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Abstract 
 

This short paper summarises the proof that a causality violation formed from a bounded 

region requires matter that violates the null energy condition. Therefore the answer to the 

question in the title is yes. This is one of the results on which Stephen Hawking based his 

Chronology protection conjecture. It is conjectured that the required negative mass density 

fields cannot cover sufficiently large regions of space-time to make causality violations a 

reality. This lends support to the idea that the evolution of the universe is an entirely unitary 

process. This work is intended to be more accessible than Hawking’s original, which was cast 

in terms of the Newman-Penrose formalism. 
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1. Introduction 

 

Time travel into the past has been a staple of science fiction since the late nineteenth century. 

For almost a century the question remained: is it really possible? It was not until the early 

1990s that researchers found themselves in a position to seriously investigate this question. 

However, throughout the twentieth century a number of solutions from general relativity 

appeared that exhibit closed timelike curves (CTCs). Many have speculated that such 

traversable loops in space-time would be unstable due to vacuum fluctuations being 

indefinitely amplified by repeated propagation around the loop. Some of the proposed 

solutions have other problems too, for example the rotating cylinder (van Stockum, 1937) and 

the rotating universe (Gödel, 1949) are non-compact and therefore are deemed unrealistic. 

Other solutions such as, wormholes (Morris, Thorne and Yurtsever, 1988), warp drive 

(Alcubierre, 1994) and the Krasnikov tube (Krasnikov, 1998) require exotic material that, by 

definition, violates reasonable energy conditions. 

 

In this work we consider a causality violation evolving, without topological transformation, 

from a past compact subset of a non-compact spacelike surface, S. Here a causality violation 

is defined as a metric admitting a closed non-spacelike curve. The solution is described in 

general terms and is examined with the aid of the Raychaudhuri equation to see whether it 

could be realised using normal matter. Such a solution was investigated by Hawking (1992) 

and shown to be possible as long as fields violating the null energy condition (NEC: 

0a b

ab
T k k ≥  for any null 4-vector, a

k ) are present. In this work we do not engage in a 

discussion as to whether NEC violations are possible. Such violations are known to exist in 
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the form of the Casimir effect and certain squeezed quantum states of microscopic 4-

volumes. However, over sufficiently large macroscopic volumes of space-time it seems that 

NEC violations are smeared out (Flanagan and Wald, 1996). 

 

In the following section we present a short discussion of the Raychaudhuri equation 

describing a congruence of world lines for particles in a gravitating body of fluid. This is 

briefly described without proof. For an accessible derivation of Raychaudhuri’s equation, the 

reader is referred to Dadhich (2005). 

 

A summary of Hawking’s original proof that such a solution is not possible without violating 

the NEC is presented in section 3. We refer to this as the classical causality theorem, and its 

proof is presented in a form intended to be more accessible than Hawking’s original that 

made use of the Newman-Penrose formalism. The equivalent of Raychaudhuri’s equation in 

this formalism is known as the Newman-Penrose equation for the convergence ρ  (Hawking 

1992, p605). All mathematical descriptions in this work use the Penrose signature ( + − − − ), 

which is my preference over the more popular ( − + + + ). This explains differing signs of 

certain terms compared with other authors. 

 

 

2. The Raychaudhuri equation 
 

This equation describes, in general terms, how matter behaves in a space-time manifold that 

is itself modified by its presence. The behaviour of matter fields is couched in terms of 

congruencies, families of timelike and null curves, which may be fluid flow lines or histories 

of photons. These can be expressed in terms of rates of change of expansion (volume 

changes), vorticity and shear. Raychaudhuri’s equation determines rate of change of 

expansion, and this is central to the derivation of theorems concerning singularities due to 

divergences of density at focal points. We consider a congruence of world lines for a 

collection of test bodies in space-time that we imagine as initially expanding or contracting. 

The Raychaudhuri equation encapsulates the idea that nearby material bodies, falling freely 

under their own gravity will converge provided that we are dealing with matter that has 

positive density as measured locally. Ignoring non-gravitational interactions, if their 

gravitational potential is greater in magnitude than their kinetic energy then all of these 

bodies will converge to a focal point at some future time. If, on the other hand, the kinetic 

energy is greater, then one can infer that all such bodies emerged from a focal point in the 

past. These focal points, referred to as conjugate points if a Jacobi field exists which vanishes 

at these points (O’Neill, 1983, p270), would constitute a singular breakdown of the theory 

(Dadhich, 2005, p1). 

 

Employing the notation of Hawking and Ellis (1973, p84) the Raychaudhuri equation is given 

by  

 

                                             
2

2 2

;2 2
3

a b a

ab a

d
R V V V

d

θ θ
σ ω

λ
= − + − + ɺ                                       (1) 

 

The expansion, θ , is differentiated with respect to an affine parameter, λ , which is usually 

proper time for timelike geodesics. The terms 22σ−  and 22ω  are shear and vorticity scalars 

respectively. The shear term contributes positive mass-energy to the matter fields and 

therefore promotes convergence explaining the minus sign. The vorticity term, on the other 
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hand, has the opposite sign. On physical grounds this is to be expected because it encourages 

expansion by analogy with centrifugal force. When vorticity is non-zero, one can imagine 

geodesics winding around each other in space-time. The last term is due to non-gravitational 

acceleration therefore this term vanishes when we consider particles on geodesic trajectories, 

i.e. ; 0a a b

bV V V≡ =ɺ . The only other term not explicitly dependent on the expansion is the 

first term on the right hand side, a b

ab
R V V  where a

V  is timelike 4-velocity along the 

congruence of geodesics. 

 

In the following section we use a geometric optics version of Raychaudhuri’s equation, which 

applies only to null geodesics. These have 4-velocity, a
k . This equation is given by  

 
2

2 2
ˆ ˆ

ˆˆ2 2
2

a b

ab

d
R k k

d

θ θ
σ ω

λ
= − + −                                     (2) 

 

Since local 4-acceleration vanishes for null geodesics also, then there is no corresponding 

term as seen in equation (1). It is also noted that the expansion-squared term has 2 on its 

denominator as opposed to 3. This reflects the reduced dimensionality of null cones in which 

the null geodesics are confined. For details see (Hawking and Ellis, 1973, p88; Wald, 1984, 

p222). 

 

An important step involved in the proof of the classical causality theorem is the elimination 

of the vorticity term. Hawking and Ellis (1973, p97) and Wald (1984, p226) provide a general 

proof of this when conjugate points are present. However, using a simple physical argument 

this may be justified by noting that it vanishes whenever the angular momentum of 

constituent particles is zero. We note that in the specific case of our time machine model 

(figure 1), any null geodesic, 1γ , in the Cauchy horizon may be traced indefinitely into its 

own past and converge asymptotically and without oscillation towards the initial causality 

violation known as the fountain, γ .  Assuming that angular momentum is non-zero then in 

order for 1γ  to converge to γ  in the past then, due to the conservation of angular momentum, 

the angular velocity must diverge in proportion to the reciprocal radius of gyration, and this 

can only be avoided by setting ˆ 0ω =  along 1γ . 

 

 

3. An asymptotically flat causality violation 
 

Before stating and proving the classical causality theorem we describe the formation of a 

causality violation from the familiar circumstances of a time-orientable space-time to the past 

of a non-compact spacelike surface, S, containing the initial data. The structure consists of 

three regions delimited by two non-compact hypersurfaces: the surface, S, and to its future, 

the Cauchy horizon, ( )H S
+ , which is a null hypersurface generated by the fountain. The 

future Cauchy development, ( )D S
+ , is the domain of dependence of S, which is bounded to 

the future by ( )H S
+  in the presence of a singularity or a causality violation. In general the 

boundary of ( )D S
+  is given by ( ) ( )D S H S S

+ +∂ = ∩ . For the space-time manifold, M, 

( )D S
+  is defined as the set of all points p M∈  such that every past-inextendible non-

spacelike curve through p intersects S (Hawking and Ellis, 1973, p201). The region to the 
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future of ( )H S
+  may be described as a domain of unpredictability because it contains 

elements that are independent of the data on S. 

 

The above description is often considered in the context of singularities (Hawking and Ellis, 

1973, figure 53, p288) where it may be applied in the case of gravitational collapse. In our 

case the Cauchy horizon is formed by the presence of an initial causality violation (figure 1).  

 

 

Figure 1: All of the material used to construct the causality violation is in the compact region 

B S⊆  (grey patch). As time progresses it is arranged so that the light cones tip within an 

equatorial plane. Eventually it reaches the fountain, γ , which is the initial closed null curve. 

To the future of ( )H S
+  the null cones allow signals and matter to wind back from the future. 

 

In figure 1 we see that construction of a causality-violating region begins with material 

confined to a compact region, B S⊆ . As the system evolves material is configured to cause 

the light cones to tip in a defined equatorial plane to the point where the leading side of the 

cone can be continuously projected into its own past. This initial causality violation is the 

earliest set of events marking the boundary of the causality-violating region. Tipping of the 

null cones is a real phenomenon and occurs to a significant degree in, for example, rapidly 

rotating neutron stars and rotating black holes. It is variously known as dragging of the 

inertial frames or the Lense-Thirring effect. In real world situations it is always accompanied 

by closing up of the null cones, and this competing effect prevents the situation depicted in 

figure 1, where the leading side of the null cone loops back to its own past. 
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Figure 1 shows a particular null geodesic, 1γ , approaching the fountain asymptotically as one 

traces it into the past. All such geodesics form a set of generators for ( )H S
+ , and it is a 

feature that any null geodesic in ( )H S
+  smoothly approaches the fountain with no conjugate 

points in the past. Null geodesics can be indefinitely traced into their past and remain 

confined within the compact region, C. Knowledge of the Raychaudhuri equation and its 

properties should alert us to the situation that such features are not possible without violations 

of the energy conditions. This is the essence of Hawking’s proof and is one of the reasons 

that led him to his chronology protection conjecture. 

 

In what follows we state and prove the classical causality theorem. The statement of the 

theorem does not follow the description made by Hawking but it does include the essential 

features. Moreover, this does not disprove the existence of causality violations, only that 

matter violating the NEC is required to generate them. 

 

Classical causality theorem: Any compactly generated Cauchy horizon formed from an 

initial causality violation to the future of a non-compact spacelike surface, S, requires a 

violation of the null energy condition (Hawking, 1992, p606). 

 

The structure of the proof is as follows: 

 

o The Raychaudhuri equation with 0a b

ab
T k k >  implies that there are conjugate points 

in the null past of any point in ( )H S
+  generated by matter satisfying the NEC 

implying that ˆ 0θ ≤ . 

o The geometry of ( )H S
+  being generated from a compact region implies that ˆ 0θ > . 

o This constitutes a contradiction proving the classical causality theorem. 

 

Proof of the classical causality theorem: 

 

For reasons previously discussed we use the torsionless ( ˆ 0ω = ) version of the Raychaudhuri 

equation for null geodesics presented in terms of the energy-momentum tensor, 
ab

T . 

 
2

2
ˆ ˆ

ˆ2
2

a b

ab

d
T k k

d

θ θ
κ σ

λ
= − − − .                                            (3) 

 

We can now show that for matter fields satisfying the null energy condition, the expansion in 

( )H S
+  is non-positive ( ˆ 0θ ≤ ). For suppose in contradiction that there exists a point on a 

particular null geodesic where ˆ 0θ > . We can integrate the following differential inequality 

consistent with the Raychaudhuri equation. Assuming 0dλ >  
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0

0

ˆ ˆ ˆ2
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ˆ
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ˆ

2
                 

ˆ

2ˆ                 .

d d
d

d

d

θ θ θ
λ

λ θ

θ
λ λ

θ

λ λ
θ

θ
λ λ

≤ − ⇒ − ≥

⇒ − ≥ +

⇒ ≥ +

⇒ ≤
+

∫
 

 

Tracing λ  back in a negative time direction we find that as it approaches 0λ λ≤ −  then θ̂  

becomes infinite in the negative direction. This shows that the expansion is infinite within a 

finite distance into the past. This contradicts the confinement of past-directed null geodesics 

in the compact set, C. Therefore the expansion is non-positive ( ˆ 0θ ≤ ). 

 

Now we establish a contradiction to this condition ( ˆ 0θ ≤ ). Starting with the geometric 

definition of the expansion, θ̂ , in the Raychaudhuri equation (equation (3)) 

 

ˆdA
A

d
θ

λ
=                                                              (4) 

 

where A may be regarded as the cross sectional area of a torus in C enclosing the fountain, γ , 

and λ  is an affine parameter on γ  increasing in the positive time direction. We may consider 

a small part of the cross section, Aδ , containing the fountain, γ , and an affine parameter, z, 

on γ  to increase in the negative time direction. With these modifications the defining 

equation for the expansion now reads 

 

ˆd
A A

dz
δ θ δ= − .                                                         (5) 

 

Now we may take the small cross section in the limit of zero measure, A dAδ → , and 

integrate with respect to A over the set ( )( )z
H S Cβ + ∩  where  

 

( ) ( ):z H S C H S Cβ + +∩ → ∩  

 

is any differentiable map. For ease of visualisation we could imagine using the identity map 

where we just integrate over ( )H S C
+ ∩  on both sides. The corresponding integral is 

therefore 

 

( )( ) ( )( )
ˆ

z zH S C H S C

d
dA dA

dz β β
θ

+ +∩ ∩
= −∫ ∫ . 

 

Because 
z

β  maps ( )H S C
+ ∩  into itself, the integral on the left hand side must be 0≤ . This 

is because as we trace back in time (increasing z) we see a contraction in the cross section, A 
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( 0dA dz ≤ ). This shows that the right hand side must also be 0≤  (Hawking and Ellis, 1973, 

p297), and therefore ˆ 0θ ≥ . Moreover because both hypersurfaces, S, and ( )H S
+ , are non-

compact and that ( )H S
+  is generated from within a compact region, C, then the expansion 

must be strictly positive ( ˆ 0θ > ). This contradicts the condition that ˆ 0θ ≤ , which is a 

consequence of all the related matter fields satisfying the null energy condition. This 

completes the proof of the classical causality theorem. 

□   
 

 

3. Concluding remarks 

 

What has been shown in this work is that closed timelike curves require matter violating the 

null energy condition. Like Hawking himself emphasised, it does not disprove the existence 

of CTCs because quantum mechanics allows the existence of NEC violating fields in, for 

example, the Casimir effect and certain squeezed vacuum states. Moreover it can be shown 

that such fields can persist for an extended time period, T, where the averaged null energy 

condition (ANEC) is non-trivially violated (Hawking, 1992; Thorne, 1993). This may be 

expressed as 

 

0a b

ab
T
T k k dλ <∫ . 

 

However it has also been shown that when integrated over a suitably extended 4-volume then 

violation of an appropriately defined ANEC is smeared out (Flanagan and Wald, 1996). So it 

looks like Hawking’s instincts are right after all and therefore this universe is a safe place for 

historians. Violation of the NEC being the strongest infringement of the energy conditions 

means that the denial of all other recognised energy conditions are a requirement to generate 

a causality violation. Moreover the matter violating the weak energy condition possesses a 4-

momentum whose temporal component is directed into the past (negative energy). It can be 

argued therefore that the implied correspondence between causality violations and negative 

energy density is to be expected. In other words it requires a causality violation in order to 

generate one. This adds further support to the conjecture that the evolution of the universe as 

a whole is purely unitary. 
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