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Novelty statement
What is already known?
· Asians with type 2 diabetes, have an increased likelihood of developing diabetic nephropathy.
· Different identified self-reported risk factors vary in their sensitivity and specificity for predicting diabetic nephropathy  
What this study has found?
· Using a ‘hypothesis-free’ screen, 15 laboratory predictors in 3 routine test panels were found to be significantly associated with newly diagnosed biopsy-proven diabetic nephropathy.
· Three explanatory models were derived and validated with one model (the blood-cell model) identified as having the best model-performance with the cheapest cost.
What are the clinical implications of the study?
· Existing routine “blood-cell” tests might be a useful tool to identify people at high risk of developing biopsy-proven diabetic nephropathy at a low cost that would be acceptable to low- and middle-income countries. 
























ABSTRACT
Aim
Associations between readily available routine laboratory test data and risk of incident diabetic nephropathy (DN) have not been assessed in people with type 2 diabetes.  This study aimed to identify significant prognostic factors of newly diagnosed biopsy-proven DN using routine laboratory measures, and thereby derive a low-cost explanatory model to examine associations between the potential ‘low-cost’ test panels and the risk of DN in people with type 2 diabetes with normal kidney function.
Method
A population-based case-control study was undertaken to test the association between DN and 47 laboratory items using a ‘hypothesis-free’ strategy and 5 routinely recorded factors in diabetes care (body mass index, systolic and diastolic blood pressure, HbA1c, fasting glucose). Factors that were significant after Bonferroni-correction were classified into different test panels and used to develop DN (outcome) explanatory models.  Models were derived using risk-set sampling among 950 newly diagnosed biopsy-proven DN cases between 2012-2018 and 4,750 age and gender matched controls.
Results
15 Bonferroni-corrected significant laboratory predictors in the three test panels (blood-cell domain, serum-electrolytes domain and blood-coagulation domain) were identified through multivariable analysis and used to develop the three explanatory models. The optimism-adjusted C-statistics and calibration slope were 0.725 (0.723-0.728) and 0.978 (95% CI: 0.912-0.999) for the blood-cell model, 0.688 (0.686-0.690) and 0.923 (0.706-0.977) for the serum-electrolytes model, 0.648 (0.639-0.658) and 0.914 (0.641-1.115) for the blood-coagulation model, respectively.
Conclusions
15 predictors were significantly associated with newly diagnosed biopsy-proven DN in type 2 diabetes. The blood-cell model appeared to be the most predictive low-cost model.  
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INTRODUCTION
Diabetic nephropathy is the leading cause of chronic kidney disease in people initiating renal replacement therapy, and is associated with increased cardiovascular mortality (1,2). In people with type 2 diabetes in the UK Prospective Diabetes Study (UKPDS), the annual incidence of clinically diagnosed diabetic nephropathy was 2.0% with a  prevalence of 25% 10 years after diagnosis(3). Diabetic nephropathy is more common in Asian populations (4). Diabetic nephropathy is estimated to have doubled in the 1990s as an indication for initiating renal replacement therapy (5). 

Two major, modifiable, risk factors are associated with the development and progression of diabetic nephropathy in type 2 diabetes:  hyperglycemia (6) and hypertension (7). Some other putative risk factors such as glomerular hyperfiltration (8), smoking (9), proteinuria (9), dyslipidemia (8), and dietary factors (8) have been reported in cross sectional studies. However, the consistency of the findings, the population studied (general population or population with diabetes), and the validity of the diabetic nephropathy (low specificity in the clinical diagnosis) have varied between studies. Several potential prognostic factors for the development of diabetic nephropathy, measured in routine laboratory test panels, have not been assessed in the type 2 diabetes population, and particularly not among Chinese people with diabetes. Moreover, few studies have investigate the association between a group of potential prognostic factors and the risk of developing diabetic nephropathy among people with type 2 diabetes, especially among those with normal kidney function via explanatory models.
In this study we have screened all potential prognostic factors for newly developed biopsy-proven diabetic nephropathy using a ‘hypothesis-free’ strategy, an approach similar to that identifying associations between Single nucleotide polymorphisms (SNP) and outcomes in Genome Wide Association Studies (GWAS) (10).  These were then applied to derive a (low-cost) explanatory model to examine associations between groups of (test items) based mainly on routine blood test panels and the risk of diabetic nephropathy in people with type 2 diabetes and normal kidney function.
MATERIALS AND METHODS
Data setting
We conducted this population-based case-control study in Zhengzhou, Henan, China, which has 109 million residents. Both cases and controls were enrolled in the First Affiliated Hospital, Zhengzhou University, which is the largest hospital in China and provides both primary and secondary care to Henan residents. With its health insurance coverage of 90% since 2008, most people with diabetic nephropathy are able to be diagnosed during a hospital admission. As the provincial renal centre, most renal biopsies among people with diabetes are processed in this hospital. For potential diabetic nephropathy cases, renal biopsy is offered to each patient and more than 90% of potential cases accept the biopsy offer. Our study period encompassed 1 February 2012 and 28 February 2018. 

Ethics approval was granted by the Clinical Research Ethics Committee of the First Affiliated Hospital of Zhengzhou University (reference number: KY-2017-53). Written informed consent was obtained from all participants before inclusion.

Case definition
950 people with type 2 diabetes who were newly diagnosed with diabetic nephropathy in at the First Affiliated Hospital, Zhengzhou University, between 1 February 2012 and 28 February 2018, were included in this study. The diagnosis of diabetes for cases and controls was based on the American Diabetes Association criteria (11). The diagnosis of diabetic nephropathy was made based on the histological characteristics, such as glomerular hypertrophy, thickened capillary basement membranes, diffuse mesangial expansion (sclerosis), nodular mesangial sclerosis, exudative lesions such as capsular drop or fibrin cap, mesangiolysis, mescapillary microaneurysm, or hyalinosis of afferent and efferent arterioles, using appropriate standard for renal biopsy including light microscopy, electron microscopy, and immunofluorescence examination (12). People with other glomerular diseases concomitant with diabetic nephropathy were excluded from this study. Renal biopsy was performed for precise diagnosis of renal lesions with the consent of each patient. The biopsy results were reviewed by three clinicians and the diagnosis was made only based on the agreement of more than two clinicians.

Population controls
We used the inpatient administration system to select 10 population controls for each case, matched for age and gender. Controls were people with type 2 diabetes who were admitted to the hospital between 1 January 2016 and 31 December 2017. People with an estimated glomerular filtration rate (eGFR) < 90 ml/min/1.73m2 and urine total protein >30mg/24h were excluded from serving as controls  (9), as we aimed to identify prognostic factors, and derive prognostic models, to predict future risk of diabetic nephropathy from people with type 2 diabetes and normal kidney function. Controls were selected using a risk set sampling method to improve the representativeness of the control population, as ‘later’ diagnosed cases could appear in multiple risk-sets to serve as controls to ‘earlier’ diagnosed cases (13). Controls were therefore assigned an index date identical to that of corresponding cases. Odds ratios from studies with this design should be closer to relative risk as used in previous cohort studies (14).
 

Potential laboratory prognostic factors
Fifty laboratory and clinical test items routinely measured among people with type 2 diabetes admitted to the hospital were selected as potential prognostic factors. These tests were included within the full blood count, liver function and blood coagulation tests, serum electrolytes, and lipid profiles. Systolic blood pressure, diastolic blood pressure and body mass index were also included in the analyses.  Urine total protein, and estimated glomerular filtration rate (and creatinine) were excluded as all were relevant to define cases and controls. 

Statistical analysis
Contingency tables were generated for all the potential laboratory prognostic factors from which we calculated the distribution of factors among cases and controls. A ‘Hypothesis Free’ strategy was applied to screen for potential prognostic factors among the laboratory test items. All 47 prognostic factors were included in a multivariable conditional logistic regression model to generate the exact P-value for each prognostic factor. The log transformed Bonferroni-corrected significance level was used with a threshold of 3.0334238 to select significant factors in the same manner as significant SNP are presented in a Manhattan plot in GWAS (10). These significant factors (except test items, like eGFR in kidney function which have been used to differentiate between case and control) were clustered into one of three test panels (blood cell, serum electrolytes and blood coagulation) in which they sit within clinical practice.   Five clinical measurements used in routine diabetes care (body mass index, systolic blood pressure, diastolic blood pressure, HbA1c and fasting glucose) were also included in the analyses to derive a prognostic model for each test panel, to predict the risk of newly diagnosed biopsy-proven diabetic nephropathy among people with type 2 diabetes.  Maintaining the integrity of the test panel for the models is expected to facilitate translation into routine care (e.g. by using a single test-sheet).
 
There was missing information on body mass index (56%), systolic blood pressure (37%), diastolic blood pressure (38%), fasting glucose (6%), HbA1c (7%), haematocrit (14%), mean corpuscular haemoglobin (14%), mean platelet volume (14%), monocyte (14%), red blood cell distribution width (14%), magnesium (22%), sodium (22%), chlorine (22%), activated partial thromboplastin time (33%), D-Dimer (33%), thrombin time (33%), fibrinogen (33%), and fibrinogen degradation products (33%) . Multiple imputation was applied to replace missing values by using a chained equation method based upon all candidate predictors and primary outcomes. 50 imputed datasets were generated for missing predictors that were then combined across all datasets by using Rubin’s rule to generate final model estimates (15). During the imputation process, the outcome was not imputed, but was used as a covariable involved in the imputation process for predictors with missing data (16). An effective sample size with 16 outcomes per variable was used: this is above the minimum requirement suggested by Peduzzi et al (17) (minimum 10 events per variable before variable selection). 
 Newly diagnosed biopsy-proven diabetic nephropathy was defined as a binary outcome measure. A conditional logistic regression model was used to estimate the unadjusted model coefficient for each candidate parameter. Candidate predictors that were not statistically significant were excluded from the multivariable conditional Logistic regression model by backward elimination (P>0.1 based on change in log likelihood) (18). 
Variables excluded from the multivariable model based on P>0.1 for a change in log likelihood were reinserted one by one into the final model to observe whether the excluded variable could lead to a statistically significant change in the model. Continuous variables remaining in the final model were assessed as linear term, fractional polynomial terms, and the terms with the best model fitted statistics (minimum AIC) remained as the final terms. When the excluded predictors were reinserted into the final model one by one, the continuous variables remaining in the final model were reassessed as above (19,20). 
The study was designed to develop models to examine associations between groups of potential prognostic factors rather than prediction models to predict the absolute risk of diabetic nephropathy. Moreover, limitations of the case-control design used, mean that the absolute risk of an outcome cannot be derived from this study.
Model calibration was assessed by plotting the mean predicted probability against the mean observed probability of diabetic nephropathy by tenth of predicted risk. Model discrimination was assessed using the concordance statistic (C-statistic) which was estimated from the adjusted ROC curves, disregarding the matching. Unconditional Logistic regression with additional adjustment using matching factors (21). A value of 0.50 represents no discrimination and 1.00 represents perfect discrimination. Internal validation of model performance was assessed by calculating the bootstrap optimism-corrected c-statistic and the calibration slope with 100 bootstrap replications.
 
We used Stata V15.1 for all statistical analyses. This study was conducted and reported in line with the Transparent Reporting of a multivariate prediction model for Individual Prediction Diagnosis (TRIPOD) guidelines (22,23).

RESULTS
Potential prognostic factors measured in cases and controls are presented in Table 1.  Cases with newly diagnosed biopsy-proven diabetic nephropathy had lower haemoglobin, mean corpuscular haemoglobin, lymphocytes, monocytes, total bile acid, high density lipoprotein cholesterol, calcium, carbon dioxide combining power and eGFR and higher values of the remaining factors. Univariable associations between predictors and cardiovascular outcomes are listed in Supplemental Table 1.

P-values of laboratory predictors from the multivariable conditional logistic regression model are presented in a Manhattan plot (Figure-1). Bonferroni–corrected significant laboratory factors were identified as haematocrit, mean corpuscular haemoglobin, mean platelet volume, monocyte number, and red cell distribution width in the Blood-cell test domain; magnesium, sodium and chlorine in the serum-electrolytes domain; and activated partial thromboplastin time, D-Dimer, thrombin time, fibrinogen and fibrinogen degradation products in the blood coagulation domain.  The c0-efficients for each of the three panel based explanatory models (using these laboratory factors and the five clinical parameters (body mass index, systolic blood pressure, diastolic blood pressure, fasting glucose and HbA1c) are shown in Table-2. Table 3 shows apparent and internal validation C statistics for the three explanatory models. After adjustment for optimism, the final explanatory models were able to discriminate people with type 2 diabetes, with and without newly diagnosed biopsy proven diabetic nephropathy, with a C statistic of 0.725 (95% confidence interval 0.723 to 0.728) for the blood-cell model, 0.688 (0.686 to 0.690) for the serum-electrolyte model and 0.648 (0.639 to 0.658) for the blood-coagulation model, respectively. The agreement between the observed and predicted proportion with newly diagnosed biopsy proven diabetic nephropathy showed good apparent calibration (Figure-2, left for blood-cell model, middle for serum-electrolyte model and right for blood-coagulation model). The optimism-adjusted calibration slope was 0.978 (0.912 to 0.999) for the blood-cell model, 0.923 (0.706 to 0.927) for the serum-electrolyte model, and 0.914 (0.641 to 1.115) for the blood-coagulation model, respectively (Table 3).

DISCUSSION
We have shown that laboratory test items in three test panels (blood-cell test, serum-electrolyte test and blood coagulation test) are significantly associated with an increased risk of newly diagnosed biopsy proven diabetic nephropathy among people with type 2 diabetes in China. We also developed three explanatory models with which to screen people with type 2 diabetes to identify those at high risk of newly diagnosed biopsy proven diabetic nephropathy. We have shown that using readily available “predictor” variables within the cheapest (CNY 10) blood test panel (the blood cell panel), which are routinely available at the time of admission or in primary care screening, will facilitate the further development of risk prediction models in an external cohort study with using identified groups of prognostic factors to identify people with diabetes and normal kidney function at risk for future diabetic nephropathy.

We believe our models might have important clinical utility. Timely identification of people at high risk of diabetic nephropathy provides the opportunity for early diagnosis, early intervention and improvement in diabetic nephropathy outcomes. In particular, the best model for identifying diabetic nephropathy (the blood-screen model) incorporated cheap routine test items (haematocrit, mean corpuscular haemoglobin, mean platelet volume, monocyte, and red blood cell distribution width) which are available both in primary and secondary care settings. In our institute, we intend to incorporate this model to support decision-making within the hospital electronic health records. Future development of risk predicting models using these significant routine test items to identify the individuals at risk of diabetic nephropathy will facilitate automated ordering of a serum creatinine with eGFR calculation.  If chronic kidney disease is shown to be present, a consultation request will be generated and sent to the secondary and primary care diabetes teams for further tailored intervention strategies (e.g. intensive antihypertensive treatment and / or intensive antidiabetes treatment).

Previous studies regarding prognostic factors for diabetic nephropathy  focused mainly on novel plasma and urine measurements (like butenoycarnitine, histidine, hexcose, glutamine, tyrosine and Pigment epithelium-derived factor) (24,25), genetic factors (26), or some biopsy-related factors (i.e. Tubulointerstitial Lesions) (27). However, these factors are costly, and are not available in routine primary and secondary care settings. In our studies, we aimed to identify prognostic factors that are commonly recorded in primary and secondary care settings which would facilitate routine diabetes care. Moreover, the validity of such factors for use in actual clinical practice may be uncertain, due to the veracity of the diagnosis of diabetic nephropathy (if not using biopsy-proven cases) and of type 2 diabetes (some may have included people with type 1 diabetes).  , In this present study, we have compared prognostic factors between people with type 2 diabetes and newly identified type 2 diabetic nephropathy those with type 2 diabetes but normal albuminuria and kidney function: this approach assumes that the cases and controls were from the same underlying case population. Newly identified prognostic factors could potentially be replicated in populations with type 2 diabetes elsewhere.

The significant test panel (blood-cell test) incorporated some prognostic factors which might be associated with the development of diabetic nephropathy. For example, haemoglobin and mean corpuscular haemoglobin reflect the role of anaemia in the development of diabetic nephropathy (28,29). Monocyte count reflected the role of inflammatory in the development of diabetic nephropathy (30).

Few models have been developed among people with type 2 diabetes to predict newly diagnosed, biopsy-proven diabetic nephropathy. One previous model with low statistical power and relatively low discrimination was derived in 1274 Ashkenazi or Sephardic Jewish people with type 1 or type 2 diabetes using 27 genetic variants within 15 genes, in combination with 5 conventional indicators (age, gender, ethnicity, diabetes type and duration) (31). Our  model is the first explanatory model to examine associations between routinely recorded “predictors” (in both primary and secondary care settings) and risk of newly diagnosed biopsy-proven diabetic nephropathy among people with type 2 diabetes.

There are both strengths and limitations to our approach. First, a novel hypothesis-free strategy was applied in our study to screen for potential prognostic factors that would be available at the time of admission. Second, both cases and control populations were from the underlying population with type 2 diabetes. Third, cases were well-defined by renal biopsy which is the gold standard for diabetic nephropathy diagnosis. One limitation in this present study is that the control group were admitted to hospital which might not be representative of the whole population with type 2 diabetes. As there are no distinct differences between primary and secondary care in China, the potential selection bias in this study might actually be low. Restriction in sample size and the involvement of a single recruitment site in the present study could also have impacted on the extent to which controls were representative of the underlying population. Further validation studies are warranted in other populations, including those through ambulatory care (primary and secondary). Another limitation of this present study is the high volume of missing data. Although our analyses were carried out in imputed datasets, potential information bias and inaccuracy of model coefficient estimations might have been introduced due to the high volume of missing data in some variables (e.g. body mass index) (16,32). Therefore, further validation studies within datasets with low missing percentage are also warranted. Finally, due to the case-control design, our models are not risk prediction models to predict absolute risk of incident biopsy-proven diabetic nephropathy. As explanatory models, we could only examine the association between potential test panels and the risk of incident biopsy-proven diabetic nephropathy. The routine test items incorporating significant test panels, could be used as predictors in future cohort studies to develop risk prediction models.

We conclude that there are significant associations between test items incorporated in ‘low-cost’ test panel and the risk of diabetic nephropathy. Test items identified in our explanatory models could be useful prognostic factors for the future development of risk prediction models in external cohort studies. Further studies might need to address 1) external validation of the association between test items and risk of diabetic nephropathy, 2) further assessment of the practical utilisation of the model and 3) further demonstration of the active case-finding approach either on its own or in combination with additional new prognostic factors, followed by appropriate care will positively impact on reducing future diabetic nephropathy for people with diabetes. 
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Figure Legends
Figure-1. Manhattan plot for P-values of clinical measurements from a multivariable model
The solid horizon line indicates the Bonferroni corrected significant level
The high-resolution figure can be also viewed at https://doi.org/10.6084/m9.figshare.9741863.v1

Figure-2. Calibration Plots for three model





Table-1. Clinical measurements among diabetic nephropathy cases and matched controls with diabetes
	 
	Case
	Control
	P-value

	N
	 950
	 4750
	-

	Female gender, n (%)
	 446 (47)
	 2230 (47)
	-

	Age
	64 (55 to 73)
	64 (54 to 72)
	-

	Body mass index, kg/m2
	25.4 (23.1 to 28.6)
	23.4 (20.8 to 25.0)
	P < 0.0001

	Systolic blood pressure, mmHg
	140 (132 to 147)
	131 (123 to 139)
	P < 0.0001

	Diastolic blood pressure, mmHg
	79 (74 to 84)
	76 (72 to 80)
	P < 0.0001

	Antihypertensive treatment, n (%)
	335 (35)
	798 (17)
	P < 0.0001

	Lowering lipid treatment, n (%)
	113 (12)
	508 (11)
	P=0.5263

	Insulin treatment, n (%)
	797 (84)
	3268 (69)
	P < 0.0001

	HbA1c, mmol/mol / %
	61 (49 to 76) / 7.7 (6.6 to 9.1)
	57 (45 to 71) / 7.4 (6.3 to 8.6)
	P < 0.0001

	Alanine transaminase, U/L
	39.9 (22.7 to 157.7)
	35.0 (29.3 to 40.6)
	P < 0.0001

	Alkaline phosphatase, IU/L
	78.9 (53.0 to 116.0)
	78.5 (60.5 to 105.3)
	P < 0.0001

	Activated partial thromboplastin time, S
	31.2 (27.6 to 35.8)
	30.1 (26.4 to 34.7)
	P < 0.0001

	Direct bilirubin, µmol/L
	4.6 (1.3 to 14.4)
	3.6 (2.2 to 6.9)
	P < 0.0001

	Basophil, %
	0.04 (0.02 to 0.05)
	0.03 (0.02 to 0.05)
	P < 0.0001

	Cholinesterase, U/L
	8.8 (2.0 to 33.3)
	5.6 (1.6 to 18.1)
	P < 0.0001

	Calcium, mmol/L
	2.2 (2.1 to 2.3)
	2.2 (2.1 to 2.3)
	P < 0.0001

	Chlorine, mmol/L
	102.0 (98.5 to 105.5)
	101.9 (98.4 to 105.0)
	P < 0.0001

	Creatinine, μmoI/L
	159.0 (109.4 to 355.0)
	63.0 (11.2 to 135.6)
	P < 0.0001

	C reaction protein, mg/L
	22.8 (1.5 to 58.1)
	21.1 (3.2 to 54.4)
	P < 0.0001

	Cysteine proteinase inhibitor
	2.2 (1.4 to 3.3)
	0.9 (0.2 to 1.6)
	P < 0.0001

	D_Dimer, µg/mL
	1.2 (0.7 to 2.2)
	0.5 (0.1 to 2.2)
	P < 0.0001

	Fibrinogen Degradation Products, mg/L
	5.7 (1.2 to 12.0)
	3.3 (1.7 to 4.2)
	P < 0.0001

	Fibrinogen, g/L
	3.9 (3.2 to 4.7)
	3.4 (2.7 to 4.2)
	P < 0.0001

	Gamma glutamyl transpeptidase, U/L
	35.0 (13.0 to 91.8)
	29.5 (17.0 to 61.0)
	P < 0.0001

	Globulin, g/L
	26.5 (22.8 to 30.3)
	25.9 (22.2 to 29.6)
	P < 0.0001

	Glucose, mmol/L
	8.0 (5.5 to 11.2)
	7.9 (5.6 to 10.9)
	P < 0.0001

	High density lipoprotein cholesterol, mmol/L
	1.0 (0.7 to 1.2)
	1.0 (0.8 to 1.3)
	P < 0.0001

	Haemoglobin, g/L
	101.0 (85.0 to 117.0)
	119.0 (102.9 to 134.0)
	P < 0.0001

	Haematocrit, %
	19 (3.8 to 29.)
	11 (3.8 to 12)
	P < 0.0001

	Indirect Bilirubin, µmol/L
	5.2 (2.7 to 8.8)
	3.4 (2.0 to 5.7)
	P < 0.0001

	Potassium, mmol/L
	4.3 (4.0 to 4.8)
	4.2 (3.8 to 4.6)
	P < 0.0001

	Low density lipoprotein cholesterol, mmol/L
	2.5 (1.8 to 3.3)
	2.5 (1.7 to 3.3)
	P < 0.0001

	Lymphocyte, %
	1.6 (1.0 to 2.1)
	1.3 (0.8 to 1.9)
	P < 0.0001

	Mean corpuscular haemoglobin concentration, g/L
	326.8 (320.9 to 333.0)
	329.4 (323.0 to 337.0)
	P < 0.0001

	Mean corpuscular volume, fL
	90.6 (86.0 to 95.1)
	90.4 (86.3 to 94.2)
	P < 0.0001

	Magnesium, mmol/L
	1.0 (0.9 to 1.1)
	0.9 (0.8 to 1.0)
	P < 0.0001

	Mean platelet volume, fL
	8.9 (8.1 to 9.8)
	8.8 (8.0 to 9.7)
	P < 0.0001

	Monocytes, %
	0.6 (0.3 to 1.1)
	0.6 (0.2 to 1.1)
	P < 0.0001

	Sodium, mmol/L
	141.5 (138.4 to 144.4)
	140.6 (137.6 to 143.2)
	P < 0.0001

	Neutrophil, %
	6.7 (4.3 to 9.7)
	5.6 (3.2 to 8.3)
	P < 0.0001

	Phosphorus, mmol/L
	1.2 (1.1 to 1.5)
	1.1 (0.9 to 1.3)
	P < 0.0001

	Procalcitonin, ng/mL
	1.2 (0.1 to 1.4)
	1.2 (0.3 to 1.9)
	P < 0.0001

	Red blood cell, 1012/L
	3.9 (1.0 to 11.0)
	3.7 (2.7 to 10.1)
	P < 0.0001

	Red blood cell distribution width, %
	14.6 (13.6 to 15.9)
	13.9 (13.0 to 15.4)
	P < 0.0001

	Total cholesterol, mmol/L
	4.1 (3.2 to 5.1)
	4.1 (3.2 to 5.0)
	P < 0.0001

	Total bile acid, µmol/L
	5.7 (2.4 to 17.7)
	4.1 (1.0 to 13.8)
	P < 0.0001

	Total bilirubin, µmol/L
	10.1 (4.3 to 22.5)
	7.6 (4.5 to 13.1)
	P < 0.0001

	Triglyceride, mmol/L
	1.7 (1.1 to 2.7)
	1.6 (0.9 to 2.6)
	P < 0.0001

	Thyroid-stimulating hormone, µIU/mL
	2.6 (0.4 to 5.6)
	2.3 (0.1 to 5.3)
	P < 0.0001

	Urine acid, µmol/L
	351.0 (278.4 to 435.3)
	251.0 (179.8 to 328.0)
	P < 0.0001

	Thrombin time, S
	15.3 (13.6 to 17.7)
	14.6 (12.3 to 17.3)
	P < 0.0001

	Urea, mmol/L
	11.7 (7.9 to 18.3)
	5.1 (2.5 to 8.1)
	P < 0.0001

	White blood cell count, 109/L
	8.0 (5.0 to 16.1)
	6.4 (2.0 to 21.0)
	P < 0.0001

	estimated glomerular filtration rate, mL/min/1.73m2
	35.8 (14.4 to 53.4)
	94.9 (90.2 to 108.4)
	P < 0.0001

	Carbondioxide combining power, mmol/L
	23.0 (20.4 to 25.7)
	24.8 (22.2 to 27.3)
	P < 0.0001

	Urine total protein, mg/24 h
	597.5 (66.9 to 2255.7)
	4.7 (1.3 to 8.0)
	P < 0.0001

	α-Microglobulin, mg/L
	53.1 (31.0 to 80.2)
	25.9 (5.6 to 46.7)
	P < 0.0001

	β2-microglobulin, mg/L
	6.8 (3.8 to 10.0)
	1.7 (0.3 to 4.0)
	P < 0.0001



Table-2. Final model coefficients 
	Predicator/Parameters
	Model coefficients
	95% Confidence Interval

	Model-1: Blood Count Model

	(Body mass index/10)^0.5
	6.902088
	(5.451466 to 8.352710)

	(Body mass index/10)^2
	-0.348929
	(-0.433103 to -0.264754)

	(Systolic blood pressure/100)^3
	2.983886
	(2.594945 to 3.372827)

	(Systolic blood pressure/100)^3*LN(Systolic blood pressure/100)
	-3.133533
	(-3.683952 to -2.583114)

	(Diastolic blood pressure/10)^3
	-0.030210
	(-0.033909 to -0.026510)

	(Diastolic blood pressure/10)^3*LN(Diastolic blood pressure/10)
	0.013703
	(0.012121 to 0.015284)

	HbA1c
	-0.096910
	(-0.008550 to 0.034730)

	[(Haematocrit +66.99919897317886)/100]^3
	1.729341
	(0.936343 to 2.522338)

	[(Hematocrit+66.99919897317886)/100]^3*ln[(Haematocrit +66.99919897317886)/100]
	-3.782270
	(-6.432120 to -1.132430)

	[(Mean corpuscular haemoglobin +3.033893823623657)/10]^2
	0.787711
	(-0.015990 to 1.591408)

	[(Mean corpuscular haemoglobin +3.033893823623657)/10]^2*ln[(Mean corpuscular haemoglobin +3.033893823623657)/10]
	-0.487590
	(-0.962038 to -0.013132)

	(Mean platelet volume /10)^-2
	-0.390170
	(-0.831343 to 0.051008)

	(Mean platelet volume /10)^3
	-0.016160
	(-0.522297 to 0.489968)

	(Monocytes +9.727448467165232)/10
	2.017680
	(-6.012083 to 10.047440)

	[(Monocytes +9.727448467165232)/10]*ln[(Monocytes +9.727448467165232)/10]
	-1.589740
	(-7.736727 to 5.557256)

	Red blood cell distribution width /10
	8.046405
	(3.910457 to 12.182350)

	(Red blood cell distribution width /10)*ln(Red blood cell distribution width /10)
	-5.558290
	(-8.284498 to -2.832090)

	[(Glucose+19.38402181863785)/10]^-0.5
	1.293033
	(-3.824466 to 6.410533)

	[(Glucose+19.38402181863785)/10]^3
	0.005206
	(-0.010036 to 0.020449)

	Haemoglobin
	-0.030820
	(-0.037796 to -0.023842)

	Model-2: Serum Electrolytes Model

	(Body mass index/10)^0.5
	5.702156
	(4.271107 to 7.133205)

	(Body mass index/10)^2
	-0.305651
	(-0.38198 to -0.22935)

	(Systolic blood pressure/100)^3
	2.563556
	(2.197892 to 2.929215)

	(Systolic blood pressure/100)^3*LN(Systolic blood pressure/100)
	-2.903541
	(-3.414230 to -2.392850)

	(Diastolic blood pressure/10)^3
	-0.029160
	(-0.032421 to -0.025852)

	(Diastolic blood pressure/10)^3*LN(Diastolic blood pressure/10)
	0.012567
	(0.011027 to 0.014105)

	HbA1c
	-0.131240
	(-0.266000 to 0.003520)

	[(Glucose+19.38402181863785)/10]^2
	0.054555
	(-0.185178 to 0.294287)

	[(Glucose+19.38402181863785)/10]^3
	0.003792
	(-0.042786 to 0.050369)

	[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Magnesium^-1
	-1.061440
	(-1.807654 to -0.315235)

	Magnesium^3
	0.349790
	(0.039067 to 0.660512)

	(Sodium/10)^2
	-0.038380
	(-0.236171 to 0.159408)

	(Sodium/10)^3
	0.000126
	(-0.009176 to 0.009428)

	(Chlorine /10)^2
	-0.066310
	(-0.215143 to 0.082518)

	(Chlorine /10)^3
	0.006708
	(-0.002927 to 0.016343)

	Model-3: Blood Coagulation Model

	(Body mass index/10)^0.5
	6.502088
	(5.071039 to 7.933137)

	(Body mass index/10)^2
	-0.308653
	(-0.384989 to -0.232317)

	(Systolic blood pressure/100)^3
	2.875632
	(2.509969 to 3.241295)

	(Systolic blood pressure/100)^3*LN(Systolic blood pressure/100)
	-3.125632
	(-3.636330 to -2.614934)

	(Diastolic blood pressure/10)^3
	-0.030058
	(-0.033326 to -0.026790)

	(Diastolic blood pressure/10)^3*LN(Diastolic blood pressure/10)
	0.013564
	(0.012024 to 0.015103)

	HbA1c
	-0.190640
	(-0.399328 to 0.018048)

	[(Gluocse+19.38402181863785)/10]^2
	0.047462
	(-0.192235 to 0.287158)

	[(Glucose+19.38402181863785)/10]^3
	0.008985
	(-0.037431 to 0.0554018)

	[(Activated partial thromboplastin time +16.47912311553955)/100]^0.5
	3.710552
	(0.4525394 to 6.968565)

	[(Activated partial thromboplastin time +16.47912311553955)/100]^2
	-0.23966
	(-1.684078 to 1.204757)

	ln[(D_Dimer+19.97116281092167)/100]
	-3.929870
	(12.95589 to 5.096146)

	{ln[(D_Dimer+19.97116281092167)/100]}^2
	-1.160800
	(-3.184274 to 0.862676)

	[(Thrombin time+69.59581771492958)/100]^2
	3.592595
	(1.711984 to 5.473205)

	[(Thrombin time +69.59581771492958)/100]^2*ln[(Thrombin time +69.59581771492958)/100]
	-3.012000
	(-4.852518 to -1.171476)

	Fibrinogen
	0.437083
	(0.3421326 to 0.5320336)

	Fibrinogen degradation products
	0.007559
	(-0.010255 to 0.0253734)





[bookmark: _GoBack]
Table-3. Model performance (with 95% CI) for three models in screening for diabetic nephropathy 
	
	Apparent Performance
	Test Performance*
	Average optimism
	Optimism Corrected

	
	C-statistics

	Blood-cell  screen model
	0.731 (0.729 to 0.734)
	0.725 (0.717 to 0.734)
	+0.006
	0.725 (0.723 to 0.728)

	Serum-electrolyte screen model
	0.694 (0.692 to 0.696)
	0.688 (0.679 to 0.697)
	+0.006
	0.688 (0.686 to 0.690)

	Blood-coagulation screen model
	0.650 (0.641 to 0.660)
	0.648 (0.646 to 0.650)
	+0.002
	0.648 (0.639 to 0.658)

	
	Calibration slope

	Blood-cell  screen model
	1.000 (0.856 to 1.044)
	0.978 (0.934 to 1.021)
	+0.022
	0.978 (0.912 to 0.999)

	Serum-electrolyte screen model
	1.000 (0.870 to 1.130)
	0.923 (0.793 to 1.054)
	+0.077
	0.923 (0.706 to 0.977)

	Blood-coagulation screen model
	1.000 (0.813 to 1.187)
	0.914 (0.727 to 1.101)
	+0.086
	0.914 (0.641 to 1.115)


*Test performance was from internal validation.
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