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Purpose: The study aimed to develop machine learning (ML) models for pretherapy prediction of absorbed doses (ADs) in
kidneys and tumoral lesions for patients with metastatic castration-resistant prostate cancer (mCRPC) undergoing [177Lu]Lu-
PSMA-617 (Lu-PSMA) radioligand therapy (RLT). By leveraging radiomic features (RFs) from [68Ga]Ga-PSMA-11 (Ga-
PSMA) positron emission tomography/computed tomography (PET/CT) scans and clinical biomarkers (CBs), the approach
has the potential to improve patient selection and tailor dosimetry-guided therapy.
Methods and Materials: Twenty patients with mCRPC underwent Ga-PSMA PET/CT scans before the administration of an
initial 6.8 § 0.4 GBq activity of the first Lu-PSMA RLT cycle. Posttherapy dosimetry involved sequential scintigraphy imaging
at »4, 48, and 72 hours, along with a single photon emission computed tomography (SPECT)/CT image at around 48 hours,
to calculate time-integrated activity coefficients. Monte Carlo (MC) simulations, leveraging the Geant4 application for tomo-
graphic emission toolkit, were employed to derive ADs. The ML models were trained using pretherapy RFs from Ga-PSMA
PET/CT and CBs as input, whereas the ADs in kidneys and lesions (n = 130), determined using MC simulations from scintig-
raphy and SPECT imaging, served as the ground truth. Model performance was assessed through leave-one-out cross-valida-
tion, with evaluation metrics including R2 and root mean squared error (RMSE).
Results: The mean delivered ADs were 0.88 § 0.34 Gy/GBq for kidneys and 2.36 § 2.10 Gy/GBq for lesions. Combining CBs
with the best RFs produced optimal results: the extra trees regressor was the best ML model for predicting kidney ADs, achiev-
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ing an RMSE of 0.11 Gy/GBq and an R2 of 0.87. For lesion ADs, the gradient-boosting regressor performed best, with an RMSE
of 1.04 Gy/GBq and an R2 of 0.77.
Conclusions: Integrating pretherapy Ga-PSMA PET/CT RFs with CBs shows potential in predicting ADs in RLT. To person-
alize treatment planning and enhance patient stratification, it is crucial to validate these preliminary findings with a larger sam-
ple size and an independent cohort. � 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and
similar technologies.

Introduction multivariate correlations, outperform simple linear regres-
Prostate cancer (PCa) is the second most commonly diag-
nosed noncutaneous malignancy in men.1 Androgen depri-
vation therapy (ADT) has long been the cornerstone of PCa
treatment.2 However, most PCa tumors eventually become
resistant to ADT, leading to nonmetastatic or metastatic
castration-resistant prostate cancer (nm/mCRPC).3 The lat-
ter, mCRPC, represents the most aggressive and lethal form
of the disease.4

Prostate-specific membrane antigen (PSMA) is a glycopro-
tein that is overexpressed in malignant prostate cells while
showing minimal expression in benign or nonprostatic tis-
sues. This selective expression makes PSMA an ideal target
for both the precise diagnosis and targeted treatment of PCa.5

[68Ga]Ga-PSMA-11 (Ga-PSMA) PET/CT imaging has revolu-
tionized the detection of cancer lesions in mCRPC, enabling
the identification of patients who may benefit from [177Lu]
Lu-PSMA-617 (Lu-PSMA) radioligand therapy (RLT).6

Despite promising results, RLT raises concerns regarding
balancing therapeutic benefits and potential side effects.7

The prevailing “one-dose-fits-all” approach may result in
under- and overtreatment.8 Therefore, personalized RLT,
guided by optimal radiation doses, is needed, similar to
external radiation therapy and brachytherapy.9 Although
quantitative imaging-driven Monte Carlo (MC) simulation
methods are the gold standard for personalized dosimetry,
their extensive requirements, such as the significant compu-
tational power and time needed to perform these simula-
tions, make them impractical for routine clinical practice.10

Although there are many studies in radiopharmaceutical
therapies (RPTs) focusing on internal dosimetry after the
first therapy cycle to inform subsequent cycles, pretherapy
predictions offer distinct advantages.11-13 A fundamental
aspect of treatment planning in RLT is estimating the
absorbed doses (ADs) in both tumoral lesions and organs at
risk (OARs) prior to therapy, which can potentially mitigate
risks associated with treatment-induced toxicities.14 Pre-
therapy imaging provides crucial insights into the biodistri-
bution of the therapeutic agent, facilitating tailored and safe
dose adjustments for individual patients.15,16 Previous stud-
ies have investigated various applications of pretherapy PET
metrics in RPTs.17,18 Among these, some have focused on
predicting ADs using PET metrics, particularly in OARs
and mainly in patients with neuroendocrine tumor (NET),
with a few studies also incorporating clinical biomarkers
(CBs) to improve predictive accuracy.17,19-21

Data-driven machine learning (ML) algorithms, capable
of recognizing complex patterns and accounting for
sion by reducing uncertainties and significantly improving
predictive accuracy.19,21 Peterson et al22 developed predic-
tive models for kidney AD in NETs treated with [177Lu]Lu-
DOTA-TATE. Using pretherapy PET-standardized uptake
value (SUV) metrics and estimated glomerular filtration
rate (eGFR) biomarkers, their model achieved about 18%
accuracy in estimating posttherapy renal AD. They further
explored the predictive power of Ga-PET SUV metrics com-
bined with baseline biomarkers to develop ML models for
tumor AD prediction.23 Radiomics in medical imaging
offers the advantage of extracting imperceptible data, inac-
cessible through the naked eye, thus enhancing noninvasive
analysis.17,24-26 Plachouris et al21 developed a pretreatment
planning model for predicting ADs in OARs of patients
with NET undergoing [177Lu]Lu-DOTA-TATE, leveraging
ML algorithms. Their approach combined radiomic and
dosiomic features, showing promising results for personal-
ized OAR AD prediction.

Xue et al19 used ML models to predict AD in OARs
during [177Lu]Lu-PSMA I&T RLT, using first-order fea-
tures from Ga-PSMA PET imaging and laboratory meas-
urements. A recent study has also shown promising
results in predicting ADs of OARs in patients with NET
using radiomic features (RFs) and ML algorithms.21

Besides the dosimetry of OAR, the evolving oncology
landscape emphasizes tumor textural analysis, which
measures spatial heterogeneity.25 In this context, estimat-
ing the tumor AD before initiating the RLT could pro-
vide a quantitative measure for dose prediction,
potentially enhancing patient-treatment outcomes.

Given the paucity of studies on pretherapy predic-
tions of kidney and tumoral lesion ADs in Lu-PSMA
RLT for patients with mCRPC, this study aimed to
address this gap and use MC patient-specific dosimetry
as a reference to develop ML regression models. These
models incorporate RFs from Ga-PSMA PET/CT scans
with baseline CBs. We hypothesized that including CBs
in our models could better account for patient-specific
kinetics that impact ADs, which are challenging to
extract from imaging a short-lived surrogate, thereby
enhancing predictive accuracy beyond Ga-PSMA PET
uptake alone. This approach can potentially streamline
the dosimetry workflow by reducing the necessity for
multiple imaging sessions with prolonged procedures.
Furthermore, identifying these predictive features pro-
vides valuable insights for clinical decision-making, par-
ticularly in addressing dosimetry-guided treatment
planning in RLT.
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Methods and Materials
Patient population and CBs

Twenty patients (68.28 § 6.44 year), with histopathologi-
cally proven PCa participated in this study. Inclusion crite-
ria were mCRPC with PSMA-expressing lesions visible on
Ga-PSMA PET/CT imaging within 2 months of treatment.
These patients then received the initial cycle of Lu-PSMA
RLT as part of their standard treatment protocol. As part of
an institutional review board-approved ongoing research
study, all patients provided written informed consent to par-
ticipate in the dosimetry investigation.

The cohort’s accurate net administered dose of RLT,
averaging 6.8 § 0.4 GBq, was determined by subtracting
any residual activity in the syringe from the original assayed
value. Patients underwent 3 scintigraphy imaging and a sin-
gle photon emission computed tomography/computed
tomography (SPECT/CT) session around 48 hours postin-
jection. Blood tests were collected 1 to 7 days before the
RLT cycle and provided CBs.

The clinical variable set, detailed in Table 1, includes 3
demographic variables, 1 treatment history variable, 9 blood
biomarkers, and 1 histopathology biomarker. This set was
determined in collaboration with our nuclear medicine
clinicians, who identified these factors as crucial for patients
with mCRPC undergoing Lu-PSMA therapy. Including
these variables enhances our understanding of factors
affecting patient dose prediction, consistent with recent
Table 1 Clinical variables of 20 patients with mCRPC in the stud

Variable type Variable name Va

Morphological Age (y) Patient’s age (y)

Weight (kg) Patient’s weight (kg)

Height (cm) Patient’s height (cm)

Historical Previous
therapies (n)

The number of therapies bef
chemotherapy, and ADT

Blood tests PSA (mg/L) Serum prostate-specific anti
per deciliter)

CR (mg/dL) Creatinine (mg/dL): a waste
the kidneys

ALP (U/L) Alkaline phosphatase (U/L):
cells including osteoblasts

WBC (£103/mL) White blood cell count (£10

RBC (£106/L) Red blood cell count (£106/

HB (g/dL) Hemoglobin (g/dL): a protei

HCT (%) Hematocrit (%): the percent

K (mEq/L) Serum potassium (milli-equ

Ca (mg/dL) Serum Calcium

Histopathology GS Gleason score: a grading sys
(low-grade cancer) to 10 (h

Abbreviations: ADT = androgen deprivation therapy; EBRT = external beam
PCa = prostate cancer; RBC = red blood cell; RLT = radioligand therapy; WBC =
studies highlighting their relevance in this
population.19,27
[68Ga]Ga-PSMA-11 PET/CT Imaging

Patients underwent pretherapy Ga-PSMA imaging on a
Siemens Biograph 6 TruePoint scanner, with an average
activity of 148 § 16.92 MBq. Scans were performed 2 days
to 2 months before treatment, and RLT eligibility was
assessed. Whole-body PET scans from the vertex to the
mid-thighs were acquired in 3-dimensional (3D) mode,
with 3 to 4 minutes per bed position. Imaging initiated 45 to
60 minutes postinjection and used an ordered-subset expec-
tation maximization (OSEM) iterative algorithm, with a
168 £ 168 matrix size and 4.072 mm pixel size. A low-dose
CT scan was also acquired for attenuation correction with a
512 £ 512 matrix size, 0.97 mm pixel size, 110 kVp, 80 mA,
3 mm slice thickness, and a pitch of 1.5.
[177Lu]Lu-PSMA-617 Scintigraphy and SPECT/CT
imaging

For patient-specific MC dosimetry in Lu-PSMA RLT, serial
posttherapy scintigraphy was conducted at »4, 48, and 72
hours following the initial RLT cycle and a quantitative
SPECT/CT scan at around 48 hours. SPECT scans were
acquired using a dual-headed Siemens Symbia T2 system
equipped with a low-energy high-resolution (LEHR)
y

riable definition Mean (range)

69.52 (54-89)

89.75 (70-155)

172.06 (168-180)

ore RLT, including prostatectomy, EBRT, 2.07 (1-3)

gen, a glycoprotein enzyme (milligrams 59.01 (1.18-559.8)

product, removed from the blood through 0.97 (0.8-1.2)

an enzyme that is produced by several
(eg, increase in osteoblastic metastasis)

187.79 (93-384)

3/mL) 6.49 (4.9-10.43)

L) 4.28 (3.53-5.93)

n in RBCs that carries oxygen 12.04 (10-14.9)

age by volume of RBCs in the blood 35.79 (14-42.5)

ivalents per liter) 3.83 (2.83-4.85)

9.48 (9.2-10.1)

tem for PCa. Gleason scores range from 6
igh-grade cancer)

Mode: 8 (7-10)

radiotherapy; mCRPC = metastatic castration-resistant prostate cancer;
white blood cell.
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collimator. According to MIRD Pamphlet No. 26, a single
20% energy window centered on the lower 113-keV photo-
peak is preferable when using a low-energy collimator, such
as LEHR, to optimize image quality.28

In a single-bed configuration with autocontouring, both
kidneys and most lesions, which were predominantly
located in the pelvic region, were covered. However, this
setup excluded the liver and spleen. A 2-bed configuration
was used in a few cases with widespread metastasis to the
abdominal and pelvic regions when the SPECT/CT system
was available for research. Prioritizing the kidneys and
lesions was essential as each mCRPC patient has 2 kidneys
and multiple lesions, providing more data points to
strengthen the modeling. Covering additional OARs, such
as the salivary glands, liver, and spleen, required a 2- or 3-
bed configuration, but this was not feasible because of scan-
ner availability constraints.

Images were reconstructed using the OSEM iterative
technique, with 8 iterations and 8 subsets. Attenuation cor-
rections were applied using low-dose CT scans, followed by
a post-reconstruction Gaussian filter of 5 mm full-width
half-maximum, achieving an isotropic resolution of
4.79 mm. Scintigraphy and SPECT/CT scan parameters are
detailed in Table 2.13,28
Tumoral lesion and kidney segmentation

In contrast to semiautomated methods that rely on fixed
thresholds (eg, 50% or 20% of maximum uptake), a board-
certified nuclear medicine physician visually assessed tracer
uptake and manually delineated the kidneys and lesions
using the “Segment Editor” module of 3D Slicer software
v5.2.2. We focused our analysis on the largest 8 lesions per
patient, deliberately excluding those <4 mL (2 cm) [4]. This
decision was made to enhance the reliability of our findings
by reducing the potential impact of partial volume effect
(PVE) on smaller lesions. Furthermore, we performed man-
ual segmentation on the higher-resolution PET/CT images
Table 2 SPECT/CT and whole-body planar imaging acquisition p

Whole-body planar acquisition SPECT acquisition

Parameter Value Parameter V

Matrix size 1024 £ 256 Matrix size 128 £ 12

Pixel size 2.4 mm £ 2.4 mm Voxel size 4.8 mm £
4.8 mm

Scan time »15 min
(depending on
patient’s height)

Scan time (frame
duration (s/fr)
and projections)

»24 min
64 proj
head)

Energy
window

Center: 113, 15%
photopeak,
10% lower and
upper scatter.

Collimator LEHR,
113 keV

Abbreviations: CT = computed tomography; LEHR = low-energy high-resolut
slice-by-slice. These segmentations were then coregistered
onto the corresponding SPECT/CT images, and regions
were carefully adjusted to ensure accuracy, a time-consum-
ing task. Additionally, we included only lesions that were
visible in planar images for time-integrated activity (TIA)
calculations. This approach not only minimized the impact
of PVE but also preserved the clinical relevance of our
study.

Tumoral lesions were categorized as bone metastases
(BM), lymph node metastases (LNM), and soft tissue (ST),
each with distinct labels, with the prostate bed considered as
ST. The true position of the kidneys was determined on CT
slices, including the medulla and cortex, while excluding the
vessels, cysts, renal pelvis, and adjacent structures. Kidneys
and tumoral lesions were included based on anatomical size
and distinct margins. Segmentations were validated and
adjusted by a second experienced nuclear medicine physi-
cian. Figure 1 shows the manual segmentation of 3 patients
with mCRPC in PET/CT and SPECT/CT images, highlight-
ing left and right kidneys (LK and RK), BM, LNM, and ST
in transaxial views.
Hybrid dosimetry workflow

Figure 2 illustrates the hybrid dosimetry workflow, followed
by a detailed breakdown of each step. After preparing Lu-
PSMA, the injection time was recorded and the initial and
remaining syringe activity was measured to determine the
net activity administered. Patients underwent scintigraphy
imaging at approximately 4, 48, and 72 hours postinjection,
with SPECT/CT imaging at approximately 48 hours for pre-
cise tracking of the radiopharmaceutical’s temporal distribu-
tion.

Partial-volume correction (PVC) was not applied in this
study for several reasons. One primary reason is the lack of
a universally accepted method for PVC at the organ or voxel
level.29 A common approach at the organ or tumor level
involves using volume-dependent recovery coefficients
arameters

CT acquisition

alue Parameter Value

8 Matrix size 512 £ 512

4.8 mm £ Voxel size 0.97 mm £ 0.97
mm £
5 mm

(20 fr/s,
ections per

Scan time »1 min

Tube voltage,
current, and pitch

110 kV,
55 mAs, and 1.5

ion; SPECT = single photon emission computed tomography.
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Fig. 1. Manual segmentation of targets in PET/CT and SPECT/CT images for 3 patients with mCRPC, with detailed delinea-
tion of bone metastases (BM), lymph node metastases (LNM), and soft tissue (ST) lesions, along with the right and left kidneys
(RK and LK), depicted on transaxial views. Abbreviations: CT = computed tomography; LK = left kidney;
mCRPC = metastatic castration-resistant prostate cancer; PET = positron emission tomography; RK = right kidney;
SPECT = single photon emission computed tomography.
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obtained from phantom measurements, such as those using
spherical inserts of varying sizes. However, this method has
well-known limitations, as recovery coefficients are influ-
enced by factors such as volume, activity distribution, and
shape.29-32 Given these limitations, we chose not to employ
phantom-based PVE corrections and treated PVC as part of
the image segmentation step of dosimetry, which was
described in the previous section.29,33

A calibration technique was employed to derive a SPECT
camera calibration factor (cps/MBq) from the ratio of total
counts in the reconstructed image to scan duration multi-
plied by net activity. This factor converted SPECT images
from counts to Becquerel (Bq) units.28,34-36

SPECT/CT images underwent segmentation (as described
previously) to extract activity within each volume of interest
(VOIs), including kidneys and lesions. Scintigraphy images
were coregistered using 3-D Slicer software, with regions of
interest (ROIs) delineated on the 4 hours anterior scan. To
ensure consistency in contouring and quantification, the ini-
tial ROIs were maintained in size and shape and manually
repositioned on subsequent anterior views, with a 180° rever-
sal applied to posterior views. Scintigraphy activities were
quantified using the conjugate view method to obtain a 2D-
based time-activity curve (TAC), which was then rescaled
using quantitative SPECT data (as indicated by the star in the
TAC of Fig. 2a).37,38

To understand the kinetic of the radiopharmaceutical,
rescaled TACs with uniformly weighted activities were inte-
grated using a triple-exponential equation to obtain TIA
coefficient or »A values, representing total disintegrations
in each VOI.39

CT images were resampled using Lanczos interpolation
with the "Resize Image (BRAINS)" module in 3D Slicer to
match SPECT/CT resolution and dimensions (Fig. 2b).
Hounsfield units (HUs) were transformed into materials
and densities using the Schneider tables.28 The activity and
density maps (from SPECT/CT) were input into the Geant4
application for tomographic emission (GATE) simulation
platform (v9.2, using Geant4 v11.0) to obtain the absorbed-
dose-rate map (ADRM), the rate at which energy is depos-
ited by radiation in a given tissue or volume per unit time
(Gy/s).40

GATE includes a feature called DoseActor, which records
the AD within a specified volume as a 3D matrix.40 The
GATE MC simulation used the MersenneTwister random
seed and included processes from both the electromagnetic
emstandard opt3 and RadioactiveDecay physics lists. With
109 primaries, the simulation achieved a mean statistical
uncertainty of about 3%. The mean absorbed-dose rate was
determined by applying the mask of VOIs in the voxelized
absorbed-dose-rate maps. In the final stage (Fig. 2c), the
mean AD for each VOI was determined through the analyti-
cal multiplication of the absorbed-dose-rate mean and
region-based TIA coefficients, which were obtained from
the estimated activity concentration over time.13 ADs were
computed in both Gy and Gy/GBq (per administered activ-
ity) for VOIs. ADs per administered activity (Gy/GBq)
served as the target for ML algorithms.
Radiomics workflow

Figure 3 illustrates the radiomics workflow, outlining the
following steps: data collection (PET/CT images, patient
characteristics, and laboratory data), PET/CT VOI segmen-
tation, preprocessing, feature extraction, feature selection,
model construction, and model evaluation. The imaging
protocol, CBs, and segmentation have been described in
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Fig. 2. Hybrid dosimetry workflow in this study. (a) Net activity measurement, scintigraphy and SPECT/CT imaging, cali-
bration, registration, segmentation, plotting time-activity curves (TACs), and calculating time-integrated activities (TIAs). (b)
Image preprocessing, Monte Carlo simulation, and absorbed-dose-rate mean calculation. (c) Final dose calculation. Abbrevia-
tions: CT = computed tomography; SPECT = single photon emission computed tomography.
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previous sections. This section elaborates on feature extrac-
tion through model evaluation.
Radiomics feature extraction

Following the manual segmentation, image preprocessing
and feature extraction were conducted using the LIFEx
package v7.4.0.41,42 Preprocessing encompassed spatial
resampling to 3£ 3£ 3 mm3, intensity discretization, and
intensity rescaling, with consistent settings applied across all
patients. PET images were discretized into 64 gray levels
using absolute intensity rescaling, with intensity values
ranging from 0 to 139 (the maximum SUV in the data
set). CT images were discretized into 10 bins using abso-
lute intensity rescaling, with HUs ranging from �1000
to 3000.

A total of 243 RFs were extracted from each VOI,
comprising 124 PET RFs and 119 CT RFs. These features
were categorized into first-order and second-order features.
First-order features were further categorized into morpho-
logical, intensity-based, and intensity-histogram features.
Morphologic features quantify the 3D shape and size of the
VOIs, encompassing parameters such as volume size and
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Fig. 3. Radiomics workflow applied in this study. The workflow includes data collection (PET/CT images, patient character-
istics, lab data), VOI segmentation, image preprocessing (spatial resampling, intensity discretization, rescaling), feature extrac-
tion (shape, intensity, texture), feature selection (LASSO with q-value correction), model construction (machine learning with
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phy; LASSO = least absolute shrinkage and selection operator; LOOCV = leave-one-out cross-validation; PET = positron emis-
sion tomography; VOI = volume of interest.
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surface area. Tumor lesion location was included as a “LOC”
feature, categorizing BM as 1, LNM as 2, and ST as 3.

Intensity-based features were derived from the inten-
sity values, encompassing features such as minimum,
mean, and skewness. Intensity-histogram features are sta-
tistical features derived from histograms of the intensity
values. Second-order features, or textural features, are
computed based on the spatial relationships between
voxels. These features are further categorized into gray-
level co-occurrence matrix (GLCM), gray-level run
length matrix, neighboring gray-tone difference matrix
(NGTDM), and gray-level size zone matrix (GLSZM)
features.
Radiomics feature selection

Radiomics processing and ML pipeline were conducted in
Python V.3.11.5. Features were z-score normalized before
selection, ensuring zero mean and unit variance.

Overfitting poses a significant concern in ML investiga-
tions, particularly when the feature count exceeds the sam-
ple size. To address this, the least absolute shrinkage and
selection operator was used to select the most informative
predictive features. Seven-fold cross-validation was applied
to determine the optimal tuning parameter. Subsequently,
Pearson coefficient of correlation and Spearman’s rank cor-
relations were analyzed between predictive features and
ADs of kidneys and lesions, respectively, followed by
Benjamini and Hochberg Pvalue correction, considering
Qvalue < .05 as significant.
ML construction

Multiple linear and nonlinear ML regression algorithms
were employed, including linear regression, ElasticNet
regression, random forest regressor, gradient-boosting
regressor (GBR), eXtreme gradient boosting, extra trees
regressor (ETR), support vector regression, decision tree
regression, K neighbors regressor, and adaptive boosting
(AdaBoost) regression to determine the optimal regression
algorithm.
Experiments

The study comprised a series of experiments investigating
the predictive power of various feature categories, including
PET RFs, CT RFs, and CBs in predicting mean ADs. These
experiments were integrated into the ML models, evaluating
their performance separately for kidneys and lesions.
Experiments 1 to 4 evaluated PET-only RFs (E1), CT-only
RFs (E2), PET/CT RFs (E3), and CBs (E4). Feature selection
within these experiments identified important features and
the best ML algorithms. Experiments 5 to 7 (E5-E7) investi-
gated the predictive power by combining selected RFs from
E1 to E3 with chosen CBs from E4. E8 E10 further com-
bined selected RFs from E1 to E3 with all CBs.
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Statistics and model evaluation

Leave-one-out cross-validation was used to train and vali-
date the ML models, addressing the small sample size.
Model performance was assessed using the coefficient of
determination (R2), Pearson coefficient of correlation (r,
Qvalue < .05) for kidneys, Spearman’s rank correlation (r,
Qvalue < .05) for lesions, mean absolute error, root mean-
square-error (RMSE), and mean absolute percentage error
in comparison to the ground truth. Mean absolute error,
RMSE, and mean absolute percentage error were computed
in Gy/GBq.
Results
In a cohort of 20 patients, 34 kidneys (LK and RK from each
patient) were analyzed, with 3 patients missing full kidney
data in the SPECT field. Additionally, 130 tumoral lesions
>2 mL (mean = 43.03 § 70.31 mL; range, 2.1-370.68 mL)
Table 4 The name of selected variables for kidneys in each expe

Kidneys

Experiment
No. and nam

(Pearson correlation coef

E1 5: IB_IntensitySkewness (r = �0.44),
IH_IntensityHistogram10thPercentile (r = 0.49)
NGTDM_Busyness (r = �0.63), and
GLSZM_SmallZoneEmphasis (r = 0.59)

E2 4: MORPHOLOGICAL_SurfaceToVolumeRatio (
IH_IntensityHistogram25thPercentile (r = �0.4
GLSZM_NormalisedZoneSizeNonUniformity (r

E3*
8: RF1_PET: IH_IntensityHistogramMedian (r
RF3_PET: IB_IntensitySkewness (r = �0.45),
RF4_PET: GLSZM_SmallZoneEmphasis (r = �
RF5_PET: NGTDM_Busyness (r = �0.63)
RF6_CT: IH_IntensityHistogramInterquartileRa
RF7_CT: GLCM_ClusterProminence_CT (r = �
RF8_CT: GLSZM_NormalisedZoneSizeNonUni

E4 4: RBC (r = �0.55), CR (r = 0.48), HCT (r = �0.

Abbreviations: AD = absorbed dose; IB = intensity-based; IH = intensity-histo
* Row E3 corresponds to symbols such as RF1_PET to RF8_CT, related to Figur

Table 3 AD for kidneys and tumoral lesions of all 20 patients (in

Target (no.) Range of AD (Gy)
Mean (§
of AD

Tumoral lesions (n = 130) 0.38-93.30 16.05 §
Kidneys (n = 40) 0.74-11.22 5.98 §
Abbreviation: AD = absorbed dose.
were included, predominantly 104 BMs, along with 19
LNMs and 7 STs. The data set comprised 124 quantitative
Ga-PSMA PET RFs, 119 quantitative Ga-PSMA CT RFs, 3
morphologic features, 1 treatment history feature, 9 blood-
test biomarkers, and 1 histopathological biomarker. Table 3
provides AD statistics in Gy and Gy/GBq for all 20 patients
with mCRPC in this study. The kidneys have a mean AD of
0.88 § 0.34 Gy/GBq (5.98 § 2.31 Gy), ranging from 0.11 to
1.65 Gy/GBq (0.74-11.22 Gy). Tumoral lesions exhibit a
mean AD of 2.36 § 2.10 Gy/GBq (16.05 § 14.28 Gy), rang-
ing from 0.05 to 13.72 Gy/GBq (0.38-93.30 Gy).

The prediction performance of various ML algorithms
was evaluated using RFs and CBs across E1 to E10 experi-
ments. Tables 4 and 5 present the names of the selected vari-
ables for each experiment from E1 to E10, for kidneys and
lesions, respectively. The correlation coefficients (r)
between each selected feature and the mean ADs are
reported in parentheses next to the variable names. Pear-
son’s correlation coefficient is used for kidneys, and Spear-
man’s rank correlation is used for lesions, with Benjamini-
Hochberg correction applied (Qvalue < .05). Tables 6 and 7
riment

e of final selected variables
ficient with estimated AD, Qvalue < .05)

, GLRLM_GreyLevelNonUniformity (r = �0.49),

r = �0.47),
1), GLCM_ClusterProminence (r = �0.39),
= �0.40)

= 0.62), RF2_PET: IH_MaximumHistogramGradien (r = �0.65),

0.59), and

nge_CT (r = 0.39),
0.39), and
formity_CT (r = �0.40)

49), and ALP (r = �0.48)

gram.
e 7.

Gy and Gy/GBq)

STD)
(Gy)

Range of AD per
administered dose

(Gy/GBq)

Mean (§STD) of AD
per administration
dose (Gy/GBq)

14.28 0.05 - 13.72 2.36 § 2.10

2.31 0.11-1.65 0.88 § 0.34



Table 5 The names of selected variables for lesions in each experiment

Tumoral lesions

Experiment
No. and name of final selected variables

(Pearson correlation coefficient with estimated AD, Qvalue < .05)

E1 7: IH_IntensityHistogramMode (r = 0.54),
IH_IntensityHistogramCoefficientOfVariation (r = 0.47), GLCM_JointEntropyLog2 (r = 0.67),
GLSZM_SmallZoneEmphasis (r = 0.54),
GLSZM_ZoneSizeEntropy (r = 0.51),
GLSZM_ZoneSizeNonUniformity (r = 0.76), and GLSZM_NormalisedZoneSizeNonUniformity (r = 0.54)

E2 7: MORPHOLOGICAL_SurfaceToVolumeRatio (r = �0.22),
IH_IntensityHistogramMode (r = �0.33),
IH_IntensityHistogram10thPercentile (r = �0.28), GLCM_DifferenceAverage (�r = 0.43),
GLRLM_LongRunsEmphasis (r = 0.50), GLSZM_LargeZoneLowGreyLevelEmphasis (r = 0.24),
GLSZM_ZonePercentage (�r = 0.54), and
NGTDM_Complexity (r = �0.32)

E3* 10: RF1_PET: IH_IntensityHistogram10thPercentile (r = 0.60),
RF2_PET: IH_IntensityHistogramMode (r = 0.54),
RF3_PET: GLCM_JointEntropyLog2 (r = 0.67),
RF4_PET: GLSZM_NormalisedGreyLevelNonUniformity (r = �0.47),
RF5_PET: GLSZM_NormalisedZoneSizeNonUniformity (r = 0.54),
RF6_PET: GLSZM_ZoneSizeNonUniformity (r = 0.76)
RF7_CT: IB_IntensityKurtosis_CT (r = 0.22),
RF8_CT: IB_StandardDeviation_CT (r = �0.45),
RF9_CT: GLCM_NormalisedInverseDifferenceMoment_CT (r = 0.24), and
RF710_CT: GLSZM_ZoneSizeVariance_CT (r = 0.22)

E4 2: PSA (r = 0.41) and ALP (r = �0.24)

Abbreviations: AD = absorbed dose; IB = intensity-based; IH = intensity-histogram.
* Row E3 corresponds to symbols such as RF1_PET to RF8_CT, related to Figure 7.

ARTICLE IN PRESS
Volume 00 � Number 00 � 2025 ML dose prediction in [177Lu]Lu-PSMA-617 RLT 9
summarize the test set results for the kidneys and lesions,
respectively.

Experiment E3 for kidneys, using a combination of
PET and CT RFs with the AdaBoost model, achieved
an R2 of 0.58. This was significantly improved in E7,
Table 6 Experiment-wise selection of variables and optimal ML
dicting kidney mean ADs

Experiment (No. of
selected variables)*

Best regression
ML model R2

r (Pears
Qva

E1 (5) AdaBoost 0.53

E2 (4) KNR 0.41

E3* (8) AdaBoost 0.58

E4 (4) AdaBoost 0.64

E5: E1 + E4 (9) GBR 0.75

E6: E2 + E4 (8) ETR 0.70

E7: E3 + E4 (12) ETR 0.76

E8: E1 + whole CBs (19) GBR 0.85

E9: E2 + whole CBs (18) ETR 0.83

E10: E3 + whole CBs (22) ETR 0.87

Abbreviations: AD = absorbed dose; CB = clinical biomarker; ETR = extra
regressor; MAE = mean absolute error; MAPE = mean absolute percentage error
* The names of the selected variables for each experiment are listed in Table 4.
where the integration of important CBs (red blood cell
[RBC], CR, Hematocrit [HCT], and alkaline phospha-
tase [ALP]) with E3 variables led to an R2 of 0.76
using the ETR model. The highest performance was
noted in E10, incorporating all CBs and RFs from E3,
algorithms, with evaluation metrics on the test set for pre-

on coefficient,
lue < .05)

MAE
(Gy/ GBq)

RMSE
(Gy/ GBq) MAPE (%)

.78 0.17 0.21 0.31

.61 0.18 0.23 0.35

.74 0.17 0.20 0.25

.82 0.15 0.18 0.19

.86 0.12 0.16 0.25

.83 0.13 0.18 0.27

.87 0.12 0.15 0.23

.91 0.09 0.12 0.18

.88 0.09 0.13 0.19

.93 0.09 0.11 0.16

trees regressor; GBR = gradient-boosting regressor; KNR = K neighbors
; ML = machine learning; RMSE = root mean-square-error.



Table 7 Experiment-wise selection of variables and optimal ML algorithms, with evaluation metrics on the validation set for
predicting the mean ADs in tumoral lesions

Experiment (No. of
selected variables)*

Best regression
ML model R2

r (Spearman’s rank,
Qvalue < .05)

MAE
(Gy/GBq)

RMSE
(Gy/GBq) MAPE (%)

E1 (7) KNR 0.67 .82 0.83 1.26 0.53

E2 (7) GBR 0.58 .76 0.96 1.46 0.85

E3* (10) RFR 0.69 .83 0.78 1.21 0.49

E4 (2) RFR 0.53 .74 0.99 1.53 0.75

E5: E1 + E4 (10) RFR 0.7 .83 0.76 1.19 0.51

E6: E2 + E4 (9) ETR 0.66 .81 0.82 1.29 0.53

E7: E3 + E4 (13) GBR 0.75 .87 0.71 1.08 0.45

E8: E1 + Whole CBs (21) ETR 0.74 .85 0.74 1.12 0.47

E9: E2 + Whole CBs (21) ETR 0.76 .87 0.71 1.07 0.44

E10: E3 + Whole CBs (24) GBR 0.77 .87 0.68 1.04 0.43

Abbreviations: ETR = extra trees regressor; GBR = gradient-boosting regressor; KNR = K neighbors regressor; MAE = mean absolute error;
MAPE = mean absolute percentage error; ML = machine learning; RFR = random forest regressor; RMSE = root mean-square-error.
* The names of the selected variables for each experiment are listed in Table 5.
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where the ETR model achieved an R2 of 0.87 and
reduced errors.

For tumoral lesions, similar trends were observed with
enhanced predictive accuracy in the latter experiments.
Experiment E3, which combined PET and CT RFs, resulted
in an R2 of 0.69 using the random forest regressor model.
This performance was further improved in E7, where the
GBR model, integrating prominent CBs (prostate-specific
antigen [PSA] and ALP), achieved an R2 of 0.75. The
1.6 Identity Line
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Fig. 4. Comparison of pretherapy predicted mean absorbed do
and (b) E10 for kidneys, and (c) E7 and (d) E10 for lesions, as deri
optimal results were seen in E10, where the GBR model,
incorporating all CBs and variables from E3, provided the
highest accuracy with an R2 of 0.77 and minimized errors.
These results underscore the efficacy of incorporating com-
prehensive feature sets for improved prediction of ADs in
both kidneys and tumoral lesions.

Figure 4 compares the predicted ADs with the estimated
ADs in the optimal scenarios derived from Tables 6 and 7,
specifically E7 and E10, for both the kidneys and the lesion.
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Identity Line
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ved from the results presented in Tables 6 and 7.
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Panels a and b show kidney analysis at E7 and E10 (Table 6),
whereas panels c and d show lesion analysis at E7 and E10
(Table 7), respectively. The identity line indicates alignment
between predicted and measured ADs, with closer clustering
around it suggesting better R2 in AD prediction.

The mean § SD of the absolute dose differences between
the predicted and measured ADs in the kidneys was 0.13 §
0.10 Gy/GBq for E7 and 0.09 § 0.08 Gy/GBq for E10. For
the lesions, the mean § SD differences were 0.72 §
0.85 Gy/GBq for E7 and 0.68 § 0.85 Gy/GBq for E10.
Figure 5 displays SHapley Additive exPlanations (SHAP)
summary plots for the top 20 features in the E10s, illustrat-
ing their importance and effects on predicting ADs in kid-
neys (panel a) and lesions (panel b), respectively. These
plots provide a post-hoc explanation of the AI models, offer-
ing insight into feature importance and their impact on
model predictions. Each point represents a SHAP value,
with features sorted by importance on the y-axis, SHAP
value magnitude on the x-axis, and feature value indicated
by color. IntensityHistogramMedian and GLSZM_ZoneSi-
zeNonUniformity RFs from Ga-PSMA PET were the most
significant contributors to predicting mean AD in kidneys
and lesions, respectively. Moreover, Figure 6a,b illustrates
Bland-Altman (B-A) plots for model predictions, provided
by E3 and E10 for kidneys, whereas Figure 6c,d depicts the
corresponding plots for the lesions. A B-A analysis would
be a suitable method to quantify and explain the dose differ-
ences between the 2 methods (measured vs predicted), pro-
viding visual and statistical insights into their agreement.

The horizontal axis in the B-A plot represents the mean
of measured and the model-predicted ADs, whereas the ver-
tical axis shows the relative percent difference (RPD)
between ML model predictions and measured AD, defined
as RPD = (ADpred � ADmeas/ADmeas) £ 100 %. The mean is
represented by a blue dashed horizontal line, whereas the
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Fig. 5. SHapley Additive exPlanations (SHAP) summary plots
ranked by importance, showing their impact on the predictive ex
(GBR) models, respectively.
95% confidence interval (CI; mean § 1.96 £ SD) is indi-
cated by red dashed lines. According to Figure 6a, for kid-
neys, the mean RPD with a 95% CI is 4.63% (�57.83% to
67.10%) for model E7 and 3.74% (�38.97% to 46.45%) for
model E10. Similarly, Figure 6b shows for lesions, the mean
RPD is 10.06% (�75.51% to 95.64%) for E7 and 8.72%
(�75.42% to 92.86%) for E10.

Figure 7 shows the correlation analysis via chord dia-
grams. Figure 7a illustrates correlations between 8 selected
RFs and 4 selected CBs for kidneys in E7, whereas Figure 7b
depicts correlations for kidneys in E10 between 8 selected
RFs and all CBs. Similarly, panels c and d depict these corre-
lations for lesions in E7 and E10, respectively. Each segment
represents an RF or CB, with chord thickness indicating the
relationship strength. For instance, RF1_PET in panel a cor-
responds to INTENSITYHISTOGRAM_IntensityHistog-
ramMedian from Table 4, E3. The correlations suggest that
while certain texture RFs are highly dimensional and cannot
be observed by the naked eye, specific combinations of these
RFs can be attributed to specific characteristics represented
by CBs.
Discussion
Pretreatment AD predictions are valuable for optimizing
patient selection and tailoring RPTs through individualized
dosimetry. Predicting the ADs to tumor and OAR before
RLT can enhance treatment efficacy by facilitating the devel-
opment of personalized treatment plans within the diagnos-
tic framework of theranostics.43 A major challenge in
predicting posttherapy dose distribution from pretherapy
imaging arises from a substantial information gap. Prether-
apy imaging captures tracer uptake at a single time point,
typically 1 hour after injection, whereas posttherapy dose
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Fig. 6. Bland-Altman (B-A) plots showing the relative percentage difference between dose prediction (by model) and mea-
surement versus the mean of measured and predicted dose in kidneys (a) selected PET/CT RFs and CBs (E7), (b) selected
PET/CT RFs and all CBs (E10), and in lesions (c) selected PET/CT RFs and CBs (E7), (d) selected PET/CT RFs and all CBs
(E10). Abbreviations: CB= clinical biomarker; CT = computed tomography; RF = radiomic feature; SPECT = single photon
emission computed tomography.
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distribution represents the cumulative effect of radiation-
matter interactions over a prolonged and dynamic period.
Moreover, the therapeutic tracer Lu-PSMA is administered
at much higher activity levels compared to the imaging
tracer Ga-PSMA, and their PSMA ligands, although similar,
are not identical. Additionally, biodistribution can be
affected by factors such as tumor burden, injected activity,
and the quantity of coadministered cold ligands.43,44

The theranostic approach relies on the similar pharmaco-
kinetics of the imaging and therapeutic tracers (PSMA-11
and PSMA-617), allowing for a qualitative prediction of the
posttherapy dose before treatment.44 Previous research has
demonstrated a correlation between SUV values from pre-
therapy imaging and posttherapy dose distribution.20,45

These findings suggest that incorporating pretreatment data
can aid in estimating individualized posttherapy dosimetry,
thereby minimizing the risk of under- or overestimating
variations in biodistribution.19,46 To the best of our knowl-
edge, this study is the first to explore regression ML models
for predicting kidney and tumoral lesion ADs in Lu-PSMA
RLT using Ga-PSMA PET/CT RFs and nonimaging CBs,
with MC-based AD results as reference points for model
construction.

Table 3 presents the mean, SD, and range of ADs in Gy
and Gy/GBq for kidneys and lesions. The kidney AD in this
study was 0.88 § 0.34 Gy/GBq, consistent with previously
reported ranges, such as 0.88 § 0.4 Gy/GBq, 0.75 §
0.19 Gy/GBq, 0.99 § 0.31 Gy/GBq, 0.67 § 0.27 Gy/GBq,
and 0.67 § 0.24 Gy/GBq. Similarly, the mean lesion AD
was 2.36 § 2.10 Gy/GBq, comparable with other reported
values, including 3.25 § 3.19 Gy/GBq, 1.7 § 1.13 Gy/GBq,
and 3.47 § 2 Gy/GBq, as summarized in a systematic
review and meta-analysis providing a comprehensive
comparison.12

The kidneys have traditionally been considered dose-lim-
iting organs for RPTs, with cumulative AD limits of 23 Gy
or 27 Gy derived from external beam radiation
therapy.13,28,47 However, there is an ongoing debate within
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the field regarding the relevance of these thresholds for
RPT.48,49 In this study, the absence of dosimetry data for the
kidneys during each therapy cycle necessitated estimating
the dose for the remaining cycles by presuming a 5%
increase in AD per cycle. This approximation relies on pub-
lished data indicating a 20% increase in AD between cycles
1 and 4.50,51 Using this approximation, the cumulative dose
for some patients remained below the established 23 Gy or
27 Gy thresholds, allowing flexibility to exceed the standard
7.4 GBq dose. There is, however, growing advocacy for
revisiting these limits based on clinical experience with sys-
temic radiopharmaceuticals.52

In the treatment planning methodology outlined in this
study, 10 ML regression algorithms were evaluated. The
best experiment (E10) scored an RMSE of 0.11 for kidneys
and 1.04 for lesions, employing ETR and GBR, respectively.
This evaluation compared pretherapy-selected RFs from
Ga-PSMA PET/CT scans with all CBs to posttherapy Lu-
PSMA RLT ADs. The findings indicate that integrating RFs
with CBs enhances the predictive accuracy of ML models
compared with using them alone. Nonlinear-based ML
models, particularly tree-based ML algorithms outper-
formed linear-based ones in generating accurate predictions
through capturing complex relationships in data.

To understand the clinical relevance of RFs for predicting
ADs in kidneys and lesions, the significant predictive RFs
from this study mostly belonged to second-order or texture
classes, indicating tissue heterogeneity in the targets.17 E1
and E2 in Tables 6 and 7 reveal that PET RFs played a more
substantial role than CT RFs in AD prediction models.
However, the specific information provided by CT RFs can-
not be overlooked. Combining PET and CT RFs as indicated
in E3, improves prediction accuracy for both kidneys and
lesions, highlighting the complementary nature of these
modalities.

This study hypothesized that incorporating biomarkers
into ML models could account for patient-specific kinetics
affecting ADs, which are difficult to derive from imaging a
short-lived surrogate. This integration is expected to
enhance predictive power beyond that provided by Ga-
PSMA PET/CT RFs alone. In this regard, when RFs from
PET, CT, and PET/CT (E1-E3) were combined with selected
CBs (E4), the results exhibited improved values across all
evaluation metrics. This underscores the significant role of
CBs and their informative nature, enriching imaging data
with valuable clinical information. This enhancement is evi-
dent in E5 to E7 of Tables 6 and 7 for kidneys and lesions,
respectively. Furthermore, combining selected PET, CT, and
PET/CT RFs from E1-E3 with all collected CBs (14 CBs)
during E8 to E10 demonstrated notable efficiency improve-
ments, particularly with PET/CT RFs (E3). The best out-
comes for kidneys and tumors were achieved in E10.

Incorporating all CBs (E8-E10) enhanced the results by
allowing the models to capture a broader range of patient-
specific biological and physiological variations that influence
ADs. Although "optimal" CBs are selected based on their
predictive strength, including all CBs integrate potentially
synergistic effects and account for multivariate correlations.
This comprehensive approach enriches the feature set,
reducing bias and increasing the predictive power of the
models by leveraging complementary information that may
not be apparent in isolated CBs. This is particularly relevant
given the heterogeneity in patients with mCRPC, where
multiple factors collectively influence the pharmacokinetics
and biodistribution of radioligands.

Figure 5 displays SHAP summary plots for E10 in kid-
neys (a) and lesions (b), respectively, assigning contribution
scores to selected features. These plots unveil how each fea-
ture contributes to the model’s prediction, enhancing com-
prehension of black-box ML models. In Figure 5a, the first
feature, INTENSITY-HISTOGRAM_IntensityHistogram-
Median, (r = 0.62 with AD), a PET RF, represents the
median intensity value derived from a kidney’s intensity his-
togram. The second contributor feature, NGTDM_Busyness
(r = �0.63 with AD), a PET RF, quantifies voxel intensity
changes within the neighborhood, suggesting a more
homogenous tissue structure with lower busyness values.

The 2 most contributing RFs for lesions in E10 shown in
Figure 5b are GLSZM_ZoneSizeNonUniformity (r = 0.76
with AD) and GLCM_JointEntropyLog2 (r = 0.67 with
AD) PET RFs. ZoneSizeNonUniformity RF quantifies the
variability in the size of neighboring voxel regions with simi-
lar intensity. A high ZoneSizeNonUniformity value indi-
cates a wider variation in zone sizes, suggesting greater
heterogeneity. Entropy represents the level of uncertainty or
disorder within a system. In GLCM, joint entropy assesses
the randomness or complexity of the voxel intensity combi-
nations in the co-occurrence matrix. A higher joint entropy
value signifies a greater degree of randomness or complexity
in the spatial relationships of intensities, indicating a more
heterogeneous texture.

According to E4 in Table 4, for the kidney analysis, the
most significant CBs are RBC (r = �0.55), CR (r = 0.48),
HCT (r = �0.49), and ALP (r = �0.48). For lesions (E4,
Table 5), PSA (r = 0.41), and ALP (r = �0.24) stand out as
the most crucial CBs. Furthermore, examining the SHAP
summary plots in Figure 5a for kidneys reveals that HCT
and ALP are the top contributors among CBs in the E10
using the ETR model. They rank 4th and 5th, respectively,
following 3 PET RFs. Similarly, in lesions, based on
Figure 5b, PSA and ALP rank 5th and 6th among variables
after 4 PET RFs but emerge as the top 2 contributors among
all CBs in the E10 model using GBR.

Three CBs—RBC, HCT, and ALP—show a reverse cor-
relation. The etiology of anemia in advanced PCa is multi-
factorial, involving castration, poor nutrition, bone marrow
infiltration, drug toxicity, and chronic inflammation.
Androgen deprivation-mediated anemia is because of some
different factors; testosterone affects erythropoietin forma-
tion in the kidney and bone marrow erythropoiesis. Addi-
tionally, some peripheral changes are detected, such as a
10% and 40% decrease in RBC mass and RBC diameter,
respectively, and an increase in osmotic fragility.53 A
decrease in RBC as well as HCT is related to anemia-
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inducing and worsening hypoxia as well as contributing to
renal dysfunction progression. Treatment of anemia may
decline the nephron destruction rate. Hypoxia could be an
initiative or enhancing factor for kidney disease, causing
inflammation and increased migration of leukocytes, encod-
ing the 2-integrin adhesion molecules.54

The reverse correlation of ALP with kidney AD could be
because of extreme radioligand pooling in extensive lesions
and thus lower proportion reaches both kidneys.55 Creati-
nine (CR) is a well-established indicator of kidney function
and exhibits a significant direct correlation with kidney
ADs. This correlation aligns with biological expectations
and findings from other studies, where higher Cr levels cor-
responded to increased ADs in the kidneys.22

PSA shows a significant direct correlation, and ALP
shows a significant reversed correlation with ADs in lesions
among all CBs. Higher PSA and lower ALP levels indicate
more PSMA expression in lesions (differentiated PCa) and
more expectation for response to RLT. The direct relation-
ship between PSA level and PCa recurrence is well-
documented.56,57 Differentiation between aggressive and
indolent PCa remains challenging, affecting under/over-
treatment.

PSMA upregulation correlated with PCa, especially in
advanced cases, and is an independent association with PSA
recurrence in high-risk patients.58 Regarding most meta-
static lesions in the bone as well as no liver metastasis and
normal liver function tests in our patients, increased ALP
originated from bone. ALP is reflective of osteoblast-like cell
phenotype within the microenvironment of bone,59 showing
bone turnover and osteoblastic activity.60 As found in previ-
ous studies, an increase because of ALP demonstrates a neg-
ative effect on the patient’s prognosis.61,62 Moreover, ALP
levels are variably affected by each type of treatment and
also there are more details in each drug subset. Also, based
on response to a particular treatment, it may decrease or
increase during treatment. ALP as a rational prognostic
marker should be routinely monitored, alongside other
markers of disease progression such as PSA, PSA doubling
time, and PSMA expression imaging in patients with PCa,
especially mCRPC.

According to B-A plots in Figure 6, an important obser-
vation is the trend of decreasing mean RPD and narrowing
CIs from model E7 to model E10 for both kidneys and
lesions. This indicates that increasing the extent of data and
adding CBs to the model improves accuracy and reliability.
About 94% (32/34) of kidney data points and 97% (126/
130) of lesion data points fall within the confidence CIs,
indicating strong agreement.

The B-A plots reveal systematic trends in the model pre-
dictions, providing insight into the limitations of our hybrid
scintigraphy/SPECT/CT-based dosimetry approach. For
kidney ADs, both models show a slight overestimation of
the therapy-delivered AD, with mean RPD values of 4.63%
for E7 and 3.74% for E10. Notably, the narrower CI of E10
suggests reduced prediction variability compared to E7,
highlighting its improved prediction stability. However,
these results should be interpreted with caution, as kidney
dosimetry remains influenced by several sources of uncer-
tainty, including segmentation accuracy, reconstruction,
and assumptions underlying the AD calculation. Peterson et
al22 conducted a similar analysis to compare pretherapy AD
predictions from univariable models based on PET uptake
and eGFR with the therapy-delivered AD. Their findings
reported a mean relative percent error of 4.8% (95% CI,
�38.3% to 48.0%) for the PET uptake-based model and
9.1% (95% CI, �56.2% to 74.5%) for the eGFR-based
model.

In contrast, the prediction of lesion ADs shows substan-
tially higher variability. The B-A plots for both E7 and E10
display a wide scatter of points across the full range of mean
ADs, with broad limits of agreement (eg, �75.51% to
95.64% for E7 and �75.42% to 92.86% for E10). Unlike the
kidney plots, where data points are relatively concentrated
around the mean difference line, the lesion plots lack a clear
central tendency and exhibit substantial dispersion. The
higher variability might be because of factors such as lesion
heterogeneity, smaller lesion size, and PVE. These findings
suggest that observed correlations for lesions should be
interpreted cautiously since prediction errors may fall
within or exceed typical dosimetric uncertainties. Lesion
heterogeneity and imaging limitations are key challenges,
indicating the need for further improvements in prediction
methodologies.

The chord diagrams in Figure 7 effectively illustrate the
complex correlation structure between selected RFs and CBs
for both kidneys and lesions in E7 and E10. The density and
distribution of chords provide insights into how incorporat-
ing all CBs in E10 influenced the model. For kidneys, E7
(panel a) demonstrates more focused correlations, with RFs
like RF1_PET (INTENSITY-HISTOGRAM_IntensityHis-
togramMedian; Table 4) strongly associated with specific
CBs such as CR and RBC. In contrast, E10 exhibits a denser
and more interconnected network, involving a wider range
of CBs such as HB and WEIGHT, reflecting the broader
physiological or systemic influences captured under E10. A
similar trend is observed for lesions: E7 (panel c) highlights
distinct RF-CB relationships, such as the correlation
between RF6_PET (GLSZM_ZoneSizeNonUniformity;
Table 5) and PSA. Meanwhile, E10 exhibits increased com-
plexity by incorporating additional CBs such as hemoglobin
(HB) and calcium (CA). The transition from narrower to
denser chord structures from E7 to E10 underscores the
enhanced complexity and predictive capacity achieved by
including all CBs. This broader network allows the model to
capture richer systemic and multifactorial relationships
between RFs and CBs, ultimately improving dose prediction
accuracy for both kidneys and lesions.

The study encountered several limitations. First, the
small sample size and lacked validation on an independent
patient cohort, potentially constrain the generalizability of
the models. Moreover, all PET/CT and SPECT/CT imaging
were conducted using specific scanner models with stan-
dardized reconstruction protocols. Although this ensured
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consistency, the findings may not be directly applicable to
other scanner types or reconstruction settings, which could
influence feature extraction and AD calculations. Future
studies should include imaging data from diverse scanners
to improve model robustness. Second, our investigation
focused on PET/CT and biomarkers available before the ini-
tial RLT cycle. Third, our assessment of predicted ADs was
limited to kidneys and lesions after the first RLT cycle, over-
looking other OARs such as salivary glands, typically requir-
ing 3-bed positions in SPECT/CT imaging to cover OAR in
RLT comprehensively.

Fourth, manual segmentation of kidneys and lesions,
though carefully reviewed, may introduce interobserver var-
iability, especially for lesions with diffuse boundaries.
Moreover, coregistration of imaging modalities, while per-
formed rigorously, might contribute to minor alignment
errors affecting TIA and dose calculations. Furthermore, the
segmentation process, particularly for lesions, was exceed-
ingly time-consuming, demanding precise delineation on
both SPECT/CT and PET/CT scans. To overcome this
obstacle, integrating deep learning (DL) methods for auto-
mated or semiautomated segmentation and registration
emerges as a promising solution.63-65 These advanced tech-
niques have the potential to streamline the segmentation
process, reducing the time and effort required by experts.

Furthermore, pretherapy Ga-PSMA PET/CT scans were
performed within 2 months of pretreatment, with varying
timing for each patient, as some scans were conducted a few
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days before therapy and others up to 2 months prior. This
variability could introduce temporal fluctuations in tumor or
organ conditions. Standardizing imaging timelines closer to
therapy could enhance prediction accuracy. Moreover, the
timing of SPECT was »48 h and scintigraphy was conducted
approximately 4, 48, and 72 hours postinjection, which was
not consistent for all patients. This variability was because of
the availability of the imaging system at these intervals. How-
ever, aligning the timing of scintigraphy more precisely across
all patients could further reduce temporal discrepancies and
improve the accuracy of treatment predictions.

Among the various dosimetry techniques, MC simulation
is recognized as a highly precise method for personalized
dosimetry, particularly suitable for scenarios involving het-
erogeneous activity distributions and media.13,29 In this
study, MC simulation was employed to calculate ADRMs,
enhancing the accuracy of the ground-truth AD data used
for model development. However, MC simulation is compu-
tationally intensive, time-consuming, and requires complex
setup processes. Future work should focus on developing
and implementing fast, efficient MC-based tools to facilitate
the generation of ground-truth MC-based data, which are
essential for training and validating models for pretreatment
dosimetry.

Another limitation of this study is using a hybrid scintig-
raphy/SPECT imaging approach for TIA coefficients calcu-
lation, as multiple-time point pure SPECT/CT imaging was
not feasible because of its lengthy acquisition time, higher
cost, and associated patient discomfort. Previous research
has demonstrated that SPECT/CT imaging protocols yield
more consistent and less variable results compared to planar
imaging methods.66 Although combining planar imaging
with 3D SPECT improves accuracy over planar imaging
alone, it still yields region-specific TIA coefficients instead
of more accurate voxel-specific values from multiple-time
point SPECT.10,29 Planar imaging has limitations, including
lower spatial resolution, lack of 3D tissue distribution, and
limited anatomical context, which can affect dosimetry pre-
cision.

To address these limitations, single-time point post-
treatment SPECT/CT imaging is proposed.67,68 Although
less accurate than multiple-time point imaging, using 2
or more scans during the first treatment cycle to deter-
mine patient-specific biokinetics, followed by the single-
time point framework for subsequent cycles, could
improve dosimetry accuracy and feasibility.69 Moreover,
recent advancements in simplified dosimetry methods,
including reduced SPECT imaging acquisition times, are
paving the way for personalized treatment planning to
improve the efficacy of RLT.35,70

Another bottleneck of this study is the reliance on target
organ contours from pretherapy PET imaging and the RFs
derived from them, without accounting for intraorgan dose
distribution. Variations in pharmacokinetics within an organ
may complicate the accuracy of pretherapy dosimetry predic-
tions. Although the study supports predicting ADs at the
organ level, extending this to the voxel level requires further
research. Addressing spatial heterogeneity in radiopharmaceu-
tical distribution and energy deposition will require DL
approaches or integrating the physiologically based pharma-
cokinetic model into DL, to analyze intraorgan heterogeneity
and explore pretherapy dosimetry prediction.43,44

Finally, although we demonstrated the feasibility of inte-
grating pretherapy Ga-PSMA PET RFs with CBs, this
approach could be expanded to include additional bio-
markers and more histopathological features with larger
sample sizes to ensure robust statistical efficacy.

An important consideration in dosimetry is that each
step in the workflow can introduce uncertainty in AD esti-
mates. Factors such as imaging protocol, organ and lesion
segmentation, decay estimation, and the choice of dosimetry
method and software all contribute to variability.66

Although the method or software has a minimal impact,
segmentation, curve fitting, and integration are more signifi-
cant sources of variation.71 Therefore, standardizing these
processes is essential to minimizing variability.
Conclusions
The study examined the efficacy of incorporating Ga-PSMA
PET-derived RFs alongside CBs to predict ADs in tumors
and kidneys for patients with mCRPC undergoing Lu-
PSMA RLT. This investigation into noninvasive dose pre-
diction could facilitate the development of individualized
treatment planning for RLT. However, further validation
with an expanded patient cohort, particularly from external
data sets, is crucial to substantiate the performance of the
ML models and to provide a robust decision-support tool
before clinical adoption.
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