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Abstract

We re-examine the problem of solitary wave propagation in a fluid-filled elastic

membrane tube using a much simplified procedure. It is shown that there may exist

four families of solitary waves with speeds close to those given by the linear dispersion

relation, whether the fluid is initially stationary or not, and that it is not asymptotically

consistent to neglect the axial displacement even in a long-wave approximation. It is

also shown that the solitary wave solutions obtained by neglecting higher-order terms

persist for the full system of equations in the sense that the full system has solutions

of the solitary-wave type and each exact solution is uniformly approximated by the

corresponding leading-order solution.

1 Introduction

Nonlinear wave propagation in arteries is a subject that has been much studied over the

past three decades. As a very good approximation, the arterial blood flow can be modeled

as an incompressible viscous or inviscid fluid flowing in a distensible elastic membrane tube.

The linearized governing equations admit dispersive-wave solutions. Thus, when small but

finite amplitude travelling waves are considered in the long wavelength limit, we expect

to see the famous KdV equation, or KdV-Burgers equation if viscous effects are taken into

account, to emerge as the evolution equation for the wave amplitude. There now exists a good

number of papers devoted to the derivation of the KdV or KdV-Burgers equation for arterial

blood flows; see, for instance, Johnson (1971), Hashizume (1985), Cowley (1983), Yomosa

(1987), Demiray (1996), Erbay et al. (1992), Demiray (1997), Demiray and Dost (1998),

Antar and Demiray (1999) and the references therein. Various approximations have been

adopted; some are ad hoc and some can be justified as being asymptotically self-consistent.

In particular, we note that Cowley (1983) ignored the inertia of the membrane, Hashizume

(1985) truncated his stress-strain relation for an unstressed membrane at the quadratic order,
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Yomosa (1987) approximated both the governing equation and the constitutive relation for

the membrane, Demiray (1996) assumed that the axial displacement in the membrane can

be neglected, whereas Demiray (1997) assumed that the axial displacement was so small

that the governing equations can be linearized in terms of it. Most of these studies assume

that the fluid is inviscid, and can be approximated by a one-dimensional model where the

radial velocity and dependence on the radial variable can be neglected.

The present study is motivated by the results of Epstein and Johnston (2001, hereafter

referred to as EJ) and those of Fu et al (2008, hereafter referred to as FPL), the latter

authors examined the problem of localized bulging/necking in an inflated membrane tube

with a view to model aneurysm formation. Whereas previous studies invariably used a

multiple-scale perturbation procedure to derive the evolution equation, EJ noted that the

problem has a variational formulation and, as a result, found two integrals (conservation

laws) for the governing equations. They showed that solitary waves of finite amplitude can

be determined exactly by a simple numerical procedure. Surprisingly, they did not specialize

their analysis to the case when the speed in each case is close to the corresponding linear

wave speed, thus failing to make a correct connection with the results obtained from a weakly

nonlinear analysis. In fact, they seem to give the reader the impression that no solitary waves

can propagate in a fluid-filled elastic membrane tube if the fluid is stationary prior to wave

propagation. One of the aims of the present study is to show that when EJ’s formulation is

specialized to the case when the speed is close to a linear wave speed, it does yield a KdV

equation, hence guaranteeing the existence of a family of solitary waves (parametrized by

the wave speed). To this end, we use the formulation of FPL which can be viewed as an

improved variation of EJ’s original formulation. By deriving the KdV equation explicitly,

first for the case when axial displacement is fully taken into account and then for the case

when it is neglected, we shall also show that it is asymptotically inconsistent to neglect the

axial displacement, even in the long-wave approximation. This has previously been noted

by EJ by using a different argument.

The rest of this paper is organized into five sections as follows. In the next section, we

quote the governing equations and the associated integrals, and rewrite them in a simplified

form. The linear dispersion relation is noted down for later reference. We then apply, in

Section 3, the procedure of FPL to derive a single amplitude equation of the form
(

dw

dZ̄

)2

= ω(c, λ1∞, λ2∞)w2 + γ(c, λ1∞, λ2∞)w3 + O(w4) (1.1)

for the radial displacement w, where Z̄ = Z − ĉt, Z is the axial coordinate, ĉ is the wave

speed with a non-dimensionalized value c, λ1∞ and λ2∞ are the two principal stretches in

the tube prior to wave propagation, and ω(c, λ1∞, λ2∞) and γ(c, λ1∞, λ2∞) each have an

explicit expression for a general strain-energy function. For each fixed pair of (λ1∞, λ2∞),

ω(c, λ1∞, λ2∞) = 0 corresponds to the dispersion relation evaluated at zero wavenumber;

whereas when c = 0 and the fluid is stationary, ω(0, λ1∞, λ2∞) = 0 gives the bifurcation
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condition for the onset of localized bulging/necking, which connects with the analysis of

FPL. In a small neighborhood of a linear speed, c1 say, the full amplitude equation can then

be approximated by
(

dw

dZ̄

)2

= (c − c1)
∂

∂c
ω(c1, λ1∞, λ2∞)w2 + γ(c1, λ1∞, λ2∞)w3, (1.2)

the derivative of which is then the KdV equation specialized to a travelling wave.

In Section 4, we compare (1.1) with its counterpart when the axial displacement is ne-

glected. In the final section, we establish the persistence by proving that the solitary wave

solution given by (1.2) is indeed a uniformly valid approximation of the exact solution gov-

erned by (1.1).

2 Governing equations and the dispersion relation

We consider propagation of nonlinear travelling waves in an infinite fluid-filled membrane

tube of averaged radius R and thickness H in its unstressed configuration, assuming that

the tube is made of an incompressible hyperelastic material and always maintains its axi-

symmetry. We assume that prior to wave propagation, the tube is already subjected to

a finite deformation with principal stretches λ1∞ and λ2∞ in the circumferential and axial

directions, respectively, and the fluid has constant speed v̂f∞ and exerts a constant pressure

Hp∞ on the tube wall (where H is inserted to simplify the notation later). We use Z

to measure distance in the axial direction in the unstressed configuration, and w(Z, t) and

u(Z, t) to denote the incremental displacement in the radial and axial directions, respectively.

Thus, the position vector of a material particle in the tube in the current configuration has

the form

r = r(Z, t)er + z(Z, t)ez, with r = λ1∞R + w, z = λ2∞Z + u, (2.1)

where er and ez are unit vectors in the radial and axial directions, respectively.

Since the deformation is axially symmetric, the principal directions of stretch coincide

with the lines of latitude (1-direction), the meridians (2-direction), and the normal to the

deformed surface. Thus, the principal stretches are given by

λ1 =
r

R
, λ2 =

√

z′2 + r′2, λ3 = 1/(λ1λ2), (2.2)

where a prime denotes differentiation with respect to Z. The principal Cauchy stresses

σ1, σ2, σ3 in the deformed configuration for an incompressible material are given by

σi = λiŴi − p̂, i = 1, 2, 3 (no summation), (2.3)

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p̂ is the pressure

associated with the constraint of incompressibility; see, for instance, Ogden (1997). Utilizing

the incompressibility constraint λ1λ2λ3 = 1 and the membrane assumption σ3 = 0 we find

σi = λiWi, i = 1, 2 (no summation), (2.4)
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where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc.

The governing equations for u and w can be obtained from exact field equations of general

nonlinear shell theory, see, for instance, Budiansky (1968), but EJ gave a very readable self-

contained derivation. We quote their results and rewrite them in the form

[

Rσ2
z′

λ2
2

]

′

− p rr′ = ρRü, (2.5)

[

Rσ2
r′

λ2
2

]

′

−
σ1

λ1

+ p rz′ = ρRẅ, (2.6)

where p is the fluid pressure divided by the wall thickness H and a superimposed dot denote

differentiation with respect time t. We note that these equations are valid even if R is not

a constant (e.g. if the initial configuration is a spherical shell in which case a prime in (2.5)

and (2.6) denotes differentiation with respect to the arclength). However, in the rest of this

paper we are only concerned with the case when R is constant. Without loss of generality,

we from now on take R = 1.

With the fluid assumed to be inviscid and the fluid flow to be one-dimensional, EJ showed

that for travelling waves with speed ĉ the fluid equations can be integrated exactly, leading

to the following simple expression for the scaled pressure:

p = p∞ + vf(1 − λ4
1∞/λ4

1), vf ≡
ρf

2H
(λ2∞ĉ − v̂f∞)2, (2.7)

where ρf is the density of the fluid.

Linearizing the governing equations (2.5) and (2.6) together with (2.7) in the neighbor-

hood of

λ1 = λ1∞, λ2 = λ2∞, u = w = 0,

and then looking for a travelling wave solution with wave number k̂ and speed ĉ, we obtain

the linear dispersion relation

(

k2m2 + 2m
)

c4 − 4mvf∞c3 −
(

mα0k
2 + mγ1k

2 − 2mv2
f∞ − mβ0 + mβ1 + 2γ1

)

c2

+4vf∞γ1c − (α1 − β0)
2 − 2v2

f∞γ1 + k2α0γ1 − β0γ1 + β1γ1 = 0, (2.8)

where

c =
λ2∞

c0
ĉ, c0 =

√

µh

ρfr0
, m =

ρh

ρfr0
, vf∞ =

v̂f∞

c0
, k =

λ1∞

λ2∞
k̂, (2.9)

µα0 = λ2∞W
(∞)
2 , µα1 = λ1∞λ2∞W

(∞)
12 , µβ0 = λ1∞W

(∞)
1 ,

µβ1 = λ2
1∞W

(∞)
11 , µγ1 = λ2

2∞W
(∞)
22 , µα2 =

1

2
λ2

1∞λ2∞W
(∞)
112 , (2.10)

µβ2 =
1

2
λ3

1∞W
(∞)
111 , µγ2 =

1

2
λ1∞λ2

2∞W
(∞)
122 , µγ3 =

1

2
λ3

2∞W
(∞)
222 .

In the above expressions, r0(= λ1∞R = λ1∞) and h are respectively the radius and thickness

of the tube prior to wave propagation, µ is a typical material modulus, and the superscripts
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(∞) on the W’s signify evaluation at λ1 = λ1∞, λ2 = λ2∞. In defining the constants in (2.9)

and (2.10) we have followed the scheme of Demiray and Dost (1998).

When the inertia of the fluid is negligible, we may take the limit ρf → 0 in (2.8) to obtain

k2(mc2)2 −
(

α0k
2 + γ1k

2 − β0 + β1

)

(mc2)

−(α1 − β0)
2 + α0γ1k

2 + (β1 − β0)γ1 = 0, (2.11)

where mc2 = λ2
2∞ρĉ2/µ. To derive the conditions under which this equation has four real

solutions for c, we first assume that the prestressed tube material is strongly elliptic, that is,

β1 > 0, γ1 > 0, β1γ1 − α2
1 > 0, (2.12)

see, e.g., Davies (1991). If the membrane tube were stress-free prior to wave propagation,

we would have λ1∞ = λ2∞ = 1, α0 = β0 = 0, and then the two solutions of (2.11) would be

given by

mc2 =
1

2k2

{

γ1k
2 + β1 ±

√

(γ1k2 + β1)2 − 4k2(β1γ1 − α2
1)

}

. (2.13)

These two solutions are both real and positive for all real k, yielding four branches for c

(two of them are minus the other two). A similar dispersion relation has previously been

derived by Tait et al (1981) based on a slightly different model. Thus, by continuation

the dispersion equation (2.8) has four real branches in a non-trivial domain in the space

of (λ1∞ − 1, λ2∞ − 1, ρf, v̂f∞) that includes the origin. We note that with a non-zero v̂f∞

breaking the symmetry, these four branches all have different characters, unlike the case of

v̂f∞ = 0 for which two of the branches with negative c have the same character as the other

two branches.

In the limit k → 0, mc2 → 0, (2.11) reduces to

(β1 − β0)γ1 − (α1 − β0)
2 = 0,

which is the bifurcation condition for a (static) localized bulge to initiate from the uniform

inflation solution (see FPL). We may note that the existence of four real solutions of (2.11)

is guaranteed by the strong ellipticity (2.12) and (β1 − β0)γ1 − (α1 − β0)
2 > 0. The latter

two conditions are also sufficient for the stability of the uniformly inflated tube with respect

to axi-symmetric perturbations (Chen 1997).

On the other hand, under the single assumption that the fluid is stationary prior to wave

propagation, corresponding to vf∞ = 0, the dispersion relation (2.8) reduces to

(

k2m2 + 2m
)

c4 −
(

mα0k
2 + mγ1k

2 − mβ0 + mβ1 + 2γ1

)

c2

−(α1 − β0)
2 + k2α0γ1 − β0γ1 + β1γ1 = 0. (2.14)

For k ≪ 1, we look for a series solution of the form

c = ζ(1 − σk2) + O(k4), (2.15)
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where ζ and σ are constants. On substituting (2.15) into (2.14) and equating the coefficients

of k0 and k2 to zero, we find that ζ satisfies

2mζ4 + (mβ0 − mβ1 − 2γ1) ζ2 + (β1 − β0)γ1 − (α1 − β0)
2 = 0, (2.16)

and σ is given by

σ =
m2ζ4 − (mα0 + mγ1)ζ

2 + α0γ1

2ζ2 (4mζ2 + mβ0 − mβ1 − 2γ1)
. (2.17)

Demiray and Dost (1998) derived a dispersion relation by treating the fluid flow as being

two-dimensional and assuming that the flow is stationary prior to wave propagation. As

expected, our leading order result (2.16) agrees with their result, but their expression for σ

takes the slightly different form

σ =
(m2 + m/4)ζ4 − (mα0 + γ1/4 + mγ1)ζ

2 + α0γ1

2ζ2 (4mζ2 + mβ0 − mβ1 − 2γ1)
. (2.18)

The extra terms in (2.18) are from dependence of fluid flow on the radial variable and can

be seen to be negligible in the limit m ≫ 1.

3 Solitary-wave solutions

For a travelling-wave solution in which the dependence on Z and t is through Z − ĉt, EJ

showed that (2.5) and (2.6) have two integrals (conservation laws). After some manipulation,

we find that their original integrals can be rewritten in the simpler form

W (λ1, λ2) − λ2W2 +
1

2
ρĉ2λ2

2 = C1, (3.1)

(W2/λ2 − ρĉ2)z′ −
1

2
λ2

1

{

p∞ + vf(1 + λ4
1∞/λ4

1)
}

= C2, (3.2)

where the two constants C1 and C2 each take the value of the corresponding left hand side

evaluated at ±∞. Here and hereafter, dependent variables are all functions of Z − ĉt, a

prime now denotes differentiation with respect to Z− ĉt, and we shall use Z to denote Z− ĉt

to avoid introducing extra notation.

The above conservation laws with ĉ = 0 are well-known in the finite elasticity community:

the conservation law (3.2) can be obtained by straightforward integration of (2.5); the other

conservation law (3.1) was first noted by Pipkin (1968).

We observe that the two equations (3.1) and (3.2) may be rewritten as

f(λ1, λ2) = 0, z′ = g(λ1, λ2), (3.3)

where

f = W (λ1, λ2) − λ2W2 +
1

2
ρĉ2λ2

2 − C1,
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g = (W2/λ2 − ρĉ2)−1

{

1

2
λ2

1

{

p∞ + vf(1 + λ4
1∞/λ4

1)
}

+ C2

}

.

Equations (3.3) are of the same form as those studied by FPL. We may thus follow these

authors’ methodology and derive the amplitude equations as follows. Firstly, we write

λ1 = λ1∞ + w, (3.4)

and assume |w| to be small. Equation (3.3)1 then defines λ2 as a function of w implicitly.

This function can be expanded as

λ2 = λ2∞ + d1w +
1

2
d2w

2 + O(w3), (3.5)

where the coefficients d1, d2 etc can be obtained by substituting (3.4) and (3.5) into the left

hand side of (3.3)1, expanding in terms of w, and then equating the coefficients of w0, w, w2,

etc to zero. This can easily be carried out using a symbolic manipulation package such as

Mathematica. Next, we substitute (3.4) and (3.5) into (3.3)2 and expand in terms of w to

obtain

z′ = λ2∞ + g1w +
1

2
g2w

2 + O(w3), (3.6)

where g1 and g2, are constants with known expressions. Finally, on substituting (3.4)–(3.6)

into (2.2)1 and again expanding in terms of w, we arrive at the amplitude equation

(w′)
2

= ω(c, λ1∞, λ2∞)w2 + γ(c, λ1∞, λ2∞)w3 + O(w4), (3.7)

where with X denoting mc2,

ω(c, λ1∞, λ2∞) =
λ2

2∞

λ2
1∞

·
[2(vf∞ − c)2 + β0 − β1] (X − γ1) − (α1 − β0)

2

(X − α0) (X − γ1)
,

γ(c, λ1∞, λ2∞) =
λ2

2∞

λ3
1∞

·
ζ4X

4 + ζ3X
3 + ζ2X

2 + ζ1X + ζ0

3 (X − α0) 2 (γ1 − X) 3
,

and

ζ4 = 6(vf∞ − c)2 + 2β2,

ζ3 = (vf∞ − c)2(6β0 − 6α0 − 12α1 − 18γ1)

+3β2
0 + 6α1α2 − 6α1β0 − 6α2β0 + 3α1β1 − 2α0β2 − 6β2γ1,

ζ2 = (vf∞ − c)2(12α0α1 + 24γ1α1 + 18γ2
1 − 12α0β0 + 18α0γ1 − 6β0γ1)

+3α3
1 − 6β0α

2
1 + 6γ2α

2
1 + 3β2

0α1 − 6α0α2α1 + 6α0β0α1

−3α0β1α1 − 12α2γ1α1 + 12β0γ1α1 − 6β1γ1α1 − 12β0γ2α1

−6α0β
2
0 + 6β2γ

2
1 + 6α0α2β0 + 3α0β0β1 − 3β2

0γ1

+12α2β0γ1 − 3β0β1γ1 + 6α0β2γ1 + 6β2
0γ2,
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ζ1 = (vf∞ − c)2(24α0β0γ1 − 12γ2
1α1 − 24α0γ1α1 − 6γ3

1 − 18α0γ
2
1 − 6β0γ

2
1)

−3α0α
3
1 − 3γ1α

3
1 + 2γ3α

3
1 + 9α0β0α

2
1 + 3β0γ1α

2
1 − 6α0γ2α

2
1

−6γ1γ2α
2
1 − 6β0γ3α

2
1 − 9α0β

2
0α1 + 6α2γ

2
1α1 − 6β0γ

2
1α1 + 3β1γ

2
1α1

+3β2
0γ1α1 + 12α0α2γ1α1 − 12α0β0γ1α1 + 6α0β1γ1α1

+12α0β0γ2α1 + 12β0γ1γ2α1 + 6β2
0γ3α1 + 3α0β

3
0 − 2β2γ

3
1

−3β2
0γ

2
1 − 6α2β0γ

2
1 + 6β0β1γ

2
1 − 6α0β2γ

2
1 − 3β3

0γ1 + 12α0β
2
0γ1

−12α0α2β0γ1 − 6α0β0β1γ1 − 6α0β
2
0γ2 − 6β2

0γ1γ2 − 2β3
0γ3,

ζ0 = (vf∞ − c)2
(

6α0γ
3
1 + 6β0γ

3
1 + 12α0α1γ

2
1 − 12α0β0γ

2
1

)

− 6α0β
2
0γ1 (γ1 − γ2)

+ (2γ3 − 3γ1) (α0β
3
0 − α0α

3
1 + 3α0α

2
1β0 − 3α0β

2
0α1)

+3β0γ
2
1α

2
1 + 6α0α

2
1γ1γ2 − 6β2

0γ
2
1α1 − 6α0α2γ

2
1α1 − 3α0β1γ

2
1α1

+6α0β0γ1α1 (γ1 − 2γ2) + 3β2
0γ

3
1 − 3β0β1γ

3
1 + 2α0β2γ

3
1

+3β3
0γ

2
1 + 6α0α2β0γ

2
1 + 3α0β0β1γ

2
1 .

In the limit c → 0, vf∞ → 0, (3.7) reduces to the amplitude equation given by FPL. For

each fixed choice of λ1∞ and λ2∞, the travelling wave problem can be viewed as a bifurcation

problem with the speed c acting as the bifurcation parameter. The bifurcation condition is

given by

ω(c, λ1∞, λ2∞) = 0, (3.8)

which, as expected, is equivalent to the dispersion relation (2.8) for k = 0.

Denote by c1 a solution of (3.8), write ε = |c − c1|, and assume ε to be small. Equation

(3.7) may be replaced by

(w′)
2

= ωc(c1, λ1∞, λ2∞)(c − c1)w
2 + γ(c1, λ1∞, λ2∞)w3 + O(ε2w2, w4), (3.9)

where ωc denotes ∂ω/∂c. Requiring the first three terms in (3.9) to have the same order, we

deduce that w must necessarily be of order ε and its variation takes place on a lengthscale

of order ε−1/2. Thus, in terms of the new variables ξ and a defined by

w = −
2ε|ωc|

3γ
a(ξ), ξ =

√

ε |ωc|Z,

equation (3.9) takes the form

(a′)2 = sgn[(c − c1)ωc] a
2 −

2

3
a3 + O(ε), (3.10)

where we have suppressed the dependence of ωc and γ on c1, λ1∞ and λ2∞. It can easily

be shown that provided (c − c1)ωc > 0, this equation, with the O(ε) terms neglected, has a

solitary-wave solution given by a = a0, where

a0 =
3

2
sech2 ξ

2
. (3.11)
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We observe that when γ < 0 the solitary wave is a wave of elevation (w > 0), whereas when

γ > 0 the solitary wave is a wave of depression (w < 0). The sign of ωc determines whether

the solitary wave is supersonic (i.e. c > c1) or subsonic (i.e. c < c1).

EJ also showed that a differential equation of the form (w′)2 = fc(w) can be derived

from the two conservation laws (3.1) and (3.2), where the function fc(w) on the right hand

side can, of course, only be determined numerically. They further deduced that this exact

equation has a solitary-wave solution only if fc(0) = 0, f ′

c(0) = 0, f ′′

c (0) > 0 and fc(wmax) = 0

for some positive wmax. They did not, however, seem to realize that with an appropriate

choice of c and rescaling of w these conditions are always satisfied, whether the fluid is

initially stationary or not, if c is close to a linear wave speed because then w is small and

fc(w) has the expansion given by (3.9).

We would have liked to compare the differentiated form of our equation (3.9) with Demi-

ray and Dost’s (1998) equation (46), but it seems that their series expansion (19) is not

self-consistent: γ1(∂w/∂z)2 + (γ1/2)(∂u/∂z)2 should be added to the first expression and

α1(∂w/∂z)2 + (α1/2)(∂u/∂z)2 should be added to the second expression in their equation

(19). We thus decide not to make any comparisons.

4 The role of axial displacement

A very simple model that has been adopted in some previous studies is one in which u and

w′2 are viewed to be negligible in a small-amplitude and long-wave approximation; see, for

instance, Demiray (1996) and Epstein and Johnston (1999). In this case, we have

r = λ1 = λ1∞ + w, λ2 ≡ λ2∞. (4.1)

The first term in (2.6) is approximated by

[

σ2
r′

λ2
2

]

′

=
1

λ2
2∞

[σ2w
′]′ =

1

λ2
2∞

(

σ2w
′′ +

∂σ2

∂w
w

′2

)

≈
σ2

λ2
2∞

w′′.

Equation (2.6) is then approximated by

(

σ2

λ2
2∞

− ρĉ2

)

w′′ −
σ1

λ1
+ pλ1λ2∞ = 0. (4.2)

Linearizing this equation in terms of w and taking v̂f∞ = 0, we obtain

(α0 − mc2)w′′ + λ−2
1∞λ2

2∞(2c2 + β0 − β1)w = 0, (4.3)

where the various constants are given by (2.9) and (2.10). Thus, taking w to be proportional

to eik̂(Z−ĉt), we obtain the dispersion relation

k2(mc2 − α0) + 2c2 + β0 − β1 = 0, (4.4)
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where k is given by (2.9)5. The only way to justify this dispersion relation is to take the

limit m ≫ 1, k ≪ 1 with mk2 = O(1) in (2.14). In this limit, (2.14) can be replaced by

(k2m + 2)c2 + β0 − β1 = 0, (4.5)

which agrees with (4.4) since the term k2α0 in (4.4) is negligible. However, when mk2 = O(1),

we cannot obtain a series expansion for c in terms of k from (4.5), but such an expansion is

essential in the small-amplitude and long-wavelength approximation. In fact, it was assumed

in some previous studies that

c =
√

(β1 − β0)/2 + O(k).

We note that the correction term σk2 in (2.15) becomes O(1) and the expansion (2.15) breaks

down as well. Thus, we conclude that it is not asymptotically consistent to ignore the axial

displacement.

The nonlinear equation in this approximation is given by

w′′ =
λ2

2∞ (2c2 + β0 − β1)

λ2
1∞ (mc2 − α0)

w

−
λ2

2∞ (m (3c2 + β2) c2 + α1 (−2c2 − β0 + β1) − α0 (3c2 + β2))

λ3
1∞ (mc2 − α0) 2

w2 + O(w3). (4.6)

Denoting
√

(β1 − β0)/2 by ĉ0, expanding the right hand side of (4.6) in a small neighborhood

of c = ĉ0, and then neglecting terms of order (c − ĉ0)
2w or w3, we obtain

w′′ = −
8ĉ0λ

2
2∞

λ2
1∞ (2α0 + m (β0 − β1))

(c − ĉ0) w −
λ2

1∞ (3β0 − 3β1 − 2β2)

λ3
1∞ (2α0 + m (β0 − β1))

w2. (4.7)

This reproduces Demiray’s (1996) equation (34) which was derived using a multiple-scale

expansion.

5 Persistence of the solitary wave solutions

From now on we assume that (c− c1)ωc > 0. On differentiating (3.10) with respect to ξ, we

obtain

M(a) ≡ a′′ − a + a2 + e(ε, a) = 0, (5.1)

where e(ε, a) = O(ε). Equation (5.1) is obviously reversible, that is, it is invariant under the

action ξ → −ξ. This reversibility means that we may restrict ourselves to the case when a

is an even function. We have the following result:

Lemma (Iooss & Kirchgässner 1992): For a small enough ε0 and ε ∈ (0, ε0] there exists a

family of solitary wave solutions a satisfying equation (5.1). Moreover,

|a − a0| ≤ Cε exp(−τ |ξ|),
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where C, τ are constants, and C > 0, 0 < τ < 1.

Proof. We first define the Banach functional spaces

Ce
τ,j =

{

f0 ∈ Cj(R) : sup
ξ

| exp(τ |ξ|)f
(m)
0 < ∞, j = 0, 1, 2; m ≤ j; f0(ξ) = f0(−ξ)

}

.

It is evident that a0 ∈ Ce
1,2.

Let M : Ce
τ,2 → Ce

τ,0, where τ < 1. From the implicit function theorem the existence and

uniqueness of a ∈ Ce
τ,2, ε ∈ (0, ε0] that satisfies the equation (5.1) will follow, if the operator

L =
∂M

∂a
(a0)

∣

∣

ε=0
: Ce

τ,2 → Ce
τ,0

has a bounded inverse. The proof of the first part of the assertion of the lemma is, therefore,

reduced to the demonstration of this fact.

It can be easily seen that

L =
d2

dξ2
− 1 + 2a0,

and the inverse exists if and only if the equation

Lv = r (5.2)

has a unique solution for any r ∈ Ce
τ,0. The solvability of (5.2) follows from the following.

The homogeneous equation Lv = 0 has no solutions in Ce
τ,2. In fact, it has one solution

given by v1 = a′

0 which is an odd function. Another linearly independent solution is

v2 = −v1

∫ ξ

v−2
1 (s)ds =

1

24
sech2 ξ

2
tanh

ξ

2

(

30ξ − 32 coth
ξ

2
+ 16 sinh ξ + sinh 2ξ

)

,

which is an even function but grows like eξ as ξ → ∞. It follows that the solution of (5.2)

is unique if it exists.

The required solution for the inhomogeneous differential equation (5.2) can be obtained

with the aid of the method of variation of parameters, and is given by the formula

v = v2(ξ)

∞
∫

ξ

v1(s)r(s) ds + v1(ξ)

ξ
∫

0

v2(s)r(s) ds. (5.3)

Moreover, it follows from (5.2) that ||v||Ce

τ,2
≤ ||L−1|| · ||r||Ce

τ,0
≤ C||r||Ce

τ,0
, where C > 0 is a

constant.

The first part of the assertion of the Lemma is, therefore, proved. We next write the

solution of (5.1) in the form a = a0 + a1. The function a1 obeys the equation

La1 = h
(

ε, a1

)

,

where h(·) = O(ε, ε|a1|). From the boundedness of L and the implicit function theorem it

then follows that there exists ε0 > 0 such that for ε ∈ [0, ε0),

a1 = O(ε) ∈ Ce
τ,2,

11
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Figure 1: Solitary waves corresponding to c2 = 7 (left plot) and c2 = 265 (right plot),

respectively. The solid line is the exact solution and the dashed line is the asymptotic

solution given by (3.10).

from which the assertion of the Lemma concerning the norm follows immediately.

We have thus proved that the family of solitary wave solutions a exists and is unique

for small enough amplitudes. Returning to the unscaled variables, we conclude that the

fluid-filled membrane tube supports a unique family of solitary wave solutions bifurcating

from the trivial solution at each linear wave speed. The exact solitary-wave solutions can be

obtained numerically using the method explained by EJ or FPL. As an example, we follow

Demiray (1996) and EJ and consider the case when the strain-energy function is given by

W =
µ

2α

{

exp[α(λ2
1 + λ2

2 +
1

λ2
1λ

2
2

− 3)] − 1

}

, (5.4)

where µ and α are material constants. We take

α = 1.948, λ1∞ = 1.2, λ2∞ = 1.5, m = 0.5, vf∞ = 0.

In this case the scaled wave speed c appears in the problem through c2 and the bifurcation

condition ω(c, λ1∞, λ2∞) = 0 has four roots ±c1, ±c2 where c2
1 = 8.6384, c2

2 = 263.0176. It

is found that

ωc(c1, λ1∞, λ2∞) = −2.0910, γ(c1, λ1∞, λ2∞) = 5.6464,

ωc(c2, λ1∞, λ2∞) = 16.6598, γ(c2, λ1∞, λ2∞) = −3398.3050.

Thus, in accordance with the statement below (5.1), the two solitary waves that bifurcate

from c = c1 are subsonic and are waves of depression, whereas the two solitary waves that

bifurcate from c = c2 are supersonic and are waves of elevation. Figure 1 shows two such

solitary wave profiles, corresponding to c2 = 7 and c2 = 265, respectively. In each case the

exact solution is obtained by integrating three first-order ODEs for λ1(Z), λ2(Z) and φ(Z)

from Z = 0 towards ∞, where φ is the angle between the meridian and the Z-axis (so that

cos φ = z′/λ2, sin φ = r′/λ2). The initial conditions at Z = 0 are obtained by solving (3.1)

and (3.2) evaluated at Z = 0, and are given by

λ1(0) = 1.08327596, λ2(0) = 1.56168283, φ(0) = 0

12



when c2 = 7, and by

λ1(0) = 1.20028598, λ2(0) = 1.50335606, φ(0) = 0

when c2 = 265. The excellent agreement between the asymptotic and exact results is of

course simply a manifestation of our persistence result.
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