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Abstract. Over the years, linear analysis of the stability of pre-stressed elastic half-spaces

has been carried out for various kinds of materials and various forms of pre-stress; see Biot

(1965), Nowinski (1969a, b), Willson (1973a, b), Usmani & Beatty (1974), Chadwick &

Jarvis (1979), Wu (1979, 1980), Reddy (1983), Ogden (1984), Wu & Cao (1983, 1984), and

Dowaikh & Ogden (1990, 1991). Furthermore, Wu & Cao (1984) showed that the bifurcation

condition for an elastic half-space is in fact the same as those for an infinite space with a

crack of arbitrary shape, for a circular disk, and for a semi-infinite strip. A linear stability

analysis provides the condition under which a pre-stressed half-space may buckle, but it gives

no information about the form or stability of post-buckling states; such information can only

be found by a nonlinear analysis. For a pre-stressed half-space, the critical stress for marginal

stability is independent of mode numbers, which makes the corresponding weakly nonlinear

analysis very different from that for problems where there is usually a preferred buckling

mode. A first attempt at finding a post-buckling solution was made by Ogden & Fu (1996)

who looked for a solution in the form of a Fourier summation. Imposition of a solvability

condition at second order of a successive approximation yielded an infinite system of quadratic

equations for the Fourier amplitudes. However no non-trivial solutions were found for such

a system of algebraic equations. To shed some light on this open problem, we consider in

this paper the stability of an imperfect elastic half-space, a half-space the surface of which

is not flat but has an sinusoidal profile (a modal imperfection). The imperfect half-space is

subjected to a uni-axial compression and the evolution of the surface elevation is followed as

the compression is increased. It is found that as the compression approaches a critical value,

which is smaller than the critical value predicted by the linear theory for a perfect half-space,

static shocks begin to develop in the profiles of surface elevation; no stable solutions exist

beyond this critical value. These results support the conjecture that post-buckling solutions

associated with a pre-stressed half-space without imperfections may contain static shocks (i.e.

singular surfaces across which some of the deformation gradients are discontinuous).

1†This paper appears in Proceedings of the 1st Canadian Conference on Nonlinear Solid Mechanics (ed

E.M. Croitoro), Victoria, Canada, 1999, pp99-107.
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1 FORMULATION OF THE PROBLEM

We consider the deformation of an incompressible elastic half-space the accessible surface

of which has a periodic profile initially. Relative to a rectangular coordinate system, the

half-space in its un-deformed configuration is given by

−∞ < X1, X3 < ∞, aη(X1/L) < X2 < ∞,

where a and L are the amplitude and wavelength of the initial surface profile and the function

η(X1/L) will be specified later. This imperfect half-space is subsequently subjected to a uni-

axial compression and the deformation is denoted by

x̃i = x̃i(XA), (1)

where (x̃i) are the coordinates in the deformed configuration of the same material particle

which has coordinates (XA) in the undeformed configuration. The governing equations are

the equilibrium equations, constitutive equations and the incompressibility condition given

by

πiA,A = 0, πiA =
∂W

∂FiA

− pF−1
Ai , det (F) = 1, (2)

where (πiA) is the first Piola-Kirchhoff stress tensor, F = (FiA) = (∂x̃i/∂XA) is the defor-

mation gradient tensor, W the strain energy function and p the pressure corresponding to

the constraint of incompressibility.

The curved surface is assumed to be stress free. This implies

πiANA = 0 on X2 = aη(X1/L), (3)

where (NA) is the unit outward normal to the surface. The uni-axial compression along the

X1-direction is represented by the condition

πiANA = −TNA (4)

on any surface X1 = const., where T > 0 is the compression.

Before we proceed further, it is convenient to non-dimensionalize the problem by scaling πiA,

p, T and W by µ, XA and x̃i by L∗ where µ is the shear modulus of the composing material

when it is stress free and L∗ is arbitrary subject to the condition that it is of the same order

as L (the reason that we do not use L as the lengthscale is that by choosing L∗ appropriately

we can make the wavelength of the initial surface elevation unit in terms of the new reference

coordinates to be introduced later). With the same symbols used for the scaled quantities,

the non-dimensionalized forms of (2) and (4) remains the same but the stress free boundary

condition (3) is replaced by

πiANA = 0 on X2 = ǫ2η(bX1), (5)

where ǫ2 = a/L∗, b = L∗/L. We assume that ǫ is a small parameter and η is a periodic

function with an O(1) period. This implies that the gradient of the initial surface elevation

is O(ǫ2). In this paper we consider deformations the gradients of which are O(1).
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Since the normal (N1, N2) is parallel to (−ǫ2bη′(bX1), 1), it follows that

NA = δ2A − ǫ2bη′(bX1)δ1A + O(ǫ4). (6)

On substituting (6) into (5) and expanding πiA about X2 = 0, we obtain

πi2 + ǫ2 {πi2,2η(bX1) − bη′(bX1)πi1} + O(ǫ4) = 0, on X2 = 0. (7)

The O(1) problem with ǫ ≡ 0 is clearly the problem of a perfect half-space subjected to a

uni-axial compression. We assume that the homogeneous solution is unique and is denoted

by x̃i = xi(XA) where

x1 = λX1, x2 = λ−1X2, x3 = X3, (8)

and λ is the principal stretch along the X1-direction. We denote the deformation gradient

tensor corresponding to (8) by F̄ and the pressure by p̄ which is related to F̄ by applying the

stress free boundary condition π̄i2 = 0 on X2 = 0 where π̄iA is the value of πiA with (F, p)

replaced by (F̄, p̄). To determine the solution with ǫ 6= 0, it is convenient to subtract out

the homogeneous solution by defining a tensor function χij through

χij = (πiA − π̄iA)F̄jA (9)

and an incremental displacement field u and pressure field p∗ through

u = x̃ − x, p∗ = p − p̄. (10)

We will look for a solution for (u, p∗) which is of order ǫ. We note that such a solution is a

bifurcation solution modified slightly by the surface imperfection and is not a solution forced

by the imperfection (a forced solution is only of order ǫ2).

In terms of χij and ui, the equilibrium equation (2a) and the incompressibility condition

(2c) become

χij,j = 0, ui,i =
1

2
um,nun,m + O(ǫ3), (11)

where here and hereafter a comma denotes differentiation with respect to the spatial coor-

dinates (xn). By taking b = λ, the boundary condition (7) becomes

χijnj = ǫ2η′(x1)π̄i1 + O(ǫ3), on x2 = 0. (12)

We may expand the right hand side of the constitutive equation (2) about (F̄, p̄). It can be

shown (see e.g. Fu & Ogden 1999) that this leads to

χij = A1
jilkuk,l +

1

2
A2

jilknmuk,lum,n + p̄(uj,i − uj,kuk,i) − p∗(δji − uj,i) + O(ǫ3), (13)

where the tensors A
1 and A

2 are the first- and second-order tensors of instantaneous elastic

moduli defined by

A1
jilk = F̄jAF̄lB

∂2W

∂FiA∂FkB

∣

∣

∣

∣

F=F̄

, A2
jilknm = F̄jAF̄lBF̄nC

∂3W

∂FiA∂FkB∂FmC

∣

∣

∣

∣

F=F̄

. (14)
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When (13) is substituted into (11a), an identity derived from (F−1
Ai ),A ≡ 0 can be used to

simplify the resulting expression. We have

A1
jilkuk,lj + A2

jilknmum,nuk,lj − p∗,j(δji − uj,i) + O(ǫ3) = 0. (15)

Our problem is then to solve (11b) and (15) subject to the boundary condition (12) and the

decay condition u, p∗ → 0 as x2 → −∞. With the right hand side of (12) replaced by zero,

this problem reduces to the problem studied by Ogden & Fu (1996) for a perfect half-space.

2 AMPLITUDE EQUATIONS

We now assume that initially the scaled surface elevation is given by

η(x1) = cos x1.

The boundary condition (12) then becomes

χijnj =
i

2
ǫ2π̄i1(e

ix1 − e−ix1) + O(ǫ3), on x2 = 0. (16)

We look for an asymptotic solution of the form

ui = ǫu
(1)
i + ǫ2u

(2)
i + · · · , p∗ = ǫp(1) + ǫ2p(2) + · · · . (17)

We also expand λ and p̄ as

λ = λ0 + ǫλ1, p̄ = p̄0 + ǫp̄1, (18)

where p̄0 is related to λ0 by satisfying the stress free boundary condition in the O(1) problem.

On substituting (17) and (18) into the governing equations (11b) and (15) and the boundary

condition (12) and equating the coefficients of ǫ, we find that u
(1)
i and p(1)) satisfy the same

eigenvalue problem as their counterparts in Ogden & Fu (1996). This eigenvalue problem

determines the bifurcation condition, satisfied by (λ0, p̄0), under which the perfect half-space

is marginally stable. It also determines the shape functions for the normal modes. For the

present non-dispersive problem, we anticipate that the O(ǫ2) problem for (u
(2)
i , p(2)) can not

be solved unless a solvability condition is imposed on the leading order solution (u
(1)
i , p(1)).

This fact and the form of the right hand side of the boundary condition (16) suggest that

the solution for (u
(1)
i , p(1)) should take the form

u
(1)
i =

∑

m6=0

AmWi(x2, m)eimx1 , p(1) =
∑

m6=0

AmP (x2, m)eimx1 , (19)

where Am (m = ±1,±2, . . . ) are constants to be determined and from now on all the Fourier

expansions are summed from −∞ to ∞ with zero excluded. The functions Wi(x2, m) and

P (x2, m) are determined by solving the linear eigenvalue problem mentioned above and their

expressions can be found in Ogden & Fu (1996). We have

W1(x2, m) = ξasae
sa|m|x2, W2(x2, m) = −i(m/|m|)ξae

sa|k|x2,
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P (x2, m) = −imξaF (sa)e
sa|m|x2 (20)

where

ξ1 =
s2
2 + 1

s2
2 − s2

1

, ξ2 =
s2
1 + 1

s2
1 − s2

2

,

and s1, s2 are the roots of

s2 = γ−1
(

β ±
√

β2 − αγ
)

with positive real parts, and

α = A1
01212, γ = A1

02121, 2β = A1
01111 + A1

02222 − 2A1
01122 − 2A1

01221,

F (x) = γx3 + (v2 + A1
01122 + A1

02112 −A1
01111)x.

In (20) we have employed a modified summation convention whereby a suffix appearing more

than once is summed from 1 to 2. This modified summation convention will also be observed

in all subsequent analysis.

We have defined Wi and P such that they satisfy Wi(x2,−m) = W ∗
i (x2, m), P (x2,−m) =

P ∗(x2, m), where a superscript “*” signifies complex conjugation. The reality of u
(1)
i and

p(1) then implies that A−m = A∗
m.

The amplitude equations for Ak (k = 1, 2, . . . ) are best derived with the aid of the virtual

work method (Fu 1995, Fu & Devenish 1996). We consider a contour integral I defined by

I =
1

2π

∮

∂D

χijnj ûidS, (21)

where nj is the outward normal to the path, ∂D is the boundary of the rectangular region

D (0 ≤ x1 ≤ 2π, −h ≤ x2 ≤ 0) where h is an arbitrary positive constant, and ûi is a linear

solution given by

ûi = Wi(x2,−k)e−ikx1, (k > 0) (22)

With the use of (16), we find that

lim
h→∞

I = −
i

2
ǫ2π̄11(ξ1s1 + ξ2s2)δ1k + O(ǫ3). (23)

On the other hand, the contour integral I in (21) can also be evaluated by applying the

divergence theorem. This yields

I =
1

2π

∫

D

χij ûi,jdx1dx2, (24)

where use has been made of (11a). The further reduction of (24) is similar to that carried

out in Fu & Devenish (1995). We substitute the expressions (16) and (17) into (13) and

then the resulting expansion into (24). After the limit h → ∞ is taken, the O(ǫ) term can

be shown to vanish and we obtain

lim
h→∞

I =
ǫ2

2π

∫ 0

−∞

dx2

∫ 2π

0

{(

λ1A
1′

jilku
(1)
k,l + p̄1u

(1)
j,i +

1

2
A2

jilknmu
(1)
k,l u

(1)
m,n
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−p̄0u
(1)
j,ku

(1)
k,i + p(1)u

(1)
j,i

)

ûi,j +
1

2
p̂u

(1)
i,j u

(1)
j,i

}

dx1 + O(ǫ3), (25)

where the prime on A1
jilk signifies differentiation with respect to λ and both A1′

jilk and A2
jilknm

are evaluated at λ = λ0, p̄ = p̄0.

On equating the coefficients of ǫ2 on the right hand sides of (23) and (25), we obtain

1

2π

∫ 0

−∞

dx2

∫ 2π

0

{(

λ1A
1′

jilku
(1)
k,l + p̄1u

(1)
j,i +

1

2
A2

jilknmu
(1)
k,l u

(1)
m,n

−p̄0u
(1)
j,ku

(1)
k,i + p(1)u

(1)
j,i

)

ûi,j +
1

2
p̂u

(1)
i,j u

(1)
j,i

}

dx1

= −
i

2
π̄11(ξ1s1 + ξ2s2)δ1k. (26)

To facilitate further analysis, we write

u(1)
m,n =

∑

p 6=0

ApΓmn(x2, k)eikx1, (27)

where Γmn are calculated from (19). On substituting (27) into (26), we obtain, after some

manipulations,

c1λ1|k|Ak + i|k|
∑

k′ 6=0

κ(k, k′)Ak′Ak−k′ = −
i

2
π̄11(ξ1s1 + ξ2s2)δ1k, (28)

where

c1 = −
ξaξb

sa + sb

{

A1′

nmqpΓ(p, q, k, a)Γ(m, n,−k, b) +
p̄1

λ1

Γ(p, q, k, a)Γ(q, p,−k, b)

}

,

κ(k, k′) =
ξaξbξc|k

′||k − k′|

sa|k| + sb|k′| + sc|k − k′|

{

1

2
A2

qpnmsrΓ(p, q,−k, a)Γ(r, s, k′, b)Γ(m, n, k − k′, c)

+
k′

|k′|
F (sb)Γ(n, m,−k, a)Γ(m, n, k − k′, c) −

k

2|k|
F (sa)Γ(n, m, k′, b)Γ(m, n, k − k′, c)

}

.

3 EVOLUTION OF SURFACE ELEVATION

We now solve the amplitude equations (28) for the case when the composing material is

neo-Hookean for which the strain energy function is given by W = (1/2)(trFFT − 3) (after

scaled by the shear modulus µ). We have

π = F − pF−T . (29)

Since F̄ = diag(λ, 1/λ), we have π̄ = diag(λ − p̄/λ, 1/λ − p̄λ). The stress free boundary

condition yields p̄ = 1/λ2 and hence π̄11 = λ− λ−3. From (14) the first order elastic moduli

are given by

A1
jilk = δikB̄jl, (30)
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and all second order order elastic moduli are zero. Equation (30) may also be written as

Ajilk = δik(δj1δl1λ
2 + δj2δl2λ

−2), (31)

from which we obtain

A1′

jilk = 2δik(δj1δl1λ − δj2δl2λ
−3). (32)

The other constants which are required in our calculations are

α = λ2, γ = λ−2, 2β = λ2 + λ−2,

s1 = 1, s2 = λ2, F (s1) = λ−2 − λ2, F (s2) = 0.

A linear stability analysis for a perfect neo-Hookean half-space shows (see e.g. Dowaikh &

Ogden 1990) that the half-space is stable if 0 < λ ≤ λ0 where λ0 ≈ 0.5437. On substituting

this value into the expression for c1, we obtain c1 ≈ 10.940708 and the right hand side of

(28) becomes −1.543689iδ1k. The expression for the kernel κ(k, k′) can be evaluated with

the aid of Mathematica and is given in an appendix at the end of this paper.

The amplitude equations clearly admit a solution given by Ak = iBk where Bk (k = 1, 2, . . . )

are pure real. The condition A−k = A∗
k gives B−k = −Bk and in terms of Bk the amplitude

equations (28) become

c1λ1kBk − k
∞

∑

k′=1

[κ(k, k′)Bk′Bk−k′ − κ(k,−k′)Bk′Bk+k′] = −1.543689δ1k, (33)

where k = 1, 2, . . . . We first truncate the summation at k′ = 2 and assume that only B1 and

B2 are non-zero. Setting k = 2 in (33) we obtain

B2 = κ(2, 1)B2
1/c1, (34)

and substituting this expression into the equation obtained by setting k = 1 in (33), we

obtain

B3
1 + k1B1 + k2 = 0, where k1 = −21.728855λ2

1, k2 = −3.0658523λ1. (35)

The three roots of (35) are given by

B
(1)
1 = Φ cos φ̂, B

(2)
1 = Φ cos(φ̂ + 2π/3), B

(3)
1 = Φ cos(φ̂ + 4π/3), (36)

where

Φ = 2
√

−k1/3, cos 3φ̂ = −
k2

2
(−

3

k1
)3/2 def.

= △.

The two roots B
(2)
1 and B

(3)
1 are real only if | △ | < 1, that is if |λ1| > λcr where

λcr ≈ 0.28042965.

The three solutions of (35) are shown in Fig.1(a) where to facilitate comparison with standard

bifurcation diagrams in the literature we have shown 1/λ again −B1 (so that increasing
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Figure 1: (a) Load-deformation curve in a two-mode approximation; (b) profiles of u2,1 for λ1 =

0.90, 0.74, 0.61, 0.50, 0.40.

1/λ corresponds to increasing compression), the λ being calculated from λ = λ0 + ǫλ1 with

ǫ = 0.05. The superscripts (1), (2), (3) in (36) are also marked on the corresponding solution

branches in Fig.1(a). The unmarked branches in Fig.1(a) can be obtained from the marked

branches by using the fact that if (B1, λ1) is a solution of (35), then so is (−B1,−λ1).

We note that the limit λ1 → ∞ corresponds to tending to the original stress free state.

The branch of solution in Fig.1 that tends to zero as 1/λ decreases corresponds to (36)3.

The solution tends to zero according to B1 → −0.1410959/λ1 as λ1 → ∞ (obtained by

balancing the second and third terms in the cubic equation in (35)). This limit corresponds

to a surface elevation of order O(ǫB1) = O(ǫ/λ1) = O(ǫ2) which is the order of the initial

surface elevation. Thus this branch is the branch relevant to our physical problem. Fig.

1 shows that in the two mode approximation as the compression is increased gradually,

the load-deformation curve has a turning point which is typical for structures sensitive to

imperfections (see, e.g., Hutchinson and Koiter 1970). We define this turning point as the

bifurcation point for the imperfect half-space.

We now investigate how this two-mode result is modified by the inclusion of higher modes. In

our numerical calculations, we start from a suitably large λ1 and decrease it gradually towards

zero. For each λ1, we solve the amplitude equations (33), truncated at a finite number, with

the aid of Nag library subroutine C05NBF. After solution of N equations for B1, B2, · · · , BN

is found, we solve N + 1 equations with the initial guess for the first N unknowns taken as

the solution in the previous calculation and BN+1 set to zero. The progression starts with

N = 2, with the solution given by (36c), and stops when a convergence criterion is satisfied.

The criterion used in our calculations is that the increment of the sum of all the non-zero

Fourier amplitudes is less than 10−15 as the truncation number is increased from N to N +1.

Fig.1(b) shows the profiles of u2,1 as λ1 is decreased. We find that no solution exists for
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Figure 2: Comparison of results from a 2-mode (dotted line) approximation with results from a 156-mode

(solid line) approximation.

λ1 < 0.4027 which gives λ > 1.7742 with ǫ = 0.05, which may be compared with λ1 <

0.2803, λ > 1.7937 obtained from a 2-mode approximation. As λ1 approaches 0.40270, a

discontinuity seems to be developing in the profile of u2,1. This is confirmed by the fact that

as this limit is approached an increasingly large truncation number has to be used to satisfy

our convergence criterion.

In Fig.2(a, b) we compare results from the 2-mode approximation with those from a 159-

mode approximation. The λ is again calculated from λ = λ0 + ǫλ1 with ǫ taken to be 0.05.

Fig.2(b) compares the profiles of u2,1 when λ1 = 0.4027. We see that although the inclusion

of higher modes has a negligible effect on the amplitude of u2,1, it has a significant steepening

effect on the profile of u2,1.

We have also tried to use branch (2) as a starting solution to find a non-trivial solution for

each fixed λ1. However we find that the solution always converges to the trivial solution as

the truncation number is increased. It is still not clear how the load amplitude curve shown

in Fig.2(a) can be extended.

4 CONCLUSIONS

In this paper we have considered the stability of an imperfect neo-Hookean half-space which

is subjected to a uni-axial compression. It is found that a solution exists only if the principal

stretch is greater than the critical value λ0+0.4027ǫ where λ0 is the buckling principal stretch

predicted by the linear theory for a perfect neo-Hookean half-space and ǫ2 characterizes the

amplitude of the initial modal imperfection. This critical value, which corresponds to a

lower compression than λ0, can be defined as the buckling principal stretch for the imperfect

half-space. It would be of interest to see how the load-amplitude curve shown in Fig.2(a) is

extended. This is under further investigation and relevant results will appear elsewhere.
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APPENDIX: THE KERNEL κ(K, K ′) FOR A NEO-HOOKEAN HALF-SPACE

UNDER UNI-AXIAL COMPRESSION

For a neo-Hookean material which is subjected to a uni-axial compression, the kernel in (28)

is given by

κ(k, k′) =
1 + λ4

2(1 − λ4)2
κ̃(k, k′),

where

κ̃(k, k′) =
2(1 + λ4)2

λ2(k + |k′| + |k − k′|)
[3k′(k − k′) + |k − k′|(2k′ − |k′|)]

−
4(1 + λ4)

λ2k + |k′| + |k − k′|
[(λ2 + λ−2)k′|k − k′| + 2k′(k − k′)]

+
16λ2k′

λ2k + |k′| + λ2|k − k′|
(|k − k′| + k − k′)

+
2(1 + λ4)

k + |k′| + λ2|k − k′|
[(λ2 + λ−2)|k − k′|(|k′| − 2k′) − 6k′(k − k′)]

+
2(1 + λ4)

k + λ2|k′| + |k − k′|
[(λ2 + λ−2)|k′||k − k′| − 2k′(k − k′)]

+
8λ2

k + λ2|k′| + λ2|k − k′|
[k′(k − k′) − |k′||k − k′|].
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