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Abstract

It is now well-known that when an infinitely long hyperelastic membrane tube free

from any imperfections is inflated, a transcritical-type bifurcation may take place that

corresponds to the sudden formation of a localized bulge. When the membrane tube

is subjected to localized wall-thinning, the bifurcation curve would “unfold” into the

turning-point type with the lower branch corresponding to uniform inflation in the

absence of imperfections, and the upper branch to bifurcated states with larger ampli-

tude. In this paper stability of bulged configurations corresponding to both branches is

investigated with the use of the spectral method. It is shown that under pressure con-

trol and with respect to axi-symmetric perturbations, configurations corresponding to

the lower branch are stable but those corresponding to the upper branch are unstable.

Stability or instability is established by demonstrating the non-existence or existence

of an unstable eigenvalue (an eigenvalue with a positive real part). This is achieved

by constructing the Evans function that depends only on the spectral parameter. This

function is analytic in the right half of the complex plane where its zeroes correspond

to the unstable eigenvalues of the generalized spectral problem governing spectral in-

stability. We show that due to the fact that the skew-symmetric operator J involved

in the Hamiltonian formulation of the basic equations is onto, the zeroes of the Evans

function can only be located on the real axis of the complex plane. We also comment on

the connection between spectral (linear) stability and nonlinear (Lyapunov) stability.
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1 Introduction

This study is part of our recent research effort that explores the postulate that initiation of at

least some acute aneurysms in human arteries may be modeled as a bifurcation phenomenon

[8]. This postulate is motivated by two main results. Firstly, assuming that the artery is

axisymmetric and homogeneous, and that the initial wall thickness is a constant, a localized

bulge may form when the internal pressure reaches a certain critical value even if the pressure

versus volume curve does not have a maximum in uniform inflation [7]. Secondly, when

imperfections such as localized wall weakening is introduced, the bifurcation pressure may

fall to within the physiologically possible range [10]. It is further postulated that it is after

the initiation of such a localized bulge that biological processes such as remodelling take

over, which in turn leads to further growth and final rupture of the aneurysm. The present

study is also closely related to studies of solitary waves in hyperelastic membrane tubes;

for a review of the relevant literature we refer to [5]. On the one hand, a static localized

bulge can be viewed as a solitary wave that has zero propagation speed, the zero speed being

induced by the internal pressure in the membrane tube. On the other hand, solitary waves,

and more generally nonlinear waves, may play an important role in interrogating the health

status of arteries (e .g. presence of an aneurysm) through signal processing [15], [17].

Identifying an aneurysm with a static localized bulge implies that this configuration must

be stable since otherwise it cannot be observed. It was found that in the homogeneous case

although internal fluid inertia would reduce the growth rate of the single unstable mode

significantly, it alone cannot stabilize the unstable mode completely [13]. Stabilization of

the exponential growth of the aneurysm solution takes place in the presence of a non-zero

mean flow [6], but due to the translational symmetry of the problem the standing bulging

configuration is only orbitally stable or stable in form [11]; it can still propagate axially with

a non-zero speed under perturbations.

When wall weakening is introduced, the problem in question is no longer invariant under

translations, and in this case we may speak about the usual stability of the standing config-

uration. In this paper we investigate the stability of bulging configurations corresponding to

both branches of the bifurcation curve. In the absence of any imperfections, the lower branch

would correspond to uniform inflation whose stability/bifurcation has previously been stud-

ied by Shield [18], Haughton & Ogden [12], Chen [2], and Zubov and Sheidakov [19], and

the upper branch would correspond to large amplitude bifurcated solutions whose stability

properties have recently been studied by Fu and Xie [9]. Our stability analysis is based on

the construction of the Evans function that depends only on the spectral parameter. The

function is analytic in the right half of the complex plane and has there zeroes coinciding

with unstable eigenvalues. We demonstrate that the zeroes of the Evans function can only be

located on the real axis of the complex plane. Therefore, we need only to establish behavior

of this function on the real axis which is technically possible, and based on this behavior we
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may draw conclusions not only about spectral instability of the bulging configurations under

consideration, but also about its stability. In other words, absence of zeroes of the Evans

function on the positive real axis implies linear stability of the aneurysm solution. More-

over, the correspondence of the spectrum of the related spectral problem in linear stability

analysis to the one in Lyapunov (nonlinear) stability analysis is established. The spectrum η

of the linearized problem is related to the spectrum −α of the Hessian of the energy via the

relation α = ρη2, where ρ is the density of the tube material. Therefore, with the Hessian

being a self-adjoint operator, η can only have real or purely imaginary values, the latter

corresponding to the continuous spectrum. Linear instability is governed by the presence of

a discrete spectrum.

The rest of the paper is divided into four sections as follows. After presenting the Hamil-

tonian form of the governing equations we discuss in Section 3 the construction of fully

nonlinear bulging (aneurysm) solutions. We present the bifurcation diagram, reflecting the

appearance of standing bulging solutions, and also a set of three first-order differential equa-

tions to be solved numerically to obtain the fully nonlinear bulging solutions. This is then

followed by Section 4 where we discuss properties of the related spectral problem in the lin-

ear stability analysis. We construct the Evans function for both branches of the bifurcation

diagram and examine its behavior on the real axis of the right half of the complex plane.

According to the existence or absence of its zeroes conclusions about linear instability or

stability of the aneurysm solutions in question are made. The paper is concluded in Section

5 with a brief discussion of the connections between linear spectral stability and nonlinear

Lyapunov stability, and relevance of our results to the mathematical modelling of aneurysm

initiation in human arteries.

2 Formulation

We consider the inflation of a cylindrical membrane tube that is assumed to be incompress-

ible, isotropic, and hyperelastic. In its undeformed configuration, the tube wall has thickness

H that is not necessarily a constant, but the average of its outer and inner radii, hereafter

referred to simply as the radius R, is a constant. The tube is assumed to be infinitely long,

and end conditions are imposed at infinity. We use cylindrical polar coordinates, and un-

deformed and deformed configurations are described by coordinates (R, Θ, Z) and (r, θ, z),

respectively.

We assume that the axisymmetry is maintained throughout the entire deformation, and so

the deformation has the general form r = r(Z, t), θ = Θ, z = z(Z, t). The principal directions

of the deformation correspond to the lines of latitude, the meridian and the normal to the

deformed surface, and the principal stretches are given by

λ1 =
r

R
, λ2 = (r′2 + z′2)

1

2 , λ3 =
h

H
, (2.1)
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where a prime represents differentiation with respect to Z, and h denotes the deformed

thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incompress-

ible material are given by

σi = λiŴi − p, i = 1, 2, 3 (no summation), (2.2)

where Ŵ = Ŵ (λ1, λ2, λ3) is the strain-energy function, Ŵi = ∂Ŵ/∂λi, and p is the pressure

associated with the constraint of incompressibility. Utilizing the incompressibility constraint

λ1λ2λ3 = 1 and the membrane assumption of no stress through the thickness direction (i.e.

σ3 = 0), we find

σi = λiWi, i = 1, 2 (no summation), (2.3)

where W (λ1, λ2) = Ŵ (λ1, λ2, λ
−1
1 λ−1

2 ) and W1 = ∂W/∂λ1 etc. [12].

In our numerical illustrations, we shall assume that the membrane material is described

by the Ogden strain-energy function

Ŵ =

3
∑

r=1

µr(λ
αr

1 + λαr

2 + λαr

3 − 3)/αr, (2.4)

where

α1 = 1.3, α2 = 5.0, α3 = −2.0, µ1 = 1.491, µ2 = 0.003, µ3 = −0.023

are material constants given by Ogden [16], and the µ’s have been scaled by the ground state

shear modulus.

We consider the pressure controlled case when the inner pressure P is prescribed. The

total energy in the current configuration is E = K + Π, where K is the kinetic energy given

by

K =
1

2

L
∫

−L

ρ(ṙ2 + ż2)2πRH dZ,

and Π is the potential energy which is the sum of the strain energy and the potential energy

of pressure:

Π =

L
∫

−L

W (λ1, λ2)2πRH dZ − P

L
∫

−L

πr2z′ dZ.

In the above expressions the superimposed dot denotes differentiation with respect to time

and L is the length of the tube in the undeformed configuration (which will shortly be taken

to be infinite). The Hamiltonian, therefore, has the form

E(q1, q2, v1, v2)=
1

2

∞
∫

−∞

{

ρR(v2
1+v2

2)+2R
(

W (λ1, λ2)−W (∞)
)

H−P

[

q2
1

H

(

q2√
H

)′

−r2
∞

z∞

]}

dZ,

(2.5)
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where q1 =
√

Hr, q2 =
√

Hz, v1 =
√

Hṙ, v2 =
√

Hż, W (∞) is the value of the strain-energy

function W at infinity where λ1 = r∞, λ2 = z∞. Here the constants are chosen such that

the integral in (2.5) is convergent for (r − r∞, z′) exponentially decaying at infinity.

Employing R as the unit of length, we may put R in (2.5) to unity throughout this paper.

If we denote u = {q1, q2, v1, v2}T , the equations of motion in the pressure controlled case

may be written formally as a Hamiltonian dynamical system

du

dt
= J δE

δu
, with J =

1

ρ

(

0 I

−I 0

)

, (2.6)

where δ/δu denotes variational derivative and I the 2 × 2 identity matrix. It can easily be

verified that equation (2.6) is equivalent to the more familiar form [4]

ρr̈ =
1

H

(

HW2r
′

λ2

)′

+
P

H
rz′ − W1,

ρz̈ =
1

H

(

HW2z
′

λ2

)′

− P

H
rr′. (2.7)

Taking the limit Z → ∞ in (2.7)1, we obtain

P =
H(∞)W

(∞)
1

r∞z∞
, (2.8)

where superscript (∞) denotes evaluation at Z = ∞. We shall focus on the situation of an

open-end membrane tube with fixed axial stretch z∞; this models the state of arteries. The

azimuthal stretch r∞ can then be used as the control parameter in our bifurcation analysis,

with the associated pressure calculated according to (2.8).

3 Weakly and fully nonlinear bulging solutions

The weakly nonlinear localized bulging solution has an amplitude of order ǫ, where ǫ is

a small enough positive dimensionless quantity. As in [10] we assume that the variable

thickness H has the form

H = H(∞)
(

1 + ǫ2a(ξ)
)

, ξ = ǫZ, a(±∞) → 0,

where H(∞) is the constant wall thickness at infinity and the function a(ξ) is to be prescribed.

It was shown in [10] that if r − r∞ = ǫy(ξ) for weakly nonlinear solutions, y must satisfy

the differential equation

d2y

dξ2
= ω′

crr1y +
3

2
γcry

2 + ζa(ξ), (3.1)

where r1 is defined by r∞ = rcr + ǫr1, with rcr being the critical value of r∞ at which a

bulge will initiate without any imperfections, ω′

cr = dω(rcr)/drcr, γcr = γ(rcr), and explicit
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expressions for ω(r∞), γ(r∞) and ζ in terms of the strain-energy function can be found in

[7], [5] and [10], respectively. In [10] several classes of a(ξ) are considered for which (3.1) has

closed-form solutions. In particular, if a(ξ) takes the form

a(ξ) =
3

2
d1y

2, (3.2)

where d1 is a constant, then (3.1) has an explicit localized solution given by

y = − ω′

crr1

γcr + ζd1
sech2(

1

2

√

ω′
crr1ξ). (3.3)

Denoting a(0) by a0, we have

a0 =
3

2
d1y

2(0) =
3d1(ω

′

crr1)
2

2(γcr + ζd1)2
,

which can be solved to express d1, and hence a(ξ) and y(ξ), in terms of a0. We then obtain

r0 − r∞ = ǫy(0) = −ω′

cr · (r∞ − rcr)

2γcr

[

1 ±
√

1 − 8γcra0ζǫ2

3ω′2
cr(r∞ − rcr)2

]

. (3.4)

Plotted on the (r∞, r0−r∞)-plane, the above expression describes a parabola opening to the

left when γcra0ζ > 0. The turning point (i.e. the nose of the parabola), beyond which no

localized solutions can exist, corresponds to

r∞ = rcr + 2

√

2

3
· ǫ
√

γcrζa0

ω′
cr

. (3.5)

For the Ogden material model and in the open end case with z∞ = 1, we have

ζ = 2.0328, rcr = 1.6873, ω′

cr = −3.2329, γcr = −1.3369.

Thus, the expression (3.5) is real only for the wall-thinning case (i.e. a0 < 0), and its

right hand side is less than rcr by an amount that is proportional to the square root of the

imperfection amplitude H∞ − H(0). This reflects the square root law for the imperfection

sensitivity of this type of elastic localizations [10].

Although the particular choice of the wall thinning profile (3.2) leads to an exact solution

that enables us to see explicitly how the bifurcation diagram unfolds from the perfect case,

this profile is actually dependent on r1 and hence on the value of r∞. In our subsequent

calculations, we shall consider the r∞-independent profile

H(Z) = H(∞)(1 − 0.05 sech4Z). (3.6)

The associated bifurcation diagram is obtained as follows. First, the equilibrium equations

can be obtained from (2.7) and may be written in the form (see, e.g., [10])

λ′

1 = λ2 sin φ,

λ′

2 =
W1 − λ2W12

W22
sin φ − H ′W2

W22
, (3.7)

φ′ =
W1

W2
− Pλ1λ2

HW2
,
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where φ is the angle between the meridian and the Z-axis so that r′ = λ2 sin φ, z′ = λ2 cos φ.

We also note that (2.7)2 in the static case can be integrated once to give

HW2z
′

λ2

− 1

2
Pr2 = C1, (3.8)

where the integration constant C1 can be determined by evaluating the left hand side at

∞. The (symmetric) localized bulging solutions can then be determined by integrating the

system (3.7) from Z = 0 towards ∞ subject to the initial conditions

λ1(0) = r0, λ2(0) = z′0, φ(0) = 0,

where r0 is to be guessed in our shooting procedure, and the constant z′0 is related to r0 by

f(r0, z
′

0) ≡ H(0)W2(r0, z
′

0) − H(∞)W (∞) − 1

2
P (r2

0 − r2
∞

) = 0, (3.9)

obtained from the integral (3.8). The solvability of (3.9) for z′0 is guaranteed by the fact that

∂f/∂z′0 = H(0)W22(r0, z
′

0) > 0, whose satisfaction is verified numerically (this can also be

made as a constitutive assumption, see, e.g., [12]). Thus, for each specified r∞ and a guess

for r0, we solve (3.9) numerically to find the corresponding z′0. We iterate on r0 so that the

decay condition [10]

r′(L) +
√

ω(r∞)(r(L) − r∞) = 0 (3.10)

is satisfied for a sufficiently large positive number L. In Figure 1, we have shown the

dependence of r(0) − r∞ on r∞ corresponding to the wall thickness profile (3.6). It is seen

that it has a similar form to the one described by the analytical expression (3.5). We also

observe that the upper branch very quickly approaches its counterpart in the absence of

imperfections. This means that large amplitude bulged solutions do not feel the presence of

the initial wall-thinning, the main effect of the latter being to reduce the bifurcation value

of r∞.

4 Stability analysis

Denoting the static bulging (aneurysm) solutions obtained in the previous section by r̄(Z)

and z̄(Z), we now consider its linear stability subject to axisymmetric perturbations. Defin-

ing q̄1(Z) =
√

Hr̄, q̄2(Z) =
√

Hz̄(Z), we write

q1(Z, t) = q1(Z) + Ψ(Z) eηt, q2(Z, t) = q2(Z) + Φ(Z) eηt (4.1)

where the mode functions Ψ(Z), Φ(Z) and the growth rate η are to be determined. On

substituting expressions (4.1) into (2.6), or equivalently (2.7), and linearizing, we find

LB = ρη2B, with B = {Ψ, Φ}T , (4.2)
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Figure 1: Dependence of r(0) − r∞ on r∞ when the wall thickness is given by (3.6) (dark dots).

The corresponding result when the wall thickness is uniform is given by the dashed line. The main

effect of localized wall thinning is to reduce the bifurcation value of r∞ from 1.687 to 1.576 (a 6.6%

reduction); it has a negligible effect on large amplitude bulged solutions.

where the differential operator L is not written out for brevity.

As the aneurysm solution is a stationary solution, we have

DE(ū) ≡ δ

δu
E(ū) = 0,

where ū = {q1, q2, 0, 0}T . The Hessian of E evaluated at the aneurysm solution is

H = D2E(ū) =

(

−L 0

0 ρI

)

, (4.3)

where I is the 2 × 2 identity matrix and L is the same operator as in (4.2). It is shown

in [11] that the operator H constructed in this way is self-adjoint. It then follows that L
must necessarily be a self-adjoint operator and so it can have only real spectrum. Thus, the

eigenvalues (discrete spectrum) ρη2 in (4.2) can only lie on the real axis, that is, η can only

be real or pure imaginary.

It is seen that Eq. (4.2) is a system of two coupled linear non-autonomous second order

differential equations, and the dependence on η is entirely through η2. We denote α = ρη2.

Eq. (4.2) can then be written in the form

y′ = My, (4.4)

where y = (Ψ, Ψ′, Φ, Φ′)T and M is a 4 × 4 matrix whose components are not written out

for brevity. Eq. (4.4) subject to the decay conditions y → 0 as Z → ±∞ is an eigenvalue

problem for α. The aneurysm solution is said to be unstable if this eigenvalue problem has

a positive eigenvalue.

We denote by M∞ the limit of M as Z → ±∞. Eq. (4.4) then asymptotes to a

constant coefficient problem with exponential solutions exp(kZ), for values of k related
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to the parameter α by the equation

det (M∞ − kI) = 0,

where I is the 4 × 4 identity matrix. On evaluating the determinant, we obtain

α0γ1k̂
4 + [(α1 − β0)

2 − (β1 − β0)γ1 − ĉ2(α0 + γ1)]k̂
2 + (ĉ2 + β1 − β0)ĉ

2 = 0, (4.5)

where

ĉ2 = αr2
∞

= ρη2r2
∞

, k̂ =
r∞
z∞

k,

and the material constants α0, α1, β0, β1, γ1 are defined in [5].

It can easily be seen that the four eigenvalues of M∞ take the form ±k1, ±k2. It can be

proved by an argument similar to that in [13] that k̂ can be pure imaginary if and only if ĉ is

pure imaginary (or equivalently, if ĉ2 is real and negative). Therefore, for our construction of

unstable eigenfunctions (positive ĉ2) the roots k̂1 and k̂2 cannot cross the imaginary axis of

the complex plane, and the four eigenvalues are symmetric with respect to both the real and

imaginary axes. Without loss of generality, we assume that it is the k1 and k2 that have a

negative real part. The system of equations (4.4) then has two independent solutions, y1 and

y2 say, that decay as Z → ∞ like ek1Z and ek2Z , respectively, and another two independent

solutions, y−

1 and y−

2 say, that decay as Z → −∞ like e−k1Z and e−k2Z , respectively.

We also observe in passing that each pair of pure imaginary k̂ and ĉ corresponds to one of

the four possible traveling waves that may propagate in the pressurized tube. It can be seen

from (4.5) that two branches of the dispersion curve has the behaviour |ĉ| → 0 as k̂ → 0. It

thus follows that the continuous spectrum of L is given by (−∞, 0).

The eigenvalue problem (4.4) can be solved in a number of ways. The most straight-

forward approach is the so-called determinant method, which determines α by solving the

equation

det (y1, y2, y
−

1 , y−

2 ) = 0, (4.6)

where the left hand side can be evaluated at any appropriate matching point on the real

line. The method suffers from the “stiffness” problem in the sense that one column can get

dominated by another column due to different exponential behaviour. A better method is

the compound matrix method. One version of this method is used in [14]. In this paper we

employ another version of this method which is usually called the Evans function method in

the nonlinear waves community.

To solve the eigenvalue problem (4.4) using the Evans function method, we first define

the following adjoint of (4.4):

x′ = −MT x, (4.7)

For each y(α, Z) and x(α, Z) that satisfy (4.4), (4.7), respectively, it can easily be verified

that

∂

∂Z

(

x(α, Z) · y(α, Z)
)

= 0, (4.8)
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where “ · ” denotes the usual scalar product between two vectors. Thus, if both x and y in

(4.8) are bounded and at least one of them decays to zero as Z → ∞ or −∞, then their dot

product is identically zero. This property will be used shortly in the analysis below.

Denote by a1, a2 the right eigenvectors of M∞ associated with the eigenvalues k1 and

k2, and by b1, b2 the left eigenvectors of M∞ associated with the eigenvalues −k1 and −k2.

From the general theory of ordinary differential equations it follows (see [3]) that there exist

the solutions y1(α, Z), y2(α, Z), x1(α, Z), and x2(α, Z) of (4.4) and (4.7), such that

lim
Z→∞

e−kiZyi(α, Z) = ak(λ), lim
Z→−∞

ekiZxi(α, Z) = bk(λ), i = 1, 2. (4.9)

A general solution that decays exponentially as Z → ∞ is given by

y = c1y1(α, Z) + c2y2(α, Z) = (y1, y2)

(

c1

c2

)

, (4.10)

where c1 and c2 are constants. It follows from (4.8) and the decay behaviour of y that

0 =

(

x1 · y
x2 · y

)

=

(

xT
1

xT
2

)

(y1, y2)

(

c1

c2

)

, (4.11)

and so for a non-trivial solution we must have

det

(

xT
1

xT
2

)

(y1, y2) = 0. (4.12)

This condition is equivalent to (4.6), and its direct numerical computation would suffer from

the same stiffness problem. In the following, this determinant is evaluated with the aid of

the associated exterior systems (or in terms of the compound matrices).

4.1 Exterior systems

Consider the vectors y∧(α, Z) and x∧(α, Z) with components defined by

y∧

β∧γ = y1βy2γ − y1γy2β, x∧

β∧γ = x1βx2γ − x1γx2β , β < γ, (4.13)

where β, γ = 1, 2, 3, 4, and ykβ and xkβ are the β-th components of the vectors yk and xk,

respectively. We use the following correspondence between α ∧ β and the numbers 1 to 6:

1 ∧ 2 → 1, 1 ∧ 3 → 2, 1 ∧ 4 → 3, 2 ∧ 3 → 4, 2 ∧ 4 → 5, 3 ∧ 4 → 6.

We observe that the two vectors y∧ and x∧ defined above are simply the (2nd) compound

matrices of (y1, y2) and (x1, x2), respectively.

The vectors y∧(α, Z) and x∧(α, Z) satisfy the linear systems

d

dZ
y∧ = M∧(α, Z)y∧,

d

dZ
x∧ = − [M∧(α, Z)]

T
x∧. (4.14)
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We define the asymptotic matrix

M∧

∞
(α) = lim

Z→±∞

M∧(α, Z).

It is well-known that the six eigenvalues of M∧

∞
(α) are given by

kα(α) + kβ(α), 1 ≤ α < β ≤ 4.

4.2 Evans function

For η in the right complex half-plane, the matrix M∞(α) has two eigenvalues k1(α) and

k2(α) in the left half-plane. Thus the matrix M∧

∞
(α) has simple (hence analytic) left-most

eigenvalue k∧(α) = k1(α) + k2(α) for η in the right half-plane. By exact analogy with (4.9),

there are solutions of (4.14) such that

lim
Z→∞

e−k∧(α)Zy∧(α, Z) = a∧(α), lim
Z→−∞

ek∧(α)Zx∧(α, Z) = b∧(α),

where a∧(α) is the right eigenvectors of M∧

∞
(α) associated with the eigenvalue k∧(α), and

b∧(α) is the left eigenvectors of M∧

∞
(α) associated with the eigenvalue −k∧(α).

We define the Evans function by

D(α) = x∧ · y∧. (4.15)

It is a standard result that x∧ ·y∧ defined above is equal to the determinant on the left hand

side of (4.12). Thus, the above construction is simply an alternative way to evaluate (4.12)

that avoids any stiffness behaviour. Since the eigenvalue k∧(η) is simple, the argument of

Alexander and Sachs [1] can be used to show that the Evans function defined by (4.15) is

analytic in the entire complex right half-plane of η and it is real for real η.

For Re η > 0 the function D(α) is zero if and only if there is a solution of (4.4) (i.e. an

unstable eigenfunction) which decays exponentially as Z → ±∞ (see, for example, [1]).

4.3 Numerical results

For the different bulging solutions represented by the bifurcation diagram in Figure 1, no

unstable eigenvalues are found for any solution corresponding to the lower branch. For each

solution corresponding to the upper branch, we found a single unstable eigenvalue. The

dependence of α on r∞ is displayed in Figure 2. It is seen that the growth rate of the single

unstable mode tends to zero in two limits. The right one corresponds to the turning point in

Figure 1, whereas the left limit corresponds to the case when the bulging solution becomes

a “hat” solution. The hat solution has the property that at its centre r′′(0) is zero as well

as r′(0), and therefore, it can be viewed as two kink solutions joined together. The growth

rate of the unstable mode tending to zero in the latter limit is consistent with the fact that

the kink solution is usually observed to be stable in experiments.
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Figure 2: Dependence of the single eigenvalue of α = ρη
2 on r∞. The solid line is the quadratic

spline interpolation of the finite set of numerical results represented by the dots.

5 Conclusion

Although we have so far focussed on a spectral stability analysis, we now show that there is

in fact a connection between spectral (linear) stability and nonlinear (Lyapunov) stability.

Suppose that we superimpose a small-amplitude localized perturbation v(Z, t) on the

static aneurysm solution ū(Z). We then have

E(ū + v) − E(ū) =
1

2
〈Hv, v〉 + o(||v||2), (5.1)

where the operator H is defined by (4.3) and ||v|| denotes the L2-norm of v on (−∞,∞).

Thus, if H has only positive eigenvalues and if its continuous spectrum is bounded away

from zero, then there exists a positive constant c such that 〈Hv, v〉 ≥ c||v||2 (see, e.g., [11]).

It then follows immediately that there exists another positive constant c1 such that

E(ū + v(Z, 0)) − E(ū) = E(ū + v(Z, t)) − E(ū) ≥ c1||v||2, (5.2)

where use has been made of the fact that the Hamiltonian is a conserved quantity. This

estimate together with the continuity of E would give us nonlinear (Lyapunov) stability

since E(ū + v(Z, 0))−E(ū), and hence ||v||, can be made arbitrarily small by choosing the

initial perturbation v(Z, 0) to be sufficiently small.

The eigenvalues of H are computed according to Hχ = −αχ, where −α is the spectral

parameter. By comparing the top half of this matrix equation with (4.2), we obtain α = ρη2.

Thus, the α defined here has the same meaning as the one defined above (4.4). Suppose that

the spectral problem discussed in the previous sections does not have a positive eigenvalue α.

Then the operator H does not have any negative eigenvalues. However, since the continuous

spectrum of H is minus that of L, it is given by (0,∞) and so is not separated from zero.

Thus, we cannot deduce nonlinear (Lyapunov) stability. Nonetheless, in practice the tube

cannot be infinitely long. For a finite tube, the positive continuous spectrum transforms
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into positive discrete eigenvalues, and the latter are the only eigenvalues of H since zero is

not an eigenvalue due to the fact that the problem has no translational invariance in the

presence of imperfections. Therefore, linear spectral stability of the bulge in question would

practically imply nonlinear (Lyapunov) stability.

To conclude, we have shown in this paper that configurations corresponding to the upper

branch of the bifurcation curve (see Fig. 1) is linearly unstable, but those corresponding to the

lowest branch are stable. We note that towards the turning point on the bifurcation diagram,

stable configurations on the lower branch may have a significant amplitude (compared with

the case when no bifurcation is possible and bulging evolution is entirely due to initial

imperfections). In the context of blood flow in an artery, such a large amplitude bulge would

modify the flow properties, which in turn would provide a possible mechanism triggering

arterial wall growth and remodeling. Based on our recent study on the effects of a mean flow

[6], we envisage that a mean flow may stabilize configurations corresponding to the upper

branch. If this were proved to be the case, stable bulged configurations with even larger

amplitude would become possible and their effects on the blood flow would be even more

pronounced. However, we appreciate that there is still a lot of uncertainty in the constitutive

modeling of arterial walls in vivo and whether bifurcation is possible depends very much on

the material models used [8]. Our results should at least be indicative of what might happen

if bifurcation is possible when more realistic material models are used.
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