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Abstract

We describe the content and outcomes of the First Workshop on Open-Ended Evo-

lution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015

conference at the University of York, U.K., in July 2015. We briefly summarize the

content of the workshop’s talks, and identify the main themes that emerged from

the open discussions. Two important conclusions from the discussions are: (1) the

idea of pluralism about OEE—it seems clear that there is more than one interest-

ing and important kind of OEE; and (2) the importance of distinguishing observable

behavioral hallmarks of systems undergoing OEE from hypothesized underlying mech-

anisms that explain why a system exhibits those hallmarks. We summarize the differ-

ent hallmarks and mechanisms discussed during the workshop, and list the specific

systems that were highlighted with respect to specific hallmarks and mechanisms. We

conclude by identifying some of the most important open research questions about

OEE that are apparent in light of the discussions. The York workshop provides a

foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference

in Cancún, Mexico, in July 2016. Additional materials from the York workshop, in-

cluding talk abstracts, presentation slides and videos of each talk, are available at

http://alife.org/ws/oee1.

Keywords: open-ended evolution, on-going evolution, perpetual novelty, adap-

tive evolution, dynamical hierarchies, major transitions
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1 Introduction

From the first experiments with digital evolution in the 1950s to the increasingly sophis-

ticated simulations of the present day, the concept of open-ended evolution (OEE) has

been a central concern for Artificial Life (ALife) researchers [51]. Loosely defined, an

open-ended evolutionary system is one that is capable of producing a continual stream

of novel organisms1 rather than settling on some quasi-stable state beyond which nothing

fundamentally new occurs. Some definitions of OEE further require that the maximum

complexity of organisms in the system increases over time, or that ecosystem complexity

increases. Understanding open-ended evolution remains a holy grail in ALife—and yet

there remains little agreement within the community on precise definitions and mea-

sures.

There has been progress on a variety of fronts concerning OEE in the past decade. To

take stock of and document recent work, and to identify key milestones for the immedi-

ate future, a workshop on “Open-Ended Evolution: Recent Progress and Future Milestones

(OEE1)” was held at the European Conference on Artificial Life (ECAL 2015) at the Uni-

versity of York, U.K., in July 2015.2 The workshop aimed to create a common framework

for discussing and evaluating research on open-ended evolution, and to catalyze further

progress. In particular, a follow-up workshop (OEE2) will take place at the ALIFE XV

conference in Cancún, Mexico in July 2016.3 The Cancún workshop will be followed by

a special issue on open-ended evolution in the Artificial Life journal, including a compre-

hensive review paper on work on OEE.

The York workshop had two sessions. The first session consisted of 14 short presen-

1We use to term organism here to include both biological organisms and individuals in artificial evolu-

tionary systems in software, hardware or wetware.
2http://alife.org/ws/oee1
3http://alife.org/ws/oee2
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tations that addressed (one or more of) five tasks:4

1. Define key concepts concerning open-ended evolution.

2. Produce actual models that do (or do not) generate interesting kinds of open-ended

evolution.

3. Find and use operational empirical—and ideally quantitative—measures of key

kinds of open-ended evolution.

4. Demonstrate examples of (kinds of) open-ended evolution in models or natural

systems.

5. Identify critical future research milestones on open-ended evolution.

The second session was an open discussion among the speakers and other attendees

about open-ended evolution, focusing on the key hallmarks of various kinds of OEE and

the hypothetical mechanisms that could produce those hallmarks. Section 2 below briefly

summarizes the short presentations, and Section 3 highlights some central themes that

emerged from the open discussion.

2 Summary of short presentations

In “Karl Popper, artificial life, and the curious tale of the hopeful behavioral monster” Barry

McMullin highlighted Karl Popper’s philosophy of evolutionary epistemology and its rel-

evance to ALife and OEE. Focusing particularly on Popper’s work “Evolution and the Tree

of Knowledge” (a chapter of his book “Objective Knowledge: An Evolutionary Approach”

[37]) based upon a lecture delivered in 1961, McMullin outlined Popper’s thought ex-

periment on how mutations in an agent’s “central propensity structure” (a hierarchical

4Videos and presentation slides from this session can be accessed from the workshop website.
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control system defining its set of skills and behaviors) could guide the future evolution

of the agent, leading to apparently “goal-directed” evolution. This perspective suggests

that the existence of hierarchical control organization, and the continuing feasibility of

inheritable change at the highest control levels (including emergence of higher, newly

dominating, levels) may be critical to the substantive openness of evolution of complex

function.

The presentation by Wolfgang Banzhaf on “Open-endedness and novelty in evolution”

started with the observation that the notion of novelty in a system must be defined with

respect to a particular model. Banzhaf identified three different types of novelty: (1)

novelty within a model (variation), (2) novelty that changes the model (innovation),

and (3) novelty that changes the meta-model5 (emergence). He then addressed the ques-

tion of whether OEE requires unbounded novelty or unbounded complexity. Observing

that the universe is limited and hence cannot afford an unbounded increase in levels of

complexity, and also that all combinatorial possibilities at any one level are bounded, he

argued that novelty can still be practically unbounded if the number of levels of complex-

ity in the system is allowed to grow (as novelties grow exponentially with complexity).

Hence, Banzhaf’s position is that OEE does not require unbounded complexity but that

unbounded novelty is sufficient. He concluded with some comments on the competing

roles of exponential growth and competition due to resource constraints in natural selec-

tion, and the analogical situation in hierarchical systems whereby climbing the levels of

complexity introduces exponentially more possibilities, but exploration of these possibil-

ities is restricted by resource constraints on the number of individuals that can populate

higher levels. Banzhaf’s talk was based upon a forthcoming paper [3].

After highlighting some of the many different concepts associated with the term OEE

in the literature, in “Requirements for open-ended evolution in natural and artificial sys-

tems” Tim Taylor proposed a high-level classification of these issues in the form of five

5A meta-model is a description of the kinds of things that might be present in a model.
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basic requirements for a system to exhibit OEE: (1) robustly-reproductive individuals,

(2) individuals capable of producing more complex offspring, (3) mutational pathways

to other viable individuals, (4) a medium allowing the possible existence of a practically

unlimited diversity of individuals and interactions, and (5) drive for continued evolu-

tion. For each requirement, Taylor explained why it was important, what theoretical

issues it encompassed, and what practical issues were involved in implementing a sys-

tem to meet the requirement. The talk was based upon a paper [50] presented at the

EvoEvo Workshop6 at the same ECAL 2015 conference.

Guillaume Beslon started his talk “Is biological evolution open-ended?” by observing

that the vast majority of literature on OEE comes from the ALife community and not from

evolutionary biology. Historically, the mathematical models of evolutionary biologists

have focused on stable states. Moreover, selection is thought to commonly act as a

stabilizing force on genetic diversity. However, although the concept of OEE is largely

lacking in the biological literature, the concept of novelty pervades it in many forms.

Of all kinds of biological novelty, Beslon identified co-evolution and major transitions as

the two being most closely related to the concept of OEE. He proposed that the most

important idea of open-endedness was the emergence of novelty leading to new levels

of individuality (i.e. major transitions). However, he conjectured that biology cannot be

open-ended with regard to major transitions, arguing that as higher levels of organization

are inevitably populated by smaller population sizes, this leads to decreasing probability

of fixation of beneficial mutations. A saving grace for computational systems, according

to Beslon, was that this limitation could be overcome by tricks such as suitable fitness

landscapes (although whether they were open-ended would still be an open question).

A version of Beslon’s argument can also be found in the forthcoming paper mentioned

by Banzhaf [3].

In “Normalised evolutionary activity statistics and the need for phenotypic evidence”,

6http://evoevo.liris.cnrs.fr/evoevo-workshop/
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Alastair Channon noted that there was widespread agreement that OEE involves the

continued evolution of new adaptive traits. As this can be achieved trivially,7 he argued

that OEE must also involve a sustained increase in some measure of accumulated adaptive

success. However, he questioned the inclusion of increasing complexity as a hallmark of

OEE, as this would preclude the possibility of addressing important questions such as

whether or not OEE can be the cause of increasing maximal complexity (whether indi-

vidual, group or system complexity) or what conditions might be necessary or sufficient

for this. Channon then described his Geb system [15], based upon Harvey’s SAGA princi-

ples [19] with the addition of co-evolutionary feedback arising via biotic selection rather

than being specified by abiotic fitness functions, followed by a description of Bedau et al.’s

work on evolutionary activity statistics [4, 14]. Two useful features of these measures,

he suggested, were that they are widely applicable, and that the key metric (cumula-

tive evolutionary activity, based on adaptive persistence) is “a measure of the continual

adaptive success of the components in the system” [7], i.e. a measure of accumulated

adaptive success. When applied to Geb, these measures classify the system as producing

unbounded evolutionary dynamics (OEE). Despite that, it becomes increasingly difficult

(over evolutionary time) to visually observe the behaviors that evolve. Channon iden-

tified three critical future milestones for the field: (1) more systems classified as OEE

according to the evolutionary activity statistics, in order to refine definitions and tests

for the hallmarks of OEE; (2) evidence of complex artifacts or behaviors arising from

evolutionary changes (rather than from a very small number of mutations from a hard-

coded ancestor); and (3) evidence of long evolutionary sequences of evolved artifacts or

behaviors (a result that has not been conclusively observed in work to date).

In “Indefinite Scalability for Open-Ended Evolution” David Ackley agreed with Beslon

that major transitions are the most important aspect of OEE, and that if we accept that,

7For example, evolving variable length bit strings in a selective environment that favors longer strings

would result in the continued evolution of new adaptive traits.
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then a finite system cannot be open-ended: successive major transitions produce larger

and slower individuals until ultimately producing a population size of one that lives

forever. He argued that conventional component-based evolutionary activity measures

of OEE are problematic because they require us to identify the components of inter-

est beforehand—if we treat components as priors rather than observables, we will be

unable to detect major transitions. To avoid this problem and treat evolutionary compo-

nents as observables, models should be defined at the level of physics and chemistry, not

at the level of biological components. But this raises the question, what kind of physics

and chemistry is appropriate? Ackley’s answer is that satisfying models should, in princi-

ple, be indefinitely scalable. This rules out the whole class of deterministic, synchronous

models (such as Game of Life-type systems), and suggests that OEE models should em-

brace non-determinism. This approach could create a unifying research strand between

different ALife projects that implemented different kinds of indefinitely scalable system.

Ackley concluded his talk by proposing a research challenge of developing a statistical

OEE measure based upon identifying potential evolutionary components at a given scale

by near-perfect spatial auto-correlation of elements, study of the phase space defined by

the “life lines” of such components over time, and application of the same technique at

different scales in the system. Ackley presented further details of his concept of indefi-

nitely scalable architectures in a paper at the main ECAL 2015 conference [1].

In “Emergence of emergence” Norman Packard discussed current work with Nicholas

Guttenberg and others on the evolution of coding in the transition from prebiotic systems

to biotic evolutionary systems. The central question being tackled is: what dynamical

processes lead generically to sequestration of information into units that have long-term

stability, control fast time-scale dynamics, and can serve as evolvable elements? The

goal is to understand this transition well enough to be able to engineer systems that will

naturally implement information sequestration, evolvability and robustness. Packard ob-

served that evolutionary dynamics is very different from attractor dynamics: it behaves
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somewhat like an attractor on the short term, but on a longer term, instabilities lead to

the generation of innovation. Their work augments the language of dynamical systems

theory with concepts capable of describing such phenomena. In particular, the concept of

dynamical canals is used in place of attractors. A mechanism that seems to produce this

kind of system generically is one involving an alternation between unstable (or neutrally

stable) dynamics, and contracting, fixed-point dynamics. Alternation forces the system

to produce information bottlenecks, which seem to imply the emergence of information-

ally stable components that become proto-code. In addition to Packard’s own work on

this origin-of-life transition, colleagues are working on applying these ideas to other

transitions, including multicellularity, ecological niche formation, and the evolution of

cognitive mechanisms.

The central claim of Nathaniel Virgo in “Open-ended fitness landscapes” was that

open-endedness is a property of fitness landscapes, and not of the process of evolution

itself. He characterized OEE in terms of increasing phenotypic complexity, and argued

that ecological factors (e.g. changing environments, co-evolution and niche construction)

might not be necessary for OEE, or at least that this is a hypothesis worth taking seriously.

To evaluate this claim, he suggested we should focus on understanding how to create

more “life-like” fitness landscapes of high-dimensionality, containing many qualitatively

different “solutions”, where fitter solutions also generally tend to be more complex, and

where those solutions can be reached through a sequence of small changes. By com-

parison to the biological/physical case, Virgo argued that this kind of fitness landscape

required the existence of many degrees of freedom (DoFs), which he characterized as the

“capacity [of a system] to be changed in some non-trivial way.” Complex systems with

many DoFs, he suggested, enable the existence of many qualitatively different solutions

and the capacity to move between those solutions. Virgo then hypothesized that many

non-trivial landscapes have small regions of evolvability, and that evolutionary systems

might evolve towards such regions through a process of the evolution of evolvability. His
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tentative conclusion was that the requirements for OEE in computational systems might

just involve larger search spaces, more non-trivial fitness functions, larger populations,

weaker selection pressure, and more computer time.

In “Empirical measurements of door-opening evolution of technology” Mark Bedau de-

scribed recent work with colleagues on studying open-ended evolution within the context

of cultural rather than biological evolution. Specifically, the work investigates the evo-

lution of human technology. Technological evolution differs from biological evolution in

many ways, including the presence of hyper-parental reproduction, intentionally directed

progress, and indirect (human-mediated) reproduction. Furthermore, one can identify

populations of technology adopters, technology designers, technological innovations, and

technological products as four distinct, but inter-related components. Technological evo-

lution is therefore different from biological evolution in non-trivial ways, but, Bedau

argued, we should not restrict ourselves to studying OEE just in biological systems. He

identified the concept of reach—intuitively, the idea of an invention that has descendants

that are very different to itself—as an important aspect of technological OEE. In recent

preliminary work, the evolution of technological innovations was studied by using text-

mining techniques on historical patent records to extract relevant traits in each record.

Dimensionality reduction and clustering techniques were used to study the reach of dif-

ferent traits in particular genealogies of technologies. These new results build on earlier

work on operationalizing the study of technological evolution [43, 11, 13], and they

open the door to the empirical study of many questions about open-ended evolution in

nature.

In “The OEE measure – will it blend?” Simon Hickinbotham questioned whether ex-

isting evolutionary activity methods reduced the complexity of a system too much to pro-

duce a simple measure, and whether they really highlight the relevant features relating

to a system’s open-endedness. He argued that (improved) evolutionary activity measures

were useful for making sense of the huge amounts of data produced by computational
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evolutionary systems, and, more importantly, they allow us to rigorously compare dif-

ferent systems and thereby demonstrate when improvements in ALife systems have been

achieved. Hickinbotham then introduced his new Quantitative Non-Neutral (QNN) evo-

lutionary activity measure. He highlighted some of its attractive features as being (1) it

produces a single numerical value, (2) it is based solely on population data (like other

evolutionary measures), and (3) it can be applied to systems with intrinsic or extrinsic

fitness. The application of the QNN measure to the Tierra and Stringmol systems was

described, with discussion of how it was used to guide improvements in the design of

each system: further details can be found in papers presented during the main confer-

ence [23, 22] and in a subsequently published article [20]. Hickinbotham concluded by

suggesting that we need more measures to address different aspects of OEE, and that

once we had developed an adequate suite of such measures, there was the potential to

create a meta-evolver for OEE.8

Steen Rasmussen in “Minimal life and open-ended evolution” conjectured that high-

dimensional systems with rich object complexity and/or diversity enable the emergence

of higher-order functionalities, and that these are necessary for OEE. However, simply

adding complexity and diversity is not a sufficient condition. He stresses the existence of

two different ways to increase complexity in a physical system: through the aggregation

of things from the environment or through the evolution of new encoded entities. His

view is based upon his work over many years with protocells—minimal self-reproducing

molecular machines comprising a metabolism, genes and a container in a given environ-

ment. Protocells utilize self-organization and self-assembly processes to maintain their

organization, and are driven by a metabolism feeding on free energy and resources from

the environment. A full chemical protocell system has not yet been achieved, although

simulation results show that the published protocell schemes apparently lack the ability

8That is, an evolutionary system in which the individuals were themselves evolutionary systems, with

selection based upon the individual systems’ capacities for OEE.
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to evolve in an open-ended manner, and—for Rasmussen’s protocell scheme—beyond

optimization of its metabolic rate. Both experimental and simulation results show that

a richer environment is necessary to expand the system’s evolutionary potential. Real

chemical systems demonstrate the emergence of higher order functionality at multiple

hierarchical levels, and Rasmussen described simulation results in which similar higher

order functionality had emerged [38]. This was achieved by adding to the complexity

of the lowest level elements in the system. A similar approach might therefore be viable

in the protocell systems. However, Rasmussen pointed out that just adding complexity

to the system in an unprincipled way was likely to lead to “black tar” rather than any

interesting higher-order behavior—the addition of complexity must be done with care.

This leads to an as-yet unanswered question: are there principles to guide us in adding

complexity at the right places in the system, or are we essentially left to experiment by

trial and error?

Emily Dolson started her presentation “Understanding complexity barriers in evolving

systems” with an informal definition of open-endedness as the ability of a system to “keep

doing interesting things”. Dolson discussed how we might more accurately define both

“keep doing” and “interesting things”. She suggested that there is fairly general agree-

ment that “keep doing” means unbounded rather than asymptotic behavior of a measure.

In terms of what measures to use, i.e. what constitutes “interesting things”, she argued

that it might be productive to flip the question around, and ask what kinds of barriers

might prevent a system from exhibiting open-endedness. Dolson proceeded to describe

four barriers that she and her colleagues had come up with: (1) change potential—how

much we expect the population composition to change during an interval; (2) novelty

potential—how many entirely new strategies we expect to arise during an interval; (3)

complexity potential—how much we expect the greatest individual complexity to increase

during an interval; and (4) ecosystem potential—how much we expect “meaningful” di-

versity to increase during an interval. Having broken down the concept of OEE into these
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separate aspects, each one suggests more clearly focused lines of research for advancing

our understanding of open-endedness. Dolson went on to discuss the relationships be-

tween these factors: to have novelty potential, a system requires change potential, and

to have complexity potential or ecosystem potential, a system requires novelty potential.

She acknowledged that other barriers might also exist, and, in particular, she and col-

leagues are currently considering including a barrier of major transition potential into

their picture.9

In “A new design principle for open-ended evolution” Takashi Ikegami discussed evolu-

tion in the context of web-based systems. Specifically, he reported work with colleagues

on studying the dynamics of a social network site10 where users can upload photos and

other users can attach tags to the photos to describe their content. By using a variety

of mathematical techniques to analyze the use and evolution of tags in the system over

a period of three years, Ikegami argued that the increasing vocabulary of tags observed

over time generated a self-maintaining system in which certain types of tags stimulate

users to create new combinations, and which prompted users to upload new photos to

be annotated by those tags. Furthermore, a phase transition-like event was observed in

the system’s activity, involving a sudden increase both in typical social network size and

in tagging activity of each user. Based upon these observations, Ikegami and colleagues

hypothesize that OEE in such systems can be driven by the users’ collective activities. The

work discussed in this talk is described in more detail in a late-breaking paper presented

at the main ECAL 2015 conference [33].

Tom Froese began his talk “Groundlessness avoids openness reduction in hierarchies of

emergence” with the observation that problems of OEE are of interest to Origin of Life re-

9Dolson and collaborators elaborated on these issues, including major transition poten-

tial, in a web article published after the workshop https://thewinnower.com/papers/

2309-what-s-holding-artificial-life-back-from-open-ended-evolution.
10http://roomclip.jp/
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searchers (even if not being addressed by biologists more broadly, as claimed by Beslon).

In particular, he highlighted recent work by Peter Strazewski on evolution in chemical

systems: Strazewski argues that OEE is more likely if we move away from well-defined

systems to messy systems with many possible variants (in chemical composition, prop-

erty, reactivity, shape, size, etc.) [46]. Froese attempted to formalize this intuition by

characterizing OEE in terms of a system’s emergence of new degrees of freedom (DoFs).

He argued that if emergence is defined as collective dynamics resulting from nonlinear

coupling between two or more components, then the DoFs of the emergent phenomena

cannot, in principle, be greater than the sum of the DoFs of its components. Froese ar-

gued that this suggests that as we climb to higher hierarchical levels of complexity in

a system, we inevitably witness a decrease in the DoFs of the system at those levels.

This might not be a problem in systems that have sufficient complexity (many DoFs) at

the bottom level. However, an alternative approach to avoiding this limitation would

be to assume there is no bottom level—that the system is groundless (a line of thought

inspired by Michel Bitbol [8]). Froese suggested that an explanation of OEE in the real

world might therefore require us to conceptualize reality as a groundless system.

3 Themes from the open discussions

Substantial time in the workshop was left for open discussion, and a couple of important

conclusions emerged. One was pluralism about OEE. It seems clear that there is more

than one interesting and important kind of OEE. This means that those discussing OEE

should whenever possible be explicit and precise about the kind of OEE of interest. Every

kind of OEE should be identified and defined as precisely as possible, taking care not

to lose those kinds that have intuitive appeal but cannot be precisely defined. Each

successful definition should be operational and quantitative. But no definition is the one

and only right definition of OEE if there is more than one kind of OEE. Some people
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might be especially interested in one kind of OEE, and others in another kind. Later in

this section we attempt to identify the broad categories of kinds of OEE discussed at the

workshop.

“Open-ended evolution” refers to a distinctive kind of behavior exhibited by some

evolving systems, and different kinds of OEE correspond to somewhat different kinds

of behavior. The workshop discussion highlighted the importance of distinguishing ob-

servable behavioral hallmarks of systems undergoing OEE from hypothesized underlying

mechanisms that explain why a system exhibits those hallmarks. These “mechanisms”

might be merely causally necessary conditions for OEE, or necessary boundary condi-

tions. A sufficiently large population, or a sufficiently long duration, or a sufficiently

large evolutionary search space have all been proposed as necessary conditions for the

appearance of OEE. Perhaps no single mechanism is causally sufficient to produce OEE,

but presumably each kind of OEE is produced by something like a set of individually

necessary and jointly sufficient mechanisms. Identifying these key mechanisms for (each

kind of) OEE is the question driving much of the research on OEE.

Both hallmarks of OEE and mechanisms for OEE are important, but they are impor-

tant for different reasons. The hallmarks identify the important distinctive observable

signs of (different kinds of) OEE. A given kind of OEE might have more than one behav-

ioral hallmark, and different kinds will have somewhat different hallmarks, so the list of

hallmarks of OEE can be expected to be somewhat heterogeneous.

The York workshop constructed an initial list of behavioral hallmarks of OEE. The fo-

cus was to generate a comprehensive list, so possible dependencies among the hallmarks

were secondary. The set of behavioral hallmarks of systems undergoing OEE emphasized

in the workshop include these:

1. On-going adaptive novelty is one important kind of OEE. Novel adaptations come

in many kinds, including new properties of entities, new interactions among en-

tities, and new global patterns of behavior. In each case the focus is usually on
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the evolution of novel adaptations. Here are examples of some specific kinds of

adaptive novelties:

(a) On-going generation of new adaptations is a very simple kind of OEE, and

detecting it was the motivation for the original evolutionary activity statistics of

Bedau and Packard [5, 4]. New adaptations could arise through a combination of

different evolutionary and ecological mechanisms, such as competitive exclusion,

random drift among neutral variants, and kin selection. Adaptation comes in differ-

ent forms; for example, sometimes it is possible and important to distinguish new

instances of a familiar kind of adaptation from qualitatively new kinds of adap-

tations, and the on-going generation of qualitatively new kinds of adaptations is

more interesting and more challenging to understand.

The on-going generation of new adaptations might seem to involve populations

of agents with an unlimited number of different basic adaptive traits. However,

practical considerations often impose a finite ceiling on the number of different

basic adaptations distinguished in computer models or natural systems. Neverthe-

less, if evolution can produce finite combinations (sets) of adaptive traits, then the

number of potential new adaptive combinations increases dramatically.

(b) The on-going generation of new kinds of entities is one way to bring about

the on-going generation of new kinds of adaptations. The emergence of dynamical

hierarchies described by Rasmussen et al. [38] is one mechanism for generating

new kinds of entities with new kinds of properties. However, since the underly-

ing mechanism in dynamical hierarchies can be merely chemical and physical self-

assembly and self-organization, the properties of the entities at different levels in

the hierarchy might not be adaptations. But if a dynamical hierarchy incorporates

new material and information from the environment, and if the whole hierarchy

can reproduce similar daughter hierarchies, then adaptive evolution could arise
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and start to shape a population of new kinds of entities.

(c) A major transition in evolution involves the emergence of a dynamical hierarchy

and it does involve adaptive evolution, and on-going major transitions in evolu-

tion is another kind of OEE. The major transitions in evolution discussed by May-

nard Smith and Szathmáry [31] (and recently revisited by Szathmáry [47]) are an

especially interesting form of dynamical hierarchies, and they are special because

each new level in the hierarchy consists of a new population of reproducing and

evolving entities. A major transition in evolution is preceded by the evolution of one

or several distinct kinds of reproducing entity. Eventually certain groups of those

entities come to interact very tightly and they become members of a new popula-

tion of higher-level reproducing “wholes.” Entities in the old lower-level population

become “parts” of the new wholes, but they cannot reproduce independently. Now

the process repeats once more. Certain groups in the population of new wholes

come to interact very tightly and they become new even-higher-level wholes that

reproduce and form an even-higher-level population . . . and so on. Maynard Smith

and Szathmáry [31] conclude that the major transitions in evolution they survey

are quite contingent; they could easily not have happened and there may be no

more major transitions.11 So, the existence of some major transitions in evolution

is not necessarily any kind of OEE. But major transitions can spur many further

adaptations and help make evolution open-ended. And on-going major transitions

would be an especially impressive kind of OEE.12

(d) Since major transitions in evolution typically create new kinds of entities with

new kinds of adaptations, the transitions are one way in which the ability to evolve

11For alternative perspectives on major transitions, see also [12].
12Although, as discussed in several of the talks, each successive major transition produces organisms

requiring more resources and existing in smaller populations. Hence, there is an inevitable limit in any

finite system on the extent to which the occurrence of successive major transitions can be on-going.
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can itself evolve. But there are many other ways in which the ability to evolve

can itself evolve. Thus, the on-going evolution of evolvability is another kind

of OEE. One especially critical step in the evolution of evolvability is the very first

step: the emergence of the ability to evolve at all (the subject of Packard’s talk at

the workshop).

2. On-going growth of complexity of an evolving system is another kind of OEE, and

there are at least two different kinds of complexity to distinguish.

(a) One focus is the complexity of the entities in an evolving population, and one

kind of OEE is the on-going growth in complexity of entities in the evolving popula-

tion. The property of interest here is the complexity of the most complex entities,

rather than entities with mean or modal complexity [18]. Further kinds of OEE in-

volve on-going growth of other global properties of the evolving population, such

as diversity or disparity [17]. Note that growth of entity complexity is a side-effect

of major transitions in evolution, when the old evolving entities become parts of

the new evolving entities. But other mechanisms could also produce entities that

are more and more complex.

(b) Another way in which an evolving system can become more complex is for the

interactions among the entities in it to become more complex. On-going growth

of complexity of interactions among entities is another kind of OEE. Even if the

internal properties of the entities in a system remain the same, the interactions

among entities can become more and more complex, as when food webs among

species become more complex.

The emphasis on “on-going” novelty itself deserves a brief mention. “On-going” is bet-

ter than another common expression used in this context—“perpetual” novelty—because

OEE is not actually perpetual although it is on-going. The discussion in York focused

partly on David Ackley’s idea of indefinite scalability, after this concept was emphasized
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in his talk. Ackley [2] defines indefinite scalability “as supporting open-ended computa-

tional growth without requiring substantial re-engineering.” The key criteria for indefi-

nite scalability is that, should an upper bound be reached (e.g. in the number of novel

entities encountered over the course of evolution or in the diversity or complexity of

entities), increasing the values of physical limitations (e.g. available matter, population

size or memory) should enable an unbounded sequence of greater upper bounds to be

achieved (after sufficient increases in the limitations). However, it is not possible in finite

system time to establish that a metric is truly unbounded.13 And it is not possible—over

a finite number of increases in system parameter(s)—to establish that a metric is truly

indefinitely scalable. Further, an increase in parameter(s) may require a longer system

time before a greater scale (higher value metric) is achieved. Claims about systems can,

though, be expressed and evaluated in terms such as a metric increasing without bound

up to a certain system time (or number of generations, etc.); or a metric increasing

as system parameter(s) are increased up to certain value(s), where it was necessary to

increase these to establish increases in the metric’s maximum observed value over suc-

cessive runs. Furthermore, we can define boundedness of a metric within a system in a

rigorous way by fitting mathematical functions to the data and using statistics to ascer-

tain which function is the best fit (e.g. see [57]). If the best fit function is unbounded,

that is a good indication that the system is exhibiting unbounded behavior.

Clarifying the hallmarks of OEE is a crucial step in clearly identifying and distin-

guishing the different kinds of OEE. After the hallmarks are clear, another crucial step

13 Some workshop participants (e.g. McGregor) felt that a sensible null hypothesis might be to assume

that ALife systems were unbounded by default, i.e. they might just need more time and larger environ-

ments to display OEE (an additional complicating factor here is the role of contingency in determining the

outcome of any one specific run [52]). The research program then becomes a matter of identifying rea-

sons why this might not be the case—a view that resonates with Dolson’s talk. On the other hand, others

(including various other speakers discussed in Section 2) felt that these systems were missing important

enabling conditions for OEE.
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is identifying and testing possible mechanisms that would produce and explain each

of the kinds of OEE. Different mechanisms might be proposed to produce or explain a

given kind of OEE; the mechanisms could provide competing explanations or they could

provide cooperating mechanisms. Also, a single mechanism might be involved in the

explanation of more than one kind of OEE. So, the list of hypothetical mechanisms for a

given kind of OEE could be rather heterogeneous. In addition, OEE pluralism means that

different kinds of OEE could have different underlying mechanisms. Some mechanisms

might be necessary for one kind but not another kind of OEE; other mechanisms might

be necessary for every kind.

The discussion in York was weighted towards hallmarks of OEE, but some mecha-

nisms for OEE were also mentioned and discussed. For example, one might think that

the evolution of the genetic code is the mechanism behind OEE. Certain mechanisms

are very obvious, but often insufficient by themselves. For example, since OEE involves

adaptive evolution, natural selection helps explain it, and we already know a lot about

evolution by natural selection. The participants in the discussion were divided about

whether we already know enough to explain each kind of OEE, with some conjecturing

that a fundamentally new mechanism is required for some kinds of OEE, such as major

transitions in evolution.

Note that major transitions, the evolution of the genetic code, and the evolution of

evolvability in general, are both kinds of OEE and mechanisms for kinds of OEE. This

shows how one and the same thing can appear on the lists of both hallmarks of (one

kind of) OEE and mechanisms for (another kind of) OEE.

An important research goal is to document examples of each hallmark and require-

ment of OEE, both in computer models and in natural systems. Positive examples that

demonstrate a kind of OEE in a model or natural system are especially critical, but also

important are negative examples of model or natural systems that do not demonstrate

some kind of OEE.
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Open-ended evolution is an on-going process, so a single instance of the behavioral

hallmarks of OEE falls short of being genuinely open-ended. A single new adaptation is

not OEE, neither is the growth in complexity of one organism, nor one instance of the

evolution of evolvability, nor one major transition in evolution. Nevertheless, it can be

a significant scientific achievement to document even single instances of some especially

challenging hallmarks, such as major transitions in evolution.

The following list summarizes the specific systems described by the speakers and

participants in York (and some closely related systems) and the claims made of them

regarding OEE:14

• Earth’s biosphere has been classified, through fossil data sets at the level of tax-

onomic families, as exhibiting open-ended evolutionary dynamics according to Be-

dau and Packard’s evolutionary activity measures [6, 7]. Bedau et al. reasoned that

it was not necessary to include a shadow mechanism in this analysis as “the mere

fact that a family appears in the fossil record is good evidence that its persistence

reflects its adaptive significance” [7].

• The Long-Term Evolution Experiment (LTEE) (Lenski et al.). The LTEE [28] is

the most extensive laboratory study of ongoing biological evolution. Publications

from this highly tractable system exhibit dynamics in evolving populations of E.

coli that appear to be open-ended. Specifically, the LTEE has shown continuous

increases in fitness that are best described by an unbounded power law func-

tion [57, 29]. Individual populations have shown continuous generation of nov-

elty, such as: new portions of the fitness landscape continually being explored

[53], numerous selective sweeps [30], new diversity arising after sweeps [9], and

14While this report focuses on research discussed during the York workshop, a task for future work is to

compile a more comprehensive list of achievements in OEE to date. Such a list is planned to form part of

a comprehensive review paper on OEE to be produced after the OEE2 workshop.
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epistatic interactions among mutations where later benefits depend upon earlier

mutations [56]. Finally, multiple populations in the LTEE exhibit frequency depen-

dence [42, 24, 41, 30], including a special case [10, 9, 54] shown to be driven

by ecological specialization and crossfeeding [55]. Most prominently, the LTEE

gained substantial attention when a drastically new phenotype appeared giving

rise to what amounted to a new species [10, 9].

• Tierra (Ray). Tierra [39] is perhaps the most well known example of an early ALife

system in which digital organisms—self-replicating computer programs—were free

to evolve in an open-ended manner without the guidance of an explicit fitness

function. However, each particular run of the system would eventually reach a state

of stasis where only selectively neutral variations were seen to emerge [40, 49].

Bedau and colleagues analyzed the dynamics of a Tierra-like system named Evita

(but not Tierra itself), and found it to have qualitatively different evolutionary

dynamics from those displayed in biological evolution as evidenced by the fossil

record [6].15

• Avida (Ofria et al.). Avida [32] is currently the most widely-used digital evolution

system, and is used to study a wide range of evolutionary and ecological dynamics

in populations of self-replicating computer programs. Avida has enabled the evo-

lution of qualitatively novel behaviors such as complex features completely absent

in the ancestor organism (on-going generation of new adaptations) [27], novel

collaboration strategies among organisms (on-going growth of complexity of in-

teractions) [16], and novel ecological interactions through co-evolution promoting

even greater levels of complexity [58]. Dolson and collaborators are actively testing
15Specifically, they found that the Evita model was bounded in their component diversity measure,

whereas the fossil data was unbounded. In a separate analysis, Taylor also found that his Cosmos system—

an elaboration of the basic Tierra design—also showed evolutionary dynamics similar to those of Evita [48,

pp.122–127].
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their complexity barriers in this system, as well as analyzing evolutionary activity

statistics. Initial results of the boundedness of fitness growth in simple to com-

plex environments in Avida indicate that fitness continues to increase without an

asymptote in the default environment. Many ongoing projects use Avida to evolve

cooperation, ecosystems, sexual reproduction, parasitism/mutualism, pleiotropy,

intelligence, evolvability, and complexity.

• Geb (Channon). Geb was the first ALife system to be classified as exhibiting open-

ended evolutionary dynamics according to Bedau and Packard’s evolutionary ac-

tivity measures [7] and is the only one to have been classified as such according to

an enhanced version of these measures developed by Channon [14, 15].16 Novel

adaptations reported in Geb include behaviors such as following, fighting, fleeing,

mimicking, and novel artifacts such as matching I&O channels in agents’ neuro-

controllers. Preliminary (unpublished) results presented at the Artificial Life XI

conference in 2008 further indicated that component diversity (a simple measure

of system complexity) may be indefinitely scalable (although that term was not yet

in use); a more complete study of this is now planned.

• Pichler’s computational ecosystem [35, 36, 34] is the only other ALife system

to date to have been classified as exhibiting open-ended evolutionary dynamics

according to Bedau and Packard’s evolutionary activity measures. To the best of

our knowledge, it has not been subjected to the enhanced test.

• Stringmol (Hickinbotham et al.). Stringmol is an artificial chemistry system that

has been shown to exhibit the on-going appearance of new chemical species [21].

In some cases the system has been shown to evolve multi-species hypercycles that

16The enhanced version of the measures were found by Stout and Spector [45] to be of particular

importance to the test’s robustness against attempts to “break” the test by achieving unbounded dynamics

in “intuitively unlifelike” systems.
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persist for prolonged periods. Thus, Stringmol demonstrates the on-going gen-

eration of new adaptations. These adaptations affect a species’ binding affinity

to other species, as well as its reaction rules. Quantitative novelties are certainly

arising in the system (e.g. in binding affinities), although it is yet to be established

whether any qualitative novelties are arising at the level of the individual chemical

species. The appearance of hypercycles also demonstrates growth of complexity

of interactions, and a qualitatively new organization of the system.

• Novelty Search (Lehman and Stanley). Mentioned in Dolson’s talk, Lehman and

Stanley’s Novelty Search technique has attracted considerable interest in recent

years [25, 26]. The approach has been shown to generate on-going generation of

new adaptations. However, this is achieved by employing a selection mechanism

that specifically looks for novel phenotypes. Hence, by design the approach will

produce the hallmark of on-going generation of new adaptations, if (and only if)

the system has implemented the necessary mechanisms for the on-going generation

of such adaptations. Novelty Search, by itself, does not take a stand on what kinds

of mechanisms are required. Furthermore, it requires a measure of phenotypic

distance between individuals to answer the question of whether two individuals

exhibit sufficiently different behaviors. Like a fitness function in traditional EAs,

this definition of phenotypic uniqueness needs to be carefully chosen. Defining a

more general measure, applicable to OEE, appears to be a major research chal-

lenge, but potentially a rewarding one. Further work is required to understand the

similarities and differences between Novelty Search and OEE; one line of research

along these lines has recently been initiated by Soros and Stanley [44].

• Dynamical hierarchies (Rasmussen et al.). Rasmussen and colleagues reported re-

sults in a model of a physicochemical system that exhibited dynamical hierarchies.

They demonstrated the emergence of two higher orders of entities and interactions
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on top of the basic first-order elements built into the system. This work was based

upon a model of self-assembly rather than evolution; to be of direct relevance to

OEE it would need to be augmented with mechanisms for self-replication, varia-

tion and selection of the emergent dynamical hierarchies. Enabling populations of

newly emerging dynamical hierarchies to undergo adaptive evolution would unify

the processes of self-assembly and self-organization with the process of adaptive

evolution, and this could explain one kind of novelty in OEE: the evolution of new

kinds of wholes with new kinds of properties. In this context one mechanism

driving the on-going generation of novelty is the availability in the environment of

new materials that can aggregate and generate novel properties.

• Emergence of coding (Packard and Guttenberg). In his talk, Packard described

preliminary work on a model in which alternation between unstable and fixed-

point dynamics produced conditions suitable for the emergence of informationally-

stable components. While preliminary, the results have relevance for the pre-biotic

transition to information-driven systems. Packard reported that colleagues are ap-

plying these ideas to models of other major evolutionary transitions too. This

work has not yet been published.

• Patented Technology (Bedau et al.). Bedau suggested that the actual evolution of

technology (detected in the patent record) is a real-world system that exhibits a

form of OEE that he termed on-going “door-opening” evolution [11], which occurs

when one technological innovation enables a whole new kind of technology to arise

and diversify. Bedau conjectured that door-opening innovations are an important

mechanism behind the on-going generation of new kinds of adaptations, and he

proposed some first steps to observing and measuring door-opening innovations in

the patent record.

• Social Media Tags (Ikegami). In his talk, Ikegami argued that the Social Media
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Tag system he described represented an example of OEE. With respect to the evo-

lution of new combinations of tags, this would be on-going generation of new

adaptations (at a quantitative level). The role of human users as an integral part

of the system, who both supply the new tags and upload new images to be tagged,

is a complicating factor in this case.

Of the example systems discussed by the speakers in York, many focused on the on-

going generation of quantitatively new adaptations, where “quantitatively new” means

that the adaptations are novel, but identifiable within a determined class of possibilities,

and as a result of their identifiability, they may be statistically quantified. In contrast,

qualitatively new adaptations lie outside any pre-determined class of possibilities. It is

clear that qualitatively new adaptations are a part of natural evolutionary processes, but

less clear whether and how they might occur in example systems considered so far—

indeed, clearer criteria are required for what counts as qualitative, rather than quantita-

tive, novelty in these systems. Sharpening this distinction should lead toward progress in

understanding how open-ended evolution manifests properties such as growth of com-

plexity of interactions, on-going generation of new entities, on-going generation of new

functionalities, and major evolutionary transitions.

4 Conclusion

The workshop in York closed with a better appreciation of what remains to be learned

about open-ended evolution, and a clearer picture of the most important open research

questions about OEE. These include:

1. What is the best way to categorize, define, and operationally observe each kind of

OEE, and how are the different kinds related?
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2. What are the most important candidate mechanisms (or necessary conditions) for

producing each kind of OEE? Which mechanisms are most plausible?

3. Which kinds of OEE can be demonstrated in specific systems, including analytical

models, computer models, laboratory experimental systems, or natural biological

communities? What has already been shown in each type of system?

The state of the art on these and other fundamental questions about OEE are the

focus of the Second Workshop on Open-Ended Evolution (OEE2),17 to be held at the ALIFE

XV conference in Cancún, Mexico in July 2016.
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