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Synopsis/Abstract 

The intervertebral disc in the spine and the meniscus in the knee are two 

fibrocartilaginous tissues which commonly are injured or become degenerate, causing 

significant clinical problems.  The principals of tissue engineering, which are applicable 

elsewhere in the body, hold true for the disc and meniscus.  Whilst there are some 

similarities with articular cartilage in terms of the molecules present, these 

fibrocartilages have their own peculiarities, some of which can be quite challenging. 

Following a description of the structure and anatomy of the disc and meniscus and the 

current clinical treatments, the different strategies for biological repair are described 

focusing particularly on cell therapy. The types of cells and scaffolds being investigated 

and how these can be modified are discussed. 

 

1. Introduction 

 Regenerative medicine and tissue engineering have created a vast amount of interest in 

the recent decade (Fisher et al., 2013; Ringe et al., 2010). In the musculoskeletal field it 

has been directed in the main to articular cartilage, a specialised form of hyaline 

cartilage. There are, however, other cartilages which can be damaged or become 

degenerate leading to clinical symptoms. For example, the intervertebral disc and the 

meniscus of the knee are both fibrocartilages and are responsible for billions of dollars 

per annum of healthcare and loss of production in the western world. It is estimated that 

850,000 patients are treated each year in USA for meniscal injury whilst 200,000 

people there undergo surgery to fuse their spines for degeneration of the intervertebral 

disc and associated back pain.  

 

Tissue engineering of these fibrocartilages has very different demands and 

requirements in comparison to articular cartilage. Whilst the main molecular 

components in all cartilages are generally similar (mostly water, collagen and 

proteoglycans), the individual types of molecules and their organisation can differ 

considerably. For example, articular cartilage is predominantly type II collagen, whilst 

the meniscus and outer part of the intervertebral disc (the annulus fibrosus) are mostly 

type I collagen. The cells of the cartilages also differ; hyaline cartilage is generally 

considered to be populated by only one cell type, chondrocytes, whilst the meniscus 

and disc have cells resembling fibroblasts as well as chondrocytes. 

In this review the structure, composition and functioning of the meniscus and disc will 

be described, in addition to their most common pathologies, before discussing strategy 

and progress towards their tissue engineering.  

 

Connective tissues characteristically are made up of  a fibrous component, typically a 

member of the collagen family, interspersed between glycoproteins, a large part of 

which are proteoglycans; these in turn are responsible for retaining a great volume of 

water within the resulting matrix.  In addition to this basic composition (usually making 

up more than 90% of the matrix) there are many other molecules such as proteins and 

other glycoproteins (for example, elastin, microfibrillar protein, COMP, CMP, amyloid, 

CILP and matrilins), growth factors, cytokines, proteases and inhibitors.  Whilst 

individually they are very minor constituents in terms of mass-balance, they may 

influence the final structure significantly.  The physical and mechanical properties 

result largely from water content; this is a product of the swelling pressure caused by 

the osmotic pressure of the charged matrix components and is resisted by the tension in 

the fibrillar molecules.  The strength of the fibrillar network will depend not only on the 



inherent strength of the fibres themselves, but also on interconnecting molecules and 

interactions between them including, for example, collagen crosslinks.  The mechanical 

properties of individual tissue matrices vary depending on the composition of that 

particular tissue.  The fibrocartilages, the intervertebral disc and meniscus, are two 

connective tissues for which the mechanical properties are very important to their role 

in the body, being key structures in the axial skeleton and lower limb, respectively.  

Even within one structure, for example, the intervertebral disc, the matrix organisation 

and mechanical properties vary greatly within it, from being very weak in compression 

and very strong in tension in the outer annulus fibrosus (AF), to vice versa in the central 

nucleus pulposus (NP). 

 

2. Anatomy, Structure and Function. 

The intervertebral disc and meniscus both facilitate flexion, extension and rotation of 

joints.  They differ in that the meniscus is part of a diarthrodial joint whereas the 

intervertebral disc forms an amphiarthrosis, without a central synovial cavity (Figure 

1) <figure 1 near here>.   

 

(i)  Meniscus 

The meniscus is an integral part of the diarthrodial knee joint with other tissues 

including articular cartilage, the coronary, posterior, anterior, cruciate, collateral, lateral 

and transverse ligaments, the synovium and the fibrous capsule.  Each knee joint 

contains two menisci, the lateral and medial menisci, which are both wedge shaped 

crescents of fibrocartilage sitting between the lateral and medial femoral condyles and 

tibial plateaux respectively and acting to protect the adjacent articular cartilage (Figure 

1).  The shape of the meniscus is adapted to aid distribution of loads within the knee, 

with the superior surface in contact with the femoral condyles being concave in shape, 

in comparison to the flatter inferior surface which contacts the tibial plateau (Dudhia et 

al., 2004). At various points the outer meniscus interfaces directly with different 

ligaments which are attached to the bony components of the knee (Gray, 1999). 

 

The shape of the meniscus is determined during foetal development when it is a very 

cellular and highly vascularised tissue (Gray, 1999). After birth and during skeletal 

maturation the vascularisation decreases, particularly centrally, resulting in only the 

outer third of the meniscus having blood vessels present in adulthood (Figure 2) 

<figure 2 near here>. These vessels originate from the peripheral capsule and synovium 

and provide the outer region of the meniscus with oxygen and nutrients and clearance 

of waste metabolites. Similarly it is only the outer region of the meniscus which is 

innervated with free nerve endings and mechanoreceptors (types I, II and III being 

reported particularly in the posterior horn outer region). The central meniscus is 

therefore aneural, avascular and alymphatic in adulthood. 

  

The cells of the meniscus are referred to by some as fibrochondrocytes (Almarza et al., 

2004), although there is evidence that there are at least 2 distinct populations present: 

chondrocyte-like cells are found when explants of the inner meniscus are cultured 

whilst elongated fibroblast cells are observed from explant cultures of the outer region. 

The morphology of the cells within the meniscus also varies with location in situ, being 

oval and fusiform in the superficial zone, to more rounded and polygonal in the deeper 

zone (reviewed in (Almarza et al., 2004) and (Dudhia et al., 2004)). They commonly sit 

in a pericellular capsule and may have cell processes, particularly those in the deeper 

zone. Mitochondria are not frequently seen, suggesting that energy production is 



predominantly via glycolysis, as for other cartilaginous cells such as in articular 

cartilage. The differential responses seen by articular cartilage cells to cytokines 

according to depth (i.e. the surface zone cells being more responsive than the deeper 

cells) has not been studied in the meniscus but different growth and metabolic 

characteristics in vitro have been demonstrated (e.g. the deeper fibroblast cells 

proliferate more than those from the surface). 

 

(ii) The Intervertebral Disc 

The intervertebral discs sit between the centrum of the spinal vertebrae, interfaced 

superiorly and inferiorly by hyaline cartilage endplates. At birth these constitute more 

than 50% of the intervertebral space but, during development, this reduces and the layer 

of hyaline cartilage becomes progressively thinner until in adulthood it is less than 1 

mm thick. It also reduces in diameter so that in the skeletally mature individual it does 

not extend out to the vertebral rim. It integrates completely with the intervertebral disc, 

with collagen fibers continuing from it into both the annulus fibrosus (AF) and the 

nucleus pulposus (NP). Its attachment with the bone resembles more of an interlocking 

3 dimensional ‘jigsaw’ arrangement between the 2 calcified tissues with there being 

few, if any, obvious fibres crossing between them. The adult disc is similar to the 

meniscus in that the nerves and blood vessels are restricted to approximately its outer 

30%. The outer AF is supplied by branches of the sinuvertebral nerve; in the healthy 

adult there is a limited innervation with even more restricted presence of 

mechanoreceptors which presumably aid proprioception. Vascularisation in the 

newborn human is present in the AF and there are large vascular channels throughout 

the cartilage endplate. Soon after birth and during skeletal development, both of these 

diminish leaving the cells of the NP dependent on diffusion of nutrients from within the 

vertebral bone or vasculature within adjacent tissues such as the longitudinal ligaments. 

Clearance of metabolites is also via a similar route. Since cells within some of the adult 

intervertebral discs may be up to 8mm from the nearest blood vessels any interruption 

of the nutrient supply (e.g. reduced vascular flow or calcification of the endplate) risks 

reducing the normal functioning of the cells or even their viability (Bibby et al., 2004).  

 

The centre of the disc, the nucleus pulposus, in young humans has a gelatinous 

appearance and is clearly distinct from the surrounding and very organised annulus 

fibrosus which has the appearance of concentric but interlocking rings. During skeletal 

development the nucleus becomes more solid and the boundary between these 2 regions 

much less obvious. This continues with increasing age, during which time the disc 

changes from being white to pale yellow in colour, attributed to alteration in the 

chemical cross linking occurring in the matrix components. The cells within the centre 

of the intervertebral disc, like the meniscus, have been shown to be more rounded or 

oval than the more fibroblast-like, thin and elongated, bipolar cells of the annulus 

fibrosus. However, when released from the matrix both the annulus fibrosus and 

nucleus pulposus cells are a similar size and shape (Roberts et al., 1991). Features 

which are more commonly seen for cells of the NP and inner AF in vivo are the 

presence of a pericellular capsule and also cell processes. The exact function, however, 

of each of these is not completely understood with sensing or protection of mechanical 

load suggested as a possible factor. Glycolysis is the common respiratory pathway for 

disc cells as for those of the meniscus, and the two populations (from NP and AF) have 

also been shown to have different synthetic capabilities and respond differently, for 

example, to mechanical loading or other environmental factors such as osmolality 

(Ohshima et al., 1989). 



 

During development the human disc has a third and very distinct cell population 

centrally, that of notochordal cells. Soon after birth the number of these cells in the 

human diminishes rapidly, perhaps due to the very different and greater energy 

requirements compared to NP cells (Guehring et al., 2009).  In many species, including 

all rodents, notochordal cells persist in adulthood. This is an important species 

difference which should be borne in mind when translating results from studies in such 

species to humans. 

 

3. Composition of the Extracellular Matrix and Its Organisation 

 Both the meniscus and the intervertebral disc consist primarily of extracellular matrix 

(ECM) which is produced and maintained by relatively few cells in comparison to most 

other tissues (Vonk et al., 2010).  For example, cells constitute only about 1% of the 

volume of the disc (compared to 80% of the liver).   Few they may be but they remain 

essential to how the matrix is produced.  Due to their interactions with the ECM, their 

shape and ultimately their metabolism is dependent on the composition and 

organisation of the matrix and the load on it.   There is a common structure for the 

matrix of the two tissues which is represented in (Figure 3) <figure 3 near here>.  

Structurally the matrix has three main components: collagens, proteoglycans (PGs) and 

non-collagenous proteins, in addition to water, which constitutes very approximately 

70% of the weight of the fibrocartilages.  Each of these components will be described 

in general terms and then more specifically with regards to the two tissues. 

 

(i) Collagens 

Collagen is a large family of proteins with at least 28 members.  It is the most common 

structural protein in humans, each molecule being composed, at least in part, of a super 

triple helix of three amino acid chains. This arises due to every third amino acid being a 

glycine.  The structure of collagen is very specific and well understood but outside the 

scope of this paper.  It is reviewed in (Eyre et al., 2006).  In both disc (AF) and 

meniscus, collagen can make up 70% of its dry weight.  In both these locations the type 

of collagen is mostly type I, whereas in the NP it is predominantly type II collagen 

(Figure 4) <figure 4 near here>.  A small amount of type II collagen is also reported in 

the meniscus, particularly in osteoarthritis. 

 

Besides the fibrillar types I and II collagens, which constitute approximately 80% of the 

total collagen present, there are many other collagen types present in much smaller 

quantities.  These include collagen types III, V, VI, IX, X, XI, XII and XIV.  They may 

be present only in small amounts (around 1-2%), but can influence the tissue 

considerably. For example, type IX collagen sits on the surface of type II collagen 

fibrils and controls its diameter which in turn will affect its mechanical properties. 

Likewise types III and V collagens may sit on the type I collagen fibrils within the 

meniscus, controlling their diameter possibly resulting in a more compliant tissue 

(Dudhia et al., 2004).  The structure of the collagen molecules and network is complex, 

with heterotypic fibrils of types II, IX and XI also being identified (Eyre et al., 2006) in 

cartilage and the disc. Many collagen fibrils align to form fibres, bundles of which are 

orientated, both in the meniscus and AF of the disc (Schollum et al., 2008), in a highly 

organized way, believed to optimize it for the incident loads on the tissues.  In the 

meniscus the majority of the fibres lie circumferentially so that the meniscus is stiffest 

in the radial plane.  There are a small number of collagen fibres running radially, which 



it is thought might act to resist lateral spread of the tissue and longitudinal splitting such 

as might lead to ‘bucket handle tears’ of the meniscus. 

 

In the AF of the disc the collagen bundles are also arranged circumferentially where 

they form concentric layers or lamellae (Figure 4c).  Within each lamella the collagen 

fibres are parallel and at 60˚ to the vertical axis, but alternating to the right and left of it 

in adjacent layers. Above and below the disc the collagen bundles insert into the rim of 

the vertebrae, thereby locking it in place.  In the central NP the collagen fibres, which 

make up less of the matrix, are randomly organised. 

 

(ii) Proteoglycans 

Proteoglycans (PGs) are complex and can be exceptionally large molecules with a 

central protein core to which is attached one or more glycosaminoglycan (GAG) chains.  

They are a very diverse and ubiquitous family of molecules which owe their main 

function in the ECM matrix largely to these covalently bound GAG side chains.  They 

are polyanionic chains of repeating disaccharides containing hexosamine and uronic 

acid, the particular mix of which forms hyaluronan (HA), chondroitin sulphate (CS), 

keratan sulphate (KS), dermatan sulphate (DS) or heparan sulphate.  The fixed negative 

charge on these GAG chains attracts counter cations, causing a high osmotic and hence 

swelling pressure.  It is this property which controls the hydration of the ECM drawing 

water in from the surrounding area to create a water filled compartment (Roughley et 

al., 2006).  The N-terminus of the protein core has a globular region, the G1 domain, 

which interacts with HA, the reaction being stabilised by another protein, the link 

protein.  Since HA forms long chains of up to millions in molecular weight, it can lead 

to huge conglomerate molecules or ‘aggregates’ of proteoglycan monomers.  Aggrecan 

is the most common PG in many load bearing tissues such as articular cartilage, the 

intervertebral disc and also the meniscus.  The GAG chains attached are KS nearest the 

G1 domain and CS towards the C terminal region.  There are considerable regional 

differences with more KS associated with the PGs in the NP than the AF.  The degree 

and location of the sulphate groups (e.g. whether C-4-S or C-6-S) varies with location 

and also the age and health status of the individual.  

 

Another aggregating PG is versican, small amounts of which have been reported in the 

disc.  There are also other types of proteoglycans called small leucine-rich 

proteoglycans (SLRPs).  In contrast to the large aggregating PGs which have a core 

protein with molecular weight of >2000KDa, for SLRPs it is ~ 40-50KDa.  In addition 

they only have 1 or 2 GAG chains per molecule, whereas aggrecan can have 100-150 

GAG chains.  SLRPs include decorin, biglycan, fibromodulin, keratocan and lumican, 

all of which have been reported in the meniscus and disc.  The SLRPs in the human 

adult meniscus commonly have DS chains which may be highly sulphated, with decorin 

being predominant.  The small PGs can have many physiological properties ranging 

from binding growth factors within the matrix to controlling collagen fibrillogenesis.  

As with the aggregating PGs their distribution varies with location.  For example, in the 

meniscus biglycan and fibromodulin are most common in the inner region, whereas 

there was more decorin in the outer zone. 

 

(iii) Other glycoproteins and molecules 

In both intervertebral disc and meniscus several other matrix molecules have been 

identified including, amyloid, cartilage oligomeric matrix protein (COMP), cartilage 

intermediate layer protein 1 (CILP), elastin and microfibrillar protein.  The function of 



some of these is not clearly delineated, whereas for others the function seems more 

apparent.  For example, elastin in the disc appears to have an important structural role 

forming a complete network within and between the annular lamellae.  No doubt there 

still remain other molecules to be identified and characterised.  In articular cartilage 

many of these structural molecules interact with each other forming a complex series of 

interactions.  It is therefore clear that the matrices of the intervertebral disc and 

meniscus have a hierarchical structure which is well adapted to the functions it must 

perform.  This should be borne in mind when considering its repair or tissue 

engineering. 

 

4. Pathologies And Current Treatments Of The Fibrocartilages 

The connective tissues all undergo changes as part of the normal aging process, for 

example, general dehydration and pentosidine cross link formation of collagen 

molecules.  These related changes are the same or similar to those seen in degenerative 

joint diseases but perhaps the rate is different.  Whatever the cause of this degeneration, 

it commonly results in diminished function and mobility and increased pain, creating a 

large socio-economic burden on society.  The most common disorders are described 

below together with a very brief outline of current therapies employed. 

 

(i) Meniscus 

The menisci can be the subject of traumatic, metabolic, inflammatory or degenerative 

disease.  However, one of the most common pathologies presenting clinically is that of 

a meniscal tear.  These can be classified as horizontal, radial (vertical), longitudinal 

(vertical), bucket handle or a flap.  Whilst there is some inherent ability to repair itself, 

particularly in the vascularised region where the fibrin clots can act as a scaffold, the 

quality of repair is poor and often leads to continued clinical problems and early 

degenerative arthritis.  Surgical repair in the form of excision of very damaged tissue 

may be undertaken but the quantity excised is kept to a minimum to reduce the 

development of osteoarthritis.  Suturing and/or gluing is commonly performed.  

Meniscal repair was first described in 1883 but has been undertaken in large numbers 

since the 1980’s onwards (reviewed in Jarit et al., 2010).  The surgical approach 

(whether removing or repairing) now depends on the demands of the patient (removal 

has a quicker recovery time, e.g. for a professional sports person), their age (removal is 

more likely to lead to long term arthritic changes), the region and extent of the tear, and 

the beliefs and practises of the surgeon. 

 

(ii) Intervertebral disc 

In addition to the spinal deformities (scoliosis and kyphosis, which will not be 

addressed here) the main pathologies involving the intervertebral disc are degenerative 

disc disease (DDD) and disc herniation.  It is believed that DDD is associated with back 

pain although the exact pathway involved is not well defined.  It is characterised by loss 

of proteoglycan and water particularly in the NP, resulting in loss of disc height and the 

formation of vertebral osteophytes.  Herniation or prolapse of the disc can occur to 

varying degrees, ranging from simply a bulge (protrusion) with an intact AF, extrusion 

where the fibres are ruptured, to sequestration where some disc tissue has detached.  It 

is usually only posterior lateral herniations which are troublesome clinically, when the 

exact symptoms depend on the spinal level and hence which nerve roots the prolapse 

contacts.  The lower lumbar discs (L4-5, L5-S1) are usually involved so that 

leg/buttock pain often results.  Treatments range from conservative, with analgesia or 

physiotherapy, or sometimes surgery.  For herniations, micro-discectomy is usually 



successful, although 5 – 10% re-herniate.  For disc degeneration the surgical options are 

not so obvious and may include spinal fusion, when the adjacent vertebrae are fused 

immobilising that disc level, or more recently many prosthetic intervertebral discs have 

been developed.  These appear to be more successful in the cervical spine than in the 

lumbar region.  

 

5. Tissue Engineering  

The attraction of a tissue engineering solution to a clinical problem is that it would be 

hoped that the successful biological approach could elicit a permanent repair, in 

comparison to, for example, an inert implant which inevitably has a finite and limited 

lifespan.  The concept involves utilising a cellular component and a scaffold, each of 

which will be discussed in turn. 

 

(i) Cells 

The cells which will affect the repair may be the individual’s own (autologous), another 

individual’s of the same species (allogeneic) or of a different species altogether 

(xenogeneic).  They may be culture-expanded in the laboratory to increase the 

population, or have undergone some other transformation in the laboratory, e.g., de- 

differentiated or differentiated in a specific manner.  They may be cells which are 

committed down the pathway to be the same sort as the tissue being repaired or they 

may be stem cells.  The cells could also have been genetically modified.  For example, 

genes have been transferred, both in vivo and in vitro to meniscus and disc cells.  If 

these genes encode for modifying species of RNA or proteins such as a growth factors, 

transcription factors or receptors, they could result in genetically augmented tissue 

engineering (Evans et al., 1999).  For example, both meniscal and disc cells have been 

transfected by a TGF- cDNA which resulted in increased proteoglycan production in 

the rabbit disc.  Transfection with other substances such as Lim-Mineralisation Protein-

1 (LMP-1) can result in increased proteoglycan production as well as upregulating 

other growth factors such as BMPs 2 and 7 (Yoon et al., 2004).  This gives a multiple 

response for one alteration in genetic material.  Hence in theory such technology could 

aid the efficiency of the repair and regeneration of the disc and meniscus, though it is 

being used little, if any, in current practice. 

 

Stem cells are often considered to be the ideal cells for tissue engineering since they 

have unlimited capacity for self-renewal and the capability to form more than one 

tissue.  Whether they are multipotent or totipotent depends on their source, in general 

being from either adults or embryonic, respectively.  There are actually advantages 

associated with both.  Embryonic stem cells have greater proliferative capacity, and the 

ability to transform to any cell type is advantageous.  However, some individuals have 

great ethical concern in their use which they would not have with, for example, 

mesenchymal stromal or stem cells (MSC).  In addition, MSCs from bone marrow may 

have other advantageous properties, such as having an anti-inflammatory effect, as well 

as a reported capacity ‘to home’ to a site of damage.  For example, Shen et al (2014) 

reported that human MSCs injected intra-articularly into a rat meniscal injury model led 

to enhanced meniscal regeneration and protected the articular cartilage from undergoing 

osteoarthritic changes (Shen et al., 2014).  They attribute this to homing of the 

progenitor cells to the site of injury which was mediated by stromal cell derived factor 

1 and its receptor, CXCR4.  An alternative approach is to activate those MSCs already 

in the region of injury by applying growth factors or other stimulatory molecules 

(Murray et al., 2014).  



 

In a study of tissue engineering of the meniscus in rabbit, the use of mesenchymal cells 

also appeared to enhance integration of the repair tissue with the host, in comparison to 

an acellular treatment or those treated with complete bone marrow or platelet rich 

plasma (PRP) (Zellner et al., 2010).  MSCs in disc tissue engineering studies are 

attributed with not only being able to differentiate to disc-like cells producing the 

appropriate matrix molecules, but they may also influence the endogenous cell 

population to increase PG production (Yang et al., 2009).  This, together with any anti-

inflammatory activity they may have, can present MSCs as attractive cells for use in 

tissue engineering of the disc, the meniscus and also other tissues. 

 

In addition to cells applied externally to the damaged tissue, it may of course be 

possible to ‘activate’ a population of resident cells close to or within the tissue to be 

repaired.  Addition of growth factors or a chemo-attractant to draw stem cells or other 

cells to the location may be such techniques which could be considered [11]. 

 

(ii) Scaffolds 

There are many scaffolds which can be chosen for the tissue engineering of 

fibrocartilage, ranging from a natural product which might be a decellularised allograft 

tissue to something artificial; these may be degraded and replaced by cells in vivo, or 

the scaffold may be resistant to degradation in which case it will remain permanently in 

the patient.  An excellent example of an allograft was the use of a cadaveric trachea, 

which was decellularised and used as a scaffold to seed with the patient’s own cells 

(MSCs and bronchial epithelial cells) before implanting for the successful regeneration 

of a bronchus (Macchiarini et al., 2008).  The trachea was decellularised over 6 weeks 

by incubating in sodium deoxycholate and deoxyribonuclease ensuring total removal of 

immunogenic (MHC positive) cellular components.  Allograft menisci and 

intervertebral discs have both been used in humans, menisci in several countries 

worldwide for many years, whereas discs only more recently.  Various procedures are 

undertaken prior to transplant, but not usually as extensive as described for the trachea.  

Menisci have been used after maintaining in culture whilst some safety checks are 

performed (Lubowitz et al., 2007) or more generally following cryopreservation via 

various protocols.  Depending on how this is done, it may kill some of the resident cells 

prior to implantation.  It appears that the implanted frozen cadaveric tissue becomes 

populated with the host cells, though the source of the cells has not been identified 

(Figure 5) <figure 5 near here>.  Whilst some success with allograft menisci has been 

reported they do not provide consistently good results, often appearing to resorb with 

time post-implantation.  Cadaveric intervertebral discs have also been used as 

replacement motion segments in a series of patients (Luk et al., 2008).  At the five-year 

follow-up, four of the these 5 patients treated in the cervical spine had signs of mild 

disc degeneration but good motion;  as with menisci, apparent resorption and/or loss of 

disc height appears to occur with time. 

 

Artificial scaffolds have been developed and investigated in the laboratory and cell 

behaviour (of various populations) has been examined, both for meniscal and disc 

replacement.  They can either be designed to be resorbed and replaced by the implanted 

cells or as non-resorbable synthetic polymers.  Some of these which have been 

investigated include a Teflon fibre net, Dacron coated with polyurethane, PVA 

hydrogel and a polyurethane elastomer (Rongen et al., 2014).  In the clinic, however, 

the main use of these scaffolds is as an acellular implant.  There are 2 main products 



currently in use for  replacing the meniscus: one is a bovine collagen product (with 

some hyaluronan and chondroitin sulphate incorporated to form the Collagen Meniscal 

Implant (CMI®, now distributed by Ivy Sports Medicine  LLC) and the other a 

polycaprolactone/polyurethane scaffold, marketed as Actifit®.  These are not the 

answer to everything however.  The CMI® requires an intact rim for correct placement 

and is only suitable for replacing a medial meniscus.  That notwithstanding, some 

reports are encouraging, with histology of biopsies from the treated region suggesting 

that there was tissue 12 months post-treatment resembling native tissue (reviewed in 

(van Tienen et al., 2009)).  However, remnants of the CMI® were also visible and 9% 

of patients had some synovitis present.  The polyurethane scaffold used in the Actifit® 

meniscal replacement has the advantage over the CMI® that it is easier to suture in 

place (to the remaining tissue at the meniscal rim).  Early clinical results appeared 

encouraging with histology of biopsies taken from the graft 12 months post-

implantation showing vessel sprouts and neovascularisation of the outer region of the 

implant and population with chondroblast-like cells (Rongen et al., 2014).  

 

Implants which have been developed and are in the clinic for the intervertebral disc 

mostly use inert materials, without the intention of acting as a scaffold for cellular 

infiltration.  In the laboratory, however, there are many studies investigating numerous 

scaffolds including chitosan, silk, collagen, alginate, polylactic acid, polygylcolic acid 

and polycaprolactone (PCL) (reviewed for the disc in Hudson et al., 2013; Kandel et 

al., 2008) and meniscus (Makris et al., 2011; Rongen et al., 2014; van Tienen et al., 

2009).  For both meniscus and intervertebral disc applications the addition of growth 

factors is also being studied.  Minehara et al., (2010) have shown that the incorporation 

of recombinant human bone morphogenetic protein (rhBMP-2) in the decellularised 

meniscal allograft provides a chemokinetic activity.  There is increased migration of 

chondrocytes to the scaffold, in a dose dependent manner.  TGF- infused into PCL 

and hydroxyapatite scaffolds has been shown to induce endogenous cells to produce a 

surface covering on a damaged rabbit humeral head.  Most importantly this treatment 

led to a regenerated thicker and more dense cartilage than non-TGF- impregnated 

scaffolds and this cartilage had similar mechanical properties to native cartilage (Lee et 

al., 2010).  Growth factors may not be the solution in all cases however.  Pabbruwe et 

al., (2010) reported that whilst the addition of TGF- to a stem cell/collagen scaffold 

encouraged the appropriate differentiation of stem cells, it rendered the construct less 

well integrated to the adjacent tissue.  The introduction of chemokines may be a further 

way of controlling/attracting an appropriate and effective population of cells to the 

location (Shen et al., 2014). 

 

(iii) Clinical applications 

Many laboratory studies into tissue engineering (of a range of tissues) often have the 

target of creating or generating a piece of tissue with histological, chemical or 

mechanical properties mimicking that of the native tissue.  Achieving this is only part 

of the solution and often little thought is given to how it would be applied to and 

integrate with the host tissue.  The application might involve major and /open surgery.  

If one is creating an avascular tissue such as articular cartilage or the inner region of the 

meniscus or the intervertebral disc, then integration is more likely to be a problem than 

for a well vascularised tissue such as bone (Figure 6) <figure 6 near here>. 

 

The use of bioreactors has not been described in this paper, as the authors feel that they 

do not have a role in a clinical service.  It would be better if it is possible to create the 



correct environment in vivo and use the patient as their own bioreactor.  This has been 

achieved by the recreation of a mandible with autologous bone marrow, a bone mineral 

carrier and BMP7 inside a computer aided design (CAD) scaffold which was implanted 

in the patient’s latissimus dorsi for 7 weeks before locating in the correct position 

(Warnke et al., 2005).  Perhaps one useful way forward for disc and meniscus tissue 

engineering is to understand better the natural repair processes that exist, however 

limited.  

 

It would be advantageous if the necessary compounds of the tissue to be engineered can 

be applied via a needle to the region to be treated (Figure 7) <figure 7 near here>. This 

might be achieved by applying a scaffold of low enough viscosity to be injected which 

might subsequently polymerise or be rendered more viscous in situ. It could have either 

the correct signalling molecules to attract an active endogenous population, or 

incorporate an appropriate cell population.  The degree of ‘maturity’ of the cells may 

well be inversely related to the degree of integration with the native/host tissue, with 

more mature, apparently better developed cells/tissue in the laboratory, actually being 

less able to integrate completely into the surrounding host tissue. 

 

Notwithstanding the challenges to tissue engineering, several clinical trials have been 

undertaken and are on-going utilizing cell therapy approaches, both in the meniscus 

(Longo et al., 2013) and intervertebral disc (Kregar-Velikonja et al., 2013).  These are 

mostly small, phase I trials though a few companies are progressing to larger Phase III 

trials. 

 

Conclusion 

The concept of a biological repair, such as tissue engineering, is just as appealing for 

the fibrocartilaginous tissues, the intervertebral disc and the meniscus, as it is for 

hyaline articular cartilage, but much less developmental, preclinical and clinical work 

has been done in these areas.  It is often thought that because they are cartilages, that 

what has been developed or found out for articular cartilage will be equally applicable 

to these other 2 tissues.  This is not necessarily the case for tissue engineering however, 

with both the disc and meniscus requiring a specialised approach and often being more 

challenging. The properties of both tissues are very variable with location, much more 

so than for articular cartilage. The in vivo loading is more complex and the application 

and fixation more difficult than for articular cartilage. Nonetheless, the quest continues 

and developments are being made, which will inevitably be driven further by the large 

clinical demand in this area. 
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Figure legends 

 

Figure 1:  Different joints are found throughout the body, depending on the amount of 

motion required. (a) Synarthroses in the skull (arrowed) permit virtually no movement, 

whereas the cartilages within amphiarthroses, such as the intervertebral disc (IVD) (b), 

or articular cartilage and menisci in the diarthrodial joint (c) facilitate greater 

movement. 

 

Figure 2:  The human newborn menisci are vascularised throughout (a), whereas this 

diminishes during skeletal maturity (b) and further again over the age of 50 years of age 

(c). (Adapted from Makris et al., 2011). 

 

Figure 3:  The extracellular matrix of both meniscus and the intervertebral disc is 

composed primarily of collagen fibres (shown here in pink) being kept in tension by the 

water-retaining proteoglycans (some of which link via hyaluronan (shown in yellow) to 

form large aggregates). 

 

Figure 4:  Immunohistochemical staining of the intervertebral disc shows type I 

collagen (a) predominates in the annulus fibrosus (AF), the lamellae of which can be 

clearly seen when viewed through polarised light (c).  In contrast type II collagen (b) 

occurs more centrally in the nucleus pulposus (NP) and cartilage endplates (CEP) 

(which make up a large part of the intervertebral space in this 2 year old human). 

 

Figure 5:  Haematoxylin and eosin stained section of a meniscal allograft 12 months 

post-implantation showing apparently viable cells (with nuclei stained blue) infiltrated 

throughout the allograft. 

 

Figure 6:  Tissue engineering of the intervertebral disc faces particular challenges, 

some of which are delineated in this schematic.  (Reproduced from Kandel et al., 

2008). 

 

Figure 7:  An injectable tissue engineering solution is attractive in terms of being 

minimally invasive, for example into a disc (a) X-ray showing cells in a radio-opaque 

carrier being injected into the intervertebral disc.  (b) Fluorescently labelled cells which 

were injected into the nucleus pulposus of a bovine model system of intervertebral disc 

degeneration remained viable for at least 28 days in culture.  
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