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Abstract—Traffic flow prediction is an important task that can
directly impact the control of traffic flow positively and improve
the overall traffic throughput. Although a large number of studies
have been performed to improve traffic flow prediction, there are
very few works on purely temporal prediction models, which is
important for execution on an edge device that does not have
access to spatial flow information. In order to explore the tempo-
ral prediction models further, we propose an innovative hybrid
long short-term memory (LSTM) model, which we call Grid
LSTM based Attention Modelling for Traffic Flow Prediction
(GLSTM-A), that helps to encode temporal information better at
various levels/scenarios. The proposed architecture incorporates
a Grid LSTM to capture historical dependencies and a simple
LSTM layer dedicated to the short-term analysis of recent data.
Moreover, an innovative attention mechanism is designed to focus
on the importance of data features automatically for further
enhancing the model’s predictive capabilities. Our proposed
GLSTM-A outperforms other popular temporal prediction mod-
els such as temporal convolutional network (TCN), Bi-LSTM and
LSTM, in terms of prediction accuracy and memory efficiency as
mentioned in the experimental results. Experimental results and
ablation studies on benchmark datasets demonstrate the superior
performance of the proposed model over existing state-of-the-art
models in various time series prediction tasks.

Index Terms—Traffic flow prediction, Temporal Prediction,
Grid LSTM, Attention Modelling, Temporal convolutional net-
works

I. INTRODUCTION

The traffic conditions in several countries including India
present a unique and complex challenge for traffic flow
prediction due to the densely populated road conditions.
Additionally, with their diverse landscape and wide range of
transportation modes, Indian roads pose distinct challenges in
traffic management. The coexistence of traditional means like
cycles, rickshaws, and pedestrians with motorized vehicles
creates intricate traffic patterns that demand customized ap-
proaches for effective control. Furthermore, the fusion of rural
and urban traffic, varying infrastructure standards, and diverse
vehicle driving patterns add to the complexities of Indian road
traffic.

Edge computing has revolutionized processing as data can
now be analyzed closer to the data source. This can be very
useful for real-time traffic flow control as control decision can
be performed in an edge device locally at the intersection. The

flow control also benefits from real-time traffic flow prediction
as flow data is available a priori. However, normally traffic
flow prediction requires data to be collected from multiple
neighboring intersections, which is then combined with tem-
poral flow characteristics to perform accurate predictions. The
spatial data is not always available due to unreliable com-
munication links with neighboring intersections or the cloud.
Hence, it is important to have efficient temporal prediction
models that can execute on the resource constrained edge
device with only local temporal flow information.

To address the above problems, this work focuses on
advancing the state-of-the-art in temporal flow prediction
models. Most of the temporal flow prediction models such as
long short-term memory (LSTM) and temporal convolutional
network (TCN), etc. primarily capture temporal features in
the data, but do not extract historical periodicity data. The
GLSTM-A model proposed in this work advances temporal
flow prediction by integrating a parallel LSTM grid network
with an attention mechanism, enabling efficient extraction of
periodicity information from long-term historical data.

II. RELATED WORK

In this section, we discuss the various approaches from
literature for traffic flow prediction categorized based on the
model used.

A. Machine Learning Models

Several significant contributions have advanced short-term
traffic flow prediction in the field of machine learning. No-
tably, Castro-neto’s introduction of the Online Support Vector
Machine for Regression (OL-SVR) [1] marked a significant
advancement, especially under atypical, non-recurring traffic
conditions such as vehicular accidents and inclement weather.
OL-SVR has proven to be a robust and effective tool for
intelligent transportation systems, offering proactive traffic
management solutions. Complementing this, a novel frame-
work utilizing K-Nearest Neighbors (KNN) [2] was developed,
tackling challenges in feature space construction and distance
metric selection while also incorporating data from networked
stations. Further contributions include studies by Lv et al.
[3], focusing on road network traffic flows, and Duan et al.
[4], who provided a comprehensive assessment of stacked
autoencoders in varying traffic scenarios.



These developments, however, are surpassed by deep learn-
ing (DL) models. With their advanced neural architectures,
DL models outshine traditional ML methods by offering a
more nuanced, data-driven approach to traffic flow prediction,
thereby providing superior accuracy and adaptability in mod-
elling complex traffic patterns.

B. Deep Learning Models

The evolution of short-term traffic flow prediction has been
markedly transformed by the advent of deep learning (DL)
models, with each innovation bringing its own set of strengths
and limitations. Initially, the focus was on Recurrent Neural
Networks (RNNs), particularly Long Short-Term Memory
(LSTM) networks, which were lauded for their proficiency
in capturing both long-term and short-term temporal depen-
dencies in traffic data, as demonstrated in studies [5], [6], [7].

However, while LSTMs excelled in temporal analysis, they
fell short in addressing the spatial relationships within traffic
flow data, a crucial aspect of comprehensive traffic prediction.

C. Hybrid Deep Learning Models

To bridge the gap in spatial-temporal analysis, hybrid
deep learning (DL) architectures emerged, integrating Con-
volutional Neural Networks (CNNs) with Long Short-Term
Memory (LSTM) modules. Models such as Conv-LSTM and
bi-directional LSTM [8], [9], [10] adeptly harnessed this inte-
gration, achieving a more effective capture of spatial-temporal
information, a task at which traditional LSTM models fell
short. These hybrid models also leveraged the periodicity of
traffic flow, a crucial factor for accurate short-term prediction.
By incorporating the periodic patterns into their analysis, these
models could provide precise and reliable traffic flow forecasts,
thus enhancing the predictability and robustness of traffic
management systems [11], [12], [13]. However, the drawback
is these layered and complex architectures uses the spatial
information which is not always available as mentioned in
the introduction. That is why we want an efficient temporal
prediction model, which does not need spatial data.

The deep learning framework based on TCN, optimized
using the Taguchi method by Zhao et al. [14], showed promise
in improving prediction accuracy. However, these advanced
models introduced complexities, leading to increased memory
requirement or space complexity, demands where as, our
proposed model has lower memory requirement or space
complexity, due to its simple architecture, and it utilizes
historical data to improve the model by extracting periodicity
information, a task which TCN does not perform. Recognizing
the need for optimized models, Goparaju et al. [15] developed
an optimized temporal convolutional network (TCN), using
a GA based approach for reduced model size and enhanced
performance on edge device like RaspberryPi.

In contrast to the above works, the GLSTM-A model stands
out as an efficient temporal prediction model. It surpasses
the earlier described models by integrating a parallel LSTM
grid, which enhances the extraction of periodic patterns in
traffic data. Its use of attention modelling sharpens the focus

on relevant features, leading to more accurate predictions.
Demonstrating versatility, the GLSTM-A adapts effectively
to various traffic scenarios in evaluations. Its s solutions in
intelligent transportation systems.

In this work, we address the limitations of previous models
and propose the GLSTM-A model, which offers significant
advancements in short-term traffic flow prediction:

1) Parallel LSTM grid architecture with attention mod-
elling: Our work introduces a new temporal flow pre-
diction model (further referred to as GLSTM-A). It
consists of a parallel LSTM grid network which extracts
periodicity information from long term historical data,
thereby improving the prediction accuracy over LSTM
and TCN, which do not capture periodicity. This al-
lows us to proficiently capture recurring patterns within
specific time frames. As in the other temporal models,
the proposed architecture also has LSTM layers, which
capture the temporal information from the long term and
short term data. Finally, the attention model integrated
with LSTM grid emphasizes certain important features
that improves the prediction accuracy further.

2) Evaluation with two different benchmarks: We have
extensively evaluated the proposed GLSTM-A model
with data from two completely different data sets - one
a traffic flow data set from organized traffic scenario in
PeMS dataset and another from an unorganized traffic
scenario in an Indian city road. Our proposed model
performed better than existing temporal models in terms
of prediction accuracy and better than TCN in terms of
memory resource requirements, thus making it highly
suitable for deployment on resource constrained edge
devices.

III. METHODOLOGY

In the context of time series analysis, several existing
models, such as TCN and LSTM, have shown great promise
in delivering high-performance results for various traffic flow
datasets. Among these, TCN stands out due to its impressive
capabilities, but it comes with a significant space complexity.
Thus, the main objective of our research is to develop a
novel model that not only reduces space complexity but also
enhances overall performance. To achieve this, we recognize
the crucial role of historical pattern analysis. By carefully
considering historical patterns, our lightweight model aims
to address the problem. This approach significantly enhances
the accuracy of our traffic flow predictions. Importantly, our
model is shown to be highly practical and efficient for real-
world deployment, even in scenarios such as the Indian dataset
where spatial data is unavailable.

A. Proposed Model Architecture

The proposed model adopts a dual approach when dealing
with the dataset. The first approach involves historical pattern
feature analysis, where we develop an innovative approach
called ‘Grid LSTM’ to capture and analyze long-term depen-
dencies and recurring patterns in historical data. In contrast,



Fig. 1. Model architecture: it consists of a Grid LSTM for historical pattern analysis and a sequential LSTM for short-term prediction. The Grid LSTM uses
parallel LSTM blocks to capture long-term dependencies in historical traffic data. The sequential LSTM focuses on recent data to extract short-term patterns.
Our model incorporates attention mechanisms and Conv1D layers, resulting in superior predictive capabilities compared to existing TCN and LSTM models.

the traditional approach focuses on short-term pattern feature
analysis, utilizing simple LSTM layers. While LSTM excels
at capturing temporal dependencies in sequential data, it does
have a limitation regarding its ability to retain longer memory,
making it challenging to preserve prior information effectively.
To overcome this limitation and further enhance the model’s
memory capabilities, we use Grid LSTM, which serves as a
powerful reminder of prior information. This proposed model
employs the Adam optimizer. The architecture is shown in Fig.
1.

The Grid LSTM plays a crucial role in analyzing traffic flow
patterns at specific times on corresponding days. By consid-
ering historical data points (or prior information), the Grid
LSTM facilitates a comprehensive understanding of temporal
patterns across different time steps. Within the Grid LSTM
block, we construct multiple sets of LSTM layers that operate
in parallel. Each set of LSTM layers processes historical
data from a specific date, extracting meaningful information
across several time steps. Notably, the historical data points are
obtained either 6 or 12 months prior to the prediction time,
enabling the model to gain a comprehensive understanding
of traffic patterns over a substantial period. This extensive
historical perspective allows for an enhanced recognition of
both regular and irregular traffic patterns, enhancing the accu-
racy of predictions. Additionally, the integration of data from
varied historical contexts empowers the model to adapt to
changing traffic conditions, making it highly effective for real-
time traffic prediction.

B. Attention Mechanism

In temporal models, attention mechanisms are key for
focusing on the most important time-related features. They
do this by highlighting the significant parts of the data and
downplaying the less important ones. The attention mechanism
computes attention scores, dynamically weighing inputs based
on their importance, thus allowing the model to focus on
salient features. The process of computing these scores is
represented in Eq. (1) and (2). The softmax-normalized scores
[16], as shown in Eq. (3), ensure selective amplification of
critical information, thereby enhancing the model’s predictive

performance and interpretability. The final attention output,
which combines these weighted features with the original
input, is given by Eq. (6). In these operations, x represents
the input features, and W1, W2, and W3 denote the weight
matrices of the dense layers.

a1 = W1x (1)
a2 = W2x (2)
a3 = softmax(W3x) (3)
m1 = a2 ⊙ a3 (4)
m2 = a1 ⊙m1 (5)
y = m2 + x (6)

where ⊙ denotes element-wise multiplication, and y is the
output of the attention layer.

C. Prior Information: Leveraging Historical Insights / Pat-
terns

In our study, the term “prior data” refers to the dataset we
collected, which spans a significantly longer period than a one
month. It offers a broader view of traffic patterns, trends and
changes over a more extended time frame.

The historical data matrix (H) as shown in (7) is a structured
collection of past traffic flow data . It consists of rows
corresponding to time steps and columns representing different
days. Each element within the matrix (e.g., xdayj

ti ) represents
the traffic flow value observed at a specific time instant ti on
a particular day dayj . This matrix allows us to study traffic
patterns and trends over time, capturing valuable insights
into historical traffic behavior at distinct moments of the day
across multiple days. Analyzing H enables a comprehensive
understanding of the temporal dynamics of traffic flow and
helps identify recurring patterns and dependencies in the data.

The present data matrix (P), as shown in (8), represents
recent real-time traffic flow data observed. The historical data
matrix will have data from the same time frame as the present
data matrix. It consists of rows representing time steps and
provides instantaneous traffic flow data. Each element (e.g.,



xday
ti ) denotes the traffic flow value observed at a specific time

ti in the present moment. This matrix offers an up-to-date view
of traffic conditions, essential for timely decision-making and
forecasting current traffic patterns.
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P =
[
xt1 xt2 . . . xtn

]
(8)

In the Grid LSTM, we have 5 parallel LSTM blocks, each
comprising 2 LSTM layers. The shape of the input data to
Grid LSTM is represented with time-steps and the number
of features or days from which data is extracted. Each set
of LSTM layers receives data, allowing the model to focus
on specific time-steps and extract relevant patterns. The pro-
cessed tensors from these LSTM layers are appended to a
list, facilitating a comprehensive analysis of various temporal
aspects. Finally, these tensors are concatenated at the end. The
concatenated output then passes through another simple LSTM
layer to extract sequential features.

The sequential LSTM model, on the other hand, follows a
more straightforward configuration, consisting of a series of
LSTM layers. The input data is fed into the first LSTM layer,
and its output is passed to the next LSTM layer. The output
from the LSTM layers is then forwarded through a dense layer,
which generates the final prediction. Its capability to capture
temporal information allows it to effectively gather insights
from recent data.

In development of our model, we enhanced its perfor-
mance by introducing attention mechanisms to emphasize
specific features and patterns. Additionally, a Conv1D layer
was incorporated to improve the model’s capacity in learning
and extracting relevant features from input sequences. The
combination of LSTM, attention mechanisms, and Conv1D
layers makes our model robust and adept at handling complex
time series data, such as the Indian dataset.

IV. EXPERIMENTS AND RESULTS

Our work focuses on the analysis of real-world traffic
data within the context of two different datasets from two
diversified countries, where traffic issues vary greatly. We aim
to address the challenges posed by these complex scenarios.

A. Data Collection

In our research, we employed two distinct datasets for model
training: firstly, the publicly available PeMS dataset [17] and
secondly, the data collected from the Hyderabad (an Indian
mega-city) location coordinate with coordinates 17.444931,
78.352822 (TF-India-Hyderabad).

1) PeMS Dataset
The PeMS dataset covers a three-month period, from March

4, 2022, to June 4, 2022. It comprises 5-minute aggregate
traffic data obtained from station ID 402214.

TABLE I
IMPACT OF DIFFERENT TIME-STEPS ON MODEL PERFORMANCE USING

PEMS DATASET.

Time-steps RMSE MAE MAPE(%)
10 1.278 0.965 0.017
15 1.155 0.882 0.0164
20 1.141 0.899 0.0164

2) Traffic flow prediction dataset (TF-India-Hyderabad)
Our collected data spans 10 weeks, from 14th December

2022, to 28th February 2023. This dataset, aggregated at 15-
minute intervals. It offers valuable insights into the dynamic
traffic patterns specific to this dataset.

Our data preparation process involved dividing the dataset
into two distinct parts: past data and present data. In past data,
each input sequence comprised 15 time-steps, with each time-
step representing data from a period of 5 consecutive days. For
instance, a single input sequence might encompass data from
December 14th to December 18th, covering 15 consecutive
time-steps from 00:00 am to 01:10 am. Importantly, each time-
step encapsulates traffic flow data, with a 5-minute interval
between each data point. In this context, ’traffic flow’ refers
to the vehicular count, providing a granular view of traffic
density and patterns.

The dataset is split, with 85% allocated for training and
15% for testing and evaluation. The preparation of present
data involved taking 15 time-steps from a specific day. For
instance, a present data sequence might consist of data from
February 28th, capturing 15 consecutive time-steps from 00:00
am to 01:10 am, with a 5-minute interval between each time-
step to predict the data at 01:15 am.

B. Experimental Setup

The experiments are conducted on a high-performance
workstation equipped with an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz and a NVIDIA GeForce GTX 1650 Ti
Graphics Card. For building and training the various models,
we leveraged the TensorFlow-Keras framework, a popular
choice for deep learning tasks. Model evaluation was car-
ried out using two widely-used metrics: mean absolute error
(MAE) and root mean square error (RMSE). These metrics
provided valuable insights into the models’ performance and
their ability to accurately predict traffic flow and also widely
used in the research community.

By utilizing these datasets and employing a rigorous data
preparation process, we trained our models to effectively
analyze traffic patterns and predict traffic flow. The model eval-
uation through MAE, MAPE and RMSE metrics ensures the
reliability and accuracy of our model’s predictions, providing
valuable insights into the performance of the models and their
ability to accurately predict traffic flow.

C. Results and Discussions

The observed superiority in performance and memory effi-
ciency of GLSTM-A holds considerable promise for practical
applications, particularly in resource-constrained environments



Fig. 2. Loss graph of GLSTM-A model trained using the PEMS dataset.

TABLE II
EFFECT OF DIFFERENT LSTM UNITS IN GRID LSTM ON MODEL

PERFORMANCE USING PEMS DATASET.

LSTM Units RMSE MAE MAPE(%)
in Grid LSTM

32,32 1.265 0.954 0.0169
64,32 1.155 0.882 0.0164

TABLE III
INFLUENCE OF DIFFERENT LSTM UNITS IN LSTM LAYER ON MODEL

PERFORMANCE USING PEMS DATASET.

LSTM Units RMSE MAE MAPE(%)
in LSTM Layer

32 1.1822 0.899 0.0159
64 1.155 0.882 0.0164

128 2.255 1.88 0.029

where careful management of memory utilization is criti-
cal. The GLSTM-A’s ability to achieve lower RMSE, MAE,
and MAPE values signifies its enhanced accuracy in traffic
flow prediction tasks. Moreover, its memory-efficient nature
ensures smoother deployment and optimized utilization of
computational resources, making it an attractive and practical
choice for real-world applications in traffic management and
forecasting.

Fig. 2 depicts the relationship between epochs and loss
for the GLSTM-A, which was trained for 50 epochs. As
evident from the figure, that the model does not suffer from
under-fitting or over-fitting issues, indicating a well-balanced
learning process.

1) Experiments on PEMs Dataset
In our experiments, we conducted a grid search on hyper-

parameters, including time-steps, LSTM units in the grid, and
LSTM units in the layers. Optimal results were achieved with
15 time-steps, (64,32) LSTM units in the grid, and 64 LSTM
units in the layer. Results for these parameters are presented in
Tables I, II, and III. These experiments offer valuable insights
into parameter choices optimizing our model’s performance in
time series prediction with the PeMS dataset.

TABLE IV
EXPERIMENTAL RESULTS OF GLSTM-A MODEL VARIANTS WITH

ATTENTION, CONVOLUTION AND ADDITIONAL LSTM LAYERS ON PEMS
DATASET.

Model RMSE MAE MAPE
GLSTM-A (attention
both input)

94.679 65.376 0.201

GLSTM-A (attention
hist. input)

89.42 55.497 0.14

GLSTM-A (adding
lstm to Grid LSTM)

90.667 52.70 0.124

GLSTM-A (adding
conv layer to Grid
LSTM)

88.47 51.988 0.124

In our comprehensive evaluation of LSTM, TCN, and our
proposed GLSTM-A, the GLSTM-A demonstrated exceptional
performance, significantly outperforming other models with
lower values of root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE) as presented in Table V. In contrast, CNN-LSTM
and Conv-LSTM models are adept at integrating both spatial
and temporal features, effectively capturing interdependencies
across interconnected stations. Although incorporating spatial
features offers potential advantages in capturing intricate pat-
terns.

2) Experiment on PeMS Dataset Across Different Stations
The Table VII presents a comprehensive comparison of

performance metrics across three distinct models TCN, LSTM,
and GLSTM-A evaluated on different datasets associated with
specific station IDs.

When focusing on the MAPE metric, the GLSTM-A model
demonstrates superior performance for stations 402214 and
402835, with the lowest MAPE values of 0.016 and 0.018,
respectively. However, for station 414025, both the TCN and
GLSTM-A models are fairly comparable, with MAPE values
of 0.208 and 0.206, respectively. On the other hand, the LSTM
model consistently shows higher MAPE values across all
stations, indicating its lesser accuracy in predictions in this
specific context. In terms of performance Across Stations,
Station 402835 seems to be a challenging dataset for all the
models, with higher error values across all metrics when com-
pared to station 402214. This could be indicative of inherent
complexities or variances within the data from this station.
With respect to consistency across Metrics, the GLSTM-A
model not only excels in MAPE but also performs remarkably
well in RMSE and MAE metrics for stations 402214 and
402835. However, for station 414025, its RMSE and MAE
values are relatively close to those of the TCN and LSTM
models. This suggests that while GLSTM-A might be well-
suited for certain datasets, its performance might converge
with other models for more complex or varied datasets.

3) Experiment on TF-India-Hyderabad Dataset
The TCN architecture’s inherent complexity demands

greater memory resources. To further clarify this, we con-
ducted an in-depth analysis of memory consumption, as noted
in Table VI. Our findings revealed that the TCN model



TABLE V
COMPARATIVE ANALYSIS OF MODEL PERFORMANCE USING PEMS

DATASET.

Model RMSE MAE MAPE(%)
LSTM [5] 3.428 2.446 0.0452
TCN [14] 2.186 0.899 0.0168

Bi-LSTM [18] 3.118 2.312 0.050
GLSTM-A 1.155 0.882 0.0164

TABLE VI
MEMORY REQUIREMENTS AND PREDICTION TIME COMPARISON BETWEEN

GLSTM-A AND OTHER MODELS TRAINED USING THE
TF-INDIA-HYDERABAD DATASET.

Model Memory Required (MB) Prediction Time(ms)
TCN [14] 324.98 3

GLSTM-A 132.96 11
Bi-LSTM [18] 35.14 6

LSTM [5] 15.14 1.6

requires the highest memory resources, reaching a substantial
324.98 MB. In stark contrast, our proposed GLSTM-A, which
primarily leverages temporal features, showcased remarkable
memory efficiency, consuming only 132.96 MB. Our model
takes 0.00110s for one prediction. The Bi-LSTM model, which
processes time series data in both forward and backward
directions, also demonstrated a moderate memory footprint
of 35.14 MB. This pronounced disparity in memory usage
underscores the inherent complexity of the TCN architecture
compared to the more streamlined design of the GLSTM-A.

In Table IV, we noted an experimental evaluation of various
GLSTM-A model variants with distinct configurations, includ-
ing attention mechanisms, convolutional layers, and additional
LSTM layers. The convolutional layer is added within the grid
LSTM block as one of the layers. The results, as indicated
by the performance metrics, showcase the impact of these
variations on the model’s predictive accuracy. For instance,
the GLSTM-A model with attention applied to both input
types achieved an RMSE of 94.679, MAE of 65.376, and
MAPE of 0.201. Comparatively, the variant with attention
applied to historical input demonstrated improved performance
with an RMSE of 89.42, MAE of 55.497, and MAPE of
0.14. Furthermore, the inclusion of an additional LSTM layer
to the Grid LSTM resulted in an RMSE of 90.667, MAE
of 52.70, and MAPE of 0.124, while the introduction of a
convolutional layer to the Grid LSTM yielded an RMSE of
88.47, MAE of 51.988, and MAPE of 0.124. The Bi-LSTM
variant, which incorporates bidirectional processing of time
series data, showed a further enhanced capability with an
RMSE of 3.118, MAE of 2.312, and a MAPE of 0.050,
revealing the bidirectional approach’s strength in capturing
temporal dependencies.

Additionally, spatial models such as CNN-LSTM [11] and
Conv-LSTM [8] were also evaluated. The CNN-LSTM model
registered an RMSE of 1.77, MAE of 5.19, and MAPE of
0.0159, while the Conv-LSTM model achieved an RMSE
of 1.714, MAE of 4.960, and MAPE of 0.0164. Despite

TABLE VII
EXPERIMENTS ON DIFFERENT MODELS ACROSS VARIOUS STATIONS IN

THE PEMS DATASET.

Model Station Id MAPE RMSE MAE
TCN [14] 402214 0.0168 2.186 0.899

402835 0.50 8.754 5.960
414025 0.208 8.927 6.460

LSTM [5] 402214 0.0452 3.428 2.446
402835 0.478 8.631 5.814
414025 0.233 8.954 6.368

GLSTM-A 402214 0.016 1.155 0.882
402835 0.018 1.519 1.13
414025 0.206 8.125 5.9

the strengths of spatial feature extraction inherent in these
models, the proposed GLSTM-A model demonstrated superior
performance, affirming that it better captures the complexities
of the dataset. These comparisons highlight the proposed
model’s robustness and its superior ability to model temporal
dynamics when compared to models that primarily focus on
spatial features.

D. Ablation Study

In the ablation study, we conducted experiments to investi-
gate the impact of the number of layers in the Grid LSTM
of our proposed model. The objective was to understand
how the depth of the Grid LSTM influences the predictive
performance of the model. We conducted experiments with
different configurations, ranging from 1 layer to 8 layers, and
evaluated the model’s performance using RMSE, MAE, and
MAPE.

The results of the ablation study are summarized in Table
VIII. As we increased the number of layers in the Grid
LSTM, we observed a consistent decrease in the error values.
Specifically, as the number of layers increased from 1 to
5, both RMSE and MAE showed a notable reduction. This
indicates that adding more layers to the Grid LSTM led to
improved predictive performance, as it allowed the model to
capture more intricate temporal dependencies in the traffic
flow data. Interestingly, beyond 5 layers, the model’s RMSE
,MAPE and MAE values reached a plateau, suggesting that
further increasing the number of layers did not result in
significant performance improvements. This finding indicates
that a certain depth of the Grid LSTM was sufficient to
capture the essential temporal patterns in the data, and adding
more layers did not provide substantial benefits in terms of
predictive accuracy.

The choice of the number of LSTM layers should be made
based on the characteristics and requirements of the specific
dataset in use. When the Grid LSTM component is removed,
the model essentially becomes a simple LSTM model. As a
result, the loss metrics are expected to be higher for the simple
LSTM model compared to GLSTM-A as shown in table V.

Table IX summarizes the performance of various Grid
LSTM configurations, using the TF-India-Hyderabad dataset.
The results indicate that the 5-layer LSTM configuration yields



TABLE VIII
PERFORMANCE METRICS FOR DIFFERENT NUMBER OF LSTM PARALLEL

LAYERS IN GRID LSTM CONFIGURATIONS WITHIN GLSTM-A USING THE
PEMS DATASET.

GLSTM-A RMSE MAE MAPE
1 layer 1.62 1.21 0.019
3 layer 1.39 1.20 0.018
5 layer 1.15 0.88 0.016
6 layer 1.28 0.98 0.019
8 layer 1.29 0.98 0.019

TABLE IX
PERFORMANCE METRICS FOR DIFFERENT NUMBER OF LSTM PARALLEL

LAYERS IN GRID LSTM CONFIGURATIONS WITHIN GLSTM-A USING THE
TF-INDIA-HYDERABAD DATASET.

GLSTM-A RMSE MAE MAPE
1 layer 94.94 55.58 0.130
3 layers 92.17 56.18 0.140
5 layer 88.47 51.988 0.124
6 layers 90.67 54.50 0.136
8 layers 92.75 54.84 0.132

the most favorable outcomes with the lowest RMSE (88.47),
MAE (51.988), and MAPE (0.124). However, increasing the
number of layers beyond five does not lead to consistent
improvements, suggesting an optimal layer configuration for
this dataset and emphasizing the criticality of model depth in
deep learning-based time series forecasting.

V. CONCLUSION AND FUTURE WORK

In this work we have addressed the challenges involved
in traffic flow prediction, which is of paramount importance
for overall safety of any transportation system or traffic
network. To address one of the existing challenges, such
as computational efficiency and predictive performance and
encoding temporal information, we proposed GLSTM-A, that
comprises of an innovative hybrid long short-term memory
model that uses historical or prior information for encoding
crucial temporal information at multiple levels/scenarios. We
also proposed an innovative attention mechanism to focus on
specific region of the data features automatically for further
improving the model’s predictive capabilities. It’s notable
that the model was trained on two different datasets from
distinct locations or countries, where traffic issues vary greatly.
Despite these differences, our method demonstrated strong
performance across all tested cases. Extensive experimental
results and ablation studies demonstrated that our GLSTM-
A architecture outperforms popular LSTM,CNN-LSTM,Conv-
LSTM and TCN models, all while maintaining reduced com-
putational complexity and memory usage for various time
series prediction tasks. However, it is important to note a
limitation of the model. GLSTM-A may not perform optimally
in scenarios with limited training data. When there is a scarcity
of data for training, the model’s predictive performance may
be adversely affected.

For future endeavors, we aim to further augment the capa-
bilities of our model, particularly in long-term prediction tasks.

We are aiming to integrate spatial information into our model,
making it more comprehensive and robust. By including spatial
features, the model will attain a deeper understanding of traffic
flow patterns and trends, enabling even more accurate and
reliable short-term and long-term predictions.
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