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Abstract.A two-dimensional model describing the equilibrium state of a cracked

inhomogeneous body with a rigid circular inclusion is investigated. The body

is assumed to have a crack that reaches the boundary of the rigid inclusion.

We assume that the Signorini condition, ensuring non-penetration of the crack

faces, is satisfied. We analyze the dependence of solutions on the radius of rigid

inclusion. The existence of a solution of the optimal control problem is proven.

For this problem, a cost functional is defined by an arbitrary continuous func-

tional, with the radius of inclusion chosen as the control parameter.
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1. Introduction

The problems related to deformation of composites containing both cracks

and inclusions are subject of considerable scientific interest which is caused by

growing trends in the applications of composites [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16]. In particular, general representations of the solutions

for a radial crack near a single and midway between two rigid inclusions are

given in the paper [17]. Note that derivation of expressions was carried out

under the assumption that the appropriate shear stresses on the crack faces

are equal to zero. The plane problems for a cracked body with a rectilinear

crack located midway between two circular elastic or rigid grains (inclusions)

are investigated in [18]. The effect of a rigid elliptical inclusion on a straight

crack was discussed in [19]. The interaction between an elliptical inclusion and
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a crack is analyzed in [20, 21]. For a more detailed review of studies related

to the crack-inhomogeneity interaction, the interested reader can refer to the

papers [22, 23].

It is well known that imposing of linear boundary conditions on the

crack may lead to physical inconsistency of mathematical models since mu-

tual penetration of the crack faces may happen [18, 24]. In recent years, a

crack theory with non-penetration conditions has been under active study

[25, 26, 27, 28, 29, 30]. This approach to solving crack problems is character-

ized by inequality type boundary conditions at the crack faces, is indeed what

we employ in the present paper. Within this approach, various problems for

bodies with rigid inclusions has been successfully formulated and investigated

using variational methods, see for example [9, 25, 27, 31, 32, 33, 34]. In con-

trast to a previous study of an optimal control problem for a two-dimensional

elastic body with a rigid delaminated inclusion, as considered in [31], we sup-

pose that crack curve touches the inclusion’s boundary only at the crack’s tip.

This means that displacements on the crack’s faces are not required to have

a prescribed structure of infinitesimal rigid displacements. Another difference

between the problems that have been considered in [31] is that in the present

work a family of rigid inclusions have not a fixed common boundary curve.

The optimal control problem analyzed in this paper consists in the best choice

of the radius r∗ ∈ [r0, R] of the circular rigid inclusion. A cost functional is

defined using an arbitrary continuous functional in the Sobolev space. The

existence of the solution to the optimal control problem is proved. In addition,

for a family of variational problems describing equilibrium of cracked bodies

with inclusions of different radiuses r ∈ [r0, R], we prove the continuous de-

pendence of the solutions with respect to the parameter r. The limit case of

the control parameter r0 → 0 implies the change of topology, and it should

be described by topological control, see e.g. [16] and the example of a circular

hole at the tip of a crack in [35].

2. Family of equilibrium problems

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ ∈ C1,1. We

consider the family of open balls {ωr} of radius r ∈ [r0, R] such that

a) ωr′ ⊂ ωr′′ for all r
′, r′′ ∈ [r0, R]: r′ ≤ r′′;

b) ω̄R ⊂ Ω;

c) the circles ∂ωr, r ∈ [r0, R], enclosing the balls ωr intersect at a single

point P with coordinate xp = (x1p, x2p) (see Fig. 1).
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We consider a smooth curve γ ⊂ Ω that is without any self-intersections

and has the following properties: γ̄ ⊂ Ω, exactly one endpoint of γ coincides

with P and has a non-zero angle with ∂ωR.

Fig. 1.

We assume that γ can be extended in such a way that this extension crosses Γ

at two points, and Ω is divided into two subdomains Ω1 and Ω2 with Lipschitz

boundaries ∂Ω1, ∂Ω2 and meas(Γ ∩ ∂Ωi) > 0, i = 1, 2. This condition is

sufficient for Korn’s inequality to hold in the non-Lipschitz domain Ωγ = Ω\γ̄.
We denote by W = (w1, w2) the displacement vector and also introduce the

Sobolev spaces

H1,0(Ωγ) = {v ∈ H1(Ωγ) | v = 0 on Γ}, H(Ωγ) = H1,0(Ωγ)
2.

The tensors describing the deformation of the elastic part of the inhomoge-

neous body may be introduced through

εij(W ) =
1

2
(wi,j + wj,i), i, j = 1, 2,

σij(W ) = cijklεij(W ), i, j = 1, 2,

where cijkl is the associated elasticity tensor, assumed as usual to be symmetric

and positive definite, implying that

cijkl = cklij = cjikl, i, j, k, l = 1, 2, cijkl = const.,

cijklξijξkl ≥ c0|ξ|2, ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const., c0 > 0.

By virtue of the the assumption concerning the domain Ωγ , Korn’s inequality

may be assumed to hold in the form∫
Ωγ

σij(W )εij(W )dx ≥ c∥W∥2H(Ωγ)
∀W ∈ H(Ωγ), (1)

with the constant c > 0 independent of W , see [24, 36].

Remark 1. The inequality (1) yields the equivalence of the standard norm

in H(Ωγ) and the semi-norm determined by the left-hand side of (1).
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In order to formulate a mathematical model, we fix the parameter r ∈
[r0, R] and suppose that the ball ωr models the rigid inclusion, with the domain

Ωγ\ωr corresponding to the elastic part of the body. To be precise, we have

in mind that the rigid inclusion allows only a displacement W |ωr = ρ within

the space, R(ωr), of infinitesimal rigid displacements on ωr, where

R(ωr) = {ρ = (ρ1, ρ2) | ρ(x) = b(x2,−x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ ωr},

see [15]. We further suppose that the curve γ reaches the inclusion’s boundary

at the point P and describes a crack in the undeformed state of the body.

The condition of mutual non-penetration of opposite faces of the crack is

given in [29] and takes the form

[W ]ν ≥ 0 on γ,

where ν = (ν1, ν2) is a unit normal to γ, [v] = v|γ+ − v|γ− is the jump of

a function v on γ. A zero Dirichlet boundary condition is imposed on the

external boundary Γ. We now introduce the energy functional

Π(W,Ωγ) =
1

2

∫
Ωγ

σij(W )εij(W )dx−
∫
Ωγ

FWdx, (2)

where F = (f1, f2) ∈ L2(Ωγ)
2 is the vector of prescribed exterior forces. The

equilibrium problem of the cracked body may be formulated as the following

minimization problem

Find Ur ∈ Kr, such that Π(Ur,Ωγ) = inf
W∈Kr

Π(W,Ωγ), (3)

where

Kr = {W ∈ H(Ωγ) | [W ]ν ≥ 0 on γ, W |ωr = ρ, where ρ ∈ R(ωr)}.

In [15] it has been established that the problem (3) is known to have a unique

solution, Ur ∈ Kr; a solution which satisfies the variational inequality [15]

Ur ∈ Kr,

∫
Ωγ

σij(Ur)εij(W − Ur)dx ≥
∫
Ωγ

F (W − Ur)dx ∀W ∈ Kr. (4)

3. Optimal control problem

We define the cost functional J : [r0, R] → R of an optimal control problem

through use of the equality J(r) = G(Ur), where Ur is the solution of the prob-

lem (3) and G(χ) : H(Ωγ) → R is an arbitrary continuous functional, which is

continuous in strong topology. As examples of such physically motivated func-

tionals, we provide the following. The functional G1(W ) = ∥W − W0∥H(Ωγ)
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characterizes the deviation of the displacement vector from a given vector

function W0. A further functional

G2(W ) =

∫
Ωγ

{1

2
ζ,1 σij(W )εij(W )− σij(W )wi,1ζ,j

}
−

−
∫
Ωγ

(ζfi),1wi,1, ζ ∈ C∞
0 (Ω), (5)

is essentially a derivative of a potential energy functional with respect to the

perturbation parameter of a rectilinear crack in the direction x1, further details

may be found in [29].

Consider the optimal control problem:

Find r∗ ∈ [r0, R] such that J(r∗) = sup
r∈[r0,R]

J(r). (6)

Theorem 1.There exists a solution of the optimal control problem (6).

Proof. Let {rn} be a maximizing sequence. By virtue of the boundedness

of the segment [r0, R], we can extract a convergent subsequence {rnk
} ⊂ {rn}

such that

rnk
→ r∗ as k → ∞, r∗ ∈ [r0, R].

Without loss of generality, we assume that for sufficiently large k it holds

rnk
̸= r∗. If this were not the case, there would exist a sequence {rnl

} such

that rnl
≡ r∗, and therefore J(r∗) is solution of (6). Consider the case of the

subsequence {rnk
} satisfying rnk

̸= r∗ for sufficiently large k. Now we take into

account Lemma 2, proved below: the solutions Uk of (3), corresponding to the

parameters rnk
, converge to the solution Ur∗ strongly in H(Ωγ) as k → ∞.

This allows us to obtain convergence

J(rnk
) → J(r∗),

indicating that

J(r∗) = sup
r∈[r0,R]

J(r).

The theorem is proved.

4. Auxiliary lemmas

Now we have to justify some auxiliary lemmas which had to used within the

proof of the above theorem. In establishing the proof, we needed Lemma 2;

however before proceeding further we prove the following lemma.

Lemma 1. Let r∗ ∈ [r0, R) be a fixed real number and let {rn} ⊂ [r∗, R] be

a sequence of real numbers converging to r∗ as n → ∞. Then for an arbitrary
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function W ∈ Kr∗ there exist a subsequence {rk} = {rnk
} ⊂ {rn} and a

sequence of functions {Wk} such that Wk ∈ Krk , k ∈ N and Wk → W weakly

in H(Ωγ) as k → ∞.

Proof. First note that if there exists a subsequence {rnk
} such that

rnk
= r∗, then the assertion of the lemma holds for Wk ≡ W , k ∈ N. Therefore,

below we assume that rn > r∗ for sufficiently large n. Denote by ρ∗ = W =

(b∗x2 + c∗1,−b∗x1 + c∗2) the function describing the structure of W in ωr∗ . We

extend the definition of ρ∗ to the whole domain Ω by the equality:

ρ∗ = (b∗x2 + c∗1,−b∗x1 + c∗2), x ∈ Ω.

It is now necessary to fix an arbitrary value r ∈ (r0, R] and consider the

following family of auxiliary problems:

Find an element Wr ∈ Kr such that p(Wr) = inf
χ∈K′

r

p(χ), (7)

where p(χ) =
∫
Ωγ

σij(χ−W )εij(χ−W )dx,

K ′
r = {χ ∈ H(Ωγ) | χ = W on γ±, χ|ωr = ρ∗}.

It is easy to see that the functional p(χ) is coercive and weakly lower semi-

continuous on the space H(Ωγ). It can be verified that the set K ′
t is convex and

closed in H(Ωγ). These properties provide the existence of a unique solution

Wr of the problem (7), see [24]. The solution is characterized equivalently by

the variational inequality

Wr ∈ K ′
r,

∫
Ωγ

σij(Wr −W )εij(χ−Wr)dx ≥ 0 ∀χ ∈ K ′
r. (8)

Note that the solution WR of (8) for r = R belongs to the set K ′
r with r′ ∈

(r0, R]. Substituting WR as test functions into (8), it is possible to establish

∀r ∈ (r0, R] that∫
Ωγ

σij(Wr −W )εij(WR)dx+

∫
Ωγ

σij(W )εij(Wr)dx ≥
∫
Ωγ

σij(Wr)εij(Wr)dx.

Using Korn’s inequality, we obtain from this relation the following uniform

upper bound:

∥Wr∥ ≤ c ∀r ∈ (r0, R].

It is therefore possible to extract from the sequence {Wrn} a subsequence

{Wk}, defined by equalities Wk = Wrnk
, k ∈ N (note that henceforth we define

a sequence {rk} by the equality rk = rnk
), with {Wk} weakly converging to

some function W̃ in H(Ωγ).
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It is now necessary to show that W̃ = W . By construction, (Wk −
W ) ∈ H1

0 (Ωγ\ωr∗)
2 and consequently, bearing in mind the weak closeness

of H1
0 (Ωγ\ωr∗)

2, we have (W̃ − W ) ∈ H1
0 (Ωγ\ωr∗)

2. Now consider functions

of the form χ±
k = Wk ± α, where α is the function defined by zero extension

of some arbitrary function α̃ ∈ C∞
0 (Ωγ\ωt∗)

2 into Ωγ . One can observe that

χ±
k ∈ K ′

rk
holds for sufficiently large k. It is now possible to substitute the

elements of these sequences, χ+
k and χ−

k , as test functions into the inequalities

(8), revealing that

Wk ∈ K ′
rk
,

∫
Ωγ

σij(Wk −W )εij(α)dx = 0. (9)

The function α is now fixed and by passing to the limit in (9) it is established

that∫
Ωγ

σij(W̃−W )εij(α)dx =

∫
Ωγ\ωr∗

σij(W̃−W )εij(α)dx = 0 ∀α ∈ C∞
0 (Ωγ\ωr∗)

2.

Hence, by consideration of the density of C∞
0 (Ωγ\ωr∗) in H1

0 (Ωγ\ωr∗), it is

inferred that W̃−W = 0 inH1
0 (Ωγ\ωr∗)

2. Finally, by construction, the equality

W̃ = W is satisfied in ωr∗ ; in consequence W̃ = W in H(Ωγ) and we conclude

that there is a sequence {Wk} such that Wk ∈ Krk , k ∈ N and Wk → W

weakly in H(Ωγ) as k → ∞. The Lemma is thus proved. We are now in a

position to prove an auxiliary statement (Lemma 2) which was used in the

proof of the Theorem 1.

Lemma 2. Let r∗ ∈ [r0, R] be a fixed real number. Then Ur → Ur∗ strongly

in H(Ωγ) as r → r∗, where Ur, Ur∗ are the solutions of (3), corresponding to

parameters r ∈ (r0, R], r∗ ∈ [r0, R].

Proof. The proof of this lemma will be established by contradiction. To

begin we assume that there exists a number ϵ0 > 0 and a sequence {rn} ⊂
(r0, R] such that rn → r∗, ∥Un − Ur∗∥ ≥ ϵ0, where Un = Urn , n ∈ N are the

solutions of (3), corresponding to rn.

In view of the fact that W 0 ≡ 0 ∈ Kr for all r ∈ [r0, R], we can substitute

W = W 0 in (4) for fixed r ∈ (r0, R], yielding

Ur ∈ Kr,

∫
Ωγ

σij(Ur)εij(Ur)dx ≤
∫
Ωγ

FUrdx ∀ r ∈ [r0, R],

from which we conclude that for all r ∈ [r0, R] the following estimate holds

∥Ur∥ ≤ c,
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for some constant c > 0 independent of r. Consequently, replacing Un by its

subsequence if necessary, we can assume that

Un → Ũ weakly in H(Ωγ) as n → ∞. (10)

We will now show that Ũ ∈ Kr∗ . We first note that Un|ωrn
= ρn ∈ R(ωrn)

and that, in accordance with Sobolev’s embedding theorem [24], we deduce

that

Un|ωr∗ → Ũ |ωr∗ strongly in L2(ωr∗)
2 as n → ∞, (11)

Un|γ → Ũ |γ strongly in L2(γ)
2 as n → ∞. (12)

Choosing a subsequence, if necessary, we assume that as n → ∞ it holds

Un → Ũ a.e. on ωr∗ . This allows us to conclude that each of the numerical

sequences {bn}, {cn1}, {cn2}, defining the structure of ρn on ωrn , is bounded in

its absolute value. Thus, we can extract subsequences (retain notation) such

that

bn → b, cni → ci, i = 1, 2, as n → ∞.

We note that for the sequence {rn} there must exist either a subsequence

{rk} ⊂ {rn} converging to r∗ from the left or, if that is not the case, a subse-

quence {rk} ⊂ {rn} such that rk ≥ r∗ for all k ∈ N.

If a subsequence {rk} ⊂ {rn}, with rk ≥ r∗ for all k ∈ N, exists then the

following strong convergence

Uk|ωr∗ → (bx2 + c1,−bx1 + c2), (13)

in L2(ωr∗)
2 as k → ∞, can readily be obtained. Thus, from a combination

of (11) and (13) it follows that the inclusion Ũ |ωr∗ ∈ R(ωr∗) must hold. Let

us now consider the case of the subsequence {rk} ⊂ {rn} converging to r∗

from the left, i.e. rk < r∗ for all k ∈ N and rk → r∗ as k → ∞. Under this

assumption, for fixed k′ ∈ N and the corresponding value r′ = rk′ , we have

Uk|ωr′ → (bx2 + c1,−bx1 + c2) (14)

strongly in L2(ωr′)
2 as k → ∞. It is possible to define a function L = bx2 + c1

in ωr∗ and, because of (14), u1k → L strongly in L2(ωr′) as k → ∞. In view of

the absolute continuity of the Lebesgue integral, for any ϵ > 0 we can choose

a number k′ ∈ N large enough such that

∥L∥L2(ωr∗\ωr′ )
<

√
ϵ, ∥ũ1∥L2(ωr∗\ωr′ )

<
√
ϵ,
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where the value r′ = rk′ coincides with k′. Furthermore, using twice the tri-

angle inequality, it follows that

∥u1k − L∥L2(ωr∗\ωr′ )
≤ ∥u1k∥L2(ωr∗\ωr′ )

+ ∥L∥L2(ωr∗\ωr′ )
≤

≤ ∥ũ1∥L2(ωr∗\ωr′ )
+ ∥u1k − ũ1∥L2(ωr∗\ωr′ )

+ ∥L∥L2(ωr∗\ωr′ )
<

< 2
√
ϵ+ ∥u1k − ũ1∥L2(ωr∗ )

.

Consequently, it is established that

∥u1k − L∥2L2(ωr∗ )
= ∥u1k − L∥2L2(ωr∗\ωr′ )

+ ∥u1k − L∥2L2(ωr′ )

< (2
√
ϵ+ ∥u1k − ũ1∥L2(ωr∗ )

)2 + ∥u1k − L∥2L2(ωr′ )
. (15)

It is now noted that for sufficiently large k, the following estimates may be

established

∥u1k − ũ1∥L2(ωr∗ )
<

√
ϵ, ∥u1k − L∥L2(ωr′ )

<
√
ϵ

allowing us to deduce that (15) is less than 10ϵ and thus u1k → L strongly in

L2(ωr∗). Finally, based on the convergence (11), we deduce ũ1|ωr∗ = L in ωr∗ .

Analogously, we can derive

ũ2|ωr∗ = −bx1 + c2 a.e. in ωr∗ ,

whence the inclusion Ũ |ωr∗ ∈ R(ωr∗) holds. As a result, in all possible cases we

have Ũ |ωr∗ ∈ R(ωr∗). It now remains to show that Ũ satisfies the inequality

[Ũ ]ν ≥ 0 on γ. Bearing in mind the convergence (12), we can once again

extract a subsequence satisfying Un|γ → Ũ |γ a.e. on γ±. This allows us to pass

to the limit through the following inequality

[Un]ν ≥ 0 on γ.

This leads to [Ũ ]ν ≥ 0 on γ; therefore we have established that the inclusion

Ũ ∈ Kr∗ .

Our next goals are to prove that Ũ = Ur∗ and establish the existence of

a sequence Un = Urn , n = 1, 2... of solutions strongly converging to Ur∗ in

H(Ωγ). Observe that, as rn → r∗, there must exist either a subsequence {rnl
}

such that rnl
≤ r∗ for all l ∈ N or, if that is not the case, a subsequence

{rnm}, rnm > r∗ for all m ∈ N. For this first case, we have the subsequence

{rnl
} ⊂ (r0, R] with the property rnl

≤ r∗ for all l ∈ N. For convenience, we

denote this subsequence by {rn}. Since rn ≤ r∗, it is noted that an arbitrary

test function W ∈ Kr∗ also belongs to the set Krn . Consequently, it is possible
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to pass to the limit as n → ∞ through the following inequalities with the test

functions W ∈ Kr∗ :

Un ∈ Krn ,

∫
Ωγ

σij(Un)εij(W − Un)dx ≥
∫
Ωγ

F (W − Un)dx, rn ∈ (r0, r
∗].

Now taking into account the weak convergence of Un to Ũ in H(Ωγ), the

limiting inequality takes the form∫
Ωγ

σij(Ũ)εij(W − Ũ)dx ≥
∫
Ωγ

F (W − Ũ)dx ∀W ∈ Kr∗ .

Due to the arbitrariness of W ∈ Kr∗ the last inequality is variational. Unique-

ness of its solution yields the equality Ũ = Ur∗ . To complete the proof for the

first case, we must establish the strong convergence Un → Ur∗ . By substituting

W = 2Ur and W = 0 into the variational inequalities (4) for r ∈ (r0, R], we

establish that

Ur ∈ Kr,

∫
Ωγ

σij(Ur)εij(Ur)dx =

∫
Ωγ

FUrdx ∀ r ∈ (r0, R]. (16)

In view of (4), the following relations may be established

Ur ∈ Kr,

∫
Ωγ

σij(Ur)εij(W )dx ≥
∫
Ωγ

FWdx ∀W ∈ Kr (17)

which hold for all r ∈ (r0, R]. The equalities (16), together with the weak

convergence Un → Ur∗ in H(Ωγ) as n → ∞, imply that

lim
n→∞

∫
Ωγ

σij(Un)εij(Un)dx = lim
n→∞

∫
Ωγ

FUndx =

∫
Ωγ

FUr∗dx =

∫
Ωγ

σij(Ur∗)εij(Ur∗)dx.

Since we have the equivalence of norms (see Remark 1 in Section 2), one can

see that Un → Ur∗ strongly in H(Ωγ) as n → ∞. Thus, in the first case we

have obtained a contradiction to the assumption: ∥Un−Ur∗∥ ≥ ϵ for all n ∈ N.

The second case is now considered. For convenience we keep the same

notation for the subsequence. In doing so, we have rn → r∗ and rn > r∗. Let

us recall that by (10), we have Un → Ũ weakly in H(Ωγ) as n → ∞. We will

in fact prove that Un → Ũ strongly in H(Ωγ) as n → ∞. In view of the weak

convergence Un → Ũ in H(Ωγ) as n → ∞, the first relation in (16) may be

used to show that

lim
n→∞

∫
Ωγ

σij(Un)εij(Un)dx =

∫
Ωγ

FŨdx. (18)
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Next, substituting W = Ur′ ∈ Kr′ ⊂ Kr, for arbitrary fixed numbers

r, r′ ∈ (r0, R] such that r′ ≥ r, in (17) as a test function, we arrive at the

inequality ∫
Ωγ

σij(Ur)εij(Ur′)dx ≥
∫
Ωγ

FUr′dx.

We therefore conclude that for all rn and rm satisfying rn ≤ rm the following

inequality is fulfilled ∫
Ωγ

σij(Un)εij(Um)dx ≥
∫
Ωγ

FUmdx. (19)

If we fix an arbitrary value m in (19) and pass to the limit in the last relation

as n → ∞ it may be shown that∫
Ωγ

σij(Ũ)εij(Um)dx ≥
∫
Ωγ

FUmdx. (20)

Passing to the limit in (20) as m → ∞, confirms∫
Ωγ

σij(Ũ)εij(Ũ)dx ≥
∫
Ωγ

FŨdx.

This inequality, the formula (18) and the weak lower semicontinuity of the

bilinear form defined by the integral
∫
Ωγ

σij(·)εij(·)dx yield the following chain

of relations∫
Ωγ

σij(Ũ)εij(Ũ)dx ≥
∫
Ωγ

FŨdx = lim
n→∞

∫
Ωγ

σij(Un)εij(Un)dx ≥
∫
Ωγ

σij(Ũ)εij(Ũ)dx,

indicating that ∫
Ωγ

σij(Ũ)εij(Ũ)dx = lim
n→∞

∫
Ωγ

σij(Un)εij(Un)dx.

Again, by the equivalence of norms (see Remark 1 in Section 2) that Un → Ũ

strongly in H(Ωγ) as n → ∞.

Now, let us prove that Ũ = Ur∗ . For this purpose we will analyze the

variational inequality (4) and its limiting case. We can now apply the assertion

of Lemma 1 to justify a passage to a limit in the variational inequalities. From

Lemma 1, for any W ∈ Kr∗ there exist a subsequence {rk} = {rnk
} ⊂ {rn}

and a sequence of functions {Wk} such that Wk ∈ Krk and Wk → W weakly

in H(Ωγ) as k → ∞.
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The properties established above for the convergent sequences {Wk} and

{Un} allow us to pass to the limit as k → ∞ through following inequalities,

derived from (4) for rk and with the test functions Wk:∫
Ωγ

σij(Uk)εij(Wk − Uk)dx ≥
∫
Ωγ

F (Wk − Uk)dx.

As a result, we have∫
Ωγ

σij(Ũ)εij(W − Ũ)dx ≥
∫
Ωγ

F (W − Ũ)dx ∀ W ∈ Kr∗ .

The unique solvability of this variational inequality implies that Ũ = Ur∗ .

Therefore, in either case, there exist a subsequence {rnk
} ⊂ {rn} such

that rk → r∗, Uk → Ur∗ strongly in H(Ωγ), which is a contradiction. The

Lemma is thus proved.

5. Conclusion

In this paper, we have analyzed a family of variational problems describing

equilibrium of cracked bodies with inclusions of different radii r ∈ [r0, R]. The

existence of the solution to the optimal control problem (6) is proved. For this

problem, the cost functional J(r) is defined by an arbitrary continuous func-

tional, with r the control parameter. Lemmas 1 and 2 establish a qualitative

connection between the equilibrium problems for bodies with rigid circular

inclusions of varying radii. This lemmas allow us to prove the strong conver-

gence Ur → Ur∗ in the Sobolev space H(Ωγ), where {Ur} are the solutions of

(3) depending on the radius r.

The mathematical technique developed in the present work may be ap-

plied for another types of inhomogeneous bodies. For example, analogous prob-

lems for a three-dimensional elastic body may be investigated, as could the

Reissner-Mindlin plate as well as Kirchhoff-Love plate reinforced by rigid in-

clusions. Within the theoretical framework of developed methodology, various

cases of different rigid inclusion shapes could also be considered.
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