still not the ground state one, and (ii) would not be done self-consistently3, and 
therefore it could lead to an increase of the total energy when the energy is calculated 
self-consistently after the subspace rotation.

3Sometimes a “charge slosh” behaviour is observed when diagonalising this matrix, when high-lying 
eigenstates which are equivalent by symmetry have different eigenvalues due to lack of self-consistency, 
so that their occupation numbers oscillate.

4Note that the diagonal matrix elements must be zero and do not need to be defined.

The procedure which we have applied to update the wavefunctions within the parallel 
subspace is designed[17] to guarantee that the total energy decreases, as an alternative 
way to the conjugate gradients technique to define the search direction. If the parallel 
displacement of the wavevectors is written as

i

and imposing to the matrix W to be anti-Hermitian in order to preserve the orthonor­
mality of orbitals within first order in a, a condition to ensure the energy decrease for 
small positive values of a writes

< O’ <2-13)

where the . are as usual the orbital occupation numbers. We write the coefficients 

W*. ij each sampling point k, as4: 

^3hkj,i

and then define a symmetric matrix which set to be the unit matrix would make the 
(2.14) correspond to the first order perturbation matrix for obtaining the eigenstates 
of hk .j. In some cases during the run a “wrong” ordering of occupancies given the 

calculated expectation values can occur, i.e. when the inequalities /,• < fj and h^i < hjj 
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hold simultaneously for some couple of indexes i,j.5 By imposing = 0 in all these 
cases the condition 2.13 is always satisfied. Moreover, when necessary we lower the 

value of to satisfy for each matrix element the inequality

5The reason is that the occupation numbers themselves are treated as minimisation variables, and 
are recursively updated before reaching the Fermi-Dirac distribution at self-consistency. If we imposed 
the Fermi-Dirac distribution, the “right” ordering would be obviously automatically satisfied.

< (2.15)

where the maximum value e (normally put equal to 0.2) has the scope to keep the 
matrix elements within the limits where perturbation theory is valid. The value of 
is otherwise always set equal to one.

2.3.1.2 Minimisation within the orthogonal subspace.

The orthogonal subspace is the Hilbert space of the states generated by the PW ba­
sis set which are orthogonal to the current set of wavefunctions {?/>? The search 
direction to minimise the energy functional in this space is determined with the con­
jugate gradients technique. The orthogonality constraint is then applied on the search 
direction. Starting from the expression for . G obtained from eqn. (2.9) for the ¿-th 
orbital at the sampling point fc, we project the search direction onto the orthogonal 

(or “tangent” to the constraint) manifold, rewriting it as:

j,G'

where like in eqn. (2.2) the <z£ G are the orbital expansion coefficients at the minimi­
sation step n. Formula (2.16) provides a search direction Sn along which the updated 
wavefunctions given by 

(2.17)

are still mutually orthonormal within first order in fln.
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2.3.1.3 Minimisation with respect to the occupation numbers.

Once the search directions in both the parallel and the orthogonal subspaces have 
been determined, all is needed to define completely a global minimisation direction is a 
strategy for varying the occupation numbers f? . . It should be noted that during the 
run the wavefunctions are expected converge to the correct KS eigenstates because of 
the successive “first order” rotations in the parallel subspace (as it can be easily verified 
checking the size of the off-diagonal matrix elements (2.11)). The final statistical 
distribution of the occupation numbers is known to be Fermi-Dirac-like at the minimum 
of the free energy functional (1.27).
A very simple strategy has been applied for the updating of the f* : at each iteration 
n, using the energy expectation values j>f and the Fermi-Dirac expression (1.21) 
we calculate new values for the orbital occupations which can be written as f?+1 =

. + A/” . . Again this establishes a search direction A/£ i in the space of the 
occupation degrees of freedom, along which a minimisation search can be performed 
calculating the occupations as

C1 = • (2.18)

at positive values of the line variable yn. It can be shown that the free energy is 
guaranteed to be reduced for some positive value of 7".

It will be shown in Section (2.5) that the the zero-temperature ground state energy 
of the electronic system can be calculated from the minimum value of the free energy 

functional independently of the details of the distribution of the coefficients {fk J at 
the minimum, so that the smearing of the Fermi Surface can in practice be performed 
using other occupation functions than the Fermi-Dirac distribution.

2.3.1.4 Line minimisation.

Once the global search direction has been completely specified with respect to the 
orbital occupation variables and the plane wave coefficients both in the parallel and 
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in the orthogonal subspaces, the following step consists in the minimisation along the 

line spanned by the three associated line variables {a",/?n,7n}.
The asymptotic value for the parameter 7 in eqn. (2.18) can be assumed to be equal 
to one, provided that the unnormalised vector A/” . is used as search direction. Anal­
ogously, the asymptotic value of the parameter a in eqn. (2.14) using as a search 

direction the unnormalised vector corresPon<ls t° unity, while the ac­
tual displacement connected with the subspace rotation becomes infinitesimal as the 
orbitals approach the self-consistent KS set. The values for parameters a and 7 at the 
beginning of a new minimisation step are therefore both set to one. Experience shows 
that the search in the orthogonal subspace is the slowest (and most system-sensitive) 
component of the whole minimisation process to reach convergence, and is also the 
one to be accounted for almost all the energy lowering obtained in a minimisation 
step. To provide a trial value for the displacement parameter fl (eqn.(2.17)) on the 
normalised search direction f. q it is therefore sufficient to estimate the amount of 
energy decrease expected from the whole present minimisation step.
A reasonable way to do this is to assume some simple golden-ratio rule for the expected 
energy lowering, based on the experience on the convergence properties of the algorithm 
on the class of systems investigated. Given that at the current point in the minimisation 
path both the total free energy and its gradient are known, an expected energy gain 
provides the third numerical value for a simple parabolic fit which is used to extrapolate 

the position of the minimum along the search line, so to fix the value of the parameter fl. 
At this point a trial displacement is defined, and a check on the orthogonality of the 
updated states is performed to confirm that the displaced orbitals are orthogonal within 
first order, as they should by construction from what said so far. If the trial states 
are not orthogonal within first order (z.e. within 10-20%) the extrapolation is reduced 
halving the values of the fine variables {an,/?n,7n}, and the test is repeated before 
any time-consuming energy evaluation is performed. When the condition is satisfied 

the states are eventually orthonormalised exactly through a Gram-Schmidt procedure, 
to obtain the trial set of states for the new energy evaluation.
Once the new total free energy has been calculated, its value is used to check on the 
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efficiency of the extrapolation. The free energy decrease obtained from the calculation 
is compared with its extrapolated linear decrease AF/,n, calculated as the product of 
the gradients and the displacements for all the minimisation variables. If the calculated 
energy decrease is too small (less than 10% of AF/,n, in cases of overestimation of the 
minimum position) or too large (more than 90% of AF/,n, when the minimum position 
is underestimated and the decrease is almost linear) the displacement is rejected. The 

rejected value is however used for a new parabolic fit (this time not biased by a guess 
on the expected energy lowering) and a new minimum position is estimated.
This calculation procedure produces typically a 50% of rejections: fifteen total energy 
evaluations are in other words usually needed for every ten accepted conjugate gradi­
ents step, the first-guess minimum point usually being good enough half of the times. 
This good acceptance rate is a consequence of the quadratic shape of the free energy 
functional close to its absolute minimum, where most of the time is spent in the cal­
culations. Such shape is what we assume when adopting the parabolic extrapolation. 
It should be noted that the procedure described (i) allows to save computer time with 
respect to other line search algorithms which evaluate systematically at least one extra 
point besides the starting one before fitting the minimum position, and (ii) is always 

guaranteed to decrease the total energy, which is always evaluated self-consistently6. 
Its most obvious drawbacks axe its loss of efficiency far away from the minimum (for 
example if we wanted to start the calculations from random wavefunctions) and its 

large use of orthogonalisations between orbitals when tuning up the displacement. For 
extremely large physical systems, in spite of the Gram-Schmidt procedure being highly 

vectorisable on most computers, the orthogonalisation of orbitals would became by far 
the most cpu-intensive operation, and the procedure described would eventually have 
to be abandoned. This is not the case for the physical systems on which this procedure 
was used in the present work, which go up to a maximum of 7000 plane waves per 
orbital in the biggest supercell (41 orbitals) studied, and for which the Fourier trans- 

6For the description of a conjugate gradients scheme which is not evaluating the energy self- 
consistently while performing the line search, see [18].
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formations between direct and reciprocal spaces are the leading operation in terms of 
computer time cost.

2.3.1.5 Relaxation of ionic position.

The relaxation of the ionic position within the fixed constraint of the supercell geometry 
represents the last (and somewhat independent) operation to be performed during the 
calculation when the goal is to determine the ground state energy of a relaxed atomic 
structure. Following the original ideal of Car and Parrinello[16], the total energy is 
minimised in the present technique with respect to all the variables (electronic and 
ionic in our case) at the same time, although the technique does not make use of 
annealed dynamics to reach the global minimum values for such variables. As in the 
case of the electronic orbitals, a single well defined minimum is expected, the systems 
investigated having in all cases a high degree of symmetry. Moreover, since we look 

for the global minimum of the free energy, and since we are not modelling any physical 
ionic dynamics, the gradient directions which come into play for the ionic relaxation 
procedure do not need to be the Hellmann-Feynman forces[20] for the given ionic 
position at the associated electronic ground state. Instead, at each electronic iteration 
the ions are relaxed to their “zero-force” positions given by the expression

dE 
dRi

1 N-1’tons 5= 0 i

while the (unconverged) electronic charge density is kept fixed. Only the Madelung 
energy and the electrons-ions interaction contribute to the gradient in eqn. (2.19). The 
procedure proves to work well in all the situations in which the relaxation effects ex­

pected are not extremely large (in which case forcing the ionic positions slightly beyond 
the minimum along the search direction is known to speed up the overall minimisation 
procedure), and is almost negligible in terms of computer time in comparison to the 

orbital relaxation. Some more about constrained atomic relaxation when applied to 
defective systems will be said in the following chapter.
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2.3.2 Calculation features, second strategy.

In this section we provide a description of the total energy minimisation technique used 
in the present work for the study of defect energetics in ceramic insulators. Due to the 

much less efficient electronic screening of the defects taking place in insulators, and to 
the necessity of high cutoff treatment of the oxygen atoms, the calculations on these 
compounds are extremely demanding in terms of system sizes (number of orbitals) and 

dimension of the PW basis sets.
Although given the increasing power of modern computers the speed at which calcula­
tions can be performed is constantly improving, and the amount of memory which can 
be asked for in a single calculation is rapidly growing, a fast and moderately memory 
intensive algorithm is indispensable for approaching very large calculations.
At the present time a highly desirable feature of any calculation procedure is the 
possibility of implementing it efficiently onto a distributed-memory parallel machine, 
since beyond a certain system size the dynamic memory and the speed obtainable with 

vectorial machines are no more sufficient.

2.3.2.1 The band-by-band updating.

In a pseudopotential total energy calculation using a PW basis set the memory require­
ments are dominated by the necessity of storing the wavefunctions arrays7. A way to 
retain all the advantages of the conjugate gradients procedure without increasing the 
memory requirements to more than a single storage of the full set of orbital coefficients 
is to update by conjugate gradients one single band at time[19].

7Note that the necessity of treating a full set of orbitals in a direct minimisation of the energy 
functional is due to the fact that a better representation of the kinetic energy functional T, [p] is not 
available: it is not in itself a feature of DFT.

An order must be chosen for the band updating. For insulators and semiconductors 
the final set of states will eventually correspond only within a unitary transformation 
to the self-consistent KS set of states, while for metals the KS states will have to be 
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reproduced exactly. In the following we will assume that subspace rotation is always 
applied (which does not represent a large additional computational load), and that 
the sequence of orbital updating follows in ascending order the spectrum of the orbital 
energy expectation values {77,}, i = 1, Norb • The steepest descent gradient for a given 

band V’t is given by

Fi = -(H ~ 7«)^» ; 7< =< , (2.20)

where only the orthogonality of the gradient to the state itself has been added to the 
previous definition (2.5). Note that this gradient vanishes when the state V’» approaches 
an eigenstate of the self-consistent hamiltonian H.

Before any band updating can start, the direction Fi needs to be orthogonalised to the 
other wavefunctions, which are kept fixed during the process:

F; = Fi--£<<MFi>.h. (2.21)
j#»

It should be noted that any displacement 61/% along the direction F- will now keep the 
state orthogonal to all the other states, and not, for example, to only the lower-lying 
states which have already been updated during the present global CG iteration.
One reason for this comes from the way in which the present scheme deals with the self- 
consistent nature of the minimisation problem: ensuring the complete orthogonality 

as in eqn. (2.21), only the change in the charge density from the single band needs to 
be computed to evaluate the total charge density while the band is updated by the 
CG procedure. Since the updating of the self-consistent screening potential is also a 
straightforward operation, the CG optimisation of the single wavefunction to minimise 

the total energy can be done always calculating the energy in a fully self-consistent 
way.8

8Even in a non self-consistent calculation in which the hamiltonian is kept fixed while all the bands 
are updated one by one, there are reasons to impose full orthogonality, for example to avoid large 
gradient vectors parallel to quasi-degenerate upper-lying bands, which would introduce instabilities 
in the calculations.
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In systems with large number of states, and in particular in the initial part of the min­
imisation, when the changes in the screening potential due to the orbital optimisation 
are expected to be large, it is essential to update the effective hamiltonian while the 
bands are optimised to lower the total energy. Proceeding in such way, it is ensured (i) 

that the conjugate search directions along which the optimisation takes place are the 
most effective ones available at each stage of the calculation (since they are evaluated 
as in (2.20) from the self-consistent hamiltonian), and (ii) that the total energy will 
be decreased after all the band minimisations have been performed, since the energy 
does not have to be evaluated only at that point, for the first time, in the correct 
variational way (2.4). In other words, the whole procedure allows to the hamiltonian 
operator to converge smoothly to its self-consistent value, while the total energy after 
a global CG step is assured to be effectively lowered even in the case of large density 
rear rangemen ts.

2.3.2.2 Preconditioning of the steepest descent vector.

The total energy calculations on oxide materials, which will be described in chap­
ter 5 of this work, were all initialised assigning pseudo-random values to the expansion 
coefficients <2k,»,G which represent the orbitals. The advantage of this is that no pre­
determined knowledge on the electronic ground state (such as the symmetry, or in 
general the shape of the charge distribution) is incorporated in the initial conditions, 
and therefore somewhat propagated to the complete minimisation procedure9.

9The numerical noise in the calculations would never be big enough for the CG procedure to break 
an imposed symmetry and find a lower less symmetric ground state, even if the charge density were 
not kept symmetric along the run by explicit symmetrisation.

A drawback of this is that the large kinetic energy of the initial orbitals is by far the 
dominant term in the total energy during the first iterations of each run, and therefore 
has to be efficiently removed to reach the ground state in a reasonable time. The 
analysis of the problem suggests a technique, called “preconditioning” of the steepest 
descent direction, which helps in doing so[21j.
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The high-energy excited eigenstates of the KS hamiltonian conduction bands can be 
thought as free quasi-particle unoccupied states, whose energy is essentially kinetic. 
With starting condition like the ones described above, there are in the initial orbitals 
large contributions from these high states, especially if the PW energy cutoff is itself 

large. The highest plane wave vectors randomly occupied carry the largest amount of 
kinetic energy, and are very little scattered into each other by the potential operator. 
The problem of annealing a set of electronic orbitals from random initial conditions 
will therefore look very much like the problem of minimising with conjugate gradients 
a system of noninteracting electrons, as long as the kinetic energy in the system is high 
(hundreds of eV per band), and if we focus on the high kinetic energy components in 

the orbitals {i.e. the PW coefficients a^'G with large |G|).

For a single-electron hamiltonian consisting of the kinetic operator T only, the steepest 
descent direction

F< = -(T - ,01* > = -E(?-*Kg|G>; = S^KgI2, (2.22)
G 2 G Z

is obviously not parallel to the error vector, which in this case is the function |0j > 
itself. The search direction is not proportional to the state because of the coefficients 
Ç in the prefactors, which project the search direction more than necessary onto the 

high G-space wave-vector components.
A way of suppressing this effect is to operate on the gradient (2.22) with a diagonal 
matrix KG G< effectively correcting the gradient at kinetic energies beyond the average 

orbital’s one. A possible choice, used in this work, is

Kg,G'
27 + 18a; + 12a:2 + 8a;3 

G’G' 27 + 18a: + 12a;2 + 8a;3 + 16a;4 (2.23)

which has the advantage of approaching the G = 0 limit with the first three derivatives 

equal to zero {i.e. no corrections is applied in the low kinetic energy regime). At high 
kinetic energies, well beyond x = 1, the preconditioned search direction

(2.24) 
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causes all the large wave-vector components to converge at the same rate. Since the 
preconditioning procedure has to be followed by a further orthogonalisation of the 
gradient to all the existing bands, and therefore involves some non-negligible additional 

computer work, it is preferable to use it only when large components from the high-lying 
KS eigenstates are expected to be still present in the wavefunctions being updated10, 

i.e. in the initial part of the calculation.

10The simple form of preconditioning we use is based on the assumption that we can approximate 
the orbitals components on the high-lying KS states with the coefficients a,, q of their PW expansion: 
this approximation does not hold near convergence, where the mentioned components tend to zero.

2.3.2.3 Line minimisation.

Once the CG procedure has been applied to the preconditioned steepest descent vector 
to obtain for the current band a normalised search direction Si which is orthogonal to 
all the other bands, the following linear combination:

V>,- cos(0) + Si sin(0) 0 € [0,2ir] (2.25)

is also normalised and orthogonal to all the other bands {V’y; t / J } for any real 
value of the angle 0 which here represents the line displacement coordinate. The 
minimisation is again based on some assumption on the Energy analytic behaviour. 
The charge density is a periodic function of 0 with period tt, and the Kohn-Sham 
energy can be rewritten as the Fourier expansion

E(0) = Eavg + An cos(2n0) + Bn sin(2n0) . (2.26)
n=l,oo

Assuming from experience on simple systems[21] that the first Fourier component is 

the leading term in the expansion, and rewriting the energy as

E(0) = Eavg + Ai cos(20) + Bx sin(20) , (2.27)

the minimum can be located from this expression provided that three independent 
values of the function or of its derivatives are available for a fit of the three parameters
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Eavg,Ai,B\ . Since the value of the function and its derivative at 0 — 0 are already 
known from the CG procedure, one more energy evaluation at some O' 0 is sufficient 
for extrapolating a good value for the minimum. A typical value O' = tt/300 has been 

utilised in all the calculations, and found large enough to avoid rounding errors when 
subtracting the values at 0 = 0 and small enough to guarantee good values for the 
fitted minimum near self-consistency in the runs, when the minima are expected to 

occur at very small values of 0.

2.3.2.4 Computational procedure.

For a minimisation run to be completed, the CG procedure updating all the orbitals 
one by one as described so far, has to be repeated for the number of times which is 
necessary to reach the total energy convergence. The number N of CG steps performed 
at each iteration on each band should not be very high, not to waste computer effort in 
optimising the bands while the screening potential has not yet reached self-consistency 
(see also the final considerations of Section (2.2.3), on page 31). Although for simplicity 
such number has been fixed to a value of three or four for all orbitals in the energy 
minimisations, it is clear that for calculations involving subspace rotations, where the 
character of the bands and the associated convergence properties are expected to vary 
along the spectrum, a more sophisticated algorithm can be applied to maximise the 

convergence speed, tuning an individual value for N for each band([22]).

2.4 The pseudopotential representation in the PW 
formalism.

We discuss hereafter the way in which the interaction between ionic cores and valence 
electrons is treated in the calculations. In the present work norm-conserving ab initio 
pseudopotentials of the kind proposed by Hamann, Schluter and Chiang (HSC) [10] 
have been used for all the constituent atoms, with the only exception of hydrogen, for 
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which we used the bare Coulomb energy potential —e2/r .

11 Being a multiplicative operator on the radial part, but treating differently the different angular 
components of the orbitals, this potential val is sometimes called “semilocal”.

The total potential for the interaction is simply the sum over ionic position of the 
atomic pseudopotentials:

v =£v„(|r-Ri|) . (2.28)
I

As discussed in Section (1.5.1), a natural form for the atomic pseudopotential is given 

by
oo

vpi = £>A, (2.29)
1=0

where the expansion is usually arrested at the highest angular component in the atomic 
valence shell, and the potential is rewritten as the sum of a local and a non-local parts

vP3 = vtoc(r) + vai ; val ~ vioc(r))Pi , (2.30)
1=0

where now the angular components higher than lmax of the pseudopotential have been 
approximated with the local part vioc. In the HSC formulation v/oc is shown to carry 
all the long-range interactions between the valence electrons and the pseudoion, while 
the angular waves vfl = vi — vioc of the non-local part val 11 axe short-ranged functions 
of the distance from the nucleus, which vanish outside the core radius rc. It is custom­
ary in the calculations to set u/oc(r) = vz0(r) f°r some chosen angular momentum lo- 
the pseudopotential is then normally said to be Z0-local (renaming lo with s,p,d,f in 
practical use).

In the CG procedure the steepest descent vector we need (for the i—th band) has 

G-space coefficients:

Fi,G = - < G|ff> =

-E%g' { < G|T|G' > + < G|V/0C + Vacreen\G' > 
G'

+ < G\VnonloC\G' > } , (2.31) 11
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(capital V meaning a sum on the ionic positions as in (2.28)), where Vnonioc is obtained 
summing the potential val of expression (2.30) on the ionic positions. Since the kinetic 
operator T is diagonal in G-space, and since each integral < G| Vioc + t4creen|G/ > in 

expression (2.31) is a Fourier coefficient (of the reciprocal space vector |G — G' >) of 

the local part of the KS potential, no operation scaling like N2!w is involved in these 
first two terms. The third integral

< G|Vnon/oc|G' > (2.32)

involves matrix elements between plane waves of radial functions and angular pro­
jectors, and should in principle be calculated separately for each couple of G-vectors 
(G, G') , therefore introducing a 7Vp/w-scaling operation in the calculations.
This problem can be overcome by rewriting the pseudopotential vp3 in the Kleinman- 

Bylander (KB) representation[23], given by 

(2.33)

where X/(r)F/m is an eigenfunction of the atomic pseudo-hamiltonian. Note that the 
operator so obtained is not exactly equal to vp3 in equation (2.29), although it acts in 
the same way on the reference atomic pseudostates, and is therefore expected to be 

norm-conserving and transferable like vp312.

12It may happen that some spurious deep bound states are introduced by the KB representation, 
when the local part vioc is badly chosen. A discussion on the occurrence of these rare “ghost” states 
can be found in reference [24].

The immediate effect in the calculation of the KB representation is that the matrix 

elements of the non-local pseudopotential on the PW basis set can be expressed in the 
separate form:

< G|i*'|G' >= , (2.34)
l

so that the integral (2.32) does never imply double sums on the PW basis set.
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2.4.1 Pseudopotential optimisation and non-linear core cor­
rection.

The number of PW which has to be included in a total energy calculation depends both 
on the volume of the supercell used and on the energy cutoff necessary for the PW 
basis set to reproduce correctly the valence electron orbitals. For first row elements 
and transition metals a very large number of PW is normally needed to reproduce the 
sharply peaked valence states which arise respectively from the strongly attractive p 
and d pseudopotential components.
It should be noted that if the quantities of interest are energy differences between 
different atomic arrangements, it is sufficient to use an energy cutoff large enough to 
obtain a converged charge density distribution in the bond region, since the errors 
arising from the incomplete convergence of the kinetic energy contributions from the 
peaked core regions of the pseudo-orbitals are structure-factor independent, and there­
fore largely cancel in the results. However, it is still highly desirable not to operate 
too much below the cutoff at which the energy can be considered fully converged, since 
the residual errors after the cancellation are difficult to predict and time-expensive to 
monitor directly for every result.
In the calculations presented in this work, which do not involve transition metals, 
the only “hard” element in need of a large cutoff treatment is oxygen, for which a 
pseudopotential explicitly optimised for fast PW convergence has been used. The 
general scheme of the optimisation procedure used in this case was recently proposed 
by Rappe, Rabe, Kaxiras and Joannopoulos (RRKJ)[25], and is summarised in the 
next section. For simple metals like Al, Mg, and Li, the pseudopotentials are weak, 
the convergency properties of the pseudopotentials do not represent a problem (and 
in fact improve passing from the atom to the metal solids, where the valence electrons 
are nearly uniformly distributed), and no optimisation was needed.
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2.4.1.1 RRKJ optimisation.

The only degree of freedom left in the pseudopotential formulation after the requirement 
of norm conservation and exact reproduction of the all-electron wave functions beyond 
the chosen core radius rc (cf. Section (1.5.2)) is the shape of the pseudopotential within 
such radius. It follows immediately that a small core radius, leading to a very accurate 
reproduction of all-electron atomic results, will leave very little variational freedom for 
the optimisation procedure, so that a compromise has to be reached between cutoff 
energy convergence and transferability properties.
Once rc has been set, RRKJ point out that the total energy convergence in the high 
cutoff region resembles closely the cutoff convergence of the isolated pseudoatoms used 
in the calculation, and that the leading part of the residual error while approaching con­
vergence derives from the kinetic energy of the orbitals. RRJK therefore parametrise 
directly the pseudo-wavefunctions ^¡(r) inside rc, and adjust the parameters to min­
imise for each I the expression

SEkin = i dG |^(G)|2 (2.35)
•/|G|>gc "

which represents the residual kinetic energy beyond a cutoff qc. In this scheme the 
value of qc is not fixed, but results from the calculations as the minimum possible 
cutoff which gives after the minimisation procedure a residual energy &.Ekin lower 
than a fixed tolerance value (of the order of 1 mRy).

With some minor adjustments from the original scheme in the choice of the parametri­
sation of the pseudo-wavefunctions13 and in the determination of gc, this procedure 
has been applied[26] to generate the oxygen pseudopotential used in the calculations. 
More about the testing of the performance of this pseudopotential, and about how such 
performance compares with the available literature results for other oxygen pseudopo­
tentials, will be said in Chapter 5.

13The parameters are adjusted so that V’i(r) matches up to the second derivative the all-electron 
solution at rc, and is normalised correctly, so that anyway more than four free parameters are needed 
to fulfill all the constraints.
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2.4.2 The non-linear core correction.

One last technical issue is described here, which arises from an approximation inherent 

to the way pseudopotentials are constructed. The approximation in question consists of 

a forced linearisation of the exchange-correlation potential which is implicit in the con­
struction of the norm-conserving pseudopotentials in all the cases in which the core and 
valence electron densities overlap significantly in the all-electron atomic calculations. 
When generating the pseudopotentials from such calculations, the total effective KS 
potential has to be “unscreened” [11] at some stage to subtract from it the Hartree 
and exchange-correlation potentials arising from the valence charge distribution (the 
Hartree and the exchange-correlation potentials due to the core charge can be consid­
ered included as a frozen contribution into the final pseudopotential):

u,(r) = vf^r) - y ¿r'^7^ - v™'(r) , (2.36)

where the exchange-correlation potential arising from the atomic valence charge pvo/(r) 
is defined as in (1.29) by the equation

vxc(r) = Pxc(Pvai(ry) ■ (2.37)

The unscreened pseudopotential vi obtained with the (2.36) implicitly contains a term

= Pxc(PcoTe(r} + Pva/(^)) ^rc(Pva/(^)) (2.38)

representing the contribution to the the KS potential of the self-consistent calculation 
on the pseudoatom which added to the explicit exchange-correlation potential (2.37) 
of such calculation would give back the original exchange-correlation potential of the 
all-electron calculation14. Since the exchange-correlation potential is not linear in the 
charge (unlike the Hartree potential), we cannot in general assume also

14Note that the pseudo-valence charge differs from the valence charge of the all-electron calculation 
within the core radius, since, for example, the pseudo-wavefunctions are nodeless unlike the all­
electrons valence states. Because of the norm conservation, the distinction can be dropped here 
introducing only a small error[27].

VfC = pXc(pcore(r)) V F , (2.39)
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unless the core orbitals for the atom in question are so contracted that the overlap 
region between core and valence charge is negligible, or unless we think to perform 
the calculation in exactly the reference atomic configuration, in which case the errors 
committed assuming the equivalence of (2.39) and (2.38) would cancel exactly.
Suppose now that calculations have to be performed in a solid where the self-consistent 
pseudo-valence distribution p4C(r) differs from the atomic one. A way to include ex­
change and correlation effects correctly consists of modifying the exchange-correlation 

potential
^c(p4C(r)) (2.40)

normally used in the calculations into the corrected form introduced by Louie, Froyen 

and Cohen[27]:

/^xc(Pva/(^)) Z^rciPcorei^) 4" Pvaz(^)) 4" ^Tc(Pcore(^) 4" P»c(^)) • (2.41)

The three terms in expression (2.41) correspond respectively to (i) re-screening the 
pseudopotential with the atomic pseudo-valence charge density (ii) unscreening it of 
the exchange-correlation potential of the full charge in the atom and (iii) finally adding 
the correct exchange-correlation potential (in the frozen core approximation) for the 

self-consistent calculation in the solid.
Two more source of approximation have to be added to the correction as described so 

far: (1) the strongly peaked frozen core charge pCOre(’') that has to be used throughout 
the calculations is typically not representable on the PW basis set, due to insufficient 
energy cutoff and (2) the pseudopotentials components v;(r) are usually evaluated 
for each angular momentum I in a different atomic reference configuration, so that 
in principle different core charge density should be used somehow in performing the 

correction.
Being clear from expression (2.41) that the correction only exists in the overlap re­
gion which is usually well outside the main core charge peak, it has become common 
practice to replace the full atomic core charge with a much smoother “effective core” 

distribution which is equal to the core charge density in (at least most of) the overlap 
region. This solves the problem (1), although some testing is needed to monitor the 



52

error introduced with the smoothing procedure. The second approximation consists of 
neglecting the core relaxations between two different reference configurations. Even if 
such relaxation is expected to be too small to affect the results, this has in practice to 
be checked comparing the corrected results obtained with the different reference core 
charge distributions.
Although in most cases the use of (2.41) instead of (2.40) leads to negligible changes 
in the results (the two expressions being equivalent in the limit of no valence-core 
overlap), for some other cases the correction is relevant, especially when relatively 
extended orbitals have to be put in the core[28], and in general when the valence 
distribution in the solid is much different than in the isolated atom[29]. In this latter 
case the non-linear core correction in expression (2.41) is expected to improve the 
transferability of the pseudopotential, making it fearly independent from the reference 
configuration which was used to generate it.
In the present work, calculations have been performed on ceramics like MgO, where 
the cation Mg, which in the neutral atomic ground state is known to have a significant 
core-valence overlap, undergoes ionisation from the neighbouring O atoms, the valence 
charge distribution in the solid being therefore radically different from the atomic case. 
Some results on the effects of the non-linear core correction implemented to treat this 
specific case will be reported in Chapter 5.

2.5 Metal smearing techniques for BZ integration.

As a final topic in the present chapter about computational techniques, we address the 
problems connected with the necessity of performing Brillouin Zone integrals in a total 
energy calculation using periodic boundary conditions and the DFT-KS scheme (or any 
other single-particle formulation). Such problem is serious in supercell calculations if 
the material investigated is a metal. In the present work the smearing technique 
introduced by Gillan[17], based on the finite temperature formalism[33][39] discussed 
in Section (1.3), has been used for the calculations on defect energetics in aluminium.
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During the course of the work the relations between that proposed method and other 
methods existing in literature has been studied. The results of such investigation led 

to a general formulation[34] for the smearing technique which is independent of the 
smearing function used, and includes as sub-cases the most relevant smearing schemes 
available in the past [35][36][17][38], improving some of them [35][36] by the introduc­
tion of an appropriate smearing-dep endent correction to the calculated ground state 
energy. The improvements on former results are particularly encouraging when the cor­
rection scheme is applied to the much used “gaussian smearing technique” introduced 
by Fu and Ho[35], and later discussed and modified by Needs[36].
What follows hereafter is a brief analysis of the metal BZ integration problem, and a 
description of the method used to deal with it in the present work on Al. Some more 
results on Al obtained with the corrected gaussian smearing technique are reported in 
Appendix A.

2.5.1 BZ sampling and smearing schemes.

To take into account the contribution to the self-consistent potential of all the electronic 
states in the periodic solid, and since the eigenstates of the KS hamiltonian axe Bloch 
functions

= E%GeiG'r <2-42)
G

due to the translational symmetry of the KS potential, the total energy of a unit cell 
of the infinite solid

= 7^— i + i dr( eIC(r) - vrc(r) - |vw(r) )p(r) (2.43)
iiBZ JBZ J cell Z

includes the contribution of each k in the Brillouin Zone through a “band energy” term 
(first integral on the right term in (2.43)) and through the screening terms constructed 
from the self-consistent charge density (second integral). The charge density is given 

by
O~^zdkL/M(e.(k))|V’ic(r)|2 , (2.44)p(r) =
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where the LDA occupation function /M(e) for a given chemical potential /z corresponds 

to the step function
' 2

/m(<0 = 1
0

e < n 
e = fi
€ > (J. .

(2.45)

In a real calculation the BZ integrals (2.43), (2.44) have to be approximated by a 
discrete sum on weighted points. Given the translational symmetry, the eigenvalue 
and eigenstate integrands

e,(k)/„(e,(k)) (2.46)

from equations (2.43), (2.44) are periodic in reciprocal space. The discrete integra­
tion problem corresponds therefore to the problem of determining the average of a 
periodic function of a given translational symmetry over its domain. As recognised 
long ago (Baldereschi, 1973 [30]), the symmetry properties alone are already sufficient 
for determining a single “mean value” point in the BZ which constitutes a minimal 
and accurate sampling set for performing the integrals, provided that the integrands 
are sufficiently smooth in G-space, as is the case for most semiconductors and insula­
tors. Various refinements have been proposed since then to provide recipes for enlarged 
symmetry-dependent BZ sampling sets of increasing size and accuracy[31][32].
In the case of metals the integrands deriving from partially occupied conduction bands 
are discontinuous in G-space, although still periodical, due to the cut in the occupation 
number when, moving along some k direction in the BZ, the eigenvalue e,(k) crosses 
the Fermi level /z. The performance of the “special” sampling sets is in these cases 
expected to be much poorer, since the fast-convergence hypothesis on the integrands 
when expanded on the appropriately symmetrised sets of plane waves[30] is no more 
valid. The alternatives to reach a given precision in the integration are traditionally (1) 
to increase the size of the k-points sampling sets, therefore increasing (at least linearly) 
the computational load15, (2) to modify the integrands (and therefore the functional 

15Dropping the idea of performing the calculation in a fully self-consistent way, or on the complete 
PW set instead than on some limited basis set constructed with few k-points, it is however often 
possible to effectively include many sampling points in the calculations without an enormous expense 
of cpu time[37].
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evaluated) to somewhat smoother functions, easier to integrate in the BZ, which re­

duce to the original form in the zero limit of an appropriate “smearing” linewidth 
parameter cr.
The density of states from a calculation can be represented as a sum on delta func­
tions on the self-consistent KS eigenvalues (we drop here for simplicity the weighted 
summation on k-points):

n(£) = £ «(e - £,) . (2.47)
t

With “smearing” of the Fermi surface a procedure is usually meant with which a 
different (normalised) distribution function is substituted to the delta functions. This 
function g (for example, a gaussian[35]) tends to the delta function in the limit of zero 
linewidth:

- g(-^—^-) ~ ¿(e - e, ) <r ~ 0 . (2.48)
(7 <7

At finite values of a, the occupancy /,■ of the i — th orbital is evaluated as

ft = /(x.) = f s(t)dt Xt = , (2.49)
J-oo O’

after the chemical potential g has been determined imposing the constraint of the 

conservation of the number of electrons:

^f^ = Nelect. • (2.50)
t

For a general choice of the smearing function g(x) and for any fixed cr, a set of oc­
cupation numbers is therefore determined, which is then used to evaluate the charge 
density as

oo

X-) = ■ (2.5i)
i=l

The band-energy contribution to the total energy (2.43) is evaluated either as the 
energy integral

Eband = i de n(e)e = i de ~ —~) e (2-52)
J—oo J—oo • (7 C 
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on the smeared density of states n(e), or as a sum weighted by the occupancies of the 
self-consistent eigenvalues of the calculation:

Eband=fi * = e r ■ (2-53)

16It is easily seen that they differ for a leading quadratic term in <r if the function jr(x) is even.

These two expressions are not equivalent, although they converge to the same value 
when <7 approaches zero.16 The use of a density of states “smeared” around each cal­
culated eigenvalue et(kj) as in the first expression (2.52) has been proposed[35] to take 
into account the Bloch states at points k close to the sampling point kj. The smear­

ing parameter a is therefore chosen to resemble the average band dispersion between 
neighbouring sampling points, and is systematically reduced when the dimension of the 
sampling set increases. The second expression (2.53) has been proposed[36] as an alter­
native to the first one, which improves the stability of the calculations, since the total 
energy defined in (2.43) has to be a functional of the density (2.51) represented within 
the calculation, and consistently should not include terms originating from states which 
do not contribute to the density itself. This is clear when considering that taking the 
variation with respect to wavefunctions of the total energy calculated as in (2.52) does 
not result in the Schrodinger equation that is actually solved.
Note that within these schemes no systematic way to control or correct the “smearing 
error” introduced with a finite a is provided, and small values of a (of the order of 0.1 

eV, or less) have to be used to keep such error small.
There is a strong resemblance between expressions (2.51), (2.49) and the (1.23), (1.21) 
discussed in Section (1.3) and related to the generalisation of DFT to finite tempera­
tures, the linewidth a playing here a role similar to the one played by the temperature 
in that formulation. This has suggested a novel way[34] to (i) correct for the smear­
ing error, enabling the use of much bigger values of er, and (ii) clarify the issue raised 
above of the variational nature of the energy expression minimised within the smearing 
scheme.
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2.5.2 Generalised free energy.

For any chosen a we can write a “free energy” functional of the wavefunctions, occu­
pancies, and smearing, as:

{&}, {/>},<? ] =
fi < > + [ dr( €IC(r) - ^(r) - ^vn(r) )p(r)

J cell

- N.,f + £¿€<(1- < >) , (2.54)
i i

with the charge density p(r) evaluated as in eqn. (2.51). Here ft and the e,- are Lagrange 
multipliers ensuring the conservation of the number of electrons and the normalisation 
of the orbitals. The “entropic” term S has been added here as a function of the 

occupation numbers only.
As in the standard formulation one obtains at the minimum the KS set of equations 

for orthonormal states:

= 0 - H\^ >= > (2.55)

r)F£- = 0 >= <5,-J , (2.56)
Of-i

and two more conditions are added imposing to F to be stationary with respect to the 

occupancies {fi}, the sum of which is fixed:

- E /< =
i

(2.57)

-> < > -p =
ds w.

v‘- (2.58)

The system (2.59) provides the Norb + 1 equations necessary to determine the “chemical 
potential” p. and the occupancies {/,}. Suppose now that a given smearing function 
g(x) is used in the calculations, and that we want to determine the appropriate entropy 
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term >$({/.}) which is minimised by the occupation function f(x) corresponding to g(x) 
as in eqn. (2.48). A natural choice for the functional form of S is:

where A(f') is an undetermined function, so that from the (2.58) at self-consistency we
i

obtain:
dS _ c, -/x dA _
f * JJ. X , (2.60)

ofi o’ df
where x = (/x — e)[a as in eqn. (2.49). With a straightforward change of variables in
the differentiation we obtain

dA _ _ df_ 
dx dx '

which17 leads to the values of A(/) in the implicit form A(/(x)) via direct integration

17Note that we are assuming here that f(z) is a monotonic function of x, as it is always the case 
if g(x) is everywhere positive. With some precaution more general choices can be made for g(x) [38], 
leading to values for the orbitals occupation /,• which can be bigger than two, or negative.

A = i —t g(t) dt
J—oo

(2.62)

so that finally the value of S is given by

S = 2A(/(x,)) Xi = (2.63)

A completely analogous strategy consists in choosing a suitable form for the occupation 
function /(rr) instead of the smearing function, and repeating the procedure described 
above, after noticing that

M = f\x) . (2.64)

For example the choice of the occupation function

(2-65)

leads to the expression for the S :

s = -2 52[j/î log(y.) + (1 - y,) log(l - y,)] = fa/2 (2.66)
i

which is the known entropy form for the degenerate non interacting Fermi-Dirac gas 
provided that a = 1//3 .
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2.5.3 The entropy correction.

We have seen so far that the addition of an adequate “entropy” term S to the standard 
energy functional makes it possible to treat the system with fractional occupancies 

within a global minimisation procedure with respect of wavefunction coefficients and 
occupation numbers for any given fixed a in the “free energy” functional F = E — aS . 
The reason for doing this is that it is now possible to analyse the behaviour of the 
functions F(cr) and E\cr) defined by the minimum procedure in order to estimate the 
non-smeared ground state energy corresponding to their <7 = 0 value

Eq = E(0) = F(0) (2.67)

in terms of the values of the same functions at finite values of <r, where they axe much 
easier to evaluate by BZ integration. While there is no reason why the the values of 
function F(a) should converge faster than those of E(a) (calculated as in (2.43) with 
any of the literature recipes for the band energy like (2.52), (2.53)), it can be shown 
that the correction term needed to obtain Eo can be expressed in terms of the difference 
of the two, i.e. of the entropy function S (which is the ultimate reason why such term 
has been introduced).
From the minimum condition and the definition of F one obtains the system

ar
da

dcr

dF 
da

= -S(a) .

(2.68)

(2.69)

It can also be shown[40] that for small values of a the entropy function S'(cr) tends to 
zero at least linearly with <7, so that

S « C2 a = 7<7

/
oo 

dt t2 g(t) , 
•OO 

(2.70)

(2.71)



60

where n(^i) is the non-smeared density of states (2.47) at the Fermi level /x from a 
calculation performed at the given small value of a.

From the system (2.70) it follows immediately that for small values of cr

E(<r) = Eo - i7<72 + 0(<r3) (2.72)

E(a) = Eo + |7<r2 + O(<73) (2.73)

and therefore the zero-smearing energy Eo is obtained as

Bo = + Oto’) = £(<,) - is(<7) + O(a3) (2.74)

by simply adding to E(cr) the correction term

AB„„(<r) = -j5(a) = (2.75)
kj ,i

(the summation on the right being the correction as it reads in the general case of a 
BZ sampling points set {kj} with associated weights ).
Adding this correction18 to the computed value of the total energy an accurate pre­
diction of Eo can be expected even if the calculations have been performed at large 
values of a 19, of the order of some eV, i.e. in a regime of very fast convergence of the 

calculated results with respect to BZ sampling.

18Note that for smearing schemes in which the integral C2 of eqn. (2.71) is identically zero (due to 
an appropriate choice of the smearing function p(x)), the correction &.Eeorr is also null.

19There are some indications that the error committed in expression (2.75) might be of order 0(<t4). 
The analysis on this point is still in progress.

20Using the band energies (2.52) and (2.53) in the total energy expression (2.43) leads to functionals 
identical to our F and E respectively, although we obtained them through a different procedure.

It should be noted that although expressions corresponding to E and F have previously 
been used as the energy functionals to be minimised in different gaussian smearing 

schemes20, the correction derived above has never before been applied to improve such 
schemes. We report in Appendix A some results obtained from the gaussian smearing 
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function and the associated entropy correction

9(x) = 7T7^e~{^2 ^Ecorr(a') = " j) )2 , (2-76)
<TV7T 2V7rb"1

which were used to study the BZ sampling convergence of the total energy and the 
C44 elastic constant in Al. For all the calculations on defect energetics in Al host, 
presented in the following chapter, we have made use of the Fermi-Dirac smearing 

scheme defined by expressions (2.65), (2.66), and we have applied to the results the 
entropy correction (2.75), as was done in reference[17] .
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3 The ab initio calculation of defect 
energetics in aluminium.

3.1 Introduction.

In this chapter the theoretical background and the computational techniques described 
in Chapter 1 and Chapter 2 are applied to the problem of determining reliable ab 
initio theoretical values for the energetics of the stable and migrating vacancy, the self­
interstitial, and the interstitial and migrating hydrogen impurity in aluminium host. 
The results of this investigation on the Al vacancy and the H-Al systems have already 
appeared in published form (references [58] and [59], respectively).
This choice of investigated systems has various motivations. Al is a technologically 
important material, representative of the class of “simple” (sp-bonded) metals. The Al 
vacancy is the simplest and most common isolated defect in the material, and as such 
it has attracted much experimental work. The self-interstitial is the next most natural 
isolated defect in the pure material, and given the close-packed structure of the metal, 
issues like the shape and the relevance for the energetics of the ionic relaxation around 

the defect are raised.
The introduction of H as a small isolated impurity in the metal permits the investigation 
of the electronic screening properties in a situation in which the balance is uncertain 

between the physical picture of H immersed into an almost uniform electron gas only 
slightly modulated by the presence of Al ions, and the possibility of a pronounced 
interaction between the proton (with its surrounding electron cloud) and the ionic 
cores.
In the following we provide a brief historical sketch of the various theoretical approaches 
reported in literature to the mentioned problems. We then address the problem of 
correctly calculating the vacancy formation energy taking into account the volume re­
laxation effects in periodic boundary conditions, and define the quantities of interest 
for the defect energetics. We then provide results for the perfect Al crystal, the equi­
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librium vacancy, the migrating vacancy , and the self interstitial. When it is possible 

the results are compared with recent theoretical predictions making use of different 

techniques.
The introduction of hydrogen in the metal host, represented as a bare Coulomb poten­
tial, leads to some further technical refinements needed to deal with the wavefunctions 
cusps and the related G-space convergence problem. The case of hydrogen embedded in 

jellium is investigated as the elective test-system for checking the adequacy of our tech­
niques. Numerical results are then provided for the hydrogen heath of solution, for the 
relative stability of the lattice interstitial sites, for the hydrogen migration energy along 
a chosen crystal direction, and for the energetics and geometry of the hydrogen bound 
to a vacancy. The metal screening in the defective systems investigated is discussed in 
terms of the ground state density distributions obtained from the calculations.

3.2 Previous modelling of aluminium systems.

The nearly-free-elec tron band structure of aluminium has made of this system the 
object of a series of theoretical investigations since the early times of pseudopoten­
tial theory. The specific goal was that of deriving an accurate formulation for the 
structure dependence of the total energy in terms of pseudopotentials[41][42], A way 
to do this was provided by second order perturbation theory in the strength of the 

valence electrons interaction with the ionic cores, under the assumption that the ob­
served small deviations from the free-electron band structure implied that in these 

materials the weak electron scattering by the metallic ions could be modelled through 
a correspondently weak model pseudopotential. The analysis could then proceed in 

explaining some structural properties of the material in terms of the detailed interac­
tion between the pseudopotential in the G-space representation and the geometry of 
the reciprocal space vectors associated with the metal lattice[43]. Although the pertur­
bative approach was successful in some respect, it was later proven to give unreliable 
predictions if applied to defects like the isolated vacancy.
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3.2.1 The Al vacancy system.

The starting point for investigating the vacancy system was the simple picture of a 
vacancy in pure jellium at the metal density, in which the vacancy is simulated by 
a spherical “hole” in the uniform positive background charge[44]. The self-consistent 
(DFT) solution of such system was then used within first order perturbation theory for 
studying the system in which the discrete lattice of pseudoions had been substituted to 
the jellium positive background, to calculate the value of the vacancy formation energy 
in the actual metal[45]. The additional perturbative contribution for a polyvalent metal 

like Al turns out to be large and positive1

1Note that at the jellium-vacancy model cannot possibly represent the vacancy system in the real 
metal, since the vacancy formation energy in jellium is negative at the Al density[44].

Another approach[41] consisted in rewriting the total energy for the perfect crystal ob­
tained within second order perturbation theory in terms of a sum of pair interatomic 
potentials (plus a structure-independent volume term), and simply calculate the va­
cancy formation energy by subtracting the energy of the perfect lattice from that of 
the defective system. In this scheme lattice relaxation could easily be included, and 
good agreement with experiment was found by various authors [47][48][165].
The two approaches described were eventually proved to be inadequate (and the men­
tioned agreement has therefore to be considered purely fortuituos) by Evans and 
Finnis[49], who investigated the convergence to next (second) order in the first ap­
proach and looked at the results obtained with the second approach adopting more 
realistic choices of the pseudopotential, finding for the vacancy formation energy in Al 

values which were negative or anyway in very poor agreement with the experimental 
well assessed value of 0.66 eV [50][51][52]. Some later accurate work on the linear- 

response value of the formation energy confirms such conclusion, giving a result close 
to zero[53], which does not clearly improve by going to higher order in the perturba­
tion expansion[54], on the convergence properties of which conclusive results are still 
lacking.
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A fully ab initio calculation was therefore needed for the aluminium vacancy sys­
tem. The first two attempts in this direction were made in the early eighties by 
Chakraborty et al., who investigated the Al vacancy using the DFT-LDA-PW formal­
ism, representing the metal ions at first with an empirical model pseudopotential fitted 
on the crystalline properties[55], and subsequently with an ab-initio norm-conserving 
pseudopotential[56]. These were probably the first two calculations of this kind on 
defect energies in a metal ever attempted, and although they gave a rather consistent 
picture of the efficient electronic screening effects, they led to largely overestimated val­
ues for the vacancy formation energy ( 1.9 eV [55], and 1.5 eV [56]), probably because 
of some technical issue not completely under control. The authors concluded that the 
whole supercell method was not suitable for accurate formation energy calculations 

within the computational limitations of that time.
The next attempt on the same problem has been made in more recent times by 
Gillan[17](1989), using the minimisation approach described in Section 2.3.1 and a 
local potential for Al, constructed to reproduce the equilibrium lattice parameter and 
known to give satisfactory results for the bulk modulus and phonon frequencies [57]. 
Apart from the errors inherent to LDA and pseudopotential approximation, the cal­

culations were shown through comparison with third order perturbation theory to be 
fully converged with respect to BZ sampling, supercell size, and energy cutoff, and led 

to a predicted value of 0.54 eV for the vacancy formation energy.

The calculations reported later in the present chapter[58] extend those results inves­
tigating the relaxed vacancy and other defective systems with the use of a norm­
conserving non-local pseudopotential[ll] for modelling the Al host atoms.
Meanwhile, a number of new calculations on the Al vacancy have been performed, 
making use of different techniques, including the use of pseudopotentials with mixed 
basis sets (Jansen and Klein, 1989 [166]), and of the all-electron APW technique (Mehl 

and Klein, 1990 [61]; Soler, 1990 [62]). The results of this last generation of calculations 
are all in substantial agreement with the experiment, and will be compared with our 
results on this system in a following section.
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3.2.2 The H-Al system.

The investigation on hydrogen atoms (and other light impurities) in metals has also 
been the object of a large number of theoretical works over many years[63] [64][65][66] 
[67][68]. Apart from technological reasons connected with the alteration of mechanical 
properties of the metals due to presence of hydrogen impurities (embrittlement, fatigue) 

and with the possibility of using metal hydrides as energy storage systems, there are 
various theoretical reasons why these systems are interesting.
One reason is connected with the hypothesis that the light hydrogen atoms are in 
band states in which wave functions are extended over periodic arrays of interstitial 
sites. If this were true, only a fully quantum mechanical treatment of the proton in the 
calculations could provide an adequate description of the physics of the system, and 
techniques like the ones utilised in the present work, which treat quantum-mechanically 
the electrons only in the solid, would be ruled out. However, the experimental observa­
tions (using ion channelling[69], or inelastic neutron scattering[70]) indicate that even 
in bcc metals, where extended states are more likely to form than in fee metals due to 
the smaller separation between interstitial sites, the H atoms are always localised in 
space, i.e. they self-trap at the lowest-energy interstitial site in the pure metal.
The solubility of H2 molecule in simple metals is very low (contrarily to what happens in 
some transition metals like Pd and Ta), of the order of 1 ppm in Al[71]. The molecule is 
known to dissolve in the metal and, given the low concentration, the resulting picture 
is that of independent screened protons as isolated impurities with no complicated 
core-electron structure. We have in other words the simplest possible impurity system 
treatable studying the ground state electronic properties only, in a class of materials 
for which the (spherically symmetric) free-electron gas approximation constitutes a 
reasonable starting point for modelling the valence electrons. Note that now a much 
stronger (point-like) defect than a vacancy is introduced in the pure material, the 
screening of which can accordingly be expected to be much less dependent on the 
metal ions arrangement than in the vacancy case. It is therefore not surprising that 
much theoretical work has been devoted to this system, and that the first attempts to 
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study its energetics were performed taking in account the ionic lattice by perturbation 

theory.

Following this line Popovic and Stott (1974) [72] found that the octahedral site in 
Al (rather than the tetrahedral site) was the most stable position for the interstitial 
hydrogen, while a much lower energy than in either cases was found for the substi­
tutional hydrogen system. To give some idea of the reliability of this first order 
perturbation treatment of the metal ions (the non-linear screening having been treated 
self-consistently in the DFT scheme by the mentioned authors) we anticipate here that 
none of these conclusions is in agreement with the results of the fully self-consistent 
calculations of the present work[59]. The model was also predicting a value of 0.45 eV 
for the hydrogen heat of solution[73] (non-inclusive of ions relaxation2), in good agree­
ment with the experimental results 0.66 eV[71], 0.83 eV[74]. However, a later system­
atic study of the energy profiles for light impurities in simple metals using a number 
of different pseudopotentials, proved that the question of the relative stability of the 
interstitial sites could not be answered within the model, since the results were too 
much pseudopotential-dependent[75].

2The heat of solution is positive, i.e. hydrogen is not spontaneously absorbed by the metal. The 
value reported in ref.[73] would be lowered by the inclusion of relaxation effects.

A different approach was based on the idea of spherically averaging the pseudopotential 
effects around the high symmetry interstitial (or substitutional) sites, and then solving 
self-consistently the resulting symmetric problem[76]. Such approach was applied to 
the H-Al system by Manninen and Nieminen[77], who found the interstitial octahedral 
site to be the most stable one (in particular, more stable than the substitutional H 
arrangement). In spite of the rather crude spherical modelling of the interaction of 

the electrons with the ions (reducing to a spherical distribution the four or six Al 
atoms nearest neighbours to the defect) and in spite of the rather simple form of 
the pseudopotential itself (an empirical “empty core” potential[7], cf. eqn. (1.33) ), the 
resulting heat of solution of 0.19 eV was in reasonable agreement with the experimental 
value. The addition of non-spherical corrections[78] and ionic relaxation[79] to the same 
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model was later proven to introduce negligible corrections to the heat of solution[78], 
while the choice of a similar but smoother empirical potential (in a modified Heine- 
Abarenkov form[81]) led to the new result of 0.593 eV [80].
Channelling experiments by Bugeat et al. on H-Al samples prepared by ion implanta­

tion [69][82] had meanwhile brought some evidence that hydrogen at low temperature 
(35-300°.A) occupies the tetrahedral interstitial site, or more probably gets trapped 

close to a vacant site occupying a displaced position towards one of the eight tetra­
hedral sites which surround the vacancy in the fee lattice. Similar conclusions were 
also reached from /zSR experiments on pure Al[83] and Al alloyed with Mn[84], which 
showed that (i) vacancy defects have a determinant role in trapping muons and that 
(ii) tetrahedral coordination of the ¡1 site is found down to below 20°7<, due to pres­
ence of defects. The conclusions at this stage, given the theoretical results available, 
were[69] that it was not possible to exclude (considering the difference of masses be­
tween H and /z) some interstitial trapping of H in Al, although the evidence was for 
vacancy-induced tetrahedral trapping, and that it was still possible that the most sta­
ble trapping site were the octahedral one at very low temperature (« 5°K), although 
all the experiments down to 20°K had shown the tetrahedral site to be most stable 
one.

The first-order perturbation methods were at this point extended to the case of non- 
substitutional pairs of H atoms in a dumbbell arrangement at the vacancy site[85], 
and re-investigated with more precise density distributions for the screening charge 

in the jellium calculations[86]. It was found that the non-substitutional off-centre H 
at the vacancy was in fact the most stable configuration (with a trapping energy of 
1 eV), while the tetrahedral site was now predicted to be the interstitial site associated 
with the lowest energy[87]. A new value of 1.3 eV for the H heat of solution in the 
perfect metal lattice was also calculated[87], using an Al pseudopotential substantially 
identical to the ones used previously in refs. [73] and [77].
The models described so far suffered at least from two major sources of errors. The 
first and most important was clearly the extreme sensitivity of the results to the model 
pseudopotential choice. The second was the assumption that the local environment in 
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the solid could be simulated for all the screening properties with an uniform background 
of valence charge at the average density of the metal. This second approximation was 
investigated in a series of works in which the energy of light neutral atomic impurities 
in a metallic host was assumed to be function of the value and of the local gradients 
of the host valence density at the interstitial site considered. The energy terms up 
to second order in the charge distortion from the jellium case were then included in 
the calculations through different formulations (“Effective Medium Theory”, Nprskov, 
1980 [88]; “Quasiatoms approach”, Stott and Zaremba, 1980 [89]).
The ideas at the basis of these formulations were overall not dissimilar from those 
behind the local density approximation for electronic exchange and correlation (see 
Section 1.4). The main assumption was that the electronic structure and the total 
energy of the impurity atom depend primarily on the local environment, reflecting the 
balance between the tendency to charge neutrality (i.e. the screening) and the energy 
terms originating from orthonormality and exchange and correlation. The immersion 
energy of atoms in an electron gas as a function of density was therefore extensively 
studied, to provide a database for more sophisticate modelling, and to help in discuss 
issues such as the identity of the preferred impurity trapping-sites on the basis of the 

valence charge modulation in the pure solid host[88][89][90].

The calculations we report in the present work provide results which can be usefully 
discussed on the basis of the previous treatments of the H-Al system described above, 
but do not suffer from the most serious approximations made in those works. In all 
our calculations the ions were relaxed to their zero-force positions (the lattice relax­
ation has been mostly ignored as unimportant in precedent calculations, with very 

few exceptions[79][91]). The core-valence interaction for aluminium is represented by 
a fully ab-initio pseudopotential[ll], and we adopt the local density approximation, 

these two being the only approximations in the calculations whose effects cannot be 
systematically monitored. The calculations concern isolated defects, but adopt pe­
riodic boundary conditions, and in principle this could introduce spurious effects of 
interactions between (screened) defects situated in neighbouring supercells. Moreover, 
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a finite cutoff must be used to truncate the PW basis set. Evidence that both these 
issues are under adequate technical control will be provided with the results.

3.3 Definitions of defect energies.

From the point of view of the practical calculations involving the use of periodic bound­
ary conditions, quantities like the energy of formation of an isolated defect need an 
operative definition taking into account the volume relaxation effects. The energy of 
formation Ej of the vacancy is the energy change when an atom is removed from the 
perfect bulk crystal and replaced on a new bulk site. Note that in any realistic sample 
of “perfect crystal” all the bulk sites would be by definition occupied, and the ion 
displaced to create the vacancy would have to be put on the surface. This can still 
be thought to induce one of the atoms previously on the surface to sink into the bulk 
crystal, so that the definition given above of vacancy formation energy makes sense in 
real experiments, in which the vacancy defects are activated and annealed by thermal 
treatment[52][92][93], the total number of metal atoms remaining constant.
A more detailed definition depends on the conditions under which the vacancy is 

formed. In the calculations there are three natural conditions, which correspond to 
the vacancy being formed at constant volume, at constant pressure, or at constant 

lattice parameter. We shall denote with E(N, uv; Q) the energy of a system of N atoms 
and vv vacancies atoms occupying N + vv regular lattice sites, in the total volume Q. 
The formation energy at constant volume is is defined by

Ej = E(7V,1;Q) - E(7V,0;Q). (3.1)

In the limit of infinite system (N and Q going to infinity with the ratio N/Q kept fixed 
at the perfect lattice value) this definition gives the quantity of physical interest. The 

formation energies at constant pressure E? or at constant lattice parameter Ej are 
defined in an analogous way, substituting the explicit dependence in the function E.
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The meaning of Ef is easily seen writing it in terms of volume

E’t = - E(JV,0;n.) , (3.2)

as the energy of formation obtained when the vacancy is allowed to form with the 
addition of one atomic volume, i)o being the volume of N atoms in the perfect crystal 

of lattice constant a.
The relation between Ep and Ef involves the vacancy volume of formation df, which 
is defined as the volume change in the system considered when a vacancy is formed at 
constant pressure. If we denote with d(N, i/u;p) the equilibrium volume of the system 
of N atoms and vacancies at pressure p, we obtain:

df = Q(JV, l;p) — i)(IV, 0;p) . (3.3)

The energy of formation at constant pressure can therefore be written as

Epf = E(N,l-,(l0 + (lf) - E(N,Q-,(lo) , (3.4)

where Qo = d(N, 0; p). We then expand the energy up to quadratic order in the small 

volume change df, and obtain:
an 1 a2 E1

3It does not matter to which of the conditions examined the bulk modulus B refers to, since 
it appears in the second order term, and its own dependence on volume changes would introduce 
corrections of third order at most.

E5 = E] + n/^Wl;flo) + jil^(JV,l;Slo), (3.5)

which rewritten in terms of pressure p and bulk modulus B in the vacancy system gives

E} = Epf + p(lf + ¿d}B/d . (3.6)

A similar relation is readily obtained for E*

Eaf = Ep + p(dc - df) + ^(Qc - dffB/d , (3.7)

where now Qc is the equilibrium volume3 for one atom in the perfect system at pressure 
p . Given the relations (3.6) and (3.7), each of the three defined formation energies 
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can be calculated with good accuracy from any of the other two, provided that some 

information is known about the volumic relaxation of the system when the vacancy is 
created.
Note that in the case p = 0, which is usually the one of interest in literature, all the def­
initions converge to the same value in the limit of infinite systems, so that the relations 
(3.6) and (3.7) provide in this case a simple check to investigate the convergence with 
respect to system size. Since the systems treatable in actual calculations are finite, 
the actual recipe for performing the calculations should be the one which exploits the 
fastest convergence with respect to system size. Since it has been shown in a precedent 
work[17] that fast convergence can be expected for the vacancy energy of formation 
calculated at constant volume (3.1), we have chosen to calculate Ef.
The periodic boundary conditions pose some restrictions on the geometry of the systems 
investigated. The calculations have to be performed with supercells of atoms, having 
the same number of regular lattice sites both in the perfect and in the defective system. 
The definition in (3.1) for EJ has to be adapted for practical use in the calculations, 
rewriting it into the form

EJ = E(N - 1,1; (N - l)Sl/N) - ^-E(N,0; il) , (3.8)

where now both the energy terms in the right term of the equations refer to the same 
number of lattice sites N + vv.

The self-interstitial energy is defined as the energy difference between a system of N 
atoms sitting on N — 1 regular lattice sites and one interstitial site, minus the energy 
of N atoms in the perfect crystal, and we calculate it as

E’eli = £(7V,psei/ = l;n) - ^±l^,i/sei/ = 0;Q) , (3.9)

where now vseif is the number of self-interstitial atoms in the system, and Q is the 
equilibrium volume of a perfect system of N atoms.
In an analogous way we define the embedding energy of H in Al as the change of energy 
when going from perfect bulk aluminium plus an isolated hydrogen atom to the metal 
system of same volume and same number of atoms plus an hydrogen atom sitting at 
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an interstitial site. The heat of solution of H in Al is obtained in the analogous way 
starting from molecular (instead of atomic) hydrogen in the reference system. 
Furthermore, we define the vacancy migration energy as the energy barrier which has 
to be surmounted by the vacancy when moving from one site to a neighbouring site 
previously occupied by an atom which moves during the process into the original vacant 

site. We assume that in the saddle-point configuration the migrating atom is midway 
between two nearest-neighbour lattice sites. The vacancy migration energy E™c is then 
the energy difference between this fully relaxed saddle-point configuration and the fully 
relaxed system in which the vacancy is on a regular site.
Finally, we define the migration energy E^ for the diffusion of H in Al as the energy 
barrier which hydrogen has to surmount when diffusing between interstitial sites. Some 
further considerations on the geometry of the diffusion process are included in a later 
section.

3.4 Setting up of calculations and bulk results.

In this section some technical details of the calculations are provided. It is customary 
before proceeding with the larger defect calculations to test the techniques determining 
some properties of the perfect crystal, and some results are therefore included on the 
pure Al bulk. We will refer to Chapters 1 and 2 for the description of the energy 
minimisation procedure, and describe here only the actual calculation setting up.
The total free energy is minimised with the strategy described in Section 2.3.1. To 
evaluate the exchange and correlation contribution to the total energy within the 
local density approximation (see Section 1.4), we adopt the Perdew and Zunger 

parametrisation [ 146] of the results for the electron-gas correlation energy originally 
calculated by Ceperley and Alder[3]. For the Al pseudopotential we use a pseudopo­
tential as constructed by Bachelet et al. [11] in the form discussed in Section 1.5.2, 
and we represent it in the fully non local form due to Kleinman and Bylander (cf. 
eqn. (2.33)). The d—wave v2 is used as local part in the semilocal form (eqn. (2.30)), 
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and all the terms with I > 2 are not included in the pseudopotential expansion. The 
possibility that “ghost states” might occur in the KB form we adopt for the pseu­
dopotential has been investigated and ruled out by a recent systematic study[94]. The 
transferability properties of the pseudopotential can be expected to be good from the 
behaviour of the logarithmic derivatives of the pseudo-wavefunctions versus the all­
electron wavefunctions, which for each angular symmetry match each other well within 

a window of about 1 Hartree around the atomic eigenvalues.
The calculations are performed on three supercells of 8 (fee) , 16 (bcc), and 27 (fee) reg­
ular lattice sites. The k-point sampling sets are Monkhorst-Pack special-point grids[32] 
of various sizes, reduced by symmetry to the minimal set of k-points inequivalent by 
point-group rotations. Symmetrisation is performed accordingly during the runs on 
the charge density and the non-local forces on the ions. The smearing of the Fermi en­
ergy surface is performed with fractional occupation of orbitals using the Fermi-Dirac 
occupation function[17] as discussed in Section 2.5, and the ground state energy Eo of 
the system is estimated through the entropy correction defined by eqn. (2.75), as the 
average of F and E extracted from the calculations at finite smearing. The smearing 

linewidth kT (cf. eqn.(2.65)) has been set in all calculation to one tenth of the Fermi 
energy of jellium at the system’s average electron density. Tests performed at different 
values of T indicate that the deviation of total energy from its value at T = 0 is less 
than a few hundredths of an eV per atom. Extensive tests on the convergence of the 

total corrected energy in Al with respect to smearing width and number of BZ sampling 
points are reported in Appendix A.
In all calculations involving defects the ions are relaxed to complete equilibrium with 
a steepest descent procedure while the electronic charge is kept fixed as described 
in Section 2.3.1.5 . The ionic displacements take place along the gradient directions 
(or “forces”) of eqn. (2.19). As previously mentioned these directions are constrained 
not to break the initial symmetry of the system while the ions are displaced. In our 
calculations this means that all the cubic point group elements (space rotations centered 
on the defect site combined or not with inversion) which leave invariant the system at 
the beginning of each calculation are used along all the run for symmetrising the self- 
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consistent charge density and the forces over the ions. This means that in cases in 
which the energy could be lowered by symmetry-breaking, the algorithm would fail to 
detect the true ground state. In the situations studied in the present work it is highly 
unlikely that symmetry-breaking mechanisms could lead to lower energies, so that all 
the symmetry constraints compatible with the initially unrelaxed defect geometry have 

been imposed in all cases to maximise the efficiency of the algorithm and the speed of 

calculations.

The calculations on the bulk crystal give results which confirm the adequacy of the 
techniques used. The parabolic fit of a series of five calculations made on the 16- 
atom system with two inequivalent k-points at uniformly spaced values of the lattice 
parameter a, gives the values a0 = 7.66 a.u., and B = 0.722 Mbar for the equilibrium 
lattice parameter and the bulk modulus, in good agreement with the experimental 
values a0 = 7.64 a.u. and B = 0.722 Mbar (taken from ref. [56] and references therein). 
The calculations were made at constant number of plane waves, with an energy cutoff 
which at the experimental value of ao equals 13 Hartree. A close spacing of 0.025 a.u. 
was used between nearest values of the lattice parameter, and the residual variance of 
the calculated energies from the parabolic distribution resulted completely negligible.

3.5 The jellium correction and the equilibrium va­
cancy.

The energy cutoff of 13 Hartree has been used in the calculations on all defective 
systems. Given the fast G-space convergency properties which can be expected study­
ing a supercell containing aluminium atoms only, this cutoff is probably more than 

enough for the calculations on the the vacancy system, in which the errors due to the 
incompleteness of the basis set should be negligible.
The ground state energy of the bulk, the unrelaxed vacancy and the relaxed vacancy 
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have been calculated4 for the 8-atoms, 16-atoms, and 27-atoms systems, holding fixed 
in all the bulk calculations the lattice parameter at the experimental value of 7.64 a.u., 
and lowering it in the calculations involving vacancies to keep constant the number of 

atoms per unit volume (z.e. the average electron density).

4In the 8-atom supercell the ionic relaxation is forbidden by symmetry.

The technical errors which can be expect to be left in the calculations are due to 
(i) interaction of defects between supercells (of direct chemical nature, or because of 

interference between periodic constraints and ionic relaxation), and (ii) imperfection of 
the BZ sampling, in spite of the smearing scheme utilised. The results for the vacancy 
formation energy are obtained as differences of large calculated energies for supercells of 
very dissimilar ionic arrangements, so that the BZ integration on a small fixed number 
of special points (two in the irreducible BZ wedge for the two bigger supercells) can 
introduce a sampling error which does not cancel away in the differences, although it is 
expected to decrease increasing the system size. A correction for this error can however 
be applied to the calculated results, based on the hypothesis that the sampling error 
we commit is similar to that which we would commit in calculations on pure jellium. 
The calculated formation energy of equation (3.8) can be thought as the difference 
between the results of two BZ integrations referring to two metal systems of same 
average electron density. The leading error in the integrations is made in the band 
energy contribution, and is mostly connected with imperfect sampling of the electronic 
kinetic energy in the proximity of the Fermi level, as previously discussed. The band 
structure of the two systems at the Fermi level is also expected to be very similar, if we 
assume that the electrons close to the Fermi energy in a nearly free-electron-gas metal 
of given density do not strongly couple with the ionic positions.
In particular, if we “smear out” the (weak) atomic pseudopotentials to a positive 
uniform charge distribution we get the jellium model, with a band structure at the 
Fermi level still similar to those of our starting systems, but for which the vacancy 

formation energy represented by the difference (3.8) is exactly zero. However, the two 
total-energy calculations needed for the difference have to be made using a BZ sampling 
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set of special points which is the same in the relative reciprocal space coordinate 

systems of the two calculations[32], while is not the same in absolute reciprocal space 
coordinates, since the two supercells of the calculations have different volumes.

The value &Eje„ of the difference E(N - 1,1; (TV - 1)/N fi) - E(N,0; ty(N - 1)/TV 
calculated for supercells of pure jellium is therefore a nonzero quantity, since it contains 
a sampling error. This error is hopefully almost identical to the one we commit in the 

pseudopotential calculation of Ej using the same supercells. A better value for the 
vacancy formation energy can therefore be readily obtained by subtracting from Ej the 
jellium correction ¿\Ejeu calculated for the same system geometry and BZ sampling.5 

Since the defect screening in the metal is expected to be very efficient, the spurious 
interaction between defects due to periodicity is expected to quickly vanish with en- 
creasing system size, the only error left for well separated defects and limited special 
points sets being the one committed on the BZ averages. If applying the described 
procedure to correct the BZ sampling error we obtain good convergence of the vacancy 
formation energy with respect to system size, it is reasonable to assume that both the 
sources of error have been removed within the convergence accuracy by the time we 
get to the biggest supercell.

5 Obviously the jellium correction is not calculated at the same energy cutoff used for the actual 
metal: because of the PW basis set used, the additional computer time for calculating the correction 
is insignificant.

The results we have obtained for the fully relaxed vacancy formation energy in Al are 
summarised in the table (3.1) on page 83, for the three supercell sizes. The results are 
reported both without (uncorrected) and with (corrected) the jellium correction. The 
values for the relaxation displacement of the vacancy neighbours are given in units of 
the nearest neighbour distance in the perfect fee lattice (2.86 a.u.).

The convergence of corrected energies appears to be reached within 0.1 eV by the 
time we get to the value of 0.55 eV, which should be the most reHable result, to 
be compared with the experimental enthalpy of formation 0.66 eV. Values for the 
relaxation displacements of other ions than the nearest neighbours to the vacancy are 
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not reported since such relaxation is found to be extremely small (less than 10-2 a.u. ). 
An illustration of the valence charge density distribution around a relaxed vacancy is 

given in figures 3.1 and 3.2 on page 84, respectively for the two planes (100) and (110), 
corresponding to a face and to a diagonal section of the unit face-centered cube with 
origin in the vacant site. The units for the numbers on the contour levels are 10-2 a.u. 
( a.u. = e/ag ). The main feature of the pictures is the strong charge density deviation 
in the vacancy region from its values in the surrounding lattice, with a minimum value 
of 0.29 in the vacancy center, to be compared with the average electronic density value 
of 2.7 in the bulk metal.
A plot of the valence electron density from the vacancy center along the (100), (110), 
and (111) directions is reported in figure 3.3 on page 85. The full circles correspond 
to the calculated values from the original investigation of Chakraborty et aZ.[56], as 
reported in reference [95]. The charge distribution is essentially symmetric with a 
shallow minimum at the vacant site. The strong anisotropy from a spherical charge 
distribution arises with the build-up of valence charge when approaching the nearest 
neighbour atom in the centre of the face ((HO) direction), the charge saddle point 
between the vacancy and the octahedral site ((111) direction) and the second nearest 
neighbour at the opposite vertex of the fee cube when moving along the cube’s edge 
direction (100). Such anisotropy is mostly due to the localisation of the neighbouring 
Al atoms (and not to the actual chemical interaction between the defect and the valence 
charge screening the core ions).6

6For a collection of radial charge distributions obtained within spherical approximation in the 
jellium model ref. [49] should be consulted. The main disagreement between the predictions of the 
various approximated models seems to be for the value of the density charge in the center of the 
vacancy, while all the models seem to be equivalent in the outer vacancy region, where however the 

This is evident in the plots of figures 3.4 and 3.5 (page 86), which have been obtained 
from unrelaxed vacancy calculations by subtracting the bulk valence density from the 
ground state distribution, both systems having the same lattice parameter. The plots 
refer again to the 27-atom system, length scales, units, and plane geometries being 
exactly the same as in figures 3.1 and 3.2 (page 86).
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The shape of the displaced charge is seen to be almost spherical although some features 

are left of the underlying subtracted lattice in correspondence with the neighbouring 
atoms positions. Such features appear to interfere with the Friedel oscillations visible 
in the outer screening regions, which are the only displaced charge structures left by 
the subtraction in the physical space between the periodically repeated vacancies. The 
entity of such oscillations is easily seen to be very small after the first three or four a.u. 
from the defect centre. This suggests that the electronic interaction between vacancies 
for this largest cell-size should be negligible.

We turn now to the analysis of the dependence of the calculated value of the vacancy 
formation energy from the particular definition adopted since to each different definition 
corresponds a slightly different recipe for the volume at which the calculation on the 
defective system has to be performed, as discussed in Section (3.3). The formation 
volume Qy of the vacancy has been calculated fitting the energy results of calculations 
on relaxed vacancy systems at different lattice parameters, as previously done for the 
bulk. The zero-pressure volume of the system determined by the fit has been used to 
calculate ily from the definition (3.3), as the equilibrium volume of the supercell with 
15 Al atoms and one vacancy minus the volume of 15 Al atoms in the perfect lattice. 
Our calculated result is ily = 0.71 Qc, where Qc is the bulk atomic volume, in good 
agreement with the experimental values of 0.60 ± 0.02 Qc [93], 0.55 Qc [96] et al. and 
0.68 ± 0.1 Qc [41], as reviewed by Seeger et al. [97].
From the calculated values of the volumes fly, we can use the relations (3.7) and 
(3.6) to estimate the convergence of volumic effects in the vacancy energy of formation 
which we obtained for the 27-atom system. Some results (without jellium correction) 
are reported in table 3.2 on page 83, where fully calculated values (from definitions (3.1) 
and (3.2)) of Ej and Ej are reported, together with the estimated values of E? and Ej 

evaluated from Ej using the second order expansions (3.6) and (3.7). The relaxation 
energies from the full calculations, which are obviously independent from the jellium 

spherical approximation breaks as shown by figure 3.4 and 3.5 on page 86.
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correction, are also included. The results show that while the second order expansions 
allow to recover a fraction of about 90% of the difference between the formation energies 
calculated using different definitions, this difference itself is of the order of 0.1 eV only. 
The relaxation energies contribute to the vacancy formation energy value within about 

the same range of 0.1 eV.

3.6 Vacancy migration and self-interstitial.

We assume that the migration path of one ion leaving a lattice site and moving into 
a previously vacant site takes place along a (110) direction (z'.e. the vacancy moves 
onto a nearest neighbour site). We also assume that the surface energy for the migra­
tion has a saddle point when the atom is located midway between two vacant sites.7. 
Since for symmetry reasons no net force can be exerted on the migrating atom at the 

saddle point, the calculations for the fully relaxed energy migration can be performed 
without imposing constraints to the atomic relaxation. The results from the 16-atom 
and 27-atom systems are respectively 0.59 eV and 0.57 eV, to be compared with the 
experimental value of 0.62 eV[97].

7For symmetry reasons at such point the energy is stationary in the (110) direction and in the (110) 
plane normal to it, so the assumption corresponds to saying that the point is not a local maximum 
for the migration energy surface.

The relaxation effects for the migrating vacancy calculations are bigger than those for 
the equilibrium vacancy. The displacement pattern observed consists of the migrating 
ion pushing its nearest neighbour atoms (the ones belonging to tetrahedrons of fee 
lattice sites which include the two vacant sites) away from the saddle point, and pulling 
the second nearest neighbour atoms (the ones at the closest vertices of the two cubic 

centered faces containing both the vacant sites). The displacements are respectively 
the fractions 0.041 and 0.015 of the bulk nearest neighbour distance (cf. with the 
equilibrium vacancy in table 3.1). Valence charge density plots for the (100) and (110) 
planes containing the two vacancies are reported in figures 3.6 and 3.7 on page 87.
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The main difference between the self-interstitial system and the other defective sys­
tems treated in the present work is the size and range of the relaxation effects around 
the defect. Due to the close-packed structure of the pure metal, any supplementary 
interstitial metal ion is bound to strongly distort the shells of surrounding ions, so that 
the defect is expected to have a much higher energy of formation and a much lower 
mobility than smaller impurities like hydrogen. The experimental value for the energy 

of formation of the self-interstitial has to be obtained from the formation energy of the 
Frenkel defect 3.9 ± 0.5 eV [92], to which the formation energy of an isolated vacancy 
0.66 eV has to be subtracted, to give Eâ  — 3.2 ± 0.5 eV.

Our results about the self-interstitial are only preliminary. The investigated geometry 
is that of an interstitial Al atom sitting on the octahedral site in the middle of an Al 
face centered cube. Calculations have been performed for the unrelaxed and relaxed 
systems. The ionic relaxation is constrained by symmetry not to break the octahedral 
point symmetry around the defect, which correspond to the full cubic point group of 
rotations and inversion (48 operations) around the defect site. Our calculated results 
(at constant volume) are 9.7 eV and 2.8 eV for the unrelaxed and relaxed interstitial, 
with the six nearest neighbour atoms resulting displaced of 19% (~ 0.7 a.u.) of their 
original distance from the interstitial. As a final remark we note that some evidence 
exists for another possible self-interstitial geometry arrangement for fee metals[92], in 

which Al interstitial atoms produced by electron or neutron irradiation and analysed by 
X-ray diffusion scattering[104] appear to be positioned in a (100) dumbbell arrangement 
centered on an empty regular lattice site[105]. The investigation on the energetics of 
that system geometry is an issue left open for future work.
The results obtained for the defect energetics in Al are summarised in table 3.3 on 
page 85 . The comparison between the results of various theoretical calculations is 
shown in the table to be overall rather good. The APW calculations of references [62] 
and [61] do not suffer from the pseudopotential approximation, the only approximation 
left being the LDA. The calculations of reference [166] make use of a mixed-basis 
approach, in which the KS orbitals are expanded on a superposition of atomic pseudo­

wavefunctions and plane waves, and give the value for the vacancy formation energy 
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in closest agreement with the one we obtain8.

8The authors in ref. [166] have implemented their calculation on a second very similar norm­
conserving pseudopotential, and both are by construction very similar to the one we have used. For 
this second pseudopotential they appear to obtain a rather large calculated value of Ejae — 1 eV.

The comparison with experiment must take into account the fact that the experiments 
consist of high temperature measures, which should be corrected for the additional 
entropie contributions enabled at non-zero temperatures. The measured value with 

which we compare our calculated value for Ej is the experimental enthalpy of formation, 
in which the entropie contribution are expected to be small[98] and can be estimated 
from a direct dynamic simulation[53] to be of the order of 0.1 eV.
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Table 3.1: Calculated values for the relaxed vacancy formation energy in Al.

No. of sites in the cell 8 16 27
Relaxed (uncorrected) Evf (eV) 0.768 0.882 0.590
Jellium correction AEjeu(eV) 0.103 -0.260 -0.043
Relaxed (corrected) EJ (eV) 0.871 0.622 0.547
Relaxation energy (eV) - -0.060 -0.075
Relaxation displacement - 0.011 0.014

Table 3.2: Vacancy energies of formation and relaxation energies for the 27-atom cell 
from full calculations at constant volume and lattice parameter. Estimates of the 
formation energy at constant pressure and at constant lattice parameter from equations 
(3.6) and (3.7) are also provided. The jellium correction is not included.

Evf (eV) Eaf (full calc.) (eV) Eaf (est.) (eV) Epf (est.) (eV)
Ions relaxed 0.589 0.500 0.487 0.483

Ions unrelaxed 0.664 0.552 - -
Relax, energy -0.075 -0.052 - -
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Figure 3.1: Valence charge density for the relaxed vacancy, (100) plane.

Figure 3.2: Valence charge density for the relaxed vacancy, (110) plane.
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Figure 3.3: Valence electron density (units of 10-2 a.u.) as a function of the distance 
(u.u.) from the vacancy centre ¿dong the directions (110), (111), and (100). Solid circles 
from ref. [56] as reported in ref. [95].

Table 3.3: Comparison of our calculated results for the vacancy formation and migra­
tion energies Ef and Em, the vacancy formation volume fly in terms of the atomic 
volume flc, and the formation energy E3̂  of the self-interstitial, with experimental 
and other theoretical results. References are: (a) pseudopotential calculation of Jansen 
and Klein (1989)[166]; (b) LAPW calculation of Mehl and Klein (1990)[61]; (c) APW 
calculation of Denteneer and Soler (1990) [62]; (d) present work[59]; (e) Fluss et al. 
(1978)[52]; (f) Schilling (1978)[92]; (g) Emrick and McArdle (1969)[93]. Note that the 
calculation of Jansen and Klein does not include lattice relaxation.

(eV) Em (eV) ily/ilc E3fetf- (eV)
theory 0.52° - - 10.2“

0.846 - - -
0.73c 0.7c 0.66c 3.4C
0.55d 0.57d 0.72d 2.8d

experiment 0.66e Œ627 0.62* 3.2'
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Figure 3.4: Displaced charge density for the unrelaxed 27-atoms vacancy system, plane 
(100). Units and length scales as in figure 3.1.

Figure 3.5: Displaced charge density for the unrelaxed 27-atoms vacancy system, plane 
(110). Units and length scales as in figure 3.2.
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Figure 3.6: Valence charge density for the vacancy migration in the (100) plane. (27- 
atom system).

Figure 3.7: Valence charge density for the vacancy migration in the (110) plane. (27- 
atom system).
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3.7 The hydrogen impurity and the convergence 
with energy cutoff.

The introduction in the calculations of an hydrogen atom represented by a bare 
Coulomb potential raises the problem of the total energy convergence when the poten­
tial presents singularities. The problem arises from the fact that every KS eigenstate 
0j(r) having non-zero value at the proton site is bound to satisfy the local exact can­
cellation between the kinetic and potential terms of its local energy

« = Wr) + Z^«£) = £j. (3.10)
r) V’i(r)

Both these terms must be diverging for the Coulomb singularity in Vks(r) to be can­
celled, and any deviation in the wavefunction from the exact fulfillment of the cancel­
lation constraint (or “cusp condition”) will lead to locally divergent terms, and to an 
overall variational raise of the expectation value e,- 9.

9Note that the expectation value coincides with the eigenvalue within the basis set representation, 
on which we assume that the self-consistent hamiltonian has been diagonalised.

The cancellation constraints imply that the eigenstates which are non-zero on the 
proton site (where the hermitian operator H can be extended even if the hamiltonian 

as a differential operator is not defined, so that the solutions V’t can be shown to 
be uniquely defined[99],[100][101]) have also discontinuous first derivatives (a “cusp”) 

there. In the PW representation the variational convergence of the wavefunctions to 
the correct cusp shape is rather slow, and therefore the convergence of the ground state 
energy with respect to the energy cutoff used to truncate the PW basis set is also slow. 
The approximation introduced by the PW representation corresponds to disregarding 
the potential matrix elements involving plane waves with kinetic energy bigger than 
the energy cutoff used. The error on the energy due to the potential terms ignored 
gets smaller and smaller while the energy cutoff is raised, and vanishes in the limit 
of infinite cutoff. Traditional methods are however available for correcting the energy 

within perturbation theory. In a classic work by Lowdin[102] a recipe is provided for 
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improving the hamiltonian matrix represented on a limited basis set (e.g. within a first 
“primary” cutoff ) so that its eigenvalues coincide up to second perturbative order with 

the eigenvalues of the full hamiltonian matrix represented on a larger basis set (up to 
a bigger “secondary” cutoff). The corrected hamiltonian matrix elements read

= + = E ■ (3-n)
where Hij are the matrix elements on the original limited basis (indexes i,j), the index 
a spans the states added to get to the larger basis set, and E is an energy which has to be 
adjusted in the portion of the eigenvalue spectrum considered. In a self-consistent PW 
calculation the matrix Hij represents the KS hamiltonian, and a spans the set of plane 
waves between the primary and secondary cutoff (these plane waves are by definition 
eigenstates of the KS eigenproblem in which the potential is represented within the 
first cutoff G^ut only). Once we have determined the occupied set of eigenstates within 

the first cutoff, and treating the term within first perturbative order, we get the 
corrected expression for the band energy:

Nori \H- I2
+ 2 E E (3.12)

t=l G£“*<|Ga|<G§ot C‘ ~2"

where G™* corresponds to the second and much higher energy cutoff. NOTb is as usual 
the number of occupied orbitals, and E^and is the band energy from the full calcula­
tion at the primary cutoff. Note that Hi>a = V^s, since kinetic matrix elements are 

ruled out by construction. (Moreover, the self-consistent contributions in the matrix 
elements V^s are expected to be very small.) Since the first order treatment of the 
perturbation does not imply mixing of eigenstates within the primary cutoff to 
evaluate the energy correction, we do not consider the second order change of the DFT 
energy functional due to the self-consistent charge response to the perturbation, and 
we evaluate the correction once at the final stage of the calculation as:

AE = E I < + kj > la. , (J13)
kj.t G«“<|Ga|<G‘“* e - e’ 2

where the sum on sampling points kj of weights Wj and the occupation numbers 
of the orbitals have been introduced.
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The correction (3.13) can be calculated at different values for the secondary energy 
cutoff E™* by simply evaluating the summation up to the correspondent values of 
(ycut What is required from the correction is to provide extrapolated values for the 

total energy at high cutoffs which accurately reproduce the total energy which would 
be obtained at those high energy cutoffs by a full calculation. Some testing is worth 
doing to check on the accuracy to be expected from this correction, and to determine 
the minimum primary cutoff beyond which the use of the extrapolation is safe.
As a test illustration we report in figure 3.8 on page 99 a plot of the results obtained for 
two calculations on the tetrahedral interstitial hydrogen in a system of 27 aluminium 
atoms, performed at the primary cutoffs of 8 and 13 Hartree respectively. The top­
left circle of each curve represents a fully-calculated result, and all the others are 
extrapolated using expression (3.13). At the cutoff of 13 Hartree the two curves coincide 
within 2 • 10-3 Hartree, the extrapolation from 8 Hartree being accurate between a 
few percent of the energy difference it predicts. The curve also shows a further total 
energy lowering of about 15 • IO-3 Hartree beyond the primary 13 Hartree cutoff.
The primary cutoff of 13 Hartree used in the calculations is expected to be sufficient 
for converged values of energy differences, and is therefore not expected to influence 
the results for the profiles of relative energies of hydrogen in interstitial positions. The 
absolute energy calculated enters on the contrary in the definition of heat of solution, 
and the perturbative correction described above is of some relevance in that case.

3.8 Embedded hydrogen in jellium.

The elective test to check our techniques is represented by the embedded hydrogen 
in jellium. This system has strong similarities with the embedded hydrogen in alu­
minium, and at the same time its spherical symmetry allows us the comparison with 
precise literature results. We have performed the calculations on this system using 
exactly the same parameter setting (supercell geometry, k-point sampling set, Fermi 
surface smoothing) which we have afterwards utilised for the pseudopotential calcula- 
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tions, and we have applied here the jellium correction introduced in Section (3.5). The 
jellium correction takes here the form of the error we make in calculating the total 
energy of pure jellium at the Al density. The exact value of this energy within the 
adopted parametrisation of the correlation energy is subtracted from the result calcu­
lated with periodic boundary conditions and BZ sampling, to give the value of jellium 
correction for the system considered. Such error is entirely due to BZ sampling, and is 

systematically subtracted from the calculated energy results.
The embedding energy of hydrogen in jellium is defined as the energy of a proton 
immersed in jellium of given (asymptotic) density, minus the energy of an isolated 
hydrogen atom (the energy of the pure infinite jellium system being the reference zero 
energy). In our supercell calculations we fix the volume fl of a supercell containing N 
electrons to the experimental Al electron density, and we introduce in the supercell the 
proton and one more electron. The calculation is then performed using a secondary 
cutoff of at least 30 Hartee for the perturbative correction (3.13). The analytically 
calculated jellium energy and the exact energy value (—0.5 Hartree) of the isolated 
hydrogen atom axe then subtracted from the obtained result, to give our theoretical 
prediction for the embedded hydrogen in jellium.
We have performed calculations for the 16-atom system and the 27-atom system sizes, 
using the same smearing and sampling set previously used for the the calculations 
on the vacancy systems. The comparison with LDA results in literature is made in 
table 3.4 on page 99 . The embedded energy values obtained, once the residual BZ 
sampling error has been corrected through the jellium correction, are seen to be very 
close to each other (the jellium correction being as small as 0.07 eV by the time we 

get to the 27-atom system), which suggests a good convergence of the energy with 
respect to system size. When compared with the literature results the agreement is 
also good10, so that the maximum uncertainty of the calculation is expected not to 
exceed 0.2 eV.

10the oscillations in the literature results values seem to be due to the technical problem of imposing 
the asymptotic condition of the given jellium density while performing the calculation in spherical 
symmetry [88].
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3.9 The heat of solution and the relative stability 
of interstitial sites.

As discussed in Section (3.2.2), the problem of calculating reliable numbers for the 
hydrogen heat of solution and for settling the issue of the relative stability of the inter­
stitial sites could not be resolved within the models based on self consistent calculations 
in jellium only, or on spherical approximations for the hydrogen interaction with the 
metal ions. While no conclusion can be driven from those works about the relative 
energy ordering of the types of defect trapping (interstitial or substitutional), it seems 
clear from all calculations that the two possible sites for interstitial trapping (tetrahe­

dral and octahedral) are almost degenerate in energy in the case of a single hydrogen 
impurity.
As in the case of hydrogen embedded in jellium, we have performed calculations for 
the 16-atom and the 27-atom systems, including the perturbative correction of eqn. 
(3.13). The energy for embedding an hydrogen as an interstitial atom into the metal 
crystal is again as before defined assuming the isolated atom plus the undisturbed host 
system as reference level. We present in table 3.5 our results for the embedding energy 
at the tetrahedral and octahedral sites, the relaxation energy obtained for the two 
systems, and the calculated relaxation displacement of the nearest neighbour atoms, 
in absolute units, for the two cases. The results confirm the approximate degeneracy 
in energy between the two interstitial sites, suggesting that the most stable site is the 
tetrahedral one, although in our largest supercell (and most accurate calculation) the 

energy difference with the octahedral site is only 0.06 eV. It is remarkable that an 
important role in deciding the relative stability of the two interstitial sites is played 
by lattice relaxation effects, which are found to be much larger for the tetrahedral 
interstitial site (sa 0.35 eV) than for the octahedral site (~ 0.05 eV). The magnitude 
of the relaxation displacement is also found to be much different in the two cases. The 
four nearest neighbour Al atoms are pushed aside much more around the tetrahedral 
interstitial (maintaining the tetrahedral symmetry) than the six nearest neighbour 
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atoms are in the octahedral interstitial case.

The relative stability of the two sites is the result of a balance between different opposite 
effects. The pure embedding energy of hydrogen in jellium as a function of the charge 
density at the interstitial sites would select the octahedral site as the most stable. The 
embedded energy of hydrogen in jellium as a function of density has the (only) minimum 

on a value (0.002 a.u.) much lower then the average density of the Al host (0.027 a.u.). 
Within the kind of considerations which are at the basis of the “effective medium” 
or “quasi-atom” models[88][103], this means that in an almost uniform-electron-gas 

metal a small hydrogen impurity would select as its stablest position the interstitial 
site which has the lowest charge density in the perfect crystal of the host metal, and 
that site for Al would be the octahedral one (where the density is 0.018 a.u.) instead 
of the tetrahedral one (where the density is 0.027 a.u.).
However, the introduction of an hydrogen impurity in the metal creates a distribution of 
screening charge, represented by the traditional models by the same screening charge 
calculated in pure jellium. The structure of such distribution is not much density­
dependent as far as the main peak position is concerned, although the phase and the 
amplitude of the subsequent oscillations11 far away from the nucleus may differ[87]. The 
introduction of the interaction between the screening charge and the ionic potentials 
should therefore only depend on the geometrical correlation between (i) the distance 

of the interstitial sites from the nearest neighbour Al, (ii) the position of the 
main features (say, the first node r^) of the screening charge distribution, and (iii) 
the position of the main attractive lobe of the atomic pseudopotential outside the core 
radius rc.

nIf the density of the surrounding jellium is decreased to zero (at which value the screening is 
due to the Is atomic orbital) these “Friedel oscillations” [ 63] disappear without the main peak of the 
screening cloud having ever substantially moved from its value of about 1 a.u. .

Following this argument, due to Gunnarsson et al. [106], and considering that
Th + rc « 3.3 a.u. in the present case, and that Tnn is about 3.3 a.u. for the tetrahe­

dral site and 3.8 a.u. for the octahedral site, the conclusion is that the tetrahedral site 
is expected to be the most stable site from the point of view of the chemical (first-order) * 
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interaction of the embedded atom with the pseudopotential field (the fine tuning of 

this effect is obviously related to the energetics of ionic relaxation around the defect 
in the metal). Our results confirm that a compromise between the balance of the two 
mentioned effects determines a quasi-degeneracy of the two interstitial positions, per­

haps in favour of the tetrahedral site as the most stable, even though we cannot settle 
the issue of relative stability with absolute certainty given the small energy differences 

involved.
Our value for the hydrogen heat of solution Eaoi reported in table 3.5 was obtained 
from the definition given in Section (3.3) as the embedding energy in the metal of 
one hydrogen atom plus the dissociation energy AE per H atom in the molecule H2. 
We used for &E its experimental value[107] 2.24 eV. Our final result for the heat of 
solution is therefore 0.94 eV, which appears to be well converged with respect to system 
size, and on which we estimate an overall accuracy of 0.1 eV with respect to systematic 
errors in the calculations. This result becomes 0.2 eV lower if we cancel the LDA errors 
introduced with the hydrogen potential. This is commonly done in literature[88][76] 
when evaluating the embedded hydrogen energies by using in the subtraction the local 
spin density (LSD) value (-13.4 eV [106]) instead of the exact value (-13.6 eV) for the 
total energy of the isolated H atom, and corresponds to assuming that the LDA error 

on the screened proton in the metal is similar to the LSD error in the isolated atom12 
In any case the agreement of our result with the experimental values 0.83 eV[74] and 
0.66 eV[71] is satisfactorily.

12The LDA error on the isolated H atom total energy is known to be large, the LDA energy of 
the atom being only -12.0 eV, but it is due to causes which do not occur in the embedded atom 
system[106]. The LSD energy value for H is therefore the one used for the correction.

A plot of the full ground state charge distribution in the (110) plane for the tetrahedral 
interstitial hydrogen is provided in figure 3.9 on page 101, showing that the screening 
charge distribution is contained within the region of the nearest neighbour atoms and 
interstitial empty sites.
The charge difference for the unrelaxed interstitial is shown in figure 3.10 (page 101) on 
a more detailed contour scale. The structure of the underlying lattice of metal atoms is 
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still visible on the sites occupied by the two metal atoms neighbouring the interstitial 
on the (110) plane, as was found for the vacancy screening (cf. figure 3.5 on page 86). 
In the outer defect region the charge redistribution is remarkably spherical, and is 
found to drop down to a few thousandths of the bulk average density in the regions 
midway between the hydrogen and its images in neighbour supercells, supporting the 
hypothesis that even if the Friedel oscillations of the screening charge can be long- 
ranged, the supercell results for the energetics of the defective systems can be expected 

to be independent from such oscillations[62].

3.10 Interstitial energy profiles and H binding to 
a vacancy.

The determination of the height of the energy barrier which the the H atom has to 
surmount in the diffusion process poses the technical problem of defining an oppor­
tune coordinate to parametrise the different non-equilibrium positions of the migrating 
impurity. The diffusion path on which we have performed the calculations consists of 
a series of hydrogen positions along the (111) direction between the tetrahedral and 
the octahedral sites in the fee lattice. Our parametric coordinate was the distance 
between the the hydrogen position and the center of mass of the metal atoms in the 

cell (which is also by symmetry on the (111) fine starting from the lattice site at the 
origin in each of the supercells we have used). Constraints on the forces were applied 
during the ionic relaxation in the calculations to keep fixed in each run the value of 

such coordinate, since the ions would have otherwise relaxed to an equilibrium position 

with the hydrogen located in some interstitial site. Namely, at each step of the ionic 
relaxation the calculated (111) force component on the hydrogen atom was set equal to 
zero, and the average force along the (111) direction on the metal ions was subtracted 
to the individual forces on each Al ion. Note that if the height of the diffusion barrier is 

given by the maximum value of a set of energies calculated with a minimum procedure 
at fixed values of some coordinate parameter, it does not matter which parameter in 
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particular is chosen, as far as it maps the diffusion process continuously, for the barrier 

height determination.
The energy profiles obtained are displayed in figure 3.11 on page 102. The energy zero 
has been set according to the definition of the embedded energy of the atom in the 
metal, and the energy values at the interstitial sites are therefore the same as those 
reported in table 3.5. The two sets of data refer to the calculations results obtained 
without (upper curve) and with (lower curve) the perturbation correction, and they 
are seen to differ only by a constant shift, so that the relative energies at different 
positions result well converged with respect to the PW energy cutoff. In each of the 
two sets the open circles (connected by a cubic spline interpolation curve as a guide 
for the eye) refer to the result obtained from the 16-atom system calculations, and the 
black diamonds result from the calculations on the 27-atom system. We calculate the 

migration energy as the difference from the top of the barrier to the lowest interstitial 
site, and obtain 0.20 eV for the 16-atom system and 0.15 eV for the 27-atom system.

The continuation of a similar energy profile beyond the tetrahedral site and towards 
an empty regular lattice site (figure 3.12 on page 103) summarises the results of some 
further calculations, which we have performed to study the energetics of the hydrogen 
atom binding to a vacancy. The aim was in this case to determine the geometry of the 
binding, which in the history of the theoretical modelling has been variously predicted 
to be substitutional, with the hydrogen sitting in the center of the vacancy, or off-centre, 
with the hydrogen displaced from the vacant lattice site (see Section 3.2.2).
Again in the present case considerations made on the basis of pure effective medium 
theory would predict the stable hydrogen position to be substitutional, due to the 
energetically favourable low charge density at the vacancy centre in the isolated vacancy 
system. On the contrary, an hydrogen impurity sitting on a tetrahedral site neighbour 
to the vacancy would be predicted by a model focused on the interaction between the 
hydrogen screening charge and the ionic pseudopotential field, in analogy with the 
discussion in section 3.9 on the relative stability of the interstitial sites.
Our results show the stable hydrogen position to be strongly off-centre, close to a 
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tetrahedral site and only slightly displaced from it towards the vacant site. The entity 

of the displacement from the tetrahedral site is about 16% of the distance between the 

vacant lattice site and the tetrahedral site. This suggests that the direct interaction 
of the hydrogen with the three atoms at the basis of the tetrahedral unit having the 
vacancy at its upper vertex is the mechanism which largely determines the vacancy 
trapping position. The trapping energy, defined as the energy difference between this 

trapping position and the most stable hydrogen interstitial energy, is found to be 
0.34 eV in the 27-atom system and 0.19 eV in the 16-atom system. A contour plot of 
the valence electron density in the (110) plane is provided in figure 3.13 on page 104.

Results concerning the interstitial hydrogen energy profiles and the hydrogen binding 
to the vacancy are for obvious symmetry reasons the most difficult to predict in terms 
of approximate models (in particular the spherical solid model[76][77]). These models 
nearly always neglected the lattice relaxation around the defect, or in few occasions 
found it energetically unimportant. The role played by the lattice relaxation is found 
from our results to be determinant, in particular for the energetics of system geometries 
with the impurity close to the tetrahedral site. The meaning of any comparison of our 
estimated energy barrier with the higher predictions from early models, which give 
values around 0.5 eV, is therefore doubtful13.

13The two predictions for the migration energy which we were able to find in literature are both 
obtained from calculations performed with the hydrogen in strongly asymmetric positions between the 
interstitial sites. The metal ions are represented with model Al pseudopotentials and treated within the 
“spherical solid model” approximation. The results 0.50 eV[78] and 0.53 eV[79] appear nonetheless 
in excellent agreement with the most recent experimental results 0.47 eV [108] and 0.52 eV [109] 
available at the time.

The experimental situation for the migration energy is not very clear. The most re­
liable measurements are probably those reported in references [110], [114] and [111], 
performed at temperatures above about 600 °K, and giving values of 0.42 eV, 0.40 eV 
and 0.61 eV respectively. In particular in ref. [Ill] (Hashimoto and Kino, 1983) the 

authors observe a substantial decrease of the hydrogen activation barrier when the the 

temperature is lowered down to 300 °K, and suggest a picture of hydrogen freely mi­
grating at room temperatures, while the diffusion at high temperature resents of the 
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trapping effects due to vacancies.

Some further indirect evidence of a rather low diffusion barrier for hydrogen diffusion 
in Al at low temperatures can be derived from measurements of the diffusion coeffi­
cient of positive muons. The muons do not self-trap (if not on impurity atoms) in 
aluminium, while they can be observed in localised states in pure copper[97][112][84], 
which has also fee structure. The activation energy for hydrogen diffusion in copper is 
well established to be 0.4 eV [113][115], and therefore it unlikely that the same quantity 
in aluminium could be greater than this. Our somewhat low value for the migration 
energy is therefore not necessarily in contrast with the available experimental evidence. 
Our value 0.34 eV for the binding energy of hydrogen to a vacancy is in fairly good 
agreement with the measured trap binding enthalpy 0.52 ± 0.10 eV[116]. It is worth 
noticing that measured values like these have to be extracted from computational 
modelling used to fit the available observed data, typically by simulating the defect 
diffusion at the experimental temperatures between trapping sites. These models imply 
the use of input parameters such as the experimental diffusion coefficient in the perfect 

lattice[ 117], and therefore they suffer to some extent from the uncertainties on the value 
of such parameters[117][118]. Early calculations predict larger values for the hydrogen­
vacancy binding energy (1.2 eV [72], 1.0 eV [87]). Effective medium theory calculations 

performed in conjunction with the experimental work of reference[116] gave in more 
recent times a predicted value of 0.52 eV, in excellent accord with the observed value.
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Figure 3.8: A test of the perturbative correction (3.13). The plot shows the fully con­
verged total energy for hydrogen at the tetrahedral site in a system of 27 aluminium 
atoms at a sequence of values of the secondary cutoff energy. White and black sym­
bols show the results for the primary cutoff energy is set equal to 8 and 13 Hartree 
respectively. (All quantities in atomic units).

Table 3.4: Embedding energy AE of hydrogen in jellium (energy of embedded hydrogen 
system minus energy of jellium plus isolated hydrogen). The difference between the 
uncorrected and corrected AE is the jellium correction (see text). The reference values 
of AE are those of (a): Almbladh et al. (1976)[76j; (b) Zaremba et al. (1977)[103]; (c): 
Nprskov (1979) [88].

16-atom 27-atom
AE (eV) uncorrected 1.36 1.57
AE (eV) corrected 1.51 1.50
AT? (eV) reference 1.30“’6 , 1.51c
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Table 3.5: Results of calculations on hydrogen at tetrahedral (tet) and octahedral (oct) 
sites for periodic systems having 16 and 27 aluminium atoms. The embedding energy 
AE (energy of fully relaxed system with hydrogen minus energy of perfect crystal plus 
isolated hydrogen atom) is given without and with the perturbative correction (see 
text). The energy of solution Eaoi is obtained by adding to AE the experimental dis­
sociation energy per atom of the H2 molecule (2.24 eV). Also shown are the relaxation 
energy (energy of unrelaxed minus energy of relaxed systems) and the relaxational 
displacement of nearest neighbour aluminium atoms.

16-atom 
tet. oct.

27-atom 
tet. oct.

AE (eV) no pert. 
AE (eV) with pert.
Eaol (eV)
Relax, energy (eV) 
Relax, displ. (A)

-1.08 -0.96
-1.29 -1.15
0.95
0.36 0.04
0.12 0.03

-1.11 -1.07
-1.30 -1.24
0.94
0.32 0.05
0.12 0.04
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Figure 3.9: Contour plot of the electron density on the (110) plane passing through 
hydrogen at the tetrahedral site in a system of 27 aluminium atoms. Values marked 
on contours indicate the electron number density in units of 10 2 electrons per Bohr 
radius cubed (in these units the average electron density is 2.7).

Figure 3.10: The screening electron density (see text) corresponding to the fully relaxed 
tetrahedral interstitial. Units and scale as in the figure above.
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Figure 3.11: Profile of the total energy (eV)of the fully relaxed system as a function of 
proton position (a.u.) along the straight line in the (111) direction between tetrahedral 
(T) and octahedral (0) sites. White circles and black diamonds show results for the 
16-site and 27-site systems respectively. The upper and lower sets of symbols show 
respectively results obtained without and with the perturbative correction.
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Figure 3.12: Profile of the total energy (eV) of the fully relaxed hydrogen-vacancy 
system as a function of proton position (a.u.) on the straight fine in the (111) direction 
between the centre of the vacancy (V) and a neighbouring tetrahedral site (T). White 
and black circles show respectively the results obtained for the 16-atom and 27-atom 
systems.
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Figure 3.13: Contour plot of the electron density in the vacancy-hydrogen system. The 
density is shown on the (110) plane passing through the vacancy centre and the proton 
at its most stable position. Values marked on contours indicate the electron number 
density in units of 10~2 electrons per Bohr radius cubed (in these units the average 
electron density is 2.7).
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4 Ab initio total energy calculations on 
parallel computers.

4.1 Introduction.

In the present chapter a brief discussion is provided of the problem of performing 
total energy calculations on parallel computing machines. These machines are already 
a competitive alternative to the use of vectorial supercomputers in most scientific 
applications, and are expected to play an increasingly important role in the practice 
of theoretical physics calculations. The analysis of the computational features of a 
DFT-LDA-PW computer code suggests a number of possible parallelising strategies, 
which take into account the prospective evolution of the machine architectures and the 
associated larger sizes of physical systems which are expected to enter the range of ab 
initio treatment in the very near future.
The calculations on defective systems of ceramic insulators reported in the present 
work involve the use of large supercells and high PW energy cutoffs, and are therefore 
extremely demanding in terms of computer memory, while high computational speed is 

required to ensure a reasonable time scale for obtaining the results. These calculations 
have been performed on a parallel machine (a 64-node Meiko Computing Surface in 
Edinburgh University) using a parallelised code CETEP specifically designed for the 
features of this machine, on which it was tested for the first time in conjunction with 
the calculations on MgO reported in Chapter 5. In the present brief chapter we sum­
marise the general ideas at the basis of the parallelisation strategy implemented in the 
code. For a more complete and technically detailed discussion, reference [119] with the 
original analysis of the problem should be consulted.
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4.2 Scaling of computations with respect to sys­
tem size.

We assume here that a DFT total energy minimisation has to be performed which 
makes use of a large PW basis set1. The energy functional to be minimised includes 
“band” energy terms from each electron orbital of each BZ sampling point used in the 
calculation, and an electronic interaction contribution evaluated from the total electron 
density, which is itself calculated as a sum over sampling points and occupied orbitals. 
The minimisation corresponds to the self-consistent solution of the KS set of equations, 
but can be performed without explicitly solving such set, using some global approach 
of the kind pioneered by Car and Parrinello[16], like the conjugate gradients technique 
used in this work (see Sections 2.2 and 2.3).

1 Algorithms using different basis sets can be efficiently parallelised, but the typical scalings in the 
calculations are different than in our case, and are not treated here.

2The FFT need twice the the number of points in each dimension than PW in each orbital. The 
G-space sphere transformed is therefore eight times bigger than the energy cutoff sphere, and has to 
be inscribed into a FFT cubic grid of G-vectors having roughly twice its volume. This accounts for 
the prefactor 16 in the expression.

All the minimisation techniques suitable for large scale calculations have the common 
feature of optimising iteratively a set of electronic orbitals {V’,}, each represented 
by a vector of Npiw complex numbers. The hamiltonian terms are diagonal in either 
real or reciprocal space, so that Fast Fourier Transforms (FFT) are invariably used 

to transform the orbitals in the appropriate space where the integration of the energy 
contributions is a single sum on the space mesh index. The FFT operations scale 
like N log N, where N is the dimension of the transformed vector, and dominate the 

calculations with a time load (or “time complexity”) 0(16NorbNpiw log2 Npiw) for each 
transform1 2 in the case of small systems. For big systems the orthonormalisation of 
orbitals scaling like O(N°TbNpiw) is the dominant part of the computation. Since the 
number of PW for a given energy cutoff is proportional to the volume of the system, and 
so is in usual conditions the number of orbitals, the time complexity of the calculations 
for large systems will eventually scale like the cube of the system volume.
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The minimum memory storage required for the calculations is also obviously increasing 
when the size of the system increases. The most efficient calculation strategy should 
limit, to the minimum (or better avoid) the use of slow-access disk memory. The 
minimal use of memory in a calculation involves the allocation of memory space for 

at least one full set of wavefunctions {V’«'}, so that the memory needed scales like the 
square of the number of atoms, for a given system density.
Even assuming that a fast non-parallel machine can fit the memory requirements of a 
single large calculation3, the speed of one processor in such machine depends on the 
available technology and is not an adjustable parameter, so that if an unreasonable time 

is needed to perform the calculation, the calculation is in practice out of the range of the 
available technology. This can be the case of large ab initio dynamic simulations, which 
require a modest amount of memory if compared with the requirements of the largest 
energy minimisations feasible on the same given machine, but which are extremely slow 
(typically months of processing are needed for a single run) in computing the desired 
results.

3At the time of the calculations performed in the present work the best alternative serial computer 
available was the CRAY X- MP/416, limited in memory to only about 100 Mbytes for normal utence.

For an application which would be exceedingly demanding for a single processing unit 
in terms of computer memory and computation time, the only alternative left is the 
use of parallelisation, i.e. the distribution of the computational load on a (virtually 
unlimited) number of concurrent computing subunits. The typical parallel machines of 
the kind used in this work, to which the present analysis will be limited, can be thought 

as a group of computing subunits (nodes) sharing information along the computation 
through special data-transfer routines arranged in some efficient communication topol­
ogy, and each having a specific local amount of dynamic memory.

The nodes used in our calculations (carrying an Intel i860 microprocessor and 16 Mbytes 
of dynamic memory each) were arranged in the hypercube communication topology, 
in which each node shares a communication fink with n “nearest neighbour” other 
nodes, each of which is thought as located on the opposite side of a n—dimensional 
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hypercube’s edge. Dimensions up to n = 6 were available, corresponding to a nominal 
peak performance of 5 Gflops4 and a total of 1 Gbyte of distributed memory, to be 

compared with the 0.25 Gflops and 0.13 Gbyte of a Cray X-MP/416 used in serial mode. 
It is noteworthy that the next-generation processor of Cray technology performs 1.4 
times faster only, given the 0.33 Gflops delivered by a Cray Y-MP/8128 in serial mode, 
while the substantial increase of peak performance of this latter machine resides mainly 

in the improved memory (1 Gbyte) and in the enlarged number of processors (from 
four to eight, with a theoretical peak performance of 2.7 Gflops, using full parallelism). 
Given the computational load scaling of the existing total energy algorithms5 two or 

three orders of magnitude in the overall machine speed are needed for approaching 
successfully systems ten times the current sizes, and it is highly unlikely that the 
single-processor technology could respond to such need.

4The “flop” unit corresponds to one real single precision floating point operation per second.
5Some first-principles computational techniques scaling linearly with the system, size have been 

proposed[120][121], but have not yet entered the standard practice of calculations.
6For example, the “Delta machine”, at Caltech, with 512 i860 processors operating concurrently.

On the other hand “Teraflop” parallel machines using typically thousands of process­
ing nodes are already under study, while machines ten times the size and using about 
ten times faster communications than the one we use are already operative6. The use 
of these machines for scientific production is still in the pioneering stage, with much 
to be improved in the handling of fast-communication networks and faulty hardware 
situations (the occurrence of software-unrecoverable hardware faults being roughly pro­

portional to the number of node boards).
In the following sections we provide a brief analysis of some alternative strategies 
for mapping a total energy calculation on the typical node-network of the present 
generation of parallel machines, in the light of the prospective performance of the 

next-generation machines, predictably in the speed range of 10 to 1000 Gflops.
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4.3 Possible parallelisation strategies.

The minimum amount of data in a PW calculation corresponds to the memory required 
to store the complex arrays of the wavefunctions coefficients. If Niona is the total 

number of pseudo-atoms in the supercell, the number of plane-waves Npiw in the basis 
set scales like (100— 1000) Niona , the number of orbitals Nori> like (1 — 10) N{ona , and 
the number Nk of BZ sampling points like l/Mon« • As mentioned in the former section, 
the computer-time load of the techniques minimising the DFT energy functional by 
iterative orbital optimisation scales like O(A^r67Vp/w), to be compared with the time 

complexity O(W8Zw) of the solution of the KS eigenproblem through direct matrix 
inversion on the PW basis set.

7This approach is called “data driven” parallelisation.
8It should be noted that when no communication is needed between concurrent processors, the 

calculation is strictly speaking no more parallel, since no synchronisation of different processing units, 
and therefore no parallel machine, is needed.

We therefore concentrate on the problem of parallelising the computations by dividing 
into subunits the data on which an iterative algorithm operates7 8, with a discussion of 
the degree of efficiency of the computations when assigning each data subunit to a sep­
arate processing unit of the parallel machine. The analysis on possible parallelisation 
strategies has the goal of minimising the computer time spent in communications. The 
“perfectly” efficient parallel calculation is the one during which almost no time is spent 
in communicating information between processing units8, and in which all the (iden­
tical) nodes are loaded evenly up to maximum work capacity without ever exceeding 
their maximum resident memory. In real calculations the amount of communications 
required in performing the FFT of the orthogonalisations of orbitals is determinant. 
Some possible parallelisation strategies are enumerated in the following.

(1) The single BZ sampling point k{ could be assumed as a first candidate sub­
unit. Each node would be assigned all the computations corresponding to one 
sampling point. Orthogonalisations and FFT would be performed serially on 
each node. Communications would be required only to sum the charge density 
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scalar field and to sum the energy and forces contributions. This approach can 
be of some use for calculations using extremely high energy cutoffs on systems 
requiring high precision BZ sampling (for example, for computing defect ener­
getics or elastic properties of medium sized systems of transition metal atoms 
modelled by highly transferable pseudopotentials). Although it is always pos­
sible to define groups of k-points as the calculation subunit, it is on the other 
hand necessary to use in the calculations at least as many sampling points as 
concurrent nodes. For large systems requiring very few (or only one) sampling 
points, it is often impossible, for pure memory requirements, to use as few node 
units, and this approach becomes totally inadequate.

(2) Another candidate subunit could be a group of orbitals at a given k-point. The 
obvious advantage of this approach would be the possibility of performing the 
FFT serially on each node. This can often be done with the use of dedicated 
hardware on each node. The orthogonalisation between orbitals would on the 
other hand involve large data communications between nodes, which would 
represent by far the most cpu intensive operation for large system sizes9. 
The basic operation performed concurrently in the calculations would be the 
band updating: the band-by-band technique described in Section 2.3.2 would 
therefore be incompatible with this choice of parallelisation strategy, so that 
some other minimisation algorithm would be needed to synchronise the up­

dating of the wavefunctions and reduce to the minimum the operations which 
ensure the orthogonality of orbitals.

9It could appear that the time needed to communicate data should be bound to be anyway negligible 
when compared to the time spent in processing data. This is not the case due to (i) the complicated 
patterns of the communication network (ii) the intrinsic slowness of the available communication 
software, compared with the speed of the serial operations performed on the nodes.

Although feasible ways to perform the orthogonalisation have been suggested[119], 
it is moreover clear that within this parallelisation approach the full FFT mesh 
would have to be stored on each node, with a correspondent memory load 
per node of O(167Vp/w), scaling linearly with the volume of the system. As in 
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the preceding strategy, the dynamic memory per node (which is assumed to 
be fixed, like the peak speed performance of each processor) would be at some 
stage saturated going to large system sizes.

(3) A third possible parallelisation data subunit consists of portions of the real 
space and reciprocal space represented in the calculations. Since the PW basis 
set is a subset of a G-space mesh, and the repeating supercell in the calcula­
tion is also mapped onto a real-space mesh, it is straightforward to distribute 

equally the two spaces onto nodes. Each orbital is spread in this case onto 
each node, and each node deals serially with each orbital’s components on a 
limited region of either real or reciprocal space. The operations involved in the 
computation of total energy and forces are all local in one of the two spaces, so 
the corresponding computations can be performed concurrently, without com­
municating anything else than the scalar sub-integrals of the various quantities 
evaluated on each node. The same argument applies to the orthonormalisation 
procedure. The FFT is on the other hand an intrinsically non-local opera­
tion, since every plane-wave coefficient in each wavefunction’s expansion has 
a transformed contribution on each of the wavefunction’s values on the real 
space mesh, and vice versa. Every FFT therefore involves in this approach a 
global redistribution of all data fields.
If a fixed physical volume is assigned to each node, the amount of memory 

required on each single node scales like 0(NOTt,Npiw/Nnodea), like in the paral­
lelisation strategy (2), but a very limited additional space is needed to perform 

the FFT, since the FFT mesh is spread on all the nodes.

(4) The last two strategies could be combined into a parallelisation scheme in 
which the asymptotic memory requirement per node is fixed. Since the total 
storage needed scales like the square of the system volume, this means that 
for extremely large calculations (on systems of several thousands of atoms) a 
number of nodes is needed which itself scales like the squared system’s volume, 
each node corresponding to the values of a fixed number of bands on a fixed 



112

region of space (the topology of which is, as above, otherwise completely arbi­
trary). FFT operations again involve full communications, while now further 
communications of data fields are needed to evaluate at each node the partial 
scalar products between the “resident” orbitals and the orbitals permanently 
stored on other nodes. The updating of orbitals is performed concurrently in 
each group of bands, so that if the number of such groups is very limited some 

feature can be retained of the smooth “band-by-band” updating technique de­
scribed in Section (2.3.2), by updating concurrently one band of each group at 
time.

4.4 Sources of efficiency loss and the strategy 
adopted.

The goal of parallelisation is to distribute a computational load onto a finite number 
n of processing units in such a way that the overall speed of the computation is n 
times faster than it would be if the whole computation were loaded onto one single 
unit (even if this is not really possible because of memory limitations). In each of 
the parallelisation strategies described in the former section only negligible parts of 
the calculation have to be performed by one processor only, or repeated exactly by all 
processors. One example is represented by the input operation of the global calculation 
parameters, like the geometry of the supercell and the total number of ions in it, which 
cannot be performed any faster than it would using a single processor. This and other 
sources of efficiency loss from the ideal parallel performance are regrouped below into 
categories.

I Residual sequential operations are in practice a number of operations, like the 
updating of the ionic positions during the run according to Hellmann-Feynman 
forces, parallelising which would be an unnecessary complication. They are 
performed identically at each node.
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II The uneven distribution of computations is normally a more serious source of 
efficiency loss. It is typical of the case in which the load of work cannot be 
distributed exactly between nodes because (i) there is some incompatibility 
between the data structures and the node number (for example, using the 
strategy (2) of last section with an odd number of orbitals and an even num­
ber of nodes) or (ii) when the amount of work per node cannot be predicted in 

advance, since depends on the calculation features (for example, still with strat­
egy (2), if different orbitals require a different number of conjugate gradient 
steps to be optimised within the same (fixed) energy convergence tolerance.

III The overheads of processor synchronisation axe another source of efficiency loss. 
They occur whenever a piece of information has to be communicated to a node 

(or to all nodes) before the whole run can proceed. A typical example is the 
scalar product of two orbitals in strategies (3) and (4): even if the workload 
of this operation is equally divided between nodes, and the associated compu­
tation is performed concurrently, the stages of the computation which require 
the knowledge of the scalar product’s value have to wait until each node’s par­
tial contribution to the product is summed before the calculation can proceed. 
This latter summation can be thought as being performed at one single node: 
during the time it takes, after which the result can be communicated to all the 
remaining nodes10, the whole computation is not parallel.

IV Finally, with overheads of data communications it is usually meant the time 
spent in communicating data between nodes. During this time, which depends 
on the communication software and hardware and on the complexity of the 

parallelisation topology, the nodes are inactive. In total energy calculations 
using PW this time is almost all spent in transferring large real or reciprocal 

10Many of the operations mentioned in point (I) are in fact performed in this way, communicating a 
result instead of evaluating it at each node, to avoid instabilities due to the rounding noise at different 
nodes.
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space data fields between nodes, as it happens for example during each FFT 
procedure within parallelisation strategies (3) and (4) of last section.

For the calculations on defects in ionic compounds presented in the next chapter, we 
adopt the parallelisation strategy (3), and therefore we choose to distribute in equal 
parts the real and reciprocal space grids associated to our supercell calculations. This 

choice is dictated by physical considerations, given that all the contributions to the 
total energy functional can be reduced to single-index sums (z.e. local operations) 
in the discrete real space or momentum space representations. This is also true for 
the scalar products needed to accomplish the orthogonalisation of the orbitals. Once 
the domain of each sum is equally distributed on the nodes, the sums are performed 
concurrently, and the subtotals only need to be communicated between nodes.

The FFT, on the contrary, are not local operations, and in the parallelisation strategy 
chosen they involve large amounts of data communication. This problem is avoided by 
strategy (1) or (2) of last section, which assign to each concurrent node all the opera­
tions associated with a group of sampling points or with a group of orbitals. However, 
the kind of physical systems which we consider (large supercells of insulating materi­
als) rules out the possibility of loading onto a single node all the data corresponding 
to a single BZ sampling point, while the number of available nodes is always much 
larger than the number of k-points needed, so that strategy (1) is ruled out in our 

case. Moreover, the maximum size of the systems we study is already in the region in 
which the time complexity of the orthonormalisations takes over the time complexity 
associated to the FFT (in spite of the latter’s large prefactor), so that strategy (2) is 
also ruled out, since it implies communications when evaluating the scalar products 
between orbitals. These communications are needed also in strategy (4), differing from 
the one we adopt in the fact that only some of the orbitals are represented on each 
node, so that the same portion of real and reciprocal space must be assigned to more 
than one node at time. The systems we can investigate with the available machine 
(limited to 64 nodes) are however still small enough to make this further subdivision 
unnecessary in our calculations.
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The implementation of the FFT operation represents, from what said so far, the (only) 
source of efficiency loss which cannot be avoided when parallelising the algorithm. A 
careful distribution of the data structures onto the nodes has however been implemented 
in the parallel code CETEP, which proves very useful in reducing the time spent in 

performing the communications.
In the calculations, the reciprocal space FFT grid is distributed equally on the nodes, 
paying attention to the fact that not all the G-vectors are inside the energy cutoff 
sphere while distributing the computational work between nodes. In particular each 
node is assigned an equal number of columns of G-vectors in the kx direction11. Some 
of them are totally outside the cutoff sphere within which the coefficients of the orbitals 
can be different from zero. The number of these columns is kept as balanced as possible 
between different nodes. The real space FFT grid is organised in planes orthogonal to 
the x direction. The integer mesh dimension Nx in such direction is normally chosen to 
be a multiple of the number of nodes used in the calculation, so that an equal number 
of real space grid planes corresponds to each node.

nIt is sufficient for this that the number of mesh gridpoints in a plane kyk2 plane is a multiple of 
the number of nodes.

The three-dimensional FFT can be factorised into lower-dimensional integrals. With 
the asymmetric assignment of the two spaces outlined above, each node can perform 
the FFT either on one-dimensional G-space columns or on two-dimensional real space 
planes, before any communication occurs. The transformations from reciprocal to 
real space are performed through the sequence of a one-dimensional FFT, a set of 

data communications, and a two-dimensional FFT. The transformations backwards to 
reciprocal space consist of the same operations performed in the reversed order. In 
either case the communication routines have to be called only once during each global 
FFT.
This choice of space subdivision has eventually to be abandoned whenever the size of 
the system is so large that sitting one grid-plane of data on a single node is no longer 
possible for memory reasons. Before the system becomes so large that a parallelisa- * 
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tion approach like the strategy (4) of Section 4.3 becomes unavoidable, it is obviously 
possible to assign to each node only portions of grid planes, performing each FFT as 
a series of three one-dimensional transformations, and communicating twice the data 
meanwhile. However, this is not the case for the systems treated in this work, for which 

the 16 Mbytes of memory on each of the 64 nodes on the Meiko i860 Computing Sur­
face were in all applications sufficient for adopting the single communication scheme 

outlined above12.

12See reference ([119]) for technical details concerning the communication routines, which were 
especially written for the use of this machine.
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5 Calculations on defect energetics in 
oxide materials.

5.1 Introduction.

In this chapter we present the results of a series of calculations on defect energetics in 
MgO[122][123] and Li2O[124], performed with the techniques discussed in Chapter 2 
and Chapter 4. Magnesium oxide and lithium oxide are two representative examples of 

ionic oxides, having the rock-salt and anti-fluorite structures respectively (see figures 5.7 
and 5.9 on pages 150 and 152), which display several typical features of a large class 
of insulating ceramics. MgO is an important mineral (constituting about 10% of the 
earth’s lower mantle), and is used in a number of technological applications as a catalyst 
and as a high-temperature ceramic. LijO has important applications in nuclear reactors 
technology[125], in solid-state batteries[126], and as a fast ionic conductor at high 

temperatures.
These compounds are strongly ionic. The valence charge density is almost completely 
located in the immediate proximity of the oxygen atoms, and a reasonable description of 
it is readily provided by a short-ranged spherical distribution of electrons, structurally 
similar to an atomic oxygen full valence shell1. It is therefore possible to describe 

successfully several properties of these materials using model representations based on 
pair interactions between couples of ions. The parameters in the models have to be 
fitted to experimental results, after which they can be used to predict other properties 
of the materials, and provide estimates for relevant quantities which are extremely 
difficult to measure experimentally, like e.g. the defect formation energies1 2. On the 
other hand, features like the distortion of the “soft” electronic cloud around the oxygen 

atoms in pure and defective material samples are out of the reach of classic models.

1Note, though, that the LDA O2- ion is not stable (nor is the physical O2- ion).
2However, for some other quantities like the optic phonon frequencies and the elastic constants, a 

model including only the pair interactions between rigid ions is not sufficient.
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Moreover, when studying less “easy” oxides (for example: more covalent minerals like 
A12O3 or SiO2) these models become less reHable, and given the mentioned difficulty 
in performing the experiments, some support from fundamental theory is required, to 
assess the cases in which some pair potential description is still reHable, and to provide 
some means of investigation in aU the other cases.
In the following sections of this chapter we discuss some of the existing classical models 
which have been proposed at different times for the investigation of several ionic sohds, 
we refer to the Hartree-Fock technique as an alternative to DFT schemes for studying 
these materials from first principles (Section 5.2), and we summarise the work done 
so far within the DFT-PW technique. In Section 5.3 we provide some details of the 
calculations we have performed, with the results obtained from test calculations on 
perfect crystals. We then address the problem of studying the energetics of charged 
defects with the superceD method, and we report the results of some ancillary model 
calculations which we have performed to monitor the convergence of results with respect 
to cell-size (Section 5.4). In Section 5.5 we present results for the energetics and the 
ground state charge densities for Schottky defects in MgO, and Frenkel defects in Li2O, 
and for the associated systems of migrating point defects (the two migrating vacancies 
in MgO, and the migrating Li vacancy and interstitial in Li2O).

5.2 Modelling of ionic solids and alternatives to 
DFT calculations.

5.2.1 Classical models.

To state an operative definition, a crystal can be considered ionic if the crystal potential 
can be accurately approximated as a sum of pair potentials between the constituent 
atoms, and if the long range interaction is dominated by the Coulomb term in which 
formal charges are adjusted to represent the degree of ionicity of the atoms in the 
sohd[127]. The short range part of the approximate pair potential represents a com­
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promise between Pauli exclusion, band dispersion, and residual covalent effects. A very 

common simple analytic form used for the short range interaction is the Buckingham 
potential

= Aat(3e~^ - , (5.1)

where the coefficien ts A, p, C of the pair interaction potential between the atomic 
species labeled by the indexes a,/? are usually fitted on perfect lattice properties. 
An improvement on this (“rigid ion”) model can be made by taking into account the 
electronic polarisability of the ions. The most common way to do this consists of 
formally subdividing the ionic charge into a “core” and a “shell” component

^ion — %core + shell , (5-2)

and then allowing for a controlled splitting of the two charges from the original ionic 
site, the (massive) core being connected to the (massless) shell by a harmonic spring. 
Each subdivision of charges and each spring constant introduces further degrees of 
freedom for the fit of experimental data, improving the flexibility of the model. 3 This 
“shell” model[128] has the virtue of being physically sensible, in spite of the fact that the 
mentioned harmonic coupling between cores and shells is not derived from fundamental 
considerations, and has been proven in many circumstances to be transferable within 
reasonably similar systems with unchanged parametrisation [129].

3Negatively charged shells are usually associated to the cations in the ionic materials (and not to 
the anions only), even if no valence electrons are left on the cations in the solid, and even if the core 
electrons polarisability is expected to be small, as in the case of Li2O.

4Some attempts have also been made to fit the parameter from full quantum mechanical 
calculations! 130] [ 131]

The empirical parametrisation of the shell model potentials is normally adjusted by 

means of a least squares fitting procedure using as input the experimental data for the 
lattice parameter and the elastic and dielectric constants4, and the resulting potential 
is checked by calculating the phonon dispersion curves[132]. However, even if the 
parametrisation proves accurate for the harmonic properties of the perfect crystal (and 
for the internal structure of the unit cell, when the ions positions are not fixed by 
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symmetry, as it happens e.g. for non cubic minerals like a—A12O3[133]), this only gives 
confidence on the accuracy of the potential and its first and second derivatives at the 
normal interatomic separations.
The study of defects, on the contrary, requires accuracy of the representation not 
only on the region probed by elastic and dielectric data, but also on a more internal 
region of the pair potential, in the case of interstitial defects, and external region, in 

the case of vacancies. Experimental data from relevant physical samples to fit the 
empirical potentials in the regions outside the perfect ionic spacing are in many cases 
not available, and there are serious doubts whether the normally fitted potentials can 
be relevant in these cases. The problem is expected to be particularly acute in the case 
of high symmetry (e.g. cubic) ionic solids, where the properties of the perfect crystal 
sample the potential on a very limited region.
In spite of these difficulties, the results from pair potential models for the leading 
defect energies in a large number of ionic materials, including alkaline-earth monoxides 
like MgO[134][137][135][136] and SrO[135], transition metal monoxides like MnO[137] 
and ZnO[138], and oxides with fluorite and anti-fluorite structures like UO2[141] and 
Li2O[142], are in good agreement with the experimental results.

5.2.2 Hartree-Fock techniques.

Apart from work based on models, there has been a considerable effort on the ab ini­
tio energetics of ionic compounds including oxygen. The strong localisation of charge 
around the anions, the quasi-spherical shape of its distribution, and the consequent 
leading role which is expected for exchange effects, rather than correlation, in the 
electron-electron interaction, makes of these systems very convenient and sensible sub­
jects for the theoretical analysis based on the Hartree-Fock (HF) technique. The pure 
HF approach treats the (non-local) exchange exactly, and corresponds to the varia­

tional ansatz of a single Slater determinant at each BZ sampling point treated. The 
self-consistent solution of a set of single particle differential equations at each sampling 
point is derived from a stationarity condition for the total energy expression much in 
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the same way as for the derivation of the KS system (1.9).
HF techniques have been widely used by physicists and chemists for the study of 
structural properties of molecules, and standard software for these systems has been 
available for a long time. The basis sets used are almost invariably gaussian-like, 
parametrised on the basis of prior knowledge of the electronic structure of the isolated 
atoms. The study of solids introduces the problem of the incorrect behaviour of the HF 

density of electronic states at the Fermi energy[143][144]. The implementation of an 
HF Linear Combination of Atomic Orbitals is also a non-trivial task, for the presence 
of non-local exchange terms involving a large number of four center integrals, and due 
to the non-orthogonal nature of the basis sets. Some difficulties are also related to the 
correction which should be added to the single particle screened potential to take into 

account the correlation effects (which are not included in the HF results by definition). 
This last issue can however be handled by the inclusion in the scheme of correlation- 
only density functional expressions[145][146] for the correlation energy, depending on 
the electronic charge density and its derivatives.
At least one very general software package for HF calculations in solids has been imple­

mented (CRYSTAL[148][149j) and applied to several classes of compounds. In particu­
lar the properties of a large number of ionic crystals have been investigated in different 
high-symmetry geometries[150][151][152][153].

However, the treatment of defects in oxides introduces a severe increase of the size of 
the systems which have to be treated. A practical strategy for computing the ener­
getics of defects while keeping small the subsystem on which full quantum mechanical 
calculations are performed, is the “embedded cluster” method. The underlying idea is 
that an explicit treatment of the electronic problem is needed only at the defect site 

and on a number of neighbouring ionic sites, while all that is required in the larger 
surrounding zone is that the correct variation of the lattice electrostatic potential is 
well represented. This outer zone can therefore be modelled by a shell of ions repre­
sented by point charges[154][155], or by ion-shell harmonic couples (i.e using the shell 
model[156]). To complete the system representation a suitable second outer shell can 

be included in the calculations, normally as a uniform medium or as a shell model 
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lattice with the correct dielectric properties.
The resulting model, similar in spirit to the Mott-Littleton model[157] for the far- 

field displacement in a polarisable material, provides an economical framework within 
which the energetics and the electronic structure of isolated defects can be investigated 
without the approximations associated with the use of periodic boundary conditions. 
Although the results of calculations on isolated defects (vacancies, or substitutional 

atoms) in materials like MgO and U2O are found to be in good agreement[155] with 
those of the fully modellistic calculations which they are meant to support, the truly 
“ab initio” content of this approach can be biased by limitations in the HF basis­
set convergence, and by the limited size of the tractable clusters. The method has 
nevertheless recently produced good results on a number of defect systems in Oxides like 

F-type centres[158] substitutional anion impurities in MgO[159], and substitutional Li 
trapped-hole centres in MgO[160], and has been proven useful to derive defect interionic 
potentials for model calculations[161].
The problems connected with a proper termination of the cluster, and with embed­
ding the cluster in the appropriate Madelung field, have been recently revisited by 
Pisani and co-workers[162]. These authors propose to couple the cluster with the cor­
rect crystalline environment by a self-consistent procedure which takes into account, 
through appropriate correction terms, the electronic structure of the perfect crystal, 
which can be separately calculated with the ab initio HF technique. The method, which 

has already provided encouraging results on various systems including oxides [163], is 
probably the most sophisticated HF-based technique developed so far which can treat 
defects in solids without the approximations imposed by the use of periodic boundary 
conditions.

5.2.3 Previous DFT-PW calculations.

The volume of work available in the literature about defective ionic systems treated 
in the DFT-PW formalism is not comparable to the large quantity of papers based on 
model or ab initio HF techniques, at least as long as second-row anions like oxygen 
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are present in the material. In particular, we could not find in literature any report on 

previous attempts to calculate the energetics of isolated defects in ceramic oxides, on 
which this work concentrates. The reason is simply connected to the extremely large 
basis sets needed to treat the strongly peaked oxygen p-orbitals in a large supercell, 
so that it is only very recently that calculations of this kind have entered the reach 
of computational technologies, due to the concurrent effect of improvements in the 

efficiency of minimisation algorithms, improvements in the convergence properties of 
the pseudopotentials, and escalation of the available computing power.
Although the pseudopotential density functional techniques have been applied suc­
cessfully to study some perfect oxide crystals in normal conditions[164], or their elec­
tronic structure in high pressure regimes[165], the study of larger systems with these 
techniques has been limited to few cases[166]. Most of the work has however been de­
voted to the investigation of silicates[167], and their phase-dependence on pressurefl68]. 
(Note that silicates are not strictly ionic materials due the semi-covalent nature of the 
Si-0 bond.) In particular some calculations have been recently performed on the en­
ergetics of oxygen vacancies (neutral and charged) in Si02 (a—cristobalitef 169] and 
a—quartz[170]), even though the vacancy defects cannot be considered to be isolated 
in the system geometries investigated5. The calculations presented in the following 

sections[122] correspond as far as we know to the first documented application of the 
well established DFT-LDA-PW technique to the investigation of isolated defects in 
ionic oxides.

5The vacancies are located on neighbouring lattice sites of different SiO4 tetrahedral units[169].
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5.3 Test calculations and periodic boundary con­
ditions.

5.3.1 Setting up of calculations.

Before attempting calculations on defects in MgO and L^O, we have made extensive 
calculations on the properties of the perfect crystals, which can be checked both with 
with experiment and with previous theoretical investigations. Before reporting on 
our work on perfect crystals, we summarise briefly the calculation ingredients and 

parameters used throughout the work.
The main problem in the representation of ions comes from the oxygen pseudopotential, 
which requires an high cutoff treatment. The pseudopotential we used was derived[26] 
within the RRKJ procedure discussed in Section 2.4.1, and represented in the KB form 
(eqn. (2.33)). The optimisation wavevector qc for the p-wave was set equal to 5.7 a.u. . 
The reference atomic configurations used to construct it were 2s22p4 for the s and p 

components, and 2s22p2 53d°’5 for the d component, with real-space cut-offs for the 
three components equal to 1.25, 1.25 and 1.45 a.u. respectively.
A severe test of the general quality of an oxygen pseudopotential is provided by the 
study of the convergence with respect to the PW energy cutoff of the physical properties 
of the isolated oxygen dimer, which can be investigated to check at the same time 
the transferability properties of the pseudopotential. The short equilibrium length of 
the dimer and the highly asymmetric electronic distribution around each atom which 
is associated to the molecule’s ground state, concur to provide an ideal small test 

system to prove the quality of a pseudopotential (which is always a compromise between 
transferability and convergence properties), and make sure that the pseudopotential 
can be used with absolute confidence in the calculations on larger systems.
To avoid the problems connected with the molecule polarisation, a useful compari­
son can be made with results from other LDA calculations performed with “hard” 

pseudopotentials forced to convergence at extremely high energy cutoffs, and with 
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“soft” potential constructed with different optimisation schemes recently introduced. 
In table 5.1 on page 133 we report a comparison of our results for the dimer with 
those obtained from reference [171] using a recently introduced scheme for “ultrasoft” 
pseudopotentials[172], and with those of the standard unoptimised pseudopotential of 
reference [11]. Our calculated results are obtained for the molecule in a cubic box of 
edge 10 a.u., using the T-point to sample the Brillouin zone, exactly as it was done 
in reference [171]. The bond length, ground state vibrational frequency and binding 
energy of the dimer are seen to be well converged with respect to the literature results 
by the time we get to a cutoff of 600 eV (44.1 Ry).

Optimisation is not needed for magnesium or lithium pseudopotentials. We have used 
in these cases two pseudopotentials generated with the standard Kerker methodfl73]. 
The reference all-electron atomic configurations for Mg were 3s2 for the s-component, 
and 3s0-53p0’253d°‘25 for p- and ¿-components, with real space cutoffs (“core radii”) of 
1.38, 1.98 and 2.03 a.u. . The real-space cut-off for Li was 1.5 a.u. for components s 
and p, for which the atomic configurations used were 2s2 and 2s0-752p°-25 respectively 
(the ¿-wave was not treated explicitly in the generation process). For both Mg and Li 
pseudopotentials the s-wave component has been treated as local, to minimise the bias 
due to the KB representation, given that in most systems treated the spherical com­
ponents of the electronic orbitals are by symmetry expected to be the most important, 
while the electronic charge in the ionic solids investigated is known in advance to be 
radically different (lower) than in the neutral atoms case. All pseudopotentials have 
been shown to be highly transferable over the required energy ranges, and to be free of 
the “ghost” states which can sometimes afflict the Kleinman-Bylander representation 
form[24].

For all the calculations on the perfect crystals we used a PW energy cutoff of 1000 eV 
(73.5 Ry), while for the calculations on the larger defective systems we used a minimum 
cutoff of 600 eV (41.1 Ry), corresponding to the range of 600-700 plane waves per atom. 
The first higher cutoff was used to guarantee the excellent convergence needed for the 
evaluation of elastic properties, while the second more limited cutoff was found enough 
to guarantee the convergence of energy differences within 10-3 eV per atom in all 
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systems.
Other points of technique are as follows. In the Mg atom there is an appreciable over­
lap between the 3s and 2p orbitals, which means that the non-linear core correction[27] 
described in Section (2.4.2) may be significant in our case. The correction was there­
fore implemented and used in test calculations, as reported in the next section. The 
sampling of Brillouin zone is much less important for highly insulating oxides than it 
is in metals. The BZ sampling points were generated by the standard Monkhorst-Pack 
scheme[32]. The exchange-correlation energy was represented by the Perdew Zunger 
form[146]6.

6Some evidence of a “better” behaviour in ionic materials of different exchange and correlation 
energy forms has been reported[165].

All the ab initio total energy minimisations were performed using the preconditioned 
conjugate gradients technique developed by Teter et al. [19] already described in Sec­
tion (2.3.2), using the code CETEP (Cambridge-Edinburgh Total Energy Package)[119] 
on a 64-node Meiko Computing Surface in Edinburgh University and a 32-node Intel 
iPSC/860 in Daresbury Laboratory. For details on the parallelisation strategy adopted 
by the code, Section 4.4 should be consulted.

5.3.2 Results for the perfect crystals.

We briefly illustrate here the results obtained from our calculations on the perfect 
crystals, as a check of our techniques, to be compared with experimental data. Apart 
from giving us the opportunity to test the adequacy of some calculation setting features 

like the pseudopotentials used and the chosen cutoffs, the calculations on the unit cells 
allow to investigate the convergency of the BZ sampling at very low computer time 
costs.

Once the target supercells have been chosen, (in our case a 16-ion and a 32-ion cell 
for MgO, and a 48-ion supercell for Li2O), the perfect-crystal calculations using those 
supercells and any chosen sampling set can be reproduced using the unit supercell and 
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an appropriate “folded out” set of sampling points, leading to the same total energy 

within numerical accuracy. Our tests show that T-point sampling only is not really 
adequate even for the 32-ion and 48-ion systems, but that the Monkhorst-Pack four- 
point set[32] (eight points in the full BZ, reduced to four because of the inversion 
symmetry) should be extremely accurate, giving an error of less than 0.01 eV in the 

total energy per cell. However, for calculations on the distorted unit cells which we 
need to fit the elastic constants and the transverse optic frequencies, the four-point set 
is not adequate, and we have used 16 or 32 ¿-points in this cases.
The core correction due to the non-linear dependence of the exchange-correlation en­
ergy on electron density can produce important effects if there is a significant overlap 
between core and valence wavefunctions[27]. This effect is negligible for oxygen, but 
there is slight overlap for the magnesium atom, as shown in figure 5.1 on page 128, 
which makes the correction worth investigating7. Its effects turn out to be small, and 
will be noted below where appropriate. Our calculated values of the equilibrium lat­
tice parameter a0, the bulk modulus, the three elastic constants Cu, C12, C44, the 
zone-centre transverse optic frequency and the four phonon frequencies at the X-point 
for MgO are fisted in table 5.2 on page 134. The reported value of lattice parameter 
does not include the core correction, which reduces it by 0.5 %. This variation is well 
within the uncertainty from other sources. For comparison, the use of the Wigner form 
for exchange-correlation[174], instead of the form we have used, increases the lattice 
parameter by 0.9 %. However, the core correction is included in the TO frequency, 
which is the only case where it was found to be significant: without the correction, 
the frequency results lower by 0.8 THz. Our calculated results for some perfect lattice 
properties of Li2O are reported in table 5.3 on page 135. As for MgO, the evaluation of 

phonon frequencies has been made through the “frozen phonon” technique, i.e. directly 
from the fitted curvature at the minimum of the total energy function calculated for 
each phonon at various amplitude displacements in the harmonic regime. The very

7Although this correction has been used in the past for calculations on bulk properties of ionic 
materials! 164][165], no report of the size of its effects has been made.
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Figure 5.1: Contributions to the electron density p(r) as a function of radial distance 
r (a.u.) due to core electrons and valence electrons in the neutral Mg atom, showing 
the slight overlap in the region 1.5 - 2.0 a.u. .

good agreement with experiment of all the perfect lattice properties investigated is 
what should generally be expected from calculations of this kind, and gives us con­
fidence that the technical aspects of the calculations are under adequate control. To 
provide some reference point for the results of calculations on defective systems, we 
show in figures 5.2 and 5.3 on page 136 the calculated ground state density distribu­
tions for the valence charge in the perfect crystals. In both cases the strongly ionic 
nature of the compounds is very clear, the charge being almost completely localised on 
the oxygen atoms.
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5.4 Defect energetics in periodic boundary condi­
tions.

The goal of our calculations is to provide a theoretical estimate for the energy of 
formation of Schottky defects in MgO and Frenkel defects in Li2O. Both kind of defects 
involve the presence in the solid of a couple of isolated point-defects of opposite charge: 
an anion vacancy and a cation vacancy for the Schottky defect in MgO, and a cation 
vacancy and a cation interstitial for the Frenkel defect in Li2O. The calculations could 
in principle be performed using supercells big enough to contain the defect couples at a 
distance from each other such that the two point defects could be considered isolated in 
the same sense as they are in the real systems (the screened Coulomb interaction being 
obviously long-ranged both in the theoretical model and in the experimental samples). 
However, because of the limited size of the supercell which can be investigated in 
material like these, the calculations have to be performed sitting a single vacancy 

or interstitial in each repeated cell. The overall defect charge state which is to be 
investigated has to be therefore defined when setting in each defect calculation the 
total electronic charge (z.e. the number of electrons) present in the supercell.
Vacancies in MgO carry a net charge: a Mg vacancy is formed by removal of a Mg core 
without changing the number of valence electrons, while an 0 vacancy is formed by 
removing an O core together with 8 valence electrons; the net charges of the Mg and 
0 vacancies are thus -2e and 2e respectively. The Li vacancy in Li2O is constructed 
in an analogous way, while the Li interstitial is formed by adding a Li core without 
introducing an additional valence electron, the vacancy and the interstitial having thus 

net charges of -e and e respectively.
We note that other charge states are also possible. For example, under suitable condi­

tions, F-centres consisting of one or more electrons bound to an oxygen vacancy can be 
formed[158]. These different states have not been studied here. We also did not inves­
tigate in the present work the unoccupied acceptor and donor energy levels associated 

with the vacancy defects, although these are clearly of great interest.
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Because of the net charges carried by the defects, the sum of the core and electron 

charges in each supercell is not zero when a vacancy or an interstitial are present. 
This introduces a formal divergence in the total energy per supercell, due to the long- 
ranged nature of the Coulomb interaction. Moreover, a correction has to be devised 

for the spurious interaction of the vacancies and of the interstitials with each other’s 
polarisation fields. Note that neither of these problems was present in the case of the 
calculations on vacancies and interstitials in Al reported in Chapter 3, because of the 
short-ranged metal screening and of the uncharged nature of the defects in the systems 

considered there.
These issues arise in exactly the same form in the treatment of charged defects with 
empirical interaction models. An established way to treat charged defects in periodic 
boundary conditions is to suppose the net charge of cores and electrons to be compen­
sated by a uniform background. This eliminates the mathematical divergence at G = 0 
in the total energy expression in the PW formulation[181]. The procedure has been ap­
plied both in model calculations[182] and ab initio calculations[ 183] involving charged 
defects in periodic boundary conditions. In particular in the model calculations on 
defects in KC1 and CaF2 of reference [182] (Leslie and Gillan, 1984), a systematic com­
parison was made with the results obtained with the same model potential but without 
the use of periodic boundary conditions (i.e. on truly isolated defects represented in the 

Mott-Littleton scheme[157]), showing perfect agreement between the two approaches. 
These authors also introduced a simple physical argument from which a correction term 
for the residual Coulombic interaction between defects can be derived[182]. Following 

their procedure, we calculate the leading contribution to the defect-defect interaction 
energy by regarding the defects as a superlattice of repeated point charges. The 
correction term AE represents the Coulomb energy per cell of a periodic array of point 
charges with a neutralising background immersed in a structureless dielectric of the 

same dielectric constant as the perfect crystal, and is given by

AE = , (5-3)

where q is the net defect charge, eo is the static dielectric constant of the bulk crystal, 
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L is the lattice parameter of the supercell and a is an appropriately defined Madelung 
constant. Each defect formation energy is obtained by subtracting the energy of the 
perfect system from that of the defective system. Since we are interested in the ener­

getics of isolated defects, the correction AE is subtracted from the result to obtain an 
improved value.
In order to support the correctness of this procedure, we have performed a series of 
calculations on vacancy energetics in MgO in periodic boundary conditions using the 

shell model with a well established parametrisation for the pair interaction potentials. 
The goal of these calculations was (i) to analyse the converge of the Schottky formation 
energy and of the vacancy migration energies with respect to the size of the supercell, 
and (ii) to check the agreement of these results with the literature results on isolated 
defects obtained from the conventional Mott-Littleton method using the same potential 
parameters8.

8In appealing to empirical modelling in this way, we are making the (reasonable) assumption that 
the asymptotic dependence of the energies on supercell size will be qualitatively the same in ab initio 
and empirical treatments.

9This potential form is also sometimes referred to as “Born-Mayer-Huggins” form.

The parametrisation of Sangster and Stoneham[136] was used for the pair interac­
tion potentials, with the potentials represented in the standard Buckingham form9 of 
eqn. (5.1), in which the Mg and 0 ions in the shell-model have the ionic charges of 
2e and -2e. The calculations were performed using the code SYMLAT[184] on the 
CRAY X-MP/416 in Rutherford Appleton Laboratory, Oxford. We report in table 5.4 
on page 137 our results for the empirically calculated Schottky energy, including the 
Madelung correction (5.3), and for the cation and anion vacancy migration energies, 
for supercell sizes going up to over 400 ions. Results from the same interaction model 

obtained by the Mott-Littleton method[185] are also reported for comparison.
It is clear from the results in table 5.4 that the supercell values for all the defect 
energies converge rapidly with increasing cell size to the Mott-Littleton values for 
isolated defects. With a supercell size of 32 ions, the residual error in the Schottky 
energy Es is about 0.7 eV, i.e. about 10 % of its value. This accuracy can already 
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be considered satisfactory, although the full ab initio treatment of the 54-atom or 64- 
atom supercells would perhaps be desirable to remove residual convergence errors. As 

would be expected in the hypothesis of large cancellation of the convergence errors, the 
migration energies converge faster than the Schottky energy, and are already rather 
well converged for systems of 32 lattice sites, the absolute errors being about 0.3 eV. 
Although we performed some model calculations also on Li2O, to establish a “first 
guess” set of ionic position for the ab initio calculations requiring lattice relaxation 

(as reported in the next section), we did not repeat the full analysis done in the case 
of MgO. The convergence of the corrected results with respect to supercell size was 
assumed in this case to be achieved for our biggest (48-atoms) supercell. This supercell 
has a bigger volume (approximately 20%) than the MgO 32-atom supercell10, while the 
charge of the defects investigated is half than it is in MgO. The expected size of the 
error due to spurious interaction between defects in repeated cells is therefore at least 
four times smaller in L^O than it is in MgO.

10Note that both supercells are body-centered cubic, and the two materials have almost identical 
dielectric constant e0 (9.86 for MgO and 9.78 for Li2O).
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Table 5.1: Energy cutoff convergence of the equilibrium distance d, the ground state 
frequency a; and the binding energy Ebind of the oxygen diatomic molecule compared 
with the theoretical results of (a): Laasonen and Car [171], using the optimisation 
method due to Vanderbilt[172] (for three different values of the core radius rc), and 
with (b): the reference pseudopotential of Bachelet et af.[ll], See text (page 124) for 
the details on the pseudopotential used in the present work.

Approach
Ecut 
(Ry)

d
(a.u.)

U)

(cm-1)
Ebind 
(eV)

ref. a
V(rc = 1.8 a.u.) 20 2.41 1840 9.7

25 2.40 1780 9.8
V(rc = 1.5 a.u.) 20 2.29 1760 10.0

25 2.30 1760 10.1
30 2.30 1800 10.1

V(rc = 1.2 a.u.) 20 2.49 1130 9.1
30 2.32 1650 9.8
50 2.30 1610 9.8

BHS (ref. b) 40 2.40 1170 9.0
85 2.30 1490 9.6
125 2.29 1660 9.8

This work 29.4 2.39 1914 ••
44.1 2.27 1539 9.8
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Table 5.2: Calculated and experimental values of lattice parameter a0, bulk modulus 
B, elastic constants (7,7 and five phonon frequencies of MgO. Phonon modes are the 
transverse optic mode at the T-point and the transverse and longitudinal acoustic and 
optic modes at the X-point of the Brillouin zone. References to experimental work are 
(a): Wyckoff[175]; (b): Sangster et a/.[176]; (c): Anderson and Andreatch[177]; (d): 
Jasperse et ¿zZ. [179].

calculated experimental
«0 (Ä) 4.17 4.21°
B (Mbar) 1.54 1.55* - 1.62c
Cn (Mbar) 3.03 2.90d
C12 (Mbar) 0.76 0.88d
C44 (Mbar) 1.69 1.60*
TO(T) (THz) 12.39 12.23c
TA(X) (THz) 8.65 8.966
LA(X) (THz) 12.57 12.656
TO(X) (THz) 13.24 13.15*
LO(X) (THz) 16.36 16.61*
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Table 5.3: Comparison of calculated and experimental values for lattice parameter <z0, 
elastic constants and selected phonon frequencies of L^O. Acoustic, optic and 
Raman modes are denoted by A, 0 and R, longitudinal and transverse branches being 
distinguished by the initial letters L and T; T and X in parentheses indicate modes 
at the zone centre and at the X point of the Brillouin Zone. Experimental values are 
taken from ref. [180].

calculated experimental
«0 (Ä) 4.50 4.60
cu (Mbar) 2.14 2.02
c12 (Mbar) 0.15 0.22
C44 (Mbar) 0.69 0.59
TO(T) (THz) 14.1 12.6
R(T) (THz) 16.5 15.7
TA(X) (THz) 8.5 7.7
LA(X) (THz) 15.0 14.3
TO(X) (THz) 11.8 11.1
LO(X) (THz) 22.2 22.0
TR(X) (THz) 17.8 16.2
LR(X) (THz) 7.1 8.0
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Figure 5.2: Contour plot of the calculated valence electron density (units of 10-2 
A-3) on the (100) plane in perfect-crystal MgO. The contours are uniformly spaced 
at intervals of 25 x IO-2 A-3. Intersections of the grid lines mark regular-lattice sites. 
Distance along the edge of the plot is indicated in angstrom units.

Figure 5.3: Contour plot of the calculated electron density on the (110) plane in perfect 
crystal LigO (antifluorite structure). Units as above.
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Table 5.4: Values for the Schottky energy Es and the cation and anion migration 
energies &Em in MgO calculated in periodic boundary conditions using the empirical 
shell-model potential of Sangster and Stonehamfl76]. Results are shown for a range 
of different sizes of supercell, and include the Madelung correction (see equation (5.3) 
on page 130). Also shown are the defect energies calculated from the same inter­
action model for the infinite crystal using the Mott-Littleton method (Sangster and 
Rowell [185]).

no. of ions Es (eV)

<1 (eV)
cation anion

16 7.03 1.58 1.53
32 7.03 2.36 2.48
54 7.41 2.15 2.23
64 7.34 2.22 2.32
128 7.55 2.11 2.21
250 7.60 2.08 2.19
432 7.63 - -

Mott-Littleton 7.72 2.07 2.11
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5.5 Defect energetics.

5.5.1 Schottky and Frenkel formation energies.

The Schottky energy Es in MgO is the sum of the energies needed to extract a Mg++ 
ion and an 02~ ion to form two relaxed isolated vacancies, minus the cohesive energy 
per ion pair in the solid. For a given supercell size, we therefore calculate the energies of 
(i) the perfect crystal11; (ii) the system formed from (i) by extracting a Mg core; (iii) the 
system formed from (i) by extracting an 0 core and eight electrons. The Frenkel pair 
formation energy Ep in LijO is the the energy required to extract a Li+ ion forming 
a relaxed Li- vacancy, plus the energy needed to form a relaxed Li+ interstitial, so 
that we need supercell calculations for the perfect lattice, the vacancy system and the 
interstitial system all performed at the fixed number of electrons of the perfect lattice 
case.

11 We really only need one calculation on the unitary cell system with the sampling set which is 
equivalent to the one we use for the supercell (cf. Section 5.4).

The calculated values for Es and Ep are small energy differences of large total energy 
results, and therefore some attention has to be paid to ensure the maximum possible 
cancellation of errors when performing the subtractions. As previously mentioned, we 
made use for all supercell systems of the Monkhorst-pack 4-point sampling set for all 
the defect energetics calculations on the 16-atom and 32-atom cell in MgO and on the 
48-atom cell in I^O, the sampling error expected for the largest system sizes on the 

total supercell energy being smaller than 0.1 eV.
For the 16-atom MgO calculations we used the PW energy cutoff of 1000 eV. The 32- 
atom and 48-atom calculations on MgO and Li2O used a cutoff of 600 eV, corresponding 
to a number of plane-waves to represent each orbital in the range of 15000-20000. The 
justification for this lower cutoff comes from tests performed with different cutoffs on 
the (unrelaxed) vacancy formation energies in the 8-atom system. These calculations 
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show that the cutoff decrease from 1000 eV to 600 eV changes the value of the Schottky 

energy for this system by less than 0.05 eV, in spite of a total energy difference per 
unit cell of about 2 eV between the two calculations, due to imperfect convergence 
with respect to cutoff.
Ionic relaxation could have been performed using the Hellmann-Feynman forces on 

the ions and some iterative minimisation scheme (for example, using the conjugate 
gradients technique on the ionic degrees of freedom). We have, though, found it more 
practical to adopt a less “automatic” procedure. For the MgO 16-atom cell the cubic 
symmetry of the vacancy leaves only one relaxational degree of freedom when a vacancy 
is created. The minima have therefore been determined by one-dimensional fit of the 
total energy curves along the only displacement coordinate. In the MgO 32-site cell 
and in the Li20 48-site cells the degrees of freedom are many more, and we have simply 
used the output coordinates from our model calculations described in Section 5.4. This 
procedure is justified by the known accuracy of the shell-model results on the properties 
of the materials we investigate, although it could be only of partial help, or irrelevant, 
or even misleading, for materials with more complicated electronic structures than 
those of our case.
In any case the magnitude of the residual forces acting on the ions at the end of the 
electronic minimisation gives clear indications on the differences between the model and 
the first-principles ionic minima, and allows an estimation of the residual total-energy 
decrease which would be recovered by the complete ab initio relaxation of atoms. In our 
calculations the residual Hellmann-Feynman forces using the model-relaxed positions 
were always less then 0.4 eV/K, (and practically always much less than this much), 

and harmonic models of the further relaxation indicate that the energy lowering could 
not exceed 0.1 eV, which is not very relevant given the size of errors from other sources 
in the calculations (see discussion on page 131) and the much larger magnitude of 
the experimental error bars. Our results for the energetics of vacancy defects in the 
two materials investigated are reported in table 5.5 on page 142. Ions extraction or 
immersion energies are corrected with the Madelung correction (5.3) for the residual 
Coulomb interaction between periodic defect images in different supercells.
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The formation energy of Schottky defects in MgO is so large that its precise experimen­
tal determination, due to the extremely low concentration of defects even close to the 
melting point, is very difficult. The measured values range in the interval 5-7 eV[142], 
and therefore the agreement within about 0.5 eV between our results and the results 
of the pair potential models (see discussion on page 131 and results in table 5.4 for the 
uncomplete convergence with respect to supercell size) is an important support for the 

validity of these models.
The experimental uncertainty on the Frenkel formation energy in L^O is also rather 
large. The formation energy 2.53 eV from reference [187] is probably the most reliable 
experimental value, being the result of a careful computer-fitting analysis of a very 
large amount of data (from a wide temperature range for the conductivity measure­
ments). Given these uncertainties, our calculated value 2.20 eV in table 5.5 can again 
be considered in satisfactory agreement with both the experimental results and the 
empirical-model predictions.

The effect of the vacancy defects on the surrounding charge distribution can be studied 
by subtracting the ground state density of the perfect lattice from that of the unrelaxed 
defective system. Contour plots of these density differences for the Mg and O vacancies 
in MgO in the (100) and (110) planes are shown in figures 5.4 and 5.5 on pages 143 
and 144. The units used for the density are 10"2/A3, the lengths are expressed in A, 

and the ions (in the rock-salt structure) axe at the intersections of the superimposed 
grid.

The structure of the density response to the magnesium vacancy can be analysed on 
the (100) direction on both planes in figure 5.4. The small amount of charge present 

on the cation and in the region immediately around it in the perfect lattice is repelled 
by the negatively charged vacancy, to create a region of negative (shaded) difference. 
The main structure of the charge response is on the (six) neighbouring oxygen ions, 
and takes the form of a distortion of the p-like orbitals pointing towards the vacancy, 
whose lobes are displaced to create the double peak-trough structures visible on the 
oxygen sites.
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In the case of the (positive) oxygen vacancy in figure 5.4, the leading effect is a charge 
transfer to the spherical region surrounding the vacant site and corresponding to the 

six nearest neighbours Mg atoms, which are less efficiently ionised in the absence of 
the oxygen in the center of the octahedron they constitute. The transfer is mainly 
from the p-orbitals pointing to the vacancy of the nearest neighbour oxygen atoms, on 
which the depletion leaves the prominent quadrupole moment visible in the center of 

the (100) plane plot.
Similar difference plots for the Li unrelaxed vacancy and interstitial in Li2O are shown 
in figure 5.6 on page 145 for the (110) plane. The interstitial site is at the center of 
a face-centered cube of oxygen atoms. Again here the effective negative charge of the 
vacancy and positive charge of the interstitial create large depletion regions (of opposite 

sign) around the defects, while the main effect, as for the Mg vacancy in MgO, is in 
the distortion of the p-orbitals on the oxygen ions neighbouring the defects, whose 
lobes relax in response to the repulsive (attractive) field of the vacancy (interstitial). 
It is worth noticing that these effects obtained with a first-principles description of the 
electronic distribution give a much more complex image of the polarisation response 
than what can be derived from simple dipolar models like the shell model, and could 
provide the insight needed for more refined modelling taking into account the shape of 
the electronic polarisation response12 .

12 For example, fitting the parameters of “breathing” spherical, elliptical or of more complicately 
shaped model shells [139][140] .
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Table 5.5: Ab initio total energies of the periodic systems used to study the energetics 
of defective MgO, and Li2O, with the resulting Schottky energy Es and Frenkel Energy 
Ep, compared with values from experiment and from empirical modelling. Ab initio 
results are shown for the MgO 16-ion and 32-ion supercells and for Li2O 48-ion super­
cell. (The individual energies are numbered to allow the relations between them to be 
indicated.) The correction referred to in items (6),(10),(20),and (24), is the Madelung 
term given in equation (5.3). References to experimental and empirical values are (a):

MgO 16 ions 32 ions
(1) perfect lattice (total) -3711.197 -7384.963
(2) perfect lattice (per unit cell) -463.900 -461.560
(3) Mg vacancy (unrelaxed) -3667.749 -7339.924
(4) Mg vacancy (relaxed) -3668.136 -7341.224
Mg extraction energy: 
(5) uncorrected (4) - (1) 43.061 43.739
(6) corrected 44.633 44.987
(7) 0 vacancy (unrelaxed) -3284.272 -6961.171
(8) 0 vacancy (relaxed) -3285.718 -6962.754
0 extraction energy: 
(9) uncorrected (8) - (1) 425.479 422.209
(10) corrected 427.051 423.457
Schottky energy:
(11) ab initio (6) + (10) - (2) 7.784 6.884
(12) experimental 5 - 7“
(13) empirical model 7.726

Li2O 48 ions
(14) perfect lattice (total) -7226.666
(15) perfect lattice (per unit cell) -451.667
(16) Li vacancy (unrelaxed) -7212.570
(17) Li vacancy (relaxed) -7213.497
Li extraction energy: 
(19) uncorrected (17) - (14) 13.169
(20) corrected 13.467
(21) Li interstitial (unrelaxed) -7236.950
(22) Li interstitial (relaxed) -7238.233
Li immersion energy: 
(23) uncorrected (22) - (14) -11.567
(24) corrected -11.269
Frenkel energy:
(25) ab initio (20) + (24) 2.198
(26) experimental 1.58c-2.53d
(27) empirical model 2.28“



143

0-000 2-087 4.174

Figure 5.4: Difference valence density (defective system minus perfect crystal) for the 
Mg++ vacancy in MgO on the (100) (above) plane and the (110) plane (below). Density 
is in units of 10-2 A-3, with contours at intervals of 10-2 A-3, and negative regions 
shown shaded. Intersections of the grid lines mark regular-lattice sites, with the va­
cancy site at the origin of coordinates. Distance along the edge of the plot is indicated 
in angstrom units.
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Figure 5.5: Difference valence density (defective system minus perfect crystal) for the 
0= vacancy in MgO on the (100) plane (above) and on the (110) plane (below). Other 
details are the same as for figure 5.4 (page 143).



Figure 5.6: Difference valence density (defective system minus perfect crystal) for the 
Li+ vacancy in L^O on the (110) plane (above) and for the Li+ interstitial in the 

plane (below). Density is in units of 10~2 A-3, with contours at intervals of 10-2 
and negative regions shown shaded. Oxygen ions are at the intersections of the 

superimposed grid. “X” and “+” symbols denote the positions of the defects and of
the lithium atoms on their regular lattice sites respectively.
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5.5.2 Defect migration energies.

We turn now to consider the results of our ab initio calculations on migrating defects 
in the two materials. In the MgO crystal each of the sublattices of the two constituent 
elements has the fee symmetry. The migration of both kind of vacancies takes place 
on a cubic centered face when an ion moves into the vacant site from a neighbouring 
sublattice site (see figure 5.7 on pagel50). The migration geometry is therefore similar 

to the migration of Al vacancies discussed in Chapter 3, and the migration energy is 
defined analogously for both ionic species as the difference between the energy of the 
fully relaxed system with one ion sitting midway between two empty sublattice sites, 

and the energy of the fully relaxed vacancy. Charge density plots on the (100) plane 
for the full valence charge of the relaxed systems of migrating Mg and 0 vacancies are 
reported in figure 5.8 on page 151.
In the anti-fluorite structure of LijO, the lithium ions form a simple cubic sublattice. 
Each Li lattice site has therefore six equivalent nearest neighbour sites to which a Li 
vacancy can migrate during the diffusion process (see figure 5.9 on page 152). The 
stationary point where the migrating ion is positioned for calculating the migration 
energy is again midway between two perfect Li lattice sites. The ions are then relaxed 
using the empirical model calculation, as was done for the relaxed vacancy case, and 
the residual Hellmann-Feynman forces are checked to be small enough not to affect the 
results for the migration energy (experimentally about 04-0.5 eV) for less than 0.1 eV.

The migration mechanism of the Li interstitial in Li2O is less clear (the migration energy 
is not known experimentally). Empirical modelling on a number of materials having 
the fluorite and anti-fluorite structures indicates the interstitialcy mechanism to be 
energetically favoured [141], in which the migrating interstitial moves onto an occupied 
regular site simultaneously displacing its previous occupant onto a new interstitial site 
(see figure 5.10 on page 153). The relaxed system saddle-point configuration has the 
two moving atoms disposed symmetrically with respect to the (110) mirror plane placed 
midway between the initial and final interstitial sites. Charge density plots on the (HO)
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plane for the full valence charge of the relaxed systems of migrating Li vacancy and 
interstitial are reported in figure 5.11 on page 154.
The results obtained for the calculated migration energies are reported in table 5.6 on 
page 155. The results from table 5.5 for Schottky and Frenkel pairs formation energies 
have also been included for the biggest cell sizes. The very good agreement with 
experiment of all the migration energies, within an error of about 0.1 eV comparable 

with the spread of experimental numbers, is very encouraging.
The similarity of the cation and anion migration energies in MgO, also predicted by the 
empirical models, is confirmed by our result. The charge density plots in figure 5.8 show 
two completely different ground state charge distributions for the two migrating ions at 
the saddle point. This, however does not necessarily imply differences of the energetic 
barriers for the two migrations, since from the point of view of a Madelung model with 
formal charges ± 2e the two system configurations in the figure are one the mirror 
image of the other. The completely ionic nature of the ground state distributions even 
during the migration, (the Mg ions being invisible in the contour plots) could account 
for this apparent discrepancy between the enormous difference in size between the two 
migrating ions and the close similarity of the two migration barriers.
Good agreement, finally, is also found for the Li migration energy in Li2O, which 
appears to underestimate the experimental results by less than O.leV13, while no ex­
perimental result is available for the interstitial migration energy.

13Note that the Madelung correction (5.3) cancels away when we evaluate the emigration energy 
as a difference of two energies. This reflects the fact that the macroscopic dielectric screening in the 
material does not depend on the position of the charged defect in the lattice.

5.5.3 Concluding remarks.

The calculations reported in the present chapter represent a first step towards the 

ultimate objective of accumulating a systematic data base for the energetics of defects 
in ionic materials. The results are encouraging, suggesting that the “first-principles” 
techniques we used are adequate to the class of systems investigated. It is noteworthy 
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that the generality of the methods we use prevents these results from being biased 
by particular choices of model parameters, localised basis sets, or special embedding 

techniques.
A first possible extension of the present results is the investigation of the other charge 
states and of the electronic structures associated to the defects studied. This would 
consist of the study of the vacancy defect systems not restricted to a single pre-defined 

total number of electrons in each supercell, and to the sole occupied energy levels. 
The relevance of this kind of study is connected with the important role which the 
energetic ordering of the possible charge states in defective systems has in determining 
the mechanical, optical, and chemical properties of oxide materials (in particular, in 

the case of rare earth ceramics like Ce02, pure[194] or in solid solution[195]).
Another natural continuation of the present work is the investigation of ionic or semi­
ionic materials for which the empirical models are not (or are only partially) reliable. 
This is particularly important in the case of materials for which the experimental 
evidence is incomplete and in need of theoretical support. An extension of the work to 
the study of grain boundaries and surface reconstructions and defects in oxide materials 
would also be of great relevance, to provide insight into sintering and catalysis processes 
at the fundamental level, for which there is a severe lack of experimental evidence. Some 

improvements in the present calculations and some refinement of the techniques, before 

extending their use to different materials, are, however, needed.
The possibility of investigating bigger systems is the first of the improvements needed. 
The ions in the materials investigated exert long-ranged Coulomb forces on each other, 
and each charged defect creates an extended polarisation region, distorting the sur­
rounding lattice of ions and the associated electronic distribution. As discussed in the 
previous sections, the supercell method provides an elegant solution to the “termina­
tion problem” typical of the cluster-based approaches, but it also introduces the new 
problem of the spurious interactions between the defects polarisation fields.
In the case of bulk defects treated here, the volume of the supercells scales like the cube 
of the distance between the repeated defects. In the limit of extremely large systems 
the calculations are dominated by the orthonormalisation of orbitals, which scales like 
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the cube of the system’s volume (no. of atoms). An obvious advantage would be gained 

adopting some improved calculation strategy in which the computational workload were 
reduced to scale linearly with the volume of the system. The encouraging results of 
some recent investigations in this direction[ 120][121] suggest that suitable and robust 
algorithms for this purpose will be available in the very near future.
Another independent source of improvement will be represented by the introduction 

of very large parallel computing machines (“Teraflop machines”), which are expected 
to extend the reach of the techniques we have used to supercells containing several 
hundreds of atoms. The availability of machines of this kind, about two orders of 
magnitude more powerful than what is available at the moment (and definitely outside 

the reach of any foreseeable progress of non-parallel computing devices) will also au­
tomatically solve another, more minor, problem which we encountered in the present 
calculations.
In our calculations the direct relaxation of the ionic lattice around the defects using 
the Hellmann-Feynman forces results slow and ultimately unpractical. This problem 
was partially cured in the calculations by using as “first guess” positions the relaxed 
ionic coordinates obtained from an empirical model, and in our case no further atomic 

relaxation was ever needed for reaching good energy minima. However, some prelimi­
nary results on another system chosen as an example of more structurally complicated 
metal oxide (e.g. a-AhOa [133] 14) show that this is not always the case, so that a 
fully ab initio technique for accomplishing the ionic relaxation is in general needed. 
Since efficient and robust algorithms for this purpose are already available (like the 
CG technique, applied to the atomic position and constructing the search directions 

from the Hellmann-Feynman forces), no other difficulty than the temporary limitation 
of computing resources prevents this particular problem to be solved in the course of 
a first-principles investigation like the one we have reported in the present chapter.

14The results of this particular study belong to a later stage of our investigation on oxide materials, 
and are not reported in the present work.
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Figure 5.7: The rock-salt structure and the migration of a vacancy in MgO. Each 
atomic species occupies a fee sublattice, the two sublattices being shifted of a0/2 along 
the (100) direction one with respect to the other. The vacancies of both kind diffuse 
along the (110) directions, (a): vacancy in the stable position; (b): migrating ion at 
the saddle point midway between two regular lattice sites; (c): stable vacancy in the 
new position. The migration energy is the difference between the energies calculated 
at (b) and either at (a) or at (c).
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Figure 5.8: Total valence electron density on the (100) plane for the migrating Mg++ 
vacancy (above), and the migrating O= vacancy (below). In both cases the system is 
fully relaxed, with the migrating ion held at the saddle-point, midway between initial 
and final sites. Units of density are IO-2 A-3, with contours at intervals of 10-2 A-3. 
The plots are cut off for densities above 20 x 10-2 A-3. Distance along the edge of the 
plot is indicated in angstroms.
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Figure 5.9: The anti-fluorite structure and the migration of a Li vacancy in Li2<). Li 
and O atoms are represented by small black circles and large grey circles respectively. 
The vacant Li lattice site is at the center of the cube (above). The migration takes 
place along a (100) direction, with one of the six Li nearest neighbour atoms moving 
into the vacant site. The saddle-point position (below) corresponds to the migrating 
Li atom placed midway between the initial and final vacancy positions.
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Figure 5.10: The migration of a Li interstitial, (a): the original interstitial position 
is at the center of a cube of Li atoms not containing an O atom (the front-top-left 
cube), (b): the interstitial atom moves on the (110) plane (identified by the thick- 
lined contour) and displaces another Li atom from its regular lattice position. The 
saddle-point configuration consists of the two atoms symmetrically displaced on the 
(110) plane from the regular site, (c): the final position of the interstitial is at the 
center of the rear-top-right cube of Li atoms.
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Figure 5.11: Total valence electron density on the (100) plane for the migrating Li+ 
vacancy (above) and on the (110) plane for the Li+ interstitial (below). In both cases 
the system is fully relaxed, with the regular lattice positions of lithium atoms at the 
intersections of the superimposed grid. The migrating ion in the figure above is at the 
coordinate origin, the initial and final vacant sites being to the left and right. The two 
atoms involved in the interstitial migration are marked by crosses. The regular site on 
which Li atoms interchange is at the coordinate origin. Units and scales as in figure 5.8
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Table 5.6: Ab initio results for the Schottky energy Es and the cation and anion 
vacancy migration energies A.Em in MgO, and for the cation Frenkel energy Ep and 
the vacancy and interstitial migration energies in Li2O. The ab initio values for 
MgO and Li2O axe from 32-ion and 48-ion systems. Experimental results are from 
references: (a): Wuensch et a/.[193]; (b): Duclot and Departes[188]; (c): Sempolinski 
and Kingery[189]; (d): Shirasaki and Harma[190]; (e): Shirasaki and Yamamura[191]; 
(f): Ohno et al.[186]; (g): Chadwick et al.[187] . Results for empirical models are from 
references: (h): Sangster and Rowell[185]; (i): Mackrodt[142]; (1): This work.

calculated empirical experimental
MgO

Es (eV) 6.88 7.72h 5-7a
AEm (eV) cation 2.39 2.Q7h 2.2b, 2.28c
&Em (eV) anion 2.48 2.11* 2.42d, 2.61e

Li2O
EF (eV) 2.20 2.28* 1.58', 2.53p
£VEm (eV) (vacancy) 0.34 0.27' 0.40a, 0.493
AEm (eV) (interstitial) 0.58 0.51' -
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Conclusions.

In this work we have presented the results of a series of defect-energetics calculations 
in Al host and in the ionic oxides MgO and Li20. The two kinds of materials and their 
electronic structures are very different, and the physics of isolated defects in them (i.e. 
the modalities of the electronic screening, the energies involved in the formation of the 

defects, and the energy barriers for defect diffusion) is accordingly different.
The results for the vacancy in Al demonstrate that a careful first principles treatment 
can lead to a very accurate description of this point defect, without introducing pre­
vious experimental knowledge other than the ionic core charge, or assuming arbitrary 
approximations in the self-consistent treatment, as was customary in the past. The 
agreement with experimental findings and with the few other very recent fully ab-initio 
results (obtained from other DFT-based approaches) shows that this system is under 

good technical control.
The addition of a hydrogen impurity in the Al host metal introduces further technical 
difficulties, connected with the necessity of high energy cutoff treatment in large super­
cells of the metallic system. By carefully tailoring the minimisation algorithm, and by 

paying special attention to the issues connected with BZ sampling, we have obtained 
for the first time successful results from fully ab initio calculations on H impurities 
in Al. These results have a special value in the light of the technological importance 
of metal hydrides. Moreover, there is still no clear experimental picture for (1) the 
localisation of the hydrogen impurity, (2) the role played by lattice relaxation in the 
different self-trapped geometries, (3) the features of the hydrogen binding to a vacancy 

defect, and (4) the modalities of its diffusion in the metal host.
Apart from satisfactorily reproducing the observed values of experimentally measured 
quantities like the hydrogen heat of solution, the aim of our investigation was to provide 
some theoretical insight into these issues.
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The investigation of defects in ionic ceramics like MgO and I42O within the DFT-PW 
formalism constitutes the second part of this work. A main result of these calculations 
is that they clearly show the adequacy of the DFT-LDA pseudopotentials-supercell 
method for the study of large systems of ionic materials, in spite of the non-unifom 
ground state distributions and of the large (but a priori unknown) charge redistribution 
from the isolated atoms case.
As results of our supercell calculations, very accurate predictions could be obtained for 
a wide range of bulk and defect properties in MgO and Li2O, e.g. the formation energies 
of Schottky and Frenkel pairs and the migration energies of point defects of different 
charge and size. This suggests that for materials of this kind the techniques we have 
used are a valid alternative to the use of localised basis sets or of cluster-embedding 
techniques for obtaining results which are correct within the experimental accuracy. 
Overall, our results are in strong support of the empirical models for ionic materials, 
but they can also represent a valid source of information for improved modelling. The 
defects we investigated in MgO and Li2O carry net charges, and they are expected 
to induce a strong polarisation of the surrounding lattice and to distort the electronic 
distribution on the nearest neighbour ions. While our results agree with the empirical 
predictions on lattice relaxation around the defects, they also show that the defect- 
induced charge density displacements are considerably more complex than the dipolar 

polarisation implied by most empirical models.

Given the very high energy cutoff treatment required by the presence of oxygen, super­
cell calculations generally involve almost prohibitive demands of computer time and 
memory allocation. An important factor in rendering these calculations nowadays pos­
sible has been the recent improvements in the total energy minimisation algorithms, 
which have enabled a more effective treatment of the technical aspects of large-systems 
calculations. Another advance is the availability of “smooth” pseudopotentials, con­
structed by means of increasingly sophisticated and effective optimisation techniques. 
Some features of our calculations on oxides consist of the use of a minimisation algo­
rithm with minimal memory requirements, and of a carefully optimised smooth pseu­
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dopotential for oxygen. In spite of this, these calculations would not have been feasible 

without the help of a large parallel supercomputer. The calculations required the use 
a fortran code (CETEP) explicitly adapted to these kind of machines, using machine- 
dedicated FFT and communication routines. The data-driven parallelisation strategy 
in the code was designed and implemented (by M.C.Payne and L.J.Clarke, in Cam­
bridge and Edinburgh Universities) taking into careful account the time-complexity 

scaling of the various operations at large system sizes.
As the first application of this code to reach conclusion, our calculations on MgO rep­
resent also the first example of a series of large-scale ab initio total energy calculations 
in the DFT-LDA-PW framework using supercells and pseudopotentials ever to be suc­
cessfully completed (in September 1991 [122]) on a parallel supercomputer. Much of the 
human-time investment in this part of the present work was spent in extensive machine 

and code testing, and in overcoming technical difficulties of various kind which were 
encountered in the course of the computations. As well as marking a step forward in 
the ability of computational practice to treat technologically important materials like 
ionic oxides, we believe that the results of this part of the work also provide a timely 
illustration of the progress in the first-principles investigation of solids which has been 
stimulated in very recent times by parallel computational techniques.
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Appendix A.
Entropy Correction: results for Al

We report here the results of some further calculations on Al perfect-lattice properties 
which we performed to demonstrate the validity of the BZ sampling procedure discussed 

in Sections (2.5.2) and (2.5.3).

A. 1.1 Convergence of the corrected total energy.

Assuming the widely used “gaussian broadening” technique as a starting point, we have 
implemented the entropy correction for the normalised gaussian smearing function g(x) 

in the form:

g(x) = AEcorr(a) = --?-=£ wkje~( )2 , (A.l)
20r k.,.

(cf. equation (2.76)), where as usual a is the smearing width, is the weight of the 
BZ sampling point ky, and ¡1 is the Fermi energy self-consistently extracted from the 
ground state occupations /,• of the orbitals and from the charge conservation condition 

= Nel . The occupations are evaluated by integration of the smearing function 

up to the Fermi level for each orbital of eigenvalue et- :

fi = = I xi = ——— • (A-2)
J-oo cr

We report in figure A.12 on page 164 the effects of the correction defined by equa­

tion (A.l) when applied to bulk aluminium at a series of different broadening widths <r . 
The calculations were performed using a set of 256 sampling points, constructed “fold­
ing out” in the primitive BZ the set given by (±1/4, ±1/4, ±l/4)15 in units of the 
reciprocal space basis vectors corresponding to the fee superlattice with 64 Al atoms 

15 For a cubic supercell this set corresponds to the mean value point introduced in reference [30].
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per cell16. This rather large sampling set allows us to derive meaningful conclusions on 
the stability of the corrected results even at small values of <r, for which many sampling 
points are needed to extract correct ground state energy values. From the results in 
the figure, it is clear that the correction recovers most of the deviation of E(o) from 

the unsmeared ground state energy Eq (cf. eqn. 2.67), so that the ground state can 
be reproduced within a tolerance of 10-2 eV even starting from an uncorrected energy 

1 eV or more higher.

16The sampling set is reduced by inversion, but not by other symmetry operations, from the full 
set of 512 points.

As a test on the BZ convergence of the corrected total energy, we have calculated this 
quantity for bulk Al for a series of different sampling sets and broadening widths. All 
the sampling sets were obtained as above as the equivalent of a set of eight BZ points in 
a supercell calculation, since we are interested in determining which sampling set and 
smearing width should be used for obtaining a chosen absolute accuracy in a supercell 
calculation of given size. Note that in an actual supercell calculation on a disordered 
metal system, the greater dispersion of the self-consistent eigenvalues (which in the bulk 
case at different k-points are largely degenerate) is expected to improve the accuracy 
of our statistic correction.
The results of the calculations are illustrated by figure A. 13 on page 164, showing the 
corrected total energy per Al atom as a function of the number of points in the sampling 
set for the values (<r = 3.2, 1.6, 0.8, 0.4, 0.2, 0.1 eV). While no good convergence can be 
assumed for the energy calculated at a = 0.1 eV before 256 sampling points are used 
(empty circles), the convergence progressively improves at higher values of a, being 
already reached for a — 3.2 eV (full circles) within an accuracy of 10-2 eV using 32 

sampling points only. The number of orbitals used in the calculations should be always 
sufficient to span the energy spectrum widened by the broadening procedure. The 
triangles in figure A. 13 show that the subtracted energy correction is overestimated if 

a broadening width a = 6.4 eV is used, for which not enough states were included in 
the calculations.
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A.1.2 The elastic constant C44 .

The physical quantities of interest in total energy calculations are usually differences of 
total energies, so that cancellation of energies is hoped for when the results are needed 
with better precision than what can be expected within the accuracy of the calculated 
energy itself. The BZ convergence of most physical quantities is known from experience 
to be much faster than the convergence of the total energy.
There are, however, circumstances in which cancellation of errors cannot be expected 
to help. A typical case occurs when there are relevant differences in the electronic 
structures of the two systems to which the energy values in the subtraction correspond. 
In this case using the same BZ sampling set to integrate very dissimilar band energies 
does not lead to cancellation of errors. Another case occurs when there is no obvious 
way to asses a sampling set which in the two systems has the same physical significance. 
The accuracy of “mean value” or “special” points of the BZ depends on the symmetry 
properties of the integration domain[30][32], and is not preserved if in one of the systems 
such symmetry is broken. These problems are obviously most serious in the case of 
metals, due to the slow convergence of results with BZ sampling.

As a further test of our BZ integration scheme we have calculated the C44 elastic 
constant in Al. Elastic properties are determined by the harmonic fit of an energy 
curve around the minimum, the energies in the fit being very small (of the order of 
10-2 eV per atom) and the bulk point-symmetry being broken when imposing a strain 
to the crystal cell. C44 is obtained by shear strain, so that the electron density in the 
metal is not changed to first order in the deformation. For this reason, there can be 
no large positive contribution to C44 from the band energy in the metal in the free 
electron gas approximation, so that the response of the crystal to shear stress is totally 
due to structure-dependent factors, i.e. depends on the ionic positions.
The structure-dependent contributions to the total energy can be expressed in a second 
order perturbation expansion in the strength of the (weak) pseudopotential:

v„„a = ^(«) = E|S(g)|! , (A.3)
s g 
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where S'(g) is the structure factor, W(g) is summed on all equivalent reciprocal lat­
tice vectors, F(g) is essentially a negative monotonic function not depending on the 
pseudopotential v(g) and slowly converging to zero, and Ue is the usual Madelung 

term.
Local model pseudopotentials v(g) for aluminium have a zero in G-space representation 
at about 1.5 kf, in close correspondence to the position of the (111) set of reciprocal 
perfect lattice vectors (which is about 1.6 kf). This gives a simple qualitative argument 

to conclude that a shear deformation splitting the (111) set away from the minimum 
of v(g)2 would lower the band energy contribution to the energy[42][43], or, in other 
words, to conclude that the band energy component to the elastic constant C44 is 
negative.
The Madelung energy of any ionic configuration can be readily calculated with no BZ 
sampling errors through Ewald summation, and its contribution to the elastic constant 
is known since long ago to be large and positive[196], while the experimental value 
of C44 for pure Al is much smaller[197][198]. From this evidence it is clear that a 
large cancellation takes place in determining the value of C44, with the Madelung 
contribution slightly prevailing, so that the fee structure of the metal is stable with 
respect to shear deformation.
Since BZ sampling errors occur only in the large and negative band energy contribution 
to C44, and since no cancellation can be expected for these errors as discussed above, 
the theoretical calculation of C44 within standard total energy procedures is techni­
cally extremely difficult, and we are not aware of a successful calculation of this kind 
in literature[199], although some attempts have been made with standard smearing 
procedures[200], finding no convergence (or negative values) for C44, in spite of the use 

of thousands of inequivalent BZ sampling points.
We report in table A.7 on page 163 our results for C44 for two smearing widths (<r = 
3.2 eV and a = 1.6 eV) and various sampling point sets. The sampling sets were 
determined with the same procedure used for the total energy calculations described 
before, the geometry of the corresponding supercell being indicated in parentheses for 
each set (the number of atoms on each supercell is twice the number of points used 
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in the calculation on the unit cell). Each result has been obtained from polynomial 

fit of nine energy values, the distorted unit cell being determined by the strain tensor 
aj = |e(l — ¿tJ) for equi-spaced values of e in the range [ -4%, 4% ] , corresponding 
to energy differences in the range [0, 25] meV. While the convergence is probably still 
uncomplete for a = 1.6 eV , the series of values for a = 3.2 eV is converged within 

10-2 Mbar using 108 sampling points or more.

No. of k-points 32(fcc) 64(bcc) 108(fcc) 256(fcc)
C44 cr = 3.2 eV (Mbar)
C44 a = 1.6 eV (Mbar)

0.465
0.767

0.404
0.070

0.363
0.380

0.365
0.413

Table A.7: Results for C44 obtained for two smearing widths (<t = 3.2 eV and <7 — 
3.2 eV) for various BZ sampling point sets. The number of atoms in each supercell 
corresponding to the sampling set used (see text) is twice the number of sampling 
points indicated. (The supercell symmetry is as indicated in parentheses.)

We report in table A.8 on page 165 our results for C44 obtained using a sampling set 
of 256 BZ points and a broadening width a = 3.2 eV. Values from some experimental 
measurements are also reported for comparison. The “band” contribution C^n</ is 
calculated as the difference between the total value and the Madelung contribution 

'“44-
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Figure A.12: Uncorrected (empty diamonds) and corrected (crosses) total energy val­
ues (eV) per unit cell in Al, obtained at self-consistency using gaussian smearing at 
different fixed values of the broadening width a (eV). The corrected energy at fixed 
sampling set is very stable even at large values of a within an accuracy of a few meV, 
as shown in the magnified scale plot.

Figure A.13: Corrected total energy (eV) for a = 3.2,1.6,0.8,0.4,0.2,0.1 eV as a 
function of the number of BZ sampling points. Full and empty circles correspond to 
<7 = 3.2 eV and to a = 0.1 eV respectively. Triangles correspond to the correction 
calculated at a = 6.4 eV, for which not enough orbitals to span the energy spectrum
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Cf4 (Mbar) C^nd(Mbar) C^Mbar) C£p(Mbar)
L567 T202 R365 0.309° ,0.3166

Table A.8: Results for C44 obtained using 256 BZ sampling points and a smearing width 
a = 3.2 eV . The “band” contribution C44nii is the difference between the calculated 
value C44 and the Madelung contribution C^. Values from some experimental mea­
surements (extrapolated at zero temperature) are taken from references: (a): Vallin 
et al. [197]; (b): Kamm and Alers [198] .
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