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SUMMARY

Since its use as a model to study metazoan parasite culture and in vitro development, the plerocercoid of the tapeworm,

Ligula intestinalis, has served as a useful scientific tool to study a range of biological factors, particularly within its fish

intermediate host. From the extensive long-term ecological studies on the interactions between the parasite and cyprinid

hosts, to the recent advances made using molecular technology on parasite diversity and speciation, studies on the parasite

have, over the last 60 years, led to significant advances in knowledge on host-parasite interactions. The parasite has served

as a useful model to study pollution, immunology and parasite ecology and genetics, as well has being the archetypal

endocrine disruptor.
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THE PARASITE

There is perhaps no other metazoan parasite that

evokes such awe and revulsion within the fishing

fraternity world-wide than the plerocercoid stage

of the pseudophyllidean cestode, Ligula intestinalis.

This is primarily due to the impressive size which

this parasite can obtain in the body cavity of its fish

intermediate host, and yet it is the size of the parasite

and its relationship with its fish host which has

made this parasite such a valuable model to study

parasite/host interactions at the molecular, cellular,

organismal and population levels. As a highlight of

the size which the infection can attain, Barus and

Prokes (1994) noted that the weight of parasite tissue

can be greater than that of the fish tissue (Fig. 1).

This relationship has been studied utilising the

parasitisation index (parasite weight/fish weightr
100) which normally lies in the range of 1–20%

(Claridge et al. 1985) or up to 40% as recorded by

Morrison (1977). It is perhaps not surprising there-

fore that the infection has been associated with a

distension of the body wall which leads to separation

of the scales whichmay allow entry of pathogens (e.g.

Sweeting, 1977), and effects on the body wall and

musculature (Richards and Arme, 1981; Loot et al.

2001c). In some rare instances, perforation of the

body wall and intrusion of the parasite into the

aquatic environment has been noted (e.g. Barus et al.

1997). The authors proposed that this may rep-

resent a possible means for a free-living phase of the

plerocercoid or, at least, prolong the window for

transmission into a definitive host for several days

after death of the host.

The plerocercoid of L. intestinalis occurs in a wide

range of fish hosts. In Europe it has been found

in several species of cyprinids, e.g. roach (Rutilus

rutilus), rudd (Scardinius erythrophthalmus), dace

(Leuciscus leuciscus), gudgeon (Gobio gobio), bream

(Abramis brama), bleak (Alburnus alburnus), minnow

(Phoxinus phoxinus), chub (Leuciscus cephalus), tench

(Tinca tinca) and silver bream (Blicca bjoerkna) (Orr,

1968; Arme and Owen, 1968; Harris and Wheeler,

1974; Adamek et al. 1996; Museth, 2001; Loot et al.

2001a, b, c,d, 2002a, b, 2006; Hecker et al. 2007).

Dubinina (1966) noted 49 species of fish in the

former USSR were hosts of the parasite, whilst

there are several authors who have indicated the

presence of the worm in the North American con-

tinent. For example, in Canada, Szalai et al. (1989)

noted the parasite in white suckers (Catostomus

commersoni), yellow perch (Perca flavescens), quill-

back (Carpoides cyprinus) and spottail shiners

(Notropis hudsonius), and Groves and Shields (2001)

and Shields et al. (2002) found the parasite in

the Crooked River system and Haystack Reservoir

in central Oregon. Ligula has also been found in

the Middle East (Ergonul and Altindag, 2005a, b ;

Sasi, 2005; Kir and Tekin-Ozan, 2005; Hatice et al.

2006; Shargh et al. 2008; Hajirostamloo, 2008;

Aydogdu et al. 2008; Tekin-Ozan and Kir, 2008),
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Africa (Dejen et al. 2006; Cowx et al. 2008; Britton

et al. 2009) and Australasia (Pollard, 1974; Weekes

and Penlington, 1986; Morgan, 2003). In China, the

parasite can cause problems in culture systems

(Xianghua and Zhixin, 1987; Li and Liao, 2003).

The large range of fish species that the parasite has

been recorded from is also extended to the associ-

ation between the definitive host and the adult

parasite, for example, Dubinina (1966) claimed 72

species of bird can serve as final hosts for the

Ligulidae. Dubinina has also given an account of the

development cycle of Ligula in which parasite eggs,

which first appear in the uterus 45–50 hours after

infection, pass out in the birds’ faeces and hatch after

5–8 days to release the free-swimming coracidia.

These are ingested by the copepod first intermediate

host in which the procercoid develops, and the fish

becomes infected by consuming the infected cope-

pod. The ubiquitous nature ofLigula in terms of host

fish and geographical range has meant that this

parasite has been a good model to study speciation

and diversity in fish parasites.

LIGULA AS AN ECOLOGICAL MODEL

Although there have been numerous studies on the

ecological interactions between fish parasites and

their hosts, the majority have concentrated on lim-

ited time spans with, on some occasions, speculation

on the long-term implications of infection. None of

the studies undertaken, except some of those carried

out on Ligula, have considered what happens to the

epizootic and the implications for the aquatic com-

munity over an extended time period. Although

some studies (Bauer and Stolyarov, 1961; Black and

Fraser, 1984; Izyumova, 1987) have revealed that

Ligula may persist for several years within a single

water body, the majority of studies, for example

those carried out in theUK (Wilson, 1971; Sweeting,

1976; Morrison, 1977; Tobin, 1986; Bean and

Winfield, 1992), have noted that a decline of fish host

populations leads to reduction in transmission rates

of the parasite. This reduction is thought to be due

primarily to an increase in fish mortality in infected

fish caused by either a reduction in their ability to

survive over winter (Wyatt and Kennedy, 1988)

and/or by making the infected fish more susceptible

to predation both by birds and fish (Van Dobben,

1952; Holmes and Bethel, 1972; Sweeting, 1976;

Hoole, 1994). Studies on metazoan parasite/host

systems in natural environments are invariably, due

to funding restrictions or available opportunities,

restricted to short time periods. The effects of Ligula

on host populations noted above make this parasite

a unique model to study long-term effects of para-

sitisation on host dynamics. This has been achieved

by several eloquent studies carried out by Kennedy

and co-workers over a period of 31 years utilising

Ligula infections in Chew Lakes, Slapton Ley,

Devon, UK (Kennedy et al. 2001). The events that

pre-disposed the lake for introduction of Ligula

began in the 1960s when increasing eutrophic con-

ditions and an expansion of the roach population

led to intra-specific competition and the presence of

numerous small, stunted roach and a decline in the

dominant rudd population. This change in the fish

population dynamics and availability of an ample

small sized food source attracted Great Crested

Grebes, Podiceps cristatus, one of the definitive hosts

for L. intestinalis and it was not surprising to note the

appearance of ligulosed roach in 1973. The preva-

lence peaked at 28% in 1975 and resulted in a decline

in the roach population and a subsequent recovery in

the rudd numbers. This was the first cycle of Ligula

infection whose details were described by Burrough

and Kennedy (1979), Kennedy and Burrough (1981)

and Wyatt and Kennedy (1988, 1989). The decrease

in roach numbers led to increased growth rates, but

adverse winter conditions during 1984–1985 caused

substantial fish deaths and the parasite re-appeared

in 1991 in the 1989, 1990 and 1991 year classes. In

this second wave of infection, prevalence levels were

P
1 cm

Fig. 1. Ligulosed roach, Rutilus rutilus, fixed in Bouins fixative and cleared in xylene. Note plerocercoid burden (P)

within the body cavity of the fish host. (Picture reproduced by kind permission of Professor C. Arme, Keele University,

UK.)

D. Hoole, V. Carter and S. Dufour 426



very high i.e. 75% peaking in 1992. A decline in

infection occurred between 1993–1994. It would

appear that a third cycle also occurred from 1999

and although infection occurred in 0, 1 and 2 year

old fish, prevalence never exceeded 14%. The studies

on Slapton Ley are therefore unique, not only in

their duration, but also in the fact that 3 distinct in-

fection cycles were clearly observed although this

does not imply any regulation or stability within the

system as infection cycles varied. In previous short-

term studies (Arme and Owen, 1968; Harris and

Wheeler, 1974; Sweeting, 1976, 1977; Bean and

Winfield, 1992), biotic factors such as fish feeding

behaviour and copepod levels were suggested to

affect Ligula predominance in smaller fish. In con-

trast, in the second cycle at Slapton Ley, fish of all

ages may have been infected. Kennedy et al. (2001)

proposed that whilst the long-term study may

suggest controlled population regulation, the first

and second cycles were in fact independent events

and the cycles reflect changes in habitat. Recently

Ligula intestinalis has proved an invaluable model

to elucidate how parasites may modify their host

phenotypic appearance, and the impact that this has

on the ecological interactions between parasites

and their hosts, and transmission success. In 1999,

Lafferty defined a phenomenon which resulted in an

increase in parasite fitness mediated by evolutionary

processes, the so-called ‘Parasite Increased Trophic

Transmission – PITT’. Extensive studies carried

out since 2000 by Loot and co-workers on ligulosed

roach populations in France have made a signifi-

cant contribution to testing the PITT hypothesis

in natural systems. Detailed morphological investi-

gations on roach collected from the Lavernose-

Lacasse gravel pit complex in Toulouse revealed that

extensive morphological changes occurred in ligu-

losed roach which were dependent on total parasite

biomass (Loot et al. 2001c). Further studies by Loot

et al. (2001d) showed that in the Lavernose, Muret

and Pareloup lake systems the distribution of the

plerocercoid of L. intestinalis was spatially and tem-

porally clumped within their fish hosts although

this aggregation was far more pronounced in the

Lavernose Lake suggesting the presence of site-

related affects. Loot and co-workers (2001a) also

noted that ligulosed roach were more highly para-

sitised closer to the bank and that parasite occurrence

and abundance were both highly significant par-

ameters in accounting for this spatial distribution.

They also showed that these two parameters de-

creased in fish older than 3 years of age, suggesting

that Ligula infection resulted in host death. Three

hypotheses were considered to explain why parasite

infection was greatest near the bank of the lake.

Whilst the possibilities that this infection distri-

bution was due to an accidental side-effect of para-

sitisation or perhaps was correlated to the localisation

of infected first intermediate copepod hosts were

considered, the authors proposed that Ligula in-

creased feeding motivation into the highly pro-

ductive littoral areas of the lake and the reduced

swimming efficiency increased predation by the bird

definitive host. These results thus support the PITT

hypothesis. Detailed studies on the interaction be-

tween L. intestinalis and its fish host have primarily

concentrated on the Euro-Mediterranean clades and

it is only recently that the PITT hypothesis has been

investigated in other geographical localities. Britton

et al. (2009) investigated Ligula host specificity in the

fish population of Lakes Baringo and Naivasha in

Kenya’s Rift Valley. It was noted that the parasite

had a restricted second intermediate host range

occurring in two cyprinid fish species, Barbus lineo-

maculatus and B. paludinosus, and, in comparison to

the Euro-Mediterranean clade, multiple infections

were not observed frequently. The authors suggested

that since parasite prevalence was correlated to

habitat the results obtained could be interpreted as

supportive of the PITThypothesis. The complex life

cycle of L. intestinalis has also recently been utilised

to establish the contributing role that host ecological

dynamics and physiological compatibility has on

parasite transmission and evolution. Loot et al.

(2006), using measurements of host abundances

over time, noted that in the Lavernose-Lacasse

gravel pit system used in earlier studies, the favoured

Ligula hosts were the copepod, Eudiaptomus gracilis,

the roach Rutilus rutilus and the great crested grebe

(Podiceps cristatus). It was suggested that the similar

temporal dynamics and frequent associations be-

tween hosts and parasite created a stable system that

promoted the successful completion of the Ligula

life cycle. Such an association, it was proposed,

affected the evolution of L. intestinalis specificity.

It was hypothesised that the selection of hosts was

driven by the probability of successive hosts

encountering each other which aided parasite trans-

mission and whilst, biochemical compatibility be-

tween host and parasite was important, this may be

secondary to spatial and temporal dynamics.

There have been extensive studies on the patho-

logical and biochemical interactions between Ligula

and its fish hosts (for example see Arme et al. 1982;

Hoole, 1994) which have primarily been stimulated

by the large parasite burdens that can occur in some

hosts and the subsequent extensive size that infected

hosts can attain. The possibility that host gigantism

occurs in Ligula infection has thus been recently in-

vestigated by Loot et al. (2002b) who revealed that

the parasite induced an enhanced growth rate during

the first 2 years of the life of the roach host. Whilst

the possibility that the parasite produced growth

enhancers or may divert energy from gonadal

development to somatic growth were considered,

the authors proposed that since cestode-associated

growth in the heaviest infected fish was only found

in one out of the three localities studied, that the
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effect may result from a change in foraging behav-

iour of the fish. What these and other studies have

highlighted however is the intricate association be-

tween Ligula and the reproductive potential of its

fish host.

LIGULA: THE MODEL OF ENDOCRINE

DISRUPTION

Perhaps the most significant impact of Ligula on

the fish host population is its ability to inhibit re-

productive function of its host. Whilst it has been

established previously that parasite effects on host

reproduction occur in several host/parasite inter-

actions, for example the snail, Lymnea stagnalis

infected with Trichobilharzia ocellata (Joose and

van Elk, 1986); Schistosoma mansoni infections of

Biomphalaria glabrata (Crews and Yoshino, 1989)

and in vertebrate hosts – the tapeworms Taenia

taeniaeformis affect the testis in rats and T. crassiceps

induces feminisation in mice (Lin et al. 1990;

Larralde et al. 1995, respectively) – it is the intricate

relationship between Ligula and the reproductive

endocrine status of the fish that has fascinated and

perplexed biologists. Studies by Kerr (1948) and

Arme (1968) noted that in ligulosed roach, putative

gonadotrophs were reduced in number and had

a reduced granular content than their uninfected

counterparts. This effect on reproductive potential

has been reported subsequently by Arme and Owen

(1968), Mahon (1976), Sweeting (1977), Bean and

Winfield (1989) and Cowx et al. (2008) and has

driven the idea that the effect of Ligula on repro-

ductive inhibition is mediated through the host’s

pituitary gland. The effects of the parasite on the

pituitary gland were observed 6 weeks post-

implantation of a small worm into a mature female

roach and also occurred in non-host species such as

Xenopus laevis (Arme, 1968, 1975). These obser-

vations not only indicate that the effects on the

pituitary gland may not be dependent on worm

burden, but suggest a general endocrine effect rather

than an inhibition which is species specific. The

mechanism by which this effect is mediated is un-

known, but is thought to be via the hypothalamus/

pituitary gland/gonadal axis. This axis is a complex

array of hormones and feedback mechanisms, any

number of which could be affected byLigula (Fig. 2).

To understand the possible intricate effects of Ligula

on fish reproduction thus requires a brief consider-

ation of the complexity that is the reproductive

endocrine control mechanism in fish. Gonado-

trophin Releasing Hormone (GnRH) is regarded as

the first key hormone in the cascade controlling

reproduction. GnRH occurs in a variety of forms

which are thought to have arisen from gene dupli-

cation andmutations (O’Neill et al. 1998; Okubu and

Aida, 2001) and interacts with receptors present on

the pituitary gonadotrophs. The expression of these

receptors dictates the sensitivity of the pituitary to

Fig. 2. Possible actions of Ligula on the roach reproductive pathway, +=stimulation, x=inhibition.
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the GnRH, as increased receptor numbers at spawn-

ing enhance the preovulatory gonadotrophin surge

(Yu et al. 1998). During the reproductive cycle, the

GnRH content in the hypothalamus and pituitary

gland of goldfish increases to a maximum on the day

of aggregation for spawning and is lowest in pre-

ovulatory and immature fish.

As revealed by the pioneer studies of R.E. Peter

and coworkers in the goldfish, pituitary gonadotropic

cells of teleosts may be subjected to regulation, not

only by a stimulatory control of GnRH as in mam-

mals, but also as direct inhibition by dopamine (for

review see Peter et al. 1986). GnRH and dopamine

are, respectively, the principal stimulatory and in-

hibitory neurohormones controlling gonadotrophin

release (e.g. Hernandez-Rauda et al. 1996; Trudeau,

1997). In the goldfish, dopamine was shown to

be involved in the inhibition of the final steps of

gametogenesis in mature fish (final oocyte matu-

ration and ovulation in females, spermiation in

males), a role that was also found in the other

cyprinids studied, as well in other, but not all, teleost

species (for review see Dufour et al. 2005). The

possible inhibitory role of dopamine in the inhibition

of earlier steps of gametogenesis was investigated in

the European eel, in which a strong dopaminergic

inhibition was shown to be involved in the pre-

pubertal blockade of sexual maturation, before the

oceanic reproductive migration (Vidal et al. 2004;

Dufour et al. 2005). A dopaminergic role in the in-

hibition of puberty was also recently found in the

mullet (Nocillado and Elizur, 2008) but not in some

other teleost species such as the striped bass or

seabream (for review: Dufour et al. 2005). This com-

plexity thus gives Ligula a range of potential strat-

egies to affect the endocrine status and reproduction

of its fish host.

The gonadotrophic hormones, synthesised and

released from the anterior pituitary gland have a

controlling role on reproduction. GtHI (FSH)

mediates gonadal growth (Tyler et al. 1999), whilst

GtHII (LH) regulates the final stages of maturation

and ovulation/spermiation. These gonadotrophins

act primarily on the ovary and testes to promote

gametogenesis. Receptors for GtH are located in

both cell layers surrounding the oocytes (thecal and

granulosa cells) and in the testis (Kanamori et al.

1987; Yan et al. 1992). Fish gonads have the capacity

to synthesise steroid hormones such as 17b-estradiol,
testosterone, 11-KTand 17-20bP (Nagahama, 1999),

as well as gonadal peptides (inhibin, activin) which

exert feedback control onto the hypothalamus and

pituitary gland in a classical feedback loop, and their

regulation is dependent on the maturational status

of the fish (Feist and Schreck, 1996). Ligula could

therefore be affecting the secretion of GtH hor-

mones, their receptors and/or the feedback system

between the gonads and the brain. Indeed, the fact

that fish usually become infected when young may

suggest that the parasite is preventing puberty in its

host. Ligula could therefore be considered as a useful

tool to gain an understanding of the endocrine

control of the development of the reproductive sys-

tem as it could mediate its effect at various levels

in the hypothalamus/pituitary gland/gonadal axis

(Fig. 2).

Implantation of Ligula plerocercoids into unin-

fected roach results in atresia of developed follicles,

or if implanted after ovulation, inhibited recrud-

escence in fish examined 3 months after implantation

(Arme, 1968). The effects are reproducible with a

small plerocercoid implanted into a largemature fish,

which precludes pressure effects on fish organs or

general debilitation fromparasitemetabolic demands

(Arme, 1975). Arme postulated that Ligula produces

a substance with an inhibitory effect on the pituitary

gland, and noted that the nature of the substance was

similar in action to testosterone treatment and may

possibly be a steroid with anti-gonadal effects on the

pituitary gland. Arme et al. (1982) later published

evidence against this hypothesis as three different

assay attempts failed to identify a sex steroid in ex-

tracts of worm and in media in which the parasites

had been cultured, although cholesterol (sex steroid

precursors) was identified in abundance (Arme,

1997). It is plausible that Ligula targets GnRH as

two forms of gonadotrophin releasing hormone

(sGnRH and cGnRH-II) have been localised in

brains of ligulosed and uninfected roach by

Penlington et al. (1997). Although no differences in

cell distribution, cell number or staining intensity

were detected that could be attributed to Ligula,

both GnRH forms were present in uninfected and

infected fish, although cGnRH positive neurones

were more numerous than sGnRH (Williams et al.

1998).

Endocrine studies by Carter et al. (2005) have

revealed a more intricate effect of Ligula on the

endocrine status of the pituitary gland in roach. The

effect of parasitisation on the LH content of this

gland was studied using heterologous radio-

immunoassay for the LHb subunit ofCyprinus carpio

which revealed that the pituitary gland of infected

roach contained 50% less LH than non-ligulosed

fish. In addition, partial cloning of roach LHb sub-

unit allowed Carter and co-workers to show that

there was a 50% reduction in LHb mRNA in the

pituitary gland of ligulosed roach. These results

support the hypothesis that the pituitary gland

plays a significant role in the interaction between

the parasite and the reproductive status of the fish

host. There is evidence however that the interaction

between Ligula and the brain of fish may be multi-

faceted. Testosterone can have a two-fold effect on

the regulation of LH transcript levels either in its

own right (Huang et al. 1997) or after aromatisation

in the pituitary to E2 in order to stimulate LH

(Antonopoulou et al. 1999). Aromatase activity,
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which is seasonally present in the pituitary of the

goldfish (Melamed et al. 1998), as in all vertebrates,

is a member of an enzyme complex including P450

aromatase and reductase which carries out the con-

version of androgens to estrogens (Gonzalez and

Piferrer, 1999; Carreau et al. 2002). This essential

enzyme complex for estrogen biosynthesis has been

demonstrated in the brain and ovary of teleosts (Cruz

and Canario, 1999). Stimulatory effects of small

quantities of testosterone are consistent with a posi-

tive feedback mechanism, which stimulates accumu-

lation and secretion of LH. Large testosterone doses

presumably exert negative effects via inhibition of

LH (Berglund et al. 1995). Recent studies by Hecker

et al. (2005, 2007) have further investigated the role of

aromatase activity in the control of endocrine status

in Abramis brama from the river Elbe in Germany.

Brain aromatase activity was significantly positively

correlated with plasma estradiol in females and

11-ketotestosterone in males which the authors

suggested led to the disruption of reproductive

parameters such as the maturation of germ cells

and secondary sex characteristics. The interesting

observation was that the prevalence of Ligula in

the fish was correlated with a suppression of the

aromatase activity.

Further studies are also required to investigate

the possible impact of the parasite on the expression

and production of roach FSH. Indeed, according to

data in other teleosts, FSH is supposed to be mostly

involved in the control of the first steps of gameto-

genesis (vitellogenesis in the female, spermatogenesis

in the male) while LH would control the last ones

(oocyte final maturation and ovulation in the female,

spermiation in the male). Recently, Trubiroha et al.

(2009) developed quantitative real time PCR to

evaluate the impact of Ligula on the expression of

LHb and FSHb subunits in infected roach. In

agreement with the authors’ previous studies (Carter

et al. 2005), field studies revealed a significant de-

crease in both LHb and FSHb pituitary expression

in infected roach as compared to non-infected ones.

However, under controlled laboratory condition of

infection, only FSHb mRNA levels were lowered.

This suggested that FSH may be a prime target of

Ligula inhibitory effect on roach sexual maturation,

in agreement with the early role of FSH in the

induction of gametogenesis as discussed above.

Considering the early blockade of sexual maturation

by Ligula in the roach, development of new tools

such as the use of reproductive cell lines to investi-

gate the regulation of FSH expression and release

would be highly relevant.

The possibility that Ligula is producing a sub-

stance that directly affects pituitary gland activity has

been investigated in unpublished studies carried out

by the authors using a pituitary primary cell culture

system (PPCC) according to the method previously

developed (Montero et al. 1996; Huang et al. 1997).

Pituitary glands cells obtained from female silver

(prepubertal) eels (Anguilla anguilla) were exposed

to secretions (WCM) from Ligula intestinalis and LH

content measured by radioimmunoassay (Dufour

et al. 1983). Ligula WCM added to eel pituitary

cells induced a significant increase in cellular LH

content which occurred in a dose-dependent man-

ner (0.658 mg–1.8 mg of Ligula protein). Whilst the

presence of protease inhibitors did not affect the

amount of LH produced when pituitary cells were

exposed to whole parasite WCM, it did increase the

LH content of the pituitary cells exposed to parasite

fractions (e.g. 30+kDa fraction with protease in-

hibitors=412.8¡29 ng LH/ml cell extract, without
protease inhibitors=20.25¡1 ng LH/ml cell extract,
T =13.6, P<0.001), which suggests that this endo-

crine active substance is susceptible to proteolytic

digestion. Indeed, there are previous reports which

indicate that Ligula plerocercoids not only produce

proteolytic enzymes, but also protease inhibitors

(Matskasi and Juhasz, 1977; Juhasz, 1979; Matskasi

and Nemeth, 1979). The protective effect of protease

inhibitors was also observed on the effects of other

fractions of parasite secretions (e.g. 10–30 kDa,

3–10 kDa or<3 kDa) on the LH content of pituitary

cells, which suggests that multiple factors secreted

byLigulamay contribute to the endocrine disruption

of the host reproduction.

Although the eel pituitary cell culture model

adopted indicated a possible direct effect of Ligula

on pituitary gland cells, a method of maintaining

pituitary cells from the natural host of Ligula, the

roach, failed to give any conclusive results. The

increase in LH content measured on addition of

parasite products to the eel pituitary cell model may

be due to several possible mechanisms, such as an

increase in production of LH and a decrease in the

release of LH from the pituitary gland, or no change

in LH production, but a decrease in LH release.

The effect of Ligula on eel pituitary cells also sup-

ports the previous suggestion by Arme (1968) that

effects of this parasite on host reproduction may not

be limited to its natural host. Further studies should

aim at investigating the possible direct effects of

Ligula products on the expression of roach LHb and

FSHb subunits.

Whilst there appears to be much debate on the

mechanism by which Ligula affects the reproductive

status of its fish host there appears to be a consensus,

at least in the speculation, as to why this should

occur and how the parasite might benefit from this

effect. Besides the possible effects on the energy

balance in the infected fish several authors e.g.

Barber and Huntingford (1996), Loot et al. (2001a,

2002a, b), Morgan (2003), Dejen et al. (2006) have

proposed that infection in fish leads to altered

behaviours such as movement to shallow waters,

occurrence of fish on the surface of the water,

swimming impediments, absence of shoaling, and
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delayed response to a stimulus, all of which lead to

the infected fish being more prone to predation by

the avian definitive host or another fish (Museth,

2001). This host/parasite interaction thus has an

important role to play in the studies on the para-

site manipulation and predator foraging behav-

iour (Brown et al. 2001, 2002; Fenton and Rands,

2006).

Parasitism, and in particular with Ligula, is not the

only biological factor which can affect the endocrine

system and over the last 25 years there have been

many studies (e.g. McMasters et al. 1996; Harries

et al. 1997, 1999) which have shown that chemical

pollutants can affect the endocrine status of fish.

Surprisingly, there are very few studies that have

considered water quality in association with the

Ligula/fish interaction. Recent investigations by

Hecker and co-workers (Hecker and Karbe, 2005;

Hecker et al. 2007) on Abramis brama infected with

L. intestinalis collected from the river Elbe have

attempted to relate endocrine status of the fish to

parasitisation and the presence of a range of chemi-

cals from industrial, agricultural and domestic

sources. Regional differences in infection of the fish

were noted along the length of the Elbe studied with

highest prevalence occurring in heavily polluted

areas. When the authors used a linear model to

compare these regional differences in prevalence of

infection with biological parameters, not all the

differences observed could be attributed to Ligula.

They proposed that pollution may have contributed

to the observed altered reproductive and endocrine

status observed in the fish. Whilst these studies in

no way refute the observed effects on Ligula on the

hypothalamus/pituitary gland/gonadal axis they do

highlight the possible importance of other biological

parameters such as water quality.

LIGULA: A MODEL FOR POLLUTION MONITORING

The association of water quality with the interaction

between parasites and their fish hosts is not surpris-

ing as there have been recent studies which have

highlighted the role of pollutants in host-parasite

interactions (Hoole, 1997; Morley et al. 2006, Sures,

2008a, b). Several studies have investigated the

effects, not only of pollutants on the immune re-

sponse of the fish hosts to the parasitic fauna (Hoole,

1997), but also on helminth life cycles. These latter

studies have primarily concentrated on trematode

stages such as eggs, miracidia, cercariae and meta-

cercariae (Abd Allah et al. 1997; Morley et al.

2001a, b, c ; 2002, 2003; Pietrock et al. 2002) and the

bioaccumulation of heavy metals in adult acantho-

cephalans and cestodes in fish (Sures et al. 1997;

Sures and Siddall, 1999; Sures, 2003). The relatively

few studies which have been carried out on the in-

teraction between fish tapeworms and heavy metals

have indicated that these metazoan parasites possess,

on some occasions, the ability to bio-accumulate

pollutants at greater levels than their fish hosts.

For example, the monozoic cestode, Monobothrium

wageneri, had higher concentrations of both cad-

mium (Cd) and lead (Pb) than its host tench, Tinca

tinca, whilst there was no difference between Pb

burdens detected in the adult cestode, Bothrio-

cephalus scorpii, and those present in the intestinal

wall of its host turbot, Scophthalamus maximus

(Sures et al. 1997). In addition, the concentration

of heavy metals is dependent on the different body

parts of tapeworms analysed. For example, posterior

gravid proglottids of the cestode, Bothriocephalus

scorpii accumulate higher contents of Pb and Cd

than the anterior immature ones (Sures et al. 1997).

This may be due to the ability of tapeworm egg

shells to bio-accumulate heavy metals (Khalil et al.

2009).

The size and ubiquitous nature of Ligula has led

to the large plerocercoid stage being considered as

a possible model in the study of heavy metal con-

tamination in water bodies. Tenora et al. (2000)

utilised atomic absorption spectrometry to monitor

lead, chromium and cadmium levels in L. intestinalis

and Philometra ovata in the body cavity of three

cyprind fish species (A. brama, R. rutilus, B. bjoer-

kna). All heavy metals studied bio-accumulated

within the plerocercoid to a greater level than in the

fish muscle. Further studies carried out by Tenora

et al. (2002) also revealed that this ability to

bio-accummulate heavy metals (Pb, Cd) was not

restricted to the plerocercoid, as the adult L. intes-

tinalis contained higher levels of these two metals

than the definitive avian hosts. It would appear how-

ever, that the accumulation of heavy metals by the

plerocercoid stage may be dependent on the age of

the parasite. Barus et al. (2001) noted that whilst

nickel levels were higher in young plerocercoids, the

levels of the majority of heavy metals monitored,

i.e. Pb, Cr and Cd, were greater in the older para-

sites. They hypothesised that this indicated that

accumulation of heavy metals in the parasite was a

gradual and long-term process which probably

occurred during the growing phase of the parasite in

the fish host. More recent studies by Tekin-Ozan

and co-workers (Tekin-Ozan and Kir, 2005, 2008;

Tekin-Ozan and Barlas, 2008), utilising Ligula

and tench (Tinca tinca), have extended the greater

bio-accummulation by the plerocercoid to a more

extensive range of heavy metals and speculate that

if the parasite reflects the amount of heavy metal

contaminants in the water and sediments, it may

provide reliable data about pollution in water bodies.

Whilst this is perhaps debatable, the value of the

association of the plerocercoid with heavy metals

probably lies in the size of the parasite which may

assist in the elucidation of how parasites can bio-

accumulate pollutants with no apparent ill-effects on

their biology.
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LIGULA: A MODEL OF GENETIC BIODIVERSITY

One important area that underpins all of the studies

mentioned above relates to the taxonomic status of

the parasites used, which are from a range of fish

species and geographical locations. The classification

of ligulid tapeworms into the genus Ligula Bloch,

1782 and genus Digramma Cholodkovsky, 1914

has proved controversial for many years, and yet

L. intestinalis with its global distribution and com-

plex life cycle may be a valuable model to study

speciation and the evolution of parasite genetic

diversity. Since the turn of the century there have

been several investigations which have applied mol-

ecular techniques to studies on speciation within

ligulid cestodes. Li and Liao (2003), using sequences

for the 5k end of 4 genes, i.e. 28S ribosomal ribo-

nucleic acid (28rRNA),mitrochondrial cytochrome c

oxidase subunit 1 (CO1), nicotinamide adenine di-

nucleotide dehydrogenase subunit 1 (ND1) and the

internal transcribed spacer of the nuclear ribosomal

deoxyribonucleic acid (ITS1), noted that there

was low genetic divergence in these in Ligula and

Digramma and suggested that the two parasites

should be considered as different species within the

genus Ligula. These authors had previously utilised

28rRNA and CO1 isolated from formalin-fixed

specimens of Ligula obtained from Qinghai-Tibet

Plateau, Russia and England and proposed that the

Chinese Ligula was within the same species as that

occurring in Europe. Importantly, they proposed

that geographic location, host affinity and host

habitat were not reliable criteria to use in the classi-

fication of Ligula (Li et al. 2000). Olson et al. (2002)

provided molecular evidence that Ligula occurring

in gudgeon, and roach in Lough Neagh, Northern

Ireland, were separate strains which may be reflected

in their effect on host gonadal development. In ad-

dition, Ligula from minnow (Phoxinus phoxinus)

from Wales resembled those from the Lough Neagh

roach. The authors suggested that the existence of

separate strains in Lough Neagh probably resulted

from the introduction of roach and an increase in

the number of the definitive host, the great crested

grebe. Logan et al. (2004) highlighted that L. in-

testinalis from Turkey were genetically isolated from

their European and Chinese counterparts. In a recent

extensive study carried out by Bouzid et al. (2008a),

the genetic variation within L. intestinalis obtained

from 13 fish species originating from different lo-

calities i.e. Algeria, Australia, Canada, China, Czech

Repubic, Estonia, Ethiopa, France, Germany, UK,

Mexico, Poland, Russia, Tunisa and the Ukraine,

was analysed using two mitochondrial genes, cyto-

chrome oxidase 1 and cytochrome B, and the nuclear

sequence of intergenic transcribed 2 (ITS2). The

authors proposed that the evolutionary patterns

observed were determined at the local and global

levels. At the local aspect, the migrating avian

definitive host was thought to be important in pre-

venting the establishment of genetic barriers, whilst

on the global scale, genetically distinct clusters were

observed. In addition, the authors noted that Ligula

was split into two clades, termed A and B. Clade A

contained samples from Tunisia and Europe and

were obtained from ‘derived cyprinids’ (Abramis,

Alburnus, Phoxinus, Rutilus and Scardinius), whilst

Clade B was restricted to European, Algerian,

Chinese and Australasian samples from ‘basal

cyprinid fish’ (Barbus, Gobio and Rhodeus). Bouzid

et al. (2008b), utilising L. intestinalis, also proposed

that inter-simple sequence repeat markers was a

rapid and inexpensive technique to define markers

that could be used to assess genetic diversity.

Recently, isolation and characterization of micro-

satellite loci have been used to understand the genetic

complexity and diversity that occurs within the

ligulids. After this technology was established as a

useful tool in the case of L. intestinalis (Stefka et al.

2007), Stefka and co-workers in 2009 used 15 micro-

satellite loci to monitor the genetic differences in

populations of L. intestinalis from a range of distant

geographical locations in North America, Europe,

Asia, Africa and Australasia. They noted a very high

level of polymorphism and strong genetic struc-

ture in Ligula from these localities and proposed

some very interesting reasons for this. For example,

the existence of parasite subdivisions between

Europe and Tunisia was due to the Mediterranean

Sea effect which, although did not prevent migration

of the avian definitive host, the fact that the adult

tapeworm persists in the bird for only one week

(Dubinina, 1966) would probably mean that the

tapeworm was not transported between the two

localities. In addition, they also suggested that the

fish immune response may be a factor in determining

host-specificity of the Ligula genotypic lineages.

Unfortunately, most of the studies on the immune

response to the plerocercoid stage have been carried

out in roach. In a series of publications by Hoole and

co-workers it was established that there is an intense

cellular response to the parasite (Hoole and Arme,

1982, 1983a, b ; Taylor and Hoole, 1989a, b, 1993,

1994, 1995) which involved several specific and

non-specific humoral components (Hoole and Arme,

1986, 1988; Williams and Hoole, 1992, 1995). How-

ever, even with the host response, substantial dif-

ferences to Ligula infection occur in roach and

gudgeon (Arme, 1997), again indicating possible

genetic diversity of the parasite.

In conclusion, since the classical experiments

carried out by J. D. Smyth in 1947, which revealed

L. intestinalis as a model to study tapeworm devel-

opment in vitro, this large metazoan parasite has

proved an invaluable model not only for para-

sitologists in general, but endocrinologists, ecol-

ogists, geneticists, immunologists and in pollution

studies.
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