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VELOCITY CURVES
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ABSTRACT

A recent publication has suggested a method to determine the masses and radii of the components

of an eclipsing system using only a light curve and radial velocities of one component. If true, this

would have immediate impact in expediting the study of transiting extrasolar planet and brown dwarf
systems. The method is intended for situations where the mass ratio is significantly different from

zero, but implicitly also requires the assumption that the mass ratio is negligible. We investigate

both cases, finding that when the mass ratio is significant the method is mathematically

identical to existing approaches, and when the mass ratio is negligible the equations

become undefined. We therefore conclude that the method cannot be used to measure the
physical properties of such systems from observations alone.
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1. INTRODUCTION

Eclipsing binary stars for which radial velocities can

be measured for both components are vital objects in

stellar astrophysics, as the masses and radii of the com-

ponents can be determined using only quantities di-
rectly measurable from light and velocity curves (Steb-

bins 1911; Andersen 1991; Torres et al. 2010). For eclips-

ing systems for which radial velocities can only be mea-

sured for one component (typically defined to be the
primary component), this is not possible because one

no longer has access to one of the quantities measured

from observations (specifically the velocity amplitude of

the secondary component). Examples of such eclipsing

systems include low-mass eclipsing binaries (e.g. Fernan-
dez et al. 2009), transiting brown dwarfs systems (e.g.

Anderson et al. 2011) and transiting planetary systems

(e.g. Torres et al. 2008).

Transiting planets have been the subject of extensive
work in recent years, and several methods have been de-

veloped to provide the additional constraint required due

to our inability to measure their physical properties di-

rectly. These include using predictions from theoretical

stellar evolutionary models to constrain the properties of
the host star (Cody & Sasselov 2002; Sozzetti et al. 2007;

Southworth 2009), applying an empirical mass-radius re-

lation to the host star (Seager & Mallén-Ornelas 2003;

Southworth 2009; Enoch et al. 2010; Southworth 2011),
characterising the host star using asteroseismology (e.g.

Silva Aguirre et al. 2015) and measuring Doppler boost-

ing and ellipsoidal variations (e.g. Faigler et al. 2013;

Esteves et al. 2013).

Montet et al. (2015, hereafter M15) recently presented

a thorough and comprehensive study of the transiting

brown dwarf system LHS6343, originally discovered us-
ing photometric data from the Kepler satellite (John-

son et al. 2011). LHS 6343 contains a 62MJup brown

dwarf orbiting a 0.36M⊙ M-dwarf every 12.7 d. M15

presented a new method to determine the physical prop-
erties (specifically the masses and radii) of the two com-

ponents of the system, which uses only quantities di-

rectly measurable from the light curve and radial veloc-

ities of the primary component. M15 found this method

to work for systems where the mass ratio is not negligi-
ble and to allow the additional constraint to be bypassed.

On closer inspection, the method requires two assump-

tions which are in mutual conflict: that the mass ratio

be negligible and that the mass ratio be significantly dif-
ferent from zero. It is the purpose of the current work

to investigate the method and determine the types of

systems to which it may be applicable.

2. RETRACING THE METHOD

2.1. Basic equations

In this work we consider two spherical bodies which

are orbiting each other. Kepler’s Third Law can be writ-
ten as:

P 2 =
4π2a3

G(M1 +M2)
(1)

where P is orbital period, a is semimajor axis, G is the

Newtonian gravitational constant, and M1 and M2 are

Page 1 of 3 AUTHOR SUBMITTED MANUSCRIPT - PASP-100201.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

the masses of the two bodies. By convention we expect

M1 > M2, and for extrasolar planets we can also write

M1 ≫ M2.

The definition for mean density of a body is:

ρ =
mass

volume
=

3M

4πR3
(2)

where R is the radius of the body in question.

Combining Equations 1 and 2 leads to an important

result:

ρ1 =
3π

GP 2

a3

R 3
1

M1

M1 +M2

=
3π

GP 2

(

a

R1

)3
1

1 + q
(3)

where q = M2

M1
is the mass ratio. This equation shows

that the density of the primary object can be obtained
as a function of a few physical constants (G and π), pa-

rameters determined from the light curve (P and a
R1

; see

Russell 1912 and Seager & Mallén-Ornelas 2003) and q.

In the case of transiting planets one can further simplify

this by assuming q ≈ 0, in which case ρ1 can be obtained
purely from observed quantities:

ρ1 ≈
3π

GP 2

(

a

R1

)3

(4)

An alternative approach to this approximation can be

obtained by substituting the density of the secondary

object into Equation3 to find:

ρ1 + k3ρ2 =
3π

GP 2

(

a

R1

)3

(5)

where k = R2

R1
is the ratio of the radii of the two object.

In the case of transiting planets one can apply the ap-
proximation that R2

3 ≪ R1
3 and thus k3 ≈ 0, in which

case Equation5 reduces to Equation 4 above (see Winn

2010).

2.2. The method introduced by M15

M15 defined two parameters, c1 and c2, which can be

combined to determine the masses of the two bodies.

The quantity c1 comes from Equation3 above and is:

c1 ≡ 1 + q =

(

3π

GP 2

)(

1

ρ1

)(

a

R1

)3

(6)

The parameter c2 is very closely related to the mass

function:

f(M1,M2) =
K 3

1 P (1− e2)3/2

2πG
=

M 3
2 sin3 i

(M1 +M2)2
(7)

(e.g. Hilditch 2001; Roy 2005) where K is the velocity

amplitude of the primary object and e is the orbital

eccentricity. The definition of c2 by M15 is:

c2 ≡
M 3

2

(M1 +M2)2
=

K 3
1 P

2πG

(√
1− e2

sin i

)3

(8)

c2 and f(M1,M2) are practically equivalent for the sys-

tems we are considering here, because the high orbital

inclinations required for transits to occur mean that

sin i ≈ 1. The orbital inclination is also normally ob-
tained to good precision from modelling the transit light

curve, so the quantity sin i is precisely known.

From Equations 6 and 8 it follows that the masses of

the two objects can be expressed as:

M1 =
c 2
1 c2

(c1 − 1)3
(9)

M2 =
c 2
1 c2

(c1 − 1)2
(10)

From these quantities and the measured ρ1 and k, the

full physical properties of the system can be determined.

2.3. Can this method be applied?

In applying this approach to the analysis of a typical

transiting planet or brown dwarf system, one would cal-
culate c1 and c2 and then M1 and M2. The equation for

c1 (Equation 6) includes the density of the primary ob-

ject. This can be determined from the light curve alone,

but only under the assumption that q ≈ 0 and therefore

that Equation 4 is applicable. One then finds:

c1 =

(

3π

GP 2

)(

GP 2R 3
1

3πa3

)(

a

R1

)3

= 1 (11)

When applying this result to Equations 9 and 10,

we find that (c1 − 1) = 0 and therefore the masses

of the two components are undefined.

It is clear that the method breaks down once one

adopts the approximation that q ≈ 0. The method is

therefore only useful if a measured value for q is avail-

able, in which case one could use standard equations
to achieve the same results. The method is therefore

valuable only in that it provides a convenient way to

determine the masses of the objects from observations

and a known mass ratio; it cannot provide the masses

from only observable quantities.

3. DISCUSSION

A method was recently presented for measuring the

masses and radii of a transiting brown dwarf system
based purely on parameters measured directly from a

transit light curve and radial velocities of the host star.

We have investigated this method and found that the

situation divides into two regimes.

Mass ratio is negligible. This assumption is fundamen-
tal to the method proposed by M15, as it allows an ap-

proximation for the stellar density to be used and there-

fore the system of equations to be established. However,

the assumption of a negligible mass ratio also leads to
singularities in the equations which render them un-

usuable. We therefore refute the claim that “if the
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Doppler semiamplitude is known, the stellar mass can

be measured exactly” (M15, Appendix, paragraph 2).

Mass ratio is not negligible. M15 do identify an is-

sue with the equations becoming undetermined at low
mass ratios, and in other parts of their work (e.g. Ap-

pendix, paragraph 13) mention that the adoption of a

mass–radius relation of the form M1 ∝ Rx, where x is a

real number typically around 3.0, allows the properties

of the system to be obtained. This is the same approach
as originally outlined by Seager & Mallén-Ornelas (2003)

and used with slight modification by Southworth (2009).

In this regime, the method of equations is equivalent

to most existing approaches used for determining the
physical properties of transiting planetary systems, with

all the same advantages and disadvantages of those ap-

proaches.

We therefore conclude that the method is only appli-

cable in a subset of situations, in which case its perfor-

mance is identical to many other mathematical prescrip-

tions for measuring the properties of transiting plane-

tary systems. An additional constraint beyond those ob-

tained from modelling light and velocity curves is needed
in all situations. A set of equations which make the im-

pact of the additional constraint clear and quantifiable

can be found in Southworth (2009, section 2.1).
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