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Summary

Univariate meta-analysis concerns a single outcome of interest measured across a number
of independent studies. However, many research studies will have also measured secondary
outcomes. Multivariate meta-analysis allows us to take these secondary outcomes into
account, and can also include studies where the primary outcome is missing. We define
the efficiency (E) as the variance of the overall estimate from a multivariate meta-analysis
relative to the variance of the overall estimate from a univariate meta-analysis. The extra
information gained from a multivariate meta-analysis of n studies is then similar to the
extra information gained if a univariate meta-analysis of the primary effect had a further
n(1-E)/E studies. The variance contribution of a study’s secondary outcomes (its borrowing
of strength) can be thought of as a contrast between the variance matrix of the outcomes
in that study and the set of variance matrices of all the studies in the meta-analysis. In the
bivariate case this is given a simple graphical interpretation as the borrowing of strength
plot. We discuss how these findings can also be used in the context of random effects meta-
analysis. Our discussion is motivated by a published meta-analysis of ten anti-hypertension
clinical trials.
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1 Introduction

Univariate meta-analysis is well established as a statistical tool for research synthesis, when
a single outcome of primary interest is measured across several independent studies. Many
research studies, however, report data on multiple outcomes, with the primary outcome
supported by measures of one or more secondary outcomes. Multivariate meta-analysis
offers the potential for more accurate estimation by also taking the data on these secondary
outcomes into account. Another advantage of the multivariate approach is the potential
for increasing the number of eligible research studies, since we can also include studies
where the primary outcome is missing and data are only reported on some of the secondary
outcomes.

A key question in the expanding literature on multivariate meta-analysis is the compar-
ison between multivariate and univariate approaches — how much borrowing of strength
do the secondary outcomes contribute to the estimation of the primary treatment effect?
The empirical examples discussed by Sohn (2000), Simel and Bossuyt (2009) and Trikalinos
et al. (2014) mostly show rather little difference between the results of multivariate and
univariate meta-analysis, even though in some of these examples the outcomes are quite
highly correlated. This has led some to question whether the multivariate approach is
of any real practical value. Other examples, however, suggest that taking the secondary
outcomes into account can make a useful contribution (Fibrinogen Studies Collaboration,
2009; Riley, 2009; Kirkham et al., 2012). Why do these differences arise? What is it about
the statistical properties of the studies in a meta-analysis that determine the contribution
of the secondary outcomes?

By comparing the multivariate estimate of the primary treatment effect with the corre-
sponding univariate estimate taking only the primary outcomes into account, Jackson et al.
(2017) derive an expression for borrowing of strength, measuring the additional contribu-
tion which each study’s secondary outcome estimates make to the variance of the summary
primary treatment effect over and above the contribution of the study’s primary outcome
estimate. The corresponding expression for the total contribution of individual studies gives
a measure of study weights, analogous to the familiar use of study weights in univariate
meta-analysis. The aim of this paper is to re-examine Jackson’s formulae, to explore some
of their consequences and extensions, and to offer a more transparent understanding of how
borrowing of strength depends on individual study characteristics. We generalize a number
of points which earlier papers have made using examples and simulation studies. Data from
a published meta-analysis of 10 clinical trials on the treatment of hypertension is taken as
a motivating example.

Section 2 gives our basic set-up, showing that the borrowing of strength given by the
secondary outcomes of the ith study can be written as an explicit function of two variance
matrices, the within-study variance matrix Vi and the harmonic average V̄ of all the Vis in
the meta-analysis. With an appropriate re-defining of Vi (Section 2.2) this also covers cases
where one or more of the outcomes in the ith study is missing. Properties of the borrowing
of strength function are most easily seen in the bivariate case, where the borrowing of
strength plot is a useful way of interpreting the relative contributions of the two outcomes.
The bivariate case is discussed in Section 3 and illustrated using data from the hypertension
example. The bivariate case is generalized to the multivariate case in Section 4, leading to a
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general formulation of the necessary and sufficient conditions for a study to give borrowing
of strength in multivariate meta-analysis.

Section 5 follows Jackson et al. (2017) by showing that, at least as descriptive measures,
borrowing of strength in multivariate fixed effects models applies equally well to random
effects models, thus allowing for between-studies heterogeneity in a way analogous to the
DerSimonian-Laird method in univariate meta-analysis (DerSimonian and Laird, 1986). A
simulation study based on the hypertension example shows the importance of distinguishing
between borrowing of strength as a descriptive measure (describing the data to hand) and
as an inferential measure (describing an underlying population model), a distinction which
does not arise in the same way for fixed effects models.

The final Section 6 gives a brief discussion of some of the important assumptions being
made in this paper.

2 The variance contribution of individual studies

2.1 Basic set-up

We consider a multivariate meta-analysis of n independent studies, each of which measures
a p × 1 vector y of treatment effect estimates corresponding to the p different outcomes.
The standard multivariate fixed effects model is

yi ∼ N(β, Vi) ; i = 1, 2, · · · , n. (1)

The p × p variance matrix Vi in (1) is specific to each study, but the unknown mean
parameter β is assumed to be the same for all studies (the fixed effects assumption). To
start with, we assume that all p outcomes are measured in all n studies in the meta-analysis.

Treating each Vi as known (the usual assumption), the score function for the unknown
parameter β (derivative of the log likelihood) is∑

V −1
i (yi − β) , (2)

and so the maximum likelihood estimate (MLE) of vector β is

β̂ = Ω
∑

V −1
i yi , (3)

where Ω is the variance matrix of β̂ given by

Ω = Var(β̂) = (
∑

V −1
i )−1 .

This can be rewritten as

Ω =
1

n
V̄ ,

where
V̄ = (n−1

∑
V −1
i )−1 , (4)

the harmonic average of the Vis. Whether we use the actual within-study variances Vi, or
crudely approximate them all by V̄ , we end up with the same variance matrix of β̂.
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Even if all p components of y are observed, we focus interest on estimating the treatment
effect for just one of these outcomes which, without loss of generality, we take to be the first.
So from now on we will describe, for each study, yi1 as the scalar treatment effect estimate
for the primary outcome and the remaining components of yi as the (p − 1) × 1 vector of
estimates for the secondary outcomes. In some cases the primary outcome may be clearly
identified from the context. For example, the bivariate (p = 2) example in Fibrinogen
Studies Collaboration (2009) concerned study estimates yi1 of a treatment effect adjusted
for differences across a defined set of covariates, but also included estimates yi2 which are
partially adjusted for just a subset of these covariates. The fully adjusted results are of
primary interest, but the advantage of including the secondary outcomes is that we can
also take account of studies which do not measure the full set of confounding covariates.
In other cases, such as the bivariate example studied in Section 3.2, we may be interested
in all the outcomes, in which case we can arbitrarily re-label the outcomes as appropriate.
The essential assumption is that we are interested in the separate (marginal) inferences
to be made for one or more of the outcomes rather than in the correlations between the
meta-analysis estimates across different outcomes. So we assume from now on that our
primary interest is in β̂1, with variance

Var(β̂1) = Ω11 =
[
(
∑

V −1
i )−1

]
11

=
1

n
V̄11 ,

where V̄11 is the (1, 1) element of V̄ in (4).
A natural comparison for the multivariate estimate of β1 is univariate meta-analysis,

which looks only at the values of y1i and ignores the data on the secondary outcomes. The
relevant univariate model would then be

yi1 ∼ N(β1, σ
2
i ) ,

where
σ2
i = lTVil ,

and l is the unit vector l = (1, 0, · · · , 0)T . The univariate estimate is

β̃1 =

∑
σ−2
i yi1∑
σ−2
i

with variance

Var(β̃1) =
1∑
σ−2
i

.

Under model (1), both β̂1 and β̃1 are unbiased and normally distributed estimates of
β1, and so to compare their statistical properties all we need to know is the efficiency, E,
defined by

E =
Var(β̂1)

Var(β̃1)
= Ω11

∑
σ−2
i =

1

n
V̄11

∑
(lTVil)

−1 . (5)

Necessarily, E ≤ 1 as the MLE β̂1 is fully efficient. The smaller is E, the greater is the
relative contribution of the secondary outcomes, suggesting 1−E as a measure of the role of
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the secondary outcomes in the multivariate estimate of the primary treatment effect. This
combines the information in the secondary outcomes of all the studies in the meta-analysis
and so 1 − E can thought of as a measure of total borrowing of strength, equivalent to
BoSRV

r in the notation of Jackson et al., 2017 (section 2.2). However, the simpler notation
1 − E emphasises its dependence on a basic statistical concept which may open up useful
interpretations taken from other areas of statistics, a possibility not immediately obvious
from the earlier notation.

A simple example here is the familiar interpretation of efficiency in terms of sample
size: for an inefficient estimate (efficiency E) to match the accuracy that a fully efficient
estimate (efficiency 1) can achieve with a sample size of n, the sample size would have to
be increased from n to n/E. Similarly, in meta-analysis, the extra information which the
secondary outcomes of n studies gives to the estimation of β1 can be thought of as like the
extra information we would get in univariate meta-analysis if we could measure the primary
outcomes of a further n(1− E)/E studies. For example, if there are 9 studies (n = 9) and
E = 0.9, the advantage of using multivariate instead of univariate meta-analysis is like
finding the data for one more study. This simple idea will be used several times in the
analysis of the hypertension example in Section 3.2 below.

The last expression in (5) is the ratio of the (1, 1) element of the harmonic mean of the
Vis to the harmonic mean of the (1, 1) elements of the Vis . These are the same thing if the
Vis are all the same, in which case E = 1. If the Vis are different then E ≤ 1, which suggests
another interpretation of (1 − E) as a measure of the variation of the matrices Vi about
their harmonic average V̄ . This is analogous to the usual interpretation of the coefficient
of variation (ratio of standard deviation to the mean) as a simple relative measure of the
variation of a univariate sample about its arithmetic mean.

These calculations are comparing the relative contributions which the primary and sec-
ondary outcomes make to the estimation of β1 using all n studies in the meta-analysis.
To break this down into the contributions of individual studies, define, for any study with
inverse variance matrix V −1,

T (V −1) =

[
ΩV −1Ω

]
11

Ω11

=
1

n

[
V̄ V −1V̄

]
11

V̄11

. (6)

We write the argument of (6) as V −1 rather than V to reflect the fact that all of the formulae
for multivariate meta-analysis presented earlier involve the study variances Vi only through
their inverses V −1

i . As we shall see in Section 2.2, this also simplifies the notation in cases
where there are missing data. Clearly, (6) is a function of two arguments, V −1 and V̄ , and
so (6) has further simplified the notation by suppressing the second argument. We can do
this because we are mainly interested in the contributions of individual studies within the
context of a given observed meta analysis, in which case we can treat V̄ as if it was fixed.

We use the function T (V −1) to investigate the role of individual studies in three different
ways, analogous to the definitions of influence in regression analysis:

• Direct interpretation. From (3),

Var(β̂1) = Ω11 =
∑

[ΩV −1
i Ω]11 = Ω11

∑
T (V −1

i ) .
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Hence, T (V −1
i ) is the proportional contribution of the ith study to the variance of β̂1,

proportional in the sense that ∑
T (V −1

i ) = 1 .

In univariate meta-analysis, V −1
i = σ−2

i and (6) gives T (V −1
i ) = σ−2

i /
∑

i σ
−2
i which

is just the weight of the ith study in the weighted average β̂1. When p ≥ 2, T (V −1
i )

can still be interpreted as the weight of the ith study in multivariate meta-analysis,
agreeing with the weight wir derived from an orthogonal decomposition of the score
function in Jackson et al. (2017, section 3). However, the function T (V −1) is not
restricted to the V ’s which happen to be represented in the meta-analysis:

• Add-one-in interpretation. If n is large and the variance matrix V is of the same order
of magnitude as V̄ , then under reasonable conditions on the matrices involved,

(I + n−1V̄ V −1)−1 = I − n−1V̄ V −1 +O(n−2) . (7)

Post multiplying each side of (7) by n−1V̄ and using (4), we get the approximation

[
(

n∑
j=1

V −1
j + V −1)−1

]
11

= Ω11(1− T (V −1)) +O(n−3) . (8)

The left-hand side of equation (8) is the updated variance of β̂1 if we add a new
study with inverse variance V −1 to the meta-analysis. So, for large n, T (V −1) is the
proportional decrease in Var(β̂1).

• Leave-one-out interpretation. Replacing V by −Vi in (8) similarly shows that T (V −1
i )

is the proportional increase in Var(β̂1) if the ith study is removed from the meta-
analysis.

The first of these properties is exact, but the second and third are only asymptotic (large
n) approximations. This reflects differences in the background studies being assumed for
the add-one-in and hold-one-out calculations, i.e. differences in the second argument V̄ )
in (6). For example, if a study we are thinking of adding in happens to have the same
variance V as an existing study which we are thinking of leaving out, then the common
value of T (V −1) suggests that the two effects would be the same. But one is defining this
study’s contribution in terms of the difference between having n+ 1 studies and n studies,
but the other is comparing n− 1 with n studies. If n is large there is no material difference
between the two. Essentially, the add-one-in and hold-one-out approximations are ignoring
the effect that adding or subtracting studies has on the value of V̄ . These distinctions are
analogous to the different definitions of residuals and influence in other areas of statistics.
See Section 3 below for a clearer illustration of some of these points in the simpler context
of bivariate meta-analysis (p = 2).

The definition of E in (5) arises from comparing Var(β̂1) with the value of this variance
if only the primary outcomes had been measured across the whole of the meta-analysis.
Similarly, for investigating the role of individual studies, we can ask what happens to

6



Var(β̂1) if we add in an extra study with variance matrix V , but only take account of its
primary outcome estimate y1 ∼ N(β1, σ

2) with σ2 = lTV l. This will add σ−2(y1 − β1) to
the score function (2) for the scalar β1, but will add nothing to the score function for the
secondary outcomes. Hence the contribution to the vector score function for the estimation
of the complete vector β is

V −1
∗ (y − β) ,

where the matrix V −1
∗ is defined as

V −1
∗ = σ−2llT = (lTV 1)−1llT , (9)

the p × p matrix with σ−2 in the (1, 1) position and zero everywhere else. The relative
decrease in Var(β̂1) is therefore (approximately)

T (V −1
∗ ) = T{(lTV l)−1llT} . (10)

We define the borrowing of strength, B(V −1), of a study with variance matrix V to be the
difference between (6) and (10),

B(V −1) = T (V −1)− T{(lTV l)−1llT} . (11)

This measures the contribution that the secondary outcomes of this particular study makes
to Var(β̂1) over and above the contribution made by its primary outcome. If B(V −1) is zero
then nothing is gained by observing the secondary outcomes. The notation T (V −1) refers
to the (T )otal contribution of a study; the notation B(V −1) refers to the (B)orrowing of
strength, how much of this proportional increase in precision is contributed by the secondary
outcomes.

Although the formula for T (V −1) is only an asymptotic approximation for the variance
effect of adding a new study, as noted above we get exact results when adding over the
existing studies. We can similarly add the univariate contributions (10) over the existing
studies to give Ω−1

11 times[
Ω(

∑
σ−2
i llT )Ω

]
11

=
[
(Ωl)(Ωl)T

]
11

∑
σ−2
i = (Ω11)

2
∑

σ−2
i .

It follows that ∑
T{(lTVil)

−1llT} = Ω11

∑
σ−2
i = E ,

and so ∑
B(V −1

i ) = 1− E . (12)

This confirms that the efficiency of univariate meta-analysis can be interpreted as the total
of the proportional variance contributions of all the primary outcomes, and that the sum
of the borrowing of strengths of these studies is the proportion of the total variance which
is attributable to the secondary outcomes. For studies within the meta-analysis, B(V −1

i )
is equivalent to BoSSD

ir in Jackson’s notation (Jackson et al., 2017, section 2.4), and the
additivity property (12) is implied by equations (11) and (12) of that section.

Both the functions T (V −1) and B(V −1) are linear functions in the sense that, for any
positive scalar constant k,

T (kV −1) = kT (V −1) (13)
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and
B(kV −1) = kB(V −1) . (14)

Now multiplying the matrix V −1 by k is like increasing the study sample size by the factor
k whilst keeping the relative magnitudes of the elements of V −1 the same. We can think
of these relative magnitudes as determined by the design of the study — characteristics of
the population from which we are sampling. The actual magnitudes of the elements of V −1

are then determined by the sample size. Property (13) confirms that if we add a new study
onto the meta analysis and double its sample size, then the decrease in variance will double.
Property (14) shows that if a study gives no borrowing of strength so that B(V −1) = 0,
then B(kV −1) = 0 for all k. So whether or not a study offers any borrowing of strength
depends only on the study’s design and not on its sample size.

Riley (2009) noted that if the Vis are all the same then there is no borrowing of strength,
and so the secondary outcomes are then irrelevant as far as estimating β1 is concerned. This
follows immediately from the above formulation, since (6) would then give

T (V̄ −1) =
1

n
= T ((lT V̄ l)−1llT ) , (15)

and hence B(V̄ −1) = 0. And so if all the Vis are the same, Vi = V̄ and so B(V −1
i ) = 0 for

all i, hence E = 1. This also follows from a simple argument of sufficiency: if Vi = V̄ for
all i then the score function (2) is exactly equivalent to that of a single study with V = V̄
and y =

∑
yi. But for any single study the estimate of βj is simply the jth treatment

effect estimate yj. As Riley (2009) implies, and already found here, borrowing of strength
can only arise if there are differences between the Vis. More generally, for there to be any
borrowing of strength, these differences must not be simply a matter of different sample
sizes, but substantive differences in the background and research methods used in each
study. This generalizes the special case of two groups of bivariate studies with proportional
Vi’s discussed in Jackson et al. (2017, section 2.2.1).

When the Vis differ and E < 1, as will usually be the case in practice, (15) still holds for
any study with V = kV̄ for some scalar k, and so such a study will also give no borrowing of
strength. We could describe such a study as one with ‘average design’. This suggests that
it will tend to be the studies which are most atypical in terms of design which contribute
most borrowing of strength. Studies whose designs are fairly typical of the meta-analysis
as a whole are likely to give little or no borrowing of strength, regardless of their sample
sizes. Exactly what this means will be investigated further in sections 3 and 4.

2.2 Missing outcomes

The univariate effect in (10) is for a study in which only the primary outcome is observed.
More generally, suppose that only q of the p outcomes are observed, outcomes yj with
j = j1, j2, · · · , jq, with the remaining (p − q) outcomes assumed to be missing at random.
We can think of this as selecting a q-dimensional sub-vector from the p× 1 vector y, which
we can write as JTy where J is the p× q incidence matrix

Jjk =

{
1 if j = jk
0 otherwise

for j = 1, 2, · · · , p ; k = 1, 2, · · · , q .
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Matrix J is simply the matrix of zeroes and ones which picks out the required components
— the first column has 1 in row j1, the second has 1 in row j2, and so on, with all other
elements set to 0. Such a study’s contribution to the score function for the corresponding
sub-vector of β is then

(JTV J)−1JT (y − β) . (16)

There is no contribution to the score function for the missing outcomes, and so this study’s
contribution to the score function for the complete vector β is (16) padded out with zeros
for each of the unobserved outcomes, namely

V −1
∗ (y − β) ,

where now
V −1
∗ = J(JTV J)−1JT . (17)

Thus to fit the multivariate meta-analysis model when one or more of the studies have
missing outcome estimates, we simply use the complete data method as before but with
the Vi’s for the incomplete studies replaced by the appropriate matrix (17).

If all outcomes are measured, then q = p, J is the p×p identity matrix, and V −1
∗ = V −1

as expected. If only the primary outcome is measured, then J = l and V −1
∗ is the previous

case (9). Of particular interest is when only the secondary outcomes are measured, since in
this case we have a study which cannot be included in a univariate analysis of the primary
outcome, but can be included in a multivariate analysis which can then allow information
about the unobserved primary outcome to be imputed from the observed values of the
secondary outcomes. In this case, J is the p×(p−1) matrix consisting of the (p−1)×(p−1)
identity matrix supplemented with a row of zeros along the top.

Some care is needed in interpreting the notation V −1
∗ . By replacing V −1 with V −1

∗ for
studies with missing outcomes, the usual formulae for maximum likelihood estimation set
out earlier in this section continue to apply even if some, or even all, of the studies in the
meta-analysis have one or more missing outcomes. But, despite the notation, V −1

∗ cannot
be interpreted as a matrix inverse (it is singular), or as the known value of V −1 for an
incomplete study. In reality, all the elements of V −1 are unknown parameters, but with
complete data we follow the usual convention of assuming these are known because they can
be consistently estimated from the within-study data. However, with incomplete outcomes,
only the sub-matrix JTV J of the full matrix V is estimable, and so we have an estimate of
V −1
∗ but not of V −1. The rows and columns of zeros in V −1

∗ imply that various unidentifiable
correlation parameters within V −1 are being artificially set to zero. An equation such as (10)
means that the contribution of an incomplete study to the variance of β̂ is as if V −1 = V −1

∗ .
It does not mean that V −1 = V −1

∗ in the usual sense of a mathematical equality.
This discussion gives a formal justification for the more informal data augmentation

view taken by Riley (2009) and Jackson et al. (2011), who refer to missing outcomes as
equivalent to setting their variances to ∞ and their correlations to zero.
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3 Borrowing of strength in bivariate meta-analysis

3.1 The borrowing of strength plot

In bivariate meta-analysis, with only one secondary outcome, we can obtain reasonably
simple explicit expressions for all of the quantities discussed in the last section. In particular,
the finding that borrowing of strength depends on differences between the Vis can be given
a constructive interpretation in terms of residuals in a regression model.

In the bivariate case, suppose that the variance matrix Vi of yi = (yi1, yi2)
T is

Vi =

(
σ2
i ρiσiνi

ρiσiνi ν2
i

)
.

So (σi, νi) are the standard errors of (yi1, yi2), ρi is the correlation between them, and the
inverse of Vi is

V −1
i =

1

1− ρ2i

(
σ−2
i −ρiσ

−1
i ν−1

i

−ρiσ
−1
i ν−1

i ν−2
i

)
. (18)

Adding (18) over the n studies, and taking the inverse, gives the harmonic mean

V̄ = nΩ =
n

s11s22 − s212

(
s22 s12
s12 s11

)
(19)

where (s11, s22, s12) are weighted between-studies sums of squares and products of the out-
come accuracies (σ−1

i , ν−1
i ),

s11 =
∑ σ−2

i

1− ρ2i
(20)

s22 =
∑ ν−2

i

1− ρ2i
(21)

s12 =
∑ ρi

1− ρ2i
σ−1
i ν−1

i , (22)

with weights depending on different functions of the within-study correlations ρi. As ex-
pected, each of these quantities retains the feature of a harmonic average.

Apart from these differences in the weights, (20) - (22) are like the second-order absolute
sample moments of the n pairs (σ−1

i , ν−1
i ), suggesting a through-the-origin linear regression

model in which we can examine the extent to which a study’s primary accuracy σ−1 can
be predicted from its secondary accuracy ν−1. Allowing for the different weights, consider
predicting ui from vi, where

ui =
ρi

(1− ρ2i )
1
2

σ−1
i , vi =

1

(1− ρ2i )
1
2

ν−1
i . (23)

If we plot the n observed values of ui against the corresponding values of vi, the least
squares slope through the origin is ∑

uivi∑
v2i

=
s12
s22

,
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and so the least squares prediction line is

û =
s12
s22

v =
s12

(1− ρ2)
1
2 s22

ν−1 . (24)

Requiring the regression line to go though the origin is a natural requirement, since if we
know that a study has a very small sample size then we know in advance that both u and
v will be close to zero. The definitions of u and v in (23) have assumed complete data,
but studies with missing data can also be included as in Section 2.2. If only the primary
outcome estimate in the ith study is observed, then we take both ν−1

i and ρi to be zero,
and so ui = vi = 0. If only the secondary outcome estimate is observed, we take take σ−1

i

and ρi to be zero, leading to ui = 0 and vi = ν−1
i .

The plot of the n values of ui against their predicted values ûi turns out to be closely
related to the borrowing of strength function B(V −1

i ) defined in section 2. Using (18) and
(19), and evaluating the required matrix terms explicitly, we get

T (V −1
i ) =

[ΩV −1
i Ω]11
Ω11

=
s222σ

−2
i − 2s12s22ρiσ

−1
i ν−1

i + s212ν
−2
i

s22(s11s22 − s212)(1− ρ2i )
.

Rewriting νi and σi in terms of ui and vi, and completing the square, gives

T (V −1
i ) = Ω11

{
1− ρ2i
ρ2i

u2
i +

(
ui −

s12
s22

vi

)2
}

.

The first term in the outer brackets is just σ−2
i , proportional to the univariate variance

contribution of the primary outcome, and so the borrowing of strength is just the second
term

B(V −1
i ) = Ω11

(
ui −

s12
s22

vi

)2

= Ω11(ui − ûi)
2 . (25)

Thus B(V −1
i ) is proportional to the squared residual of the point (ûi, ui) from the diagonal

prediction line u = û. For any other study with inverse variance V −1, B(V −1) is similarly
proportional to the squared residual of its point (û, u) from the line, and so indicates the
(approximate) decrease in Var(β̂1) which we would get if we were to add this study into
the meta-analysis. The proportionality factor is

Ω11 = Var(β̂1) =
s22

s11s22 − s212
.

If the ith study has missing data, (ûi, ui) is either (0,0) when the secondary outcome
estimate is missing, or ((s12/s22)ν

−1
i ), 0) when the primary outcome estimate is missing. In

the first case, the point is always on the line and so, as expected, there can be no borrowing
of strength. In the second case, the point is down on the horizontal axis and so will generally
have a non-zero residual and so, again as expected, will contribute at least some borrowing
of strength.

The (ûi, ui) plot is easier to interpret if we first scale ui and ûi by the factor Ω
1
2
11, giving

wi = Ω
1
2
11ui =

(
s22

s11s22 − s212

) 1
2 ρiσ

−1
i

(1− ρ2i )
1
2
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and

ŵi = Ω
1
2
11ûi =

(
s212

s22(s11s22 − s212)

) 1
2 ν−1

i

(1− ρ2i )
1
2

.

We call the scatter plot of wi against ŵi the Borrowing of Strength Plot. Now the ith
squared residual from the diagonal line, (wi − ŵi)

2, is equal to B(V −1
i ). The combined

variance contributions of the secondary outcomes in the meta-analysis is indicated by the
scatter of the points about the diagonal regression line. If the points all lie on the line then
B(V −1

i ) = 0 for all i and so E = 1. More generally, we can show from the earlier formulae
that

1− E =
∑

(wi − ŵi)
2 , (26)

and so 1 − E is equal to the residual sum of squares of the points in the borrowing of
strength plot.

To aid interpretation of the borrowing of strength plot, equation (26) means that, for
efficiency E, the root mean squared distance of the points from the diagonal line w = ŵ is

d̄ =

(
1− E

n

) 1
2

.

For example, to achieve 90% efficiency, the root mean squared distance is d̄ = (10n)−
1
2 .

This is indicated on the borrowing of strength plot by the two parallel lines

w = ŵ ±
(

1

10n

) 1
2

. (27)

These lines give a visual benchmark for interpreting residuals in terms of efficiency. If the
points are predominantly inside, or predominantly outside, these lines, then the efficiency
of univariate meta-analysis is likely to be greater than, or less than, 0.9. As noted previ-
ously in section 2.1, an efficiency of 90% indicates that the information gained from the
secondary outcomes in multivariate meta-analysis is like the extra information which would
be available in univariate meta-analysis if we had an additional n/9 studies.

Equation (25) also gives us the necessary and sufficient condition for a study to give no
borrowing of strength. If (ûi, ui) lies on the line, then ui = (s12/s22)vi and so

ρiσiνi
σ2
i

=
s12
s22

. (28)

The left hand side of (28) is the ratio of the covariance element in Vi (Vi12) to its primary
diagonal element Vi11, whilst the right hand side is the ratio of the corresponding elements
of Ω, or of V̄ . For no borrowing of strength these are equal, and so

Vi12

Vi11

=
V̄12

V̄11

. (29)

Previously we noted that a study with Vi = kV̄ for some scalar constant k gives no borrowing
of strength. This is a sufficient but not necessary condition — all we need is that the top
row (or left hand column) of Vi is proportional to the top row (or left hand column) of
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V̄ . In particular, there is no requirement on the secondary variance ν2
i per se. We show in

Section 4 that this generalizes to any number of secondary outcomes.
The borrowing of strength plot also illustrates two other aspects of borrowing of strength

which were discussed in Section 2. Firstly, for studies in the meta-analysis, B(V −1
i ) is the

proportional contribution of the ith secondary outcome estimate to Var(β̂1) (the direct
interpretation), but, for a study outside the meta-analysis, B(V −1) is only the approximate
(large n) contribution which the secondary outcome estimate would make if this study were
added into the meta- analysis (the add-one-in interpretation). We see the nature of this
approximation in the borrowing of strength plot. The line w = ŵ is the least squares line
of best fit (through the origin) for the n points (ŵi, wi). But if we add in the new study,

the value of the scale factor Ω
1
2
11 will change, affecting the coordinates for all the studies.

So the residual of the new point from the line fitted by least squares to the enhanced data
will not be the same as the residual from the line calculated from the original n studies
alone. If n is large then adding one more study will only have a small effect on the fitted
line, and so these two residuals will be similar.

Secondly, we have noted the linear property of the function B(V −1) in (14). If we
multiply V −1 by k then both w and ŵ are scaled by the factor

√
k and so the squared residual

from the diagonal line is scaled by the original factor k, which means that B(kV −1) =
kB(V −1) as required. If V −1 gives no borrowing of strength then the point will simply
move up or down the diagonal line according to the value of k.

3.2 Example

Figure 1 illustrates data from 10 clinical trials designed to test the effectiveness of hyper-
tension treatments in reducing the risk of subsequent diagnoses of cardiovascular disease
(CVD) and stroke. This meta-analysis was originally published by Wang et al. (2005)
and discussed further in Riley et al. (2015) and Jackson et al. (2017). Each randomized
controlled trial was well balanced between active treatment and placebo, but varied widely
in size, from under 200 patients in trial number 3 to almost 7000 patients in trial number
5 (trial numbers consistent with previous tables, for example Table 1 of Riley et al., 2015).
Figure 1 shows individual trial data for two outcomes, the estimated log hazard ratio (log
HR) for CVD (y1), and the estimated log HR for stroke (y2). Values of y1 (crosses) and y2
(circles) are plotted against the within-study correlations ρi, with the corresponding pairs
of within-study confidence intervals for β1 and β2 shown as the solid and dashed line seg-
ments respectively. The small numbers to the left of the confidence intervals identify the
study numbers 1-10. The vertical coordinates of some of the data in Figure 1 have been
slightly adjusted to aid clarity of the plot. Separate homogeneity tests of the values of y1
and y2 are both well-consistent with fixed effects models, leading to univariate combined
confidence intervals of (−0.374,−0.115) for CVD log HR, and (−0.531,−0.235) for stroke
log HR. It is not at all obvious from Figure 1 whether a bivariate approach, taking both
outcomes into account, will lead to more accurate estimates and if so by how much.

If the log hazard ratio for CVD is taken as the primary outcome (y1), the formulae in
Section 2 give the respective univariate and multivariate estimates of β1 and their variances
to be

β̃1 = −0.244 , Var(β̃1) = 0.00434 , β̂1 = −0.244 , Var(β̂1) = 0.00427 . (30)
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The estimates are virtually identical. The ratio of the variances is the efficiency E = 0.984,
showing that in this example the stroke data give very little extra information for the
assessment of CVD risk reduction. The last two rows of Table 1 give the total variance
contribution T (V −1

i ) and the borrowing of strength B(V −1
i ) for each of the ten studies,

confirming that none of these studies gives any worthwhile contribution from the secondary
outcome. We can check directly that the borrowing of strength figures add up to 1 − E.
Figure 2 shows the corresponding borrowing of strength plot. Again we can check the theory
by showing that the least squares slope of these points is 1, and that the residual sum of
squares is 1 − E = 0.016. The two dotted lines are the 90% efficiency bars (27). All the
points are well within these limits, confirming the high efficiency of univariate meta-analysis
and the minimal contribution of the secondary outcomes in this case.

If the primary interest is to estimate the log HR for stroke instead of CVD, then we use
exactly the same formulae but with the notation reversed appropriately, retaining the same
values of ρi and s12 but interchanging yi1 with yi2, σi with νi, and s11 with s22. In terms of
the original notation we are now estimating β2, giving

β̃2 = −0.383 , Var(β̃2) = 0.00569 , β̂2 = −0.381 , Var(β̂2) = 0.00505 ,

with the new efficiency E = 0.888. The two estimates are again very similar, but the
multivariate method is now noticeably more accurate. The borrowing of strength plot for
estimating β2 is shown in Figure 3, which now shows a much greater dispersion about the
regression line than in Figure 2 (the mean squared spread of the residuals is now close to the
dotted 90% efficiency lines). Figure 4 illustrates the proportional contributions which the
studies make to Var(β̂2). This is a line plot, the upper (solid) line highlighting the values
of T (V −1

i ) (total contributions), the lower (broken) line highlighting the corresponding
values of T (V −1

i )−B(V −1
i ) (univariate contributions). The distance between the two lines

matches the squared residuals in Figure 3. The largest borrowing of strength comes from the
ninth study, where the secondary outcome accounts for almost a third of the total variance
contribution of that study. This study accounts for about a half of the total borrowing of
strength of all the studies, although its sample size is by no means the largest (although
it does have the largest correlation). The efficiency of 89% shows that the variance of the
multivariate estimate of β2 is about 10% lower than the variance of the univariate estimate,
which is roughly what we might expect if we were able to increase the size of a univariate
meta-analysis from 10 to 11 studies. In this sense, the value of including data on the 10
secondary outcomes can be likened to the value of having the primary outcome estimate of
one additional study.

Comparing these two efficiencies shows that there is no symmetry in borrowing of
strength: the values of y1 make a modest contribution to the accuracy of β̂2 but the values
of y2 make almost no contribution to the accuracy of β̂1. More generally, we can show that
if E = 1 (no borrowing of strength) when estimating β1, then E will be strictly less than
one (positive borrowing of strength) for estimating β2 except in the special case of all the
studies having the same correlation (as in section 3.3).

There is no missing data in these trials. To illustrate the impact that missing outcomes
might have had on this analysis, and to demonstrate the use of multivariate meta-analysis
when there are missing data, imagine that we wish to estimate the CVD risk β1 when
both outcomes are available in trials 1− 5 but only the stroke outcome is measured in the
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remaining trials 6− 10. Then we get

β̃1 = −0.175 , Var(β̃1) = 0.0117 , β̂1 = −0.196 , Var(β̂1) = 0.00956 .

Inevitably, the variance of β̂1 is now considerably larger than the complete data case in (30).
The efficiency of E = 0.815 now reflects the difference between univariate meta-analysis
using only the first 5 trials, and multivariate meta-analysis using the information in all 10
trials. This value of E is roughly 5/6, which is the variance improvement we might expect
to get if we were able to use univariate meta-analysis with the number of trials increased
from 5 to 6. In this sense, the value of including the 5 trials with missing primary outcomes
can be likened to the value of having one further trial with complete data.

Figure 5 is the borrowing of strength plot for this missing data example. The points
(ŵi, wi) for studies 1 to 5 are the same as in Figure 2 except for a re-scaling of the axes, but
the five points for the missing studies are all moved vertically down to the horizontal axis.
This completely alters the size of the residuals and hence the borrowing of strength figures
for all of the trials. Figure 2 showed that, for estimating β1 with complete data, none of the
10 secondary values y2 makes any useful contribution over and above the contribution of
the corresponding observed values of y1. So we might expect that with these missing data
all of the borrowing of strength would come from trials 5− 10 since in these trials y1 is no
longer available. But this is not so, as shown in the variance contributions plot in Figure 6
(using the same format as Figure 4). Now we get

5∑
1

B(V −1
i ) = 0.144 ,

10∑
6

B(V −1
∗i ) = 0.041 , (31)

where V −1
∗i is the proxy matrix (9) for the ith trial, the 2 × 2 matrix with ν−2

i as the
lower diagonal element and zero’s elsewhere. The sum of these two numbers in (31) is
0.185 = 1 − E as expected, but the missing studies only contribute 22% of the total
borrowing of strength. This illustrates one of the main points in Section 2.1, that the
borrowing of strength given by a particular study depends on how typical that study is
of the meta analysis as a whole, and only indirectly on the statistical characteristics of
the study itself. Changing the later studies leaves studies 1-5 exactly the same, but can
drastically alter their borrowing of strength. We can also see a difference if we look at the
estimation of β2 with the same pattern of missing data. We are again leaving trials 1 − 5
as before, but now trials 5− 10 measure only the primary outcome. Now the borrowing of
strengths B(V −1

i ) for the first five trials add up to about 1%, less than the sum over the
same trails in the complete data case of about 5% (Figure 4).

3.3 The special case of equal within-study correlations

A statistical understanding of the plotting coordinates (ŵi, wi) in the borrowing of strength
plot is complicated by the fact that the weighted sums of squares and products in (20)-
(22) use different weights, also reflected in the different factors appearing in ui and vi in
(23). However, if the ρi’s are constant, ρi = ρ0 say, these differences in the weights can be
absorbed into an overall scale factor, leading to a more transparent version of many of the
formulae in Section 3.1. This special case is also of interest in its own right since, as will be

15



discussed in Section 5, fitting the bivariate model with constant correlations can provide a
useful sensitivity analysis in cases where the within-study correlations are not provided by
the study reports (Jackson et al., 2011).

Let (s∗11, s
∗
22, s

∗
12) be the ordinary (un-weighted) sums of squares and products of the n

accuracy pairs (σ−1
i , ν−1

i ). Then if we imagine a scatter plot of σ−1
i against ν−1

i , the least
squares line of best fit through the origin has slope s∗12/s

∗
22. Thus, for any given value of

ν−1, the least squares prediction of σ−1 is

σ̂−1 =
s∗12
s∗22

ν−1 .

Relating this to the earlier notation gives

(ui, ûi) =
ρ0

(1− ρ20)
1
2

(σ−1
i , σ̂−1

i ) ,

and so the ith residual in the borrowing of strength plot is

(wi − ŵi) =

{
ρ20s

∗
22

s∗11s
∗
22 − ρ20s

∗2
12

} 1
2

(σ−1
i − σ̂−1

i ) .

So, with this slightly different scale factor, we can think of the borrowing of strength plot as
little more than a linear regression of the within-study accuracies of the primary outcomes
plotted against the corresponding accuracies of the secondary outcomes. The fact that
borrowing of strength is given by the least squares residuals again confirms that borrowing
of strength is all a matter of how the variances of individual studies fit in with the overall
pattern of variances in the meta-analysis as a whole.

3.4 Borrowing of strength as a within-study ratio

We have measured borrowing of strength in terms of B(V −1), the variance contribution of
a study’s secondary outcome relative to the overall variance Ω11. We could instead consider
the ratio R(V −1) = B(V −1)/T (V −1), the contribution of the study’s secondary outcome
as a proportion of that study’s total contribution to Var(β̂1). This removes the effect of
any scale factor in V , so that for a given meta-analysis R(V −1) is a function of just two
quantities, ρ, the correlation between the outcomes, and z, the ratio of the standard errors

z =
σ

ν
.

The earlier formulae now give

R(V −1) =
ρ2(u− s−1

22 s12v)
2

ρ2(u− s−1
22 s12v)

2 + (1− ρ2)u2
=

(ρ− s−1
22 s12z)

2

(ρ− s−1
22 s12z)

2 + 1− ρ2
. (32)

A contour plot of (32) against ρ and z gives a complete picture of how, within a given
meta analysis (i.e. for a given value of the slope parameter s12/s22) a study’s borrowing of
strength, defined in this way, depends on individual study characteristics.
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Figure 7 shows a contour plot of R(V −1) for s12/s22 = 0.660, the value of the slope
parameter found in the example in Section 3.2. Values of ρ are shown on the vertical axis,
values of z are shown using a log scale on the horizontal axis. The contour values are
labelled along the bottom and up the left hand side of the plot. The dashed line is the zero
contour when ρ = 0.660z: at these values there is no borrowing of strength. The contour
plot shows that R is large when either z is large (y1 less accurate than y2), or when z is small
(y1 more accurate than y2) and ρ is large (outcomes highly correlated). The smaller plotting
symbols 1−10 on Figure 7 show the values of (z, ρ) for the 10 studies in the example. Most
of the points are fairly close to the zero contour: for only 3 of these studies is R(V −1) > 0.1,
suggesting that E is close to 1, as found earlier. The plotting symbol X (in bold) indicates
the point (z, ρ) for a study with V = V̄ defined in (4). This point corresponds to the
harmonic mean of the ten points labeled 1− 10, and, as expected, lies on the zero contour
(no borrowing of strength). The interpretation of a study’s borrowing of strength as a
contrast between V and V̄ can be seen on the graph as the distance between the study’s
(z, ρ) point and the harmonic mean point X, measured in the direction orthogonal to the
contours in that region.

If one of the outcomes is missing, R(V −1) becomes R(V −1
∗ ) and so the point (z, ρ) lies

on the horizontal axis, to the extreme left if y2 is missing and to the extreme right if y1 is
missing, giving R(V −1

∗ ) = 0 and 1 respectively, as expected.

4 Borrowing of strength in multivariate meta-analysis

4.1 Decomposing the variance contribution of an individual study

This section looks at the generalization of section 3 to the multivariate case with p > 2.
Now the outcome estimates of the ith study are yi = (yi1, yi2) with yi2, the secondary
outcome estimates, a (p−1)×1 vector. When p = 2, all the formulae in this section reduce
to the corresponding expressions already seen in section 3.

In the multivariate case, we write Vi = Var(yi) as the partitioned matrix

Vi =

(
σ2
i σiρ

T
i Λi

σiΛiρi ΛiPiΛi

)
, (33)

where σ2
i is the variance of yi1 as before, ρi is the (p−1)×1 vector of correlation coefficients

between yi1 and yi2, Pi is the (p − 1) × (p − 1) correlation matrix of yi2, and Λi is the
(p− 1)× (p− 1) diagonal matrix of the standard deviations of the components of yi2.

To simplify the algebra for calculating matrix inverses, define

ai = ρTi P
−1
i ρi , bi = P−1

i ρi , Ci = P−1
i +

bib
T
i

1− ai
. (34)

Then, using a standard formula for the inverse of a partitioned matrix,

V −1
i =

1

1− ai

(
σ−2
i −σ−1

i bTi Λ
−1
i

−σ−1
i Λ−1

i bi (1− ai)Λ
−1
i CiΛ

−1
i

)
. (35)

Some of this notation can be interpreted in terms of a multiple regression of the primary
on the secondary outcome estimates within the ith study. The vector in the off-diagonal
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partition of (35) is proportional to the vector of regression coefficients, and σ2
i (1 − ai) is

the residual mean square. Thus ai can be interpreted as the multiple correlation (R2)
of this regression: ai = 0 means that the primary and secondary outcome estimates are
independent, ai = 1 means that they are exactly linearly related.

Adding (35) over the n studies gives

Ω−1 =
∑

V −1
i = n(V̄ )−1 =

(
s11 −sT12
−s12 S22

)
, (36)

where

s11 =
∑ σ−2

i

1− ai

S22 =
∑

Λ−1
i CiΛ

−1
i

s12 =
∑ σ−1

i Λ−1
i bi

1− ai
.

Thus the inverse of (36) is

Ω =
V̄

n
=

1

s11 − sT12S
−1
22 s12

(
1 sT12S

−1
22

S−1
22 s12 (s11 − sT12S

−1
22 s12)S

−1
22 + S−1

22 s12s
T
12S

−1
22

)
(37)

and so Var(β̂1) is

Ω11 =
1

s11 − sT12S
−1
22 s12

. (38)

As before, the components of Ω−1 in (36) are weighted sums of squares and products
of the precisions of the components of yi: σ−1

i for the primary outcome and the diagonal
elements of Λ−1

i for the secondary outcomes. The scalar s11 is the same as in the bivariate
case, S22 is the (p− 1)× (p− 1) matrix of weighted sums of squares and products for the
secondary outcome precisions, and s12 is the corresponding (p − 1) × 1 vector of weighted
sums of cross products between the primary and secondary precisions. When p = 2 these
formulae reduce to the corresponding quantities in Section 3, with the matrix S22 becoming
the scalar s22. In the bivariate case, the weights involved in these sums are also the same,
since when p = 2 the quantities defined in (34) reduce to the scalars

Pi = 1 , ai = ρ2i , bi = ρi , Ci =
1

1− ρ2i
, (39)

where ρi is now just the ordinary scalar correlation between the two outcome estimates in
the ith study.

From (35), (37) and (38), the total variance contribution of the ith study is

T (V −1
i ) =

1

s11 − sT12S
−1
22 s12

(1 sT12S
−1
22 )V

−1
i (1 sT12S

−1
22 )

T

= Ω11

(
σ−2
i

1− ai
− 2σ−1

i

fT
i bi

1− ai
+ fT

i Cifi

)
,
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where fi is the (p− 1)× 1 vector

fi = Λ−1
i S−1

22 s12 . (40)

As before,
T (σ−2

i llT ) = Ω11σ
−2
i ,

and so

B(V −1
i ) = T (V −1

i )− T (σ−2
i llT ) = Ω11

(
σ−2
i

ai
1− ai

− 2σ−1
i

fT
i bi

1− ai
+ fT

i Cifi

)
.

This is a quadratic function of σ−1
i , the accuracy of the primary outcome. Completing the

square gives

B(V −1
i ) = Ω11

{(
ai

1− ai

) 1
2

σ−1
i − fT

i bi

{ai(1− ai)}
1
2

}2

+ fT
i Cifi −

(fT
i bi)

2

ai(1− ai)

 . (41)

For a given meta-analysis s12 and S22 are fixed, and so the vector fi in (40) is just a linear
function of the diagonal elements of Λ−1

i , the accuracies of the secondary outcome estimates
in the ith study.

For a simpler notation for (41), we extend the ui and ûi notation in the bivariate case
to

ui = (
ai

1− ai
)
1
2σ−1

i , ûi =
fT
i bi

{ai(1− ai)}
1
2

= sT12S
−1
22

Λ−1
i bi

{ai(1− ai)}
1
2

. (42)

For a given meta-analysis (fixed values of s11, s12 and S22), ui is proportional to the accuracy
of the study’s primary outcome and vi is a scalar linear function of the accuracies of the
secondary outcomes. If we define

gi =
(fT

i bi)
2

aifTP−1
i fi

,

then, from (34),

fT
i Cifi = fT

i P
−1
i fi +

(fT
i bi)

2

1− ai
= û2

i

(
1− ai
gi

+ ai

)
,

from which we get

fT
i Cifi −

(fT
i bi)

2

ai(1− ai)
= fT

i Cifi − û2
i =

(1− ai)(1− gi)

gi
û2
i .

Thus (41) is

B(V −1
i ) = Ω11

{
(ui − ûi)

2 +
(1− ai)(1− gi)

gi
û2
i

}
, (43)

and so

T (V −1
i ) = Ω11

{
1− ai
ai

u2
i + (ui − ûi)

2 +
(1− ai)(1− gi)

gi
û2
i

}
. (44)
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Up to the scale factor Ω11 = Var(β̂1), (44) decomposes the total variance contribution of
the ith study into three non-negative parts, analogous to the main effects and interaction
of the two factors ui (proportional to the accuracy of the primary outcome) and ûi (a linear
function of the accuracies of the secondary outcomes). The three effects are

• the term in u2
i . This is

1− ai
ai

u2
i = σ−2

i ,

the direct contribution of the primary outcome of the ith study as in univariate meta-
analysis;

• the term in (ui − ûi)
2 as in bivariate meta-analysis, measuring the difference between

the actual accuracy of the primary outcome and, in some sense, what might be ex-
pected from the pattern of uis and ûis observed in the meta-analysis as a whole;

• the term in û2
i , the additional effect of the accuracies of the study’s secondary out-

comes. This is zero if gi = 1.

The borrowing of strength for the ith study is proportional to the sum of the second and
third terms of (44). The presence of the third term shows that there is a qualitative
difference in borrowing of strength properties between the multivariate and bivariate cases.
When p = 2, the quantities fi, bi and Pi are all scalars as in (39), and hence

gi =
(fT

i bi)
2

aifT
i P

−1
i fi

=
f 2
i b

2
i

aif 2
i P

−1
i

= 1 .

Thus, when p = 2, gi = 1 for all i and so the third term in (44) is zero.
To see the equivalence of the (ui − ûi)

2 term when p = 2, the quantity ûi in (44), when
expressed in the notation of Section 3.1, becomes

ûi =
s12

(1− ρ2i )
1
2 s22

ν−1
i ,

which is just the same as (24). Hence, in the bivariate case, the residual (ui− ûi) using the
definition in (42) is exactly the same as the residual (ui − ûi) defined earlier in (25). The
third term in (44) is still zero in the multivariate case if gi = 1, in which case the motivation
of ûi as a least squares prediction of ui continues to hold in the sense that

∑
uiûi/

∑
û2
i = 1.

4.2 Necessary and sufficient condition for no borrowing of strength

From B(V −1
i ) in (43), for there to be no borrowing of strength in the ith study we must

have two conditions: gi = 1 and ui = ûi. We can exclude the trivial case ai = 1 which would
mean there is an exact linear relationship between the ith study’s primary and secondary
outcome estimates.

For the first condition, gi = 1 if fi = kρi for any arbitrary scalar factor k. This is also
a necessary condition for gi = 1, as can be verified directly by using a Lagrange multiplier
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calculation to find the maximum value of gi for different values of fi. From (40) and (33),
this means that

Vi =

(
σ2
i k−1σis

T
12S

−1
22

k−1σiS
−1
22 s12 ΛiPiΛi

)
.

Comparing this with (37), the equivalent condition is that the covariance vector part of Vi

in (33) is a scalar multiple of the corresponding covariance vector part of Ω (or of V̄ ).
For the second condition, if fi = kρi then

ûi =
fT
i bi

{ai(1− ai)}
1
2

=
kρTi P

−1
i ρi

{ai(1− ai)}
1
2

= k

(
ai

1− ai

) 1
2

.

and so

(ui − ûi)
2 =

(
ai

1− ai

)
(σ−1

i − k)2 .

So if ui = ûi then k = σ−1
i . This extends the proportionality between the covariance vector

parts of Vi and Ω required for gi = 1 to also include the (1, 1) term. So the necessary and
sufficient condition for no borrowing of strength is that the first row (or first column) of Vi

must be a scalar multiple of the corresponding row or column of the harmonic mean matrix
V̄ . Thus the necessary and sufficient condition (29) in the bivariate case generalizes directly
to the multivariate case, where Vi12 and V̄12 are now the covariance vector components of
Vi and V̄ respectively.

Note that condition (29) gives no constraint on the size of the scalar multiple k involved,
and hence no constraint on the sample size of the trial. Both small and large trials may end
up giving no borrowing of strength, including studies with large correlations between the
primary and secondary outcomes. Note also that condition (29) imposes no constraint on
the (2, 2) partition of V in (33), i.e. on the distribution of the estimates for the secondary
outcomes per se.

We commented in Section 4.1 that the some of the components of V −1
i in (35) can be

interpreted in terms of a within-study multiple regression of yi1 on yi2. We can similarly
interpret (29) in terms of the regression the other way round, predicting the vector of
secondary outcome estimates y2i from the primary outcome estimate y1i. The vector of
regression coefficients for the ith study would then be Vi12/Vi11, which is just the left
side of (29). Hence the necessary and sufficient condition for the ith study to give no
borrowing of strength is that the within-study vector of regression coefficients for predicting
the secondary from the primary estimates is the same as the corresponding regression vector
for a study with the harmonic mean variance matrix V̄ .

5 Random effects models

The results in this paper depend on some important assumptions, most obviously the
assumption of a fixed effects model, that all studies are modelled by (1). This strong
assumption, that all the studies are estimating the same treatment effect β, is widely
discussed in the univariate meta-analysis literature. Jackson et al. (2017) follows a number
of other papers on multivariate meta-analysis by also including random effects models.
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These papers generalize the usual two-stage approach to univariate random effects meta-
analysis by first estimating a between-studies variance matrix Ψ by Ψ̂ and then using the
fixed effects model (1) with each Vi replaced by Vi + Ψ̂. Jackson et al. (2010) shows
how the familiar univariate DerSimonian-Laird (D-L) estimate (Der-Simonian and Laird,
1986) can be extended to the multivariate case, using the univariate D-L estimates for
each outcome taken individually, and analogous method-of-moments estimates for each
covariance component. Other methods of estimating Ψ have been discussed in several
recent papers (Chen et al., 2012; Jackson et al., 2013; Ma and Mazumdar, 2011).

The borrowing-of-strength quantities E and Bi = B(V −1
i ) discussed earlier are descrip-

tive measures of how much the multivariate estimation of β1 has been influenced by the
data on the secondary outcomes. In random effects models, the corresponding estimates Ê
and B̂i = B(V̂ −1

REi) calculated from the fitted marginal variance matrices V̂REi = Vi + Ψ̂ are
similarly descriptive measures of the role of the secondary outcomes within the fitted model.
The definition of E in (5) is only a valid measure of efficiency if the variances of the two
estimates being compared are based on a consistent model, which means that the diagonal
element of Ψ̂ for the primary outcome must be the same as the univariate random effects
variance estimate we would get if we fitted a univariate random effects meta-analysis model
to the data on the primary outcome alone. Only under this condition do we retain the same
interpretation of Ê and B̂i as discussed earlier for fixed effects models. In practice, D-L es-
timates are almost always used in univariate random effects meta-analysis, suggesting that
Ψ̂ should be estimated using a method-of-moments estimate which retains the univariate
D-L estimates as its diagonal elements. A slight modification to the truncation step in
Jackson et al. (2010) is needed to ensure that this is always the case, which for bivariate
meta-analysis (as in the example below) simply amounts to truncating the estimated ran-
dom effects correlation to its nearest value in the interval [−1, 1]. We can then retain the
same interpretation of Ê and B̂i as a direct comparison of the fitted variance of β̂1 using
all of the data with the fitted variance we would get from a univariate meta-analysis using
only the data on the primary outcomes. In this sense, the theory and interpretation of
borrowing of strength statistics for fixed effects models applies in exactly the same way to
random effects models, as implied by the discussion in Jackson et al. (2017, section 4).

As the variance matrices Vi are assumed known, the descriptive measures E and Bi

can also be given an inferential interpretation as estimates of the borrowing of strength
parameters of the true underlying model (1). However, applying this to random effects
models raises different issues, since now the marginal variance matrices V̂REi depend on Ψ̂
which can exhibit substantial sampling uncertainty if n is small (Guolo and Varin, 2017).
Arguably, Ψ̂ has a greater influence on Ê and on B̂i than it has on the more usual problem
of estimating β, since β̂ retains its unbiasedness property conditionally on all possible values
of Ψ̂. However, the example below suggests that Ê and B̂i can still provide useful estimates
of the borrowing of strength properties of the true underlying random effects model.

As a simple illustration in the bivariate case, suppose that the treatment effect estimates
in the example of Section 3.2 were in fact generated from the bivariate random effects model

yi ∼ N(β, Vi +Ψ) ; i = 1, 2, · · · , 10, (45)

with Ψ = αV̄ and α ≥ 0, where the Vis are as in Table 1 and V̄ is their harmonic mean as in
(4). Then by increasing α from 0 (the fixed effects model) we get increasing between-study
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heterogeneity. A small value of α means that the fixed effects model slightly underestimates
the variability of the yis, and the assumed form of Ψ means that the pattern of variances
remains reasonably similar to those observed in the data. We can then simulate vectors
yi from (45) and compare the borrowing of strength statistics calculated from the actual
marginal variance matrices VREi = Vi + αV̄ with the corresponding statistics calculated
from the estimated marginal variances V̂REi = Vi + Ψ̂. For the reason discussed above, we
calculate Ψ̂ using the slightly modified version of the method of Jackson et al. (2010) which
was mentioned earlier.

Table 2 describes the results of a small simulation study based on 1000 replications
for each of 5 values of α, ranging from α = 0 (fixed effects) to α = 2 (quite substantial
heterogeneity). We assume that the primary interest is the value of β2, the log hazard ratio
for the risk of stroke. The first row of Table 2 shows the actual efficiencies E based on VREi.
As expected, the entry 0.888 for α = 0 is just the fixed effects efficiency already quoted
in Section 3.2. Adding the same variance matrix to each Vi has the effect of reducing the
relative differences between them, which explains why the values of E tend to increase as α
increases. The estimated efficiencies Ê based on V̂REi vary randomly between simulations,
but their sample medians across the 1000 simulations, shown in the second row of the
table, also follow a similar pattern. We summarize the simulation results using medians
rather than means because of skewness caused by the truncation of D-L estimates. Section
2.1 has shown that the actual study-specific borrowing of strength components Bi always
add up to 1 − E and so when, in the random effects model, Ê is different from E we
cannot expect the corresponding estimated and true borrowing of strength components to
be exactly comparable. However, from a practical point of view, what we would hope to
see is that the studies which show the greatest (or least) borrowing of strength under the
estimated model are the same, or substantially the same, as the studies which give the
greatest (or least) borrowing of strength under the true model. For each simulation, the
extent to which this is so is measured by the rank correlation rc(B̂i, Bi). The third row of
Table 2 shows the sample medians of these rank correlations. These are satisfactorily high
(≥ 90%) for the smaller values of α but, as expected, tend to deteriorate slightly as the
heterogeneity increases.

6 Discussion

In most statistical problems, taking into account data on relevant covariates or confounders
leads to more accurate estimates and predictions, especially if the secondary variables are
closely correlated with the main variable of interest. However, this is not necessarily the
case in meta-analysis — multivariate meta-analysis can give little or no improvement over
univariate methods even if the secondary outcomes are closely correlated with the primary
outcome. By writing the borrowing of strength measure BoSSD

i1 proposed by Jackson et al.
(2017) as the explicit function B(V −1) in (11), and then evaluating some of this function’s
mathematical properties, we have tried to shed light on how and why individual study
characteristics may or may not lead to a useful role for secondary outcomes in multivariate
meta-analysis.

The paper has made a number of important assumptions. The fixed effects model (1)
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and its application to random effects models has been discussed in Section 5. We have
also assumed that, by replacing a within-study inverse variance V −1 by V −1

∗ in (17), the
fixed effects formulae continue to apply when one or more of the outcomes is missing.
This is only valid under the missing-at-random assumption, that the chance of an outcome
being unreported can be modeled as an independent chance mechanism conditional on
the outcome estimates which actually are observed. Acknowledging this assumption can
be crucially important in meta-analysis, where outcome reporting bias, for example when
several outcomes are measured but only those showing a statistically significant effect are
reported, is a common problem (Kirkham et al., 2010), although the simulations in Kirkham
et al. (2012) suggest that in some circumstances multivariate methods can be more robust
than univariate methods to departures from this assumption. Subjective assessments of
the risk of outcome reporting bias (Kirkham et al., 2010) can lead to useful univariate
bias corrections (Copas et al., 2013), and an extension to multivariate models may also be
possible.

The paper has also assumed that the Vis (or the V −1
∗i s ) are known, so that borrowing

of strength measures can be evaluated explicitly. Riley (2009) emphasizes the importance
of taking the within-study correlations into account, and discusses the problem when, in
practice, authors of research papers may only report estimates and standard errors for the
outcomes taken one at a time. In that case only the diagonal elements of Vi are provided
directly in study reports. If we can obtain full data (individual patient data) for such
studies, then consistent estimates of the within-study correlations can be calculated, but
in practice this may be difficult or impossible. Various approaches to dealing with this
issue have been suggested, such as sensitivity analyses that explore a variety of different
within-study correlations (Jackson et al., 2011). The special case of equal within-study
correlations (Section 3.3) can be a useful starting point. Wei and Higgins (2013) examine
ways in which it may be possible to estimate these correlations retrospectively from other
information that might be available. A partial approach is to note our finding that most
borrowing of strength comes from studies whose designs are most atypical of the studies as
a whole, and so by comparing the research methods used in the studies it may be possible
to at least roughly identify which studies might be worth following up. Concentrating on
trying to obtain further data for just some of these studies, and using the missing data
formula (17) for other studies, may give at least some indication of whether including
secondary outcomes in a multivariate model offers the potential to improve the estimate of
the primary treatment effect.

In practice the matrix Vi is calculated from the data in the ith study, and so the assump-
tion that the Vi’s are known is ignoring the sampling error in these variance estimates. Table
1 shows that the example in Section 3.2 is based on large sample sizes, but with smaller
samples the resulting inferences can underestimate uncertainty and be biased in cases where
the estimated variances are correlated with the values of the ys. In univariate meta-analysis
this bias is particularly noticeable in the Egger test for funnel plot symmetry (Egger et al.,
1997), as demonstrated in several simulation studies. Copas and Lozada-Can (2009) give
a general method for calculating bias corrections for such test statistics. Berkey (1995)
suggests a simpler way of eliminating bias, by smoothing the variance estimates across the
studies. Assuming that study variances are inversely proportional to study sample size,
and estimating the proportionality factor from the studies as a whole, essentially eliminates
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the correlation between the outcomes and their variances. Harbord et al. (2006) suggests
a similar idea. However, for estimating efficiency and borrowing of strength as discussed in
this paper, such considerations of bias are not directly relevant as E and B(V −1

i ) depend
only on the Vis and not on the actual values of the yis. If each estimated Vi is consistent
then so will be the estimates of the derived borrowing of strength quantities. It is important
to avoid any smoothing of the Vis so that they properly reflect the characteristics of each
individual study.

Acknowlegements

DJ, IRW and RDR are supported by funding from Medical Research Council grant
MR/J013595/1. DJ and IRW are also supported by funding from Medical Research Council
grants U105260558 and (for IRW) UU12023/21. We acknowledge helpful comments from
the referees of this paper.

References

Berkey, C. S., Hoaglin, D. C., Mosteller, F., and Colditz, G. A. (1995). A random-effects
regression model for meta-analysis. Statistics in Medicine, 14, 385-411.

Chen, H., Manning, A. K. and Dupuis, J. (2012). A method of moments estimate for
random effects multivariate meta analysis. Biometrics, 78, 1278-1284.

Copas, J. B., Dwan, K., Kirkham, J. J. and Williamson, P. R. (2013). A model-based
correction for outcome reporting bias in meta-analysis. Biostatistics, 15, 370-383.

Copas, J. B. and Lozada-Can, C. (2009). The radial plot in meta-analysis: approxima-
tions and applications. Applied Statistics, 58, 329-344.

DerSimonian, R and Laird, N (1986). Meta analysis in clinical trials. Controlled Clinical
Trials. 7, 177-188.

Egger, M., Smith, G. D., Schneider, M. and Minder, C. (1997). Bias in meta analysis
detected by a simple graphical test. Br. Med. J., 315, 629-634.

Fibrinogen Studies Collaboration (2009). Systematically missing confounders in individ-
ual participant data meta-analysis of observational cohort studies. Statistics in Medicine,
28, 1218-1237.

Guolo, A. and Varin, C. (2017) Random effects meta-analysis: the number of studies
does matter. Statistical Methods in Medical Research, 26, 1500-1518.

Harbord, R. M., Egger, M. and Sterne, J. A. C. (2006) A modified test for small study
effects in meta analysis of controlled trials with binary endpoints. Statistics in Medicine,
25, 3443-3457.

Jackson, D., White, I. R. and Thompson, S. G. (2010). Extending DerSimonian and
Laird’s methodology to perform multivariate random effects meta-analysis. Statistics in
Medicine, 29, 1282-1297.

Jackson, D., Riley, R, and White, I. R. (2011). Multivariate meta-analysis potential
and promise. Statistics in Medicine, 30, 2481-2498.

Jackson, D., White, I. R. and Riley, R. D. (2013). A matrix-based method of moments
for fitting the multivariate random effects model for meta-analysis and meta-regression.
Biometrical Journal, 55, 231-245.

25



Jackson, D., White, I. R., Price, M., Copas, J. B. and Riley, R. D. (2017). Borrowing of
strength and study weights in multivariate and network meta-analysis. Statistical Methods
in Medical Research, in press.

Kirkham, J. J., Dwan, K., Dodd, S.,Altmann, D. G., Smyth, R., Jacoby, A., Gamble,
C. and Williamson, P. R. (2010). The impact of outcome reporting bias in randomized
controlled trials on a cohort of systematic reviews. British Med. J., 340, c365.

Kirkham, J. J., Riley, R. D. and Williamson, P. R. (2012). A multivariate meta-analysis
approach for reducing the impact of outcome reporting bias in systematic reviews. Statistics
in Medicine, 31, 2179-2195.

Ma Y. and Mazumdar, M. (2011). Multivariate meta-analysis: a robust approach based
on the theory of U -statistics. Statistics in Medicine, 30, 2911-2929.

Riley, R. D. (2009). Multivariate meta-analysis: the effect of ignoring within-study
correlation. J. Roy. Statist. Soc., A, 172, 789-811.

Riley, R.D., Price, M.J., Jackson, D., Wardle, M., Gueyffier, F., Wang, J., Staessen, J.A.
and White, I.R. (2015). Multivariate meta-analysis using individual patient data. Research
Synthesis Methods, 6, 157-174.

Simel, D. L. and Bossuy, P. M. M. (2009). Differences between univariate and bivariate
models for summarizing diagnostic accuracy may not be large. J. Clinical Epidemiology,
62, 1292-1300.

Sohn, S. Y. (2000). Multivariate meta-analysis with potentially correlated marketing
study results. Naval Research Logistics, 47, 500-510.

Trikalinos, T. A., Hoaglin, D. C. and Schmid, C. H. (2014). An empirical assessment of
univariate and multivariate meta-analysis for categorical outcomes. Statistics in Medicine,
33, 1441-1459.

Wang, J. G., Staessen, J. A., Franklin, S. S., Fagard, R. and Gueyffier, F. (2005).
Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome.
Hypertension, 45, 907-913.

Wei, Y. and Higgins, J. P. (2013). Estimating within-study covariances in multivariate
meta-analysis with multiple outcomes. Statistics in Medicine, 32, 1191-1205.

26



Study 1 2 3 4 5 6 7 8 9 10 total
Sample size 1530 349 172 4798 6991 2651 4736 268 2391 4695 28581

σ 0.41 0.36 0.45 0.17 0.17 0.14 0.14 1.08 0.30 0.17
ν 1.08 0.41 0.59 0.26 0.33 0.17 0.14 0.91 0.20 0.17
ρ 0.16 0.64 0.10 0.52 0.42 0.62 0.69 0.35 0.78 0.62

100T (V −1)% 2.5 3.3 2.5 14.4 14.3 21.6 21.4 0.4 5.3 14.3 100.0
100B(V −1)% 0.02 0.02 0.34 0.15 0.10 0.23 0.04 0.08 0.53 0.04 1.55

Table 1: Sample sizes, values of (σ, ν, ρ), and percentage values of T (V −1
i ) and B(V −1

i ) for
estimating β1 in the example.

α 0 0.5 1 1.5 2
True efficiency ERE 0.888 0.932 0.948 0.957 0.961

Median ÊRE 0.903 0.928 0.945 0.947 0.954

Median rc(BoSi, B̂oSi) 0.927 0.903 0.891 0.867 0.842

Table 2: Simulation of a random effects variant of the example for estimating β2, com-
paring the estimated efficiency and BoS for the fitted random effects model with their
corresponding true values. Increasing values of α indicate increasing heterogeneity.
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Figure 1: Graph illustrating the raw data for the example. The plotted points and horizontal
line segments show the within-study estimates and 95% confidence intervals for the hazard
ratios for CVD and for stroke within each of the ten trials, plotted against within-study
correlation.
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Figure 2: Borrowing of strength plot for estimating β1 (E = 0.984)

28



1

2

3

4

5

6

7

8

9

w_hat

w

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

10

Figure 3: Borrowing of strength plot for estimating β2 (E = 0.888)
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Figure 4: Study values of T (multivariate variance contribution, solid line) and T − B
(univariate variance contribution, dashed line) for estimating β2 (E = 0.888)
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Figure 5: Borrowing of strength plot for estimating β1 with missing outcomes (E = 0.815)
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Figure 6: Study values of T (multivariate variance contribution, solid line) and T − B
(univariate variance contribution, dashed line) for estimating β1 with missing outcomes
(E = 0.815)
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Figure 7: Contour plot of R(V −1) for estimating β1 (E = 0.984). The points labelled
1-10 show the values of (z, ρ) for the studies in the example. The point X indicates the
corresponding point for matrix V̄
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