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Abstract—This work proposes a method which enables usSince the feature spad# can be very high or possibly infinite

to perform kernel Fisher discriminant analysis in the whole dimensional and the orthogonality needs to be characterized

eigenspace for face recognition. It employs the ratio of eigenvalueﬁq such a space, it is reasonable to vidivas a Hilbert

to decompose the entire kernel feature space into two subspaces:

a reliable subspace spanned mainly by the facial variationoPace. It is difficult to compute the dot products in the high

and an unreliable subspace due to finite number of trainingdimensional feature spacH. Instead of mapping the data
samples. Eigenvectors are then scaled using a suitable weightingxplicitly, the feature space can be computed by using the
function. This weighting function circumvents undue scaling kernel trick, in which the inner productb(X;), ®(X;)) in

of projection vectors CO(responding to the undependable smaﬁﬂ can be replaced with a kernel functidd(X;, X,), where
and zero eigenvalues. Eigenfeatures are only extracted after th N

discriminant evaluation in the whole kernel feature space. These?((XivXj) = <‘I’(Xi)gq’(Xj).> = ‘I)(Xi)T'(I’(Xj) andXiv.Xj
efforts facilitate a discriminative and stable low-dimensional@re sample vectors in the image sp&@ce So, the nonlinear
feature representation of the face image. Experimental resultsmapping® can be performed implicitly in image spadé&
comparing other popular kernel subspace methods on F.ERET 7], [8]. Numerous studies [4], [9], [10] demonstrate that
ORL and GT databases show that our approach consistently,ese kernel based approaches are very effective in many real-
outperforms others. S . :
world applications. However, the basic subspace analysis has
Keywords - Face recognition, kernel Fisher discriminant analysigtill outstanding challenging problems when applied to the
feature extraction, subspace methods face recognition due to the high dimensionality of the face
image and the finite number of training samples in practice.
Although, in this work, we take advantages from the nonlin-
How the mammalian brain solves the problem of visuaar mapping, it does not explore the optimization of kernel
recognition has been a topic of study since the early daympping functions or any of its parameters. Nevertheless,
of brain science. Psychological experiments on human beintgsoughout this paper, we assume a popular nonlinear mapping
have shown that faces are recognized more holistically thimction with its parameters fixed for all the experiments and
other kinds of objects (e.g. houses, inverted faces, scrambjeform our proposed algorithm in this nonlinearly mapped
faces). Recently, there has been a growing interest in tleature space.
holistic/appearance based approaches for face recognitiorOver the last decade KFDA and its numerous variations
These appearance based approaches, in general, use statisiége@ been applied in face recognition to solve the expression,
estimates for creating subspaces, which are utilized in syisse and illumination problems [2], [6], [10]. Liet al[11]
sequent face recognition. Although linear subspace methqusformed a good experimental analysis on KFDA and showed
have gained considerable attention, they cannot capture that KFDA gives better performance than that of KPCA.
nonlinearities and complex relationships among the inpKFDA applies PCA first for dimensionality reduction so as to
data that exist due to the large expression, illumination anghke the within-class scatter matrix nonsingular before the ap-
pose variations. While nonlinear or kernel based subspadéeation of LDA. However, applying PCA for dimensionality
methods like kernel principal component analysis (KPCAkduction may lose important discriminative information [12],
[1] and kernel Fisher discriminant analysis (KFDA) [2] havgl13], [14], [15]. In fact, most of the nonlinear subspace based
shown promising results. Good reviews on linear and nonlingface recognition methods perform dimensionality reduction or
subspace based face recognition can be found in [3], [4], [Bliscard a subspace before the discriminant evaluation. The
These kernel methods apply nonlinear mapping X € null space approach, NKDA [16] eliminates the principal
R™ — ®(X) € H in the image spac®”, followed by linear subspace and extracts eigenfeatures only from the eigenvectors
subspace methods like PCA and FDA in the mapped featwarresponding to the zero eigenvalues. Therefore, NKDA
spaceH. Examples include KPCA [1] and KFDA [2], [6]. assumes that the null space contains the most discriminative

I. INTRODUCTION



information which is contradictory to KFDA. vectors{X;;}, whereX;; € R™=hv is called image vector,

To solve the small sample size problem let al. [17] by lexicographic ordering the pixel elements of imag®f
proposed kernel Direct-LDA (KDDA) method, which firstpersoni. Let the training set contaip persons and; sample
removes the null space of the between-class scatter matrix &mdges for persomn. The total number of training samples is
then extracts the eigenvectors corresponding to the smallest -7, ¢;. The within-class scatter matrix is defined by
eigenvalues of the within-class scatter matrix. However, as

p qi
pointed out in [18], the removal of the null componentsgw _ EZLZ@(XU) — (X)) (D(X;) — DX )T,
p qi
Jj=1

of between-class scatter matrix influence the projection of
within-class matrix and hence they should not be discarded. (2)

Moreover, it is an open question of how to scale the extractedere ®(X;) = qi j.';l ®(X;;). The between-class scatter
features as the smallest eigenvalues are very sensitive to naisgtrix S is defined by
A common problem of KFDA, NKDA and KDDA approaches L
is that_thgy all Io_se some discriminative information, either in gb — Z((I)(Xi) (X)) (@(X,) - d(x)T, @)
the principal or in the null space because they perform the p
discriminant evaluation in a subspace.

In fact, the discriminative information resides in both sup¥here ®(X) = %Zf:l ®(X;), assuming all classes have
spaces. Recently, Yarg al. [19] proposed a complete kerneledual prior probability.
Fisher discriminant framework (CKFD), where features ex- 1he well known Fisher objective function [20], [21], [22]
tracted from the two complementary subspaces are combirfé be written in the mapped spalieas
by a summed distance measures in the recognition phase [19]. | QTSPQ |
Open questions of this approach are how to divide the space J(§2) = arg max m (4)
into the principal and the complementary subspaces and how
to apportion a given number of features to the two subspacB§cause any solutiof2 € H must lie in the span of all the
Furthermore, as the discriminative information resides in ttf@mples inH, there exist coefficients; for i = 1,2,...,1,
both subspaces, it is inefficient or only suboptimal to extragt/ch that .
features separately from the two supspaces. . Q= Z bi®(X,). (5)

This paper proposes a method which performs kernel Fisher =
discriminant analysis in full eigenspace (KFDAFE). Eigenra-
tios (shown in Fig. 1) are used to decompose the nonliné%?e

i=1

shown in [21], combining (4) and (5), we can write

within-class eigenspace into two subspaces: a reliable sub- Q7S = oSy w, (6)
space spanned mainly by the facial variation and an unreliable b b
subspace due to limited number of training samples. To allevi- N°S°Q =¥ S, ¥, 7

ate the problems 'of scaling eigenfeatures cau;ed py unre”%ﬁerexp — [}, and

small and zero eigenvalues we propose a weighting function

(shown in Fig. 2). This weighting function circumvents undue { S§ = 520 o g (G = ) (G — )T (®)
scaling of projection vectors corresponding to the small and| ¢; = (K(X1,X;), K (X2, X;),..., K(X;, X;)T ’
zero eigenvalues. Eigenfeatures are then extracted after t R I

discriminant evaluation in the whole nonlinear eigenspace. I #i = (g 22551 K(X1, Xj), 53250, K(X2, Xj), ...,
section 2, we first study the behavior of the unreliable smalt 5 21 K (X1, X;))",

eigenvalues and eigenratios of within-class variation matrix Sk = ﬁ 1 §:1(Mi — 1) (i — )T

then propose a methodology to decompose the eigenspace into 9)
principal and unreliable subspaces. Eigenfeature scaling &althe solution of function (4) can be obtained by maximizing
extraction are presented in Section 3. Experimental results and | WTSL W |

discussions are presented in section 4. Conclusions are drawn J(¥) = arg max Tijf (20)

in section 5. v eS|

and the problem of kernel discriminant analysis is converted

[l. FEATURE SCALING AND SUBSPACEDECOMPOSITION . - : . _
into finding the leading eigenvectors 8f ~'SY. However,

A. Overview of Kernel Fisher Discriminant Analysis in practice, the inversion o8Y is impossible as it is often
For a nonlinear mappin@, the image data spad®™ can singular due to the limited number of training samples. For a
be mapped into the feature spdie new imageX, its projection ontoQ2 in H can be calculated
$:X cR" - &(X) € H. @ l
Consequently, a pattern in the original image sp&eis (€2 2(X)) = ZwiK(Xi’X)' 11
=1

mapped into a potentially much higher dimensional feature
vector in the feature spadé. Given a set of properly normal- Let S%.¢9 € {w,b} represent one of the above scatter
ized h-by-w face images, we can form a training set of colummatrices. If we regard the elements of the image vector or



the class mean vector as features, these preliminary featuseger. Therefore, these eigenvalues of the within-class scatter
will be de-correlated by solving the eigenvalue problem  matrix are unreliable.
A9 = BITSE WY, (12) c. Eigenratiospectrum and Subspace Decomposition

where ¥9 = [f,...,¢]] is the eigenvector matrix 083,  In order to alleviate the above problem we first work on the
and A¢ is the diagonal matrix of eigenvalue$, ..., \/ corre- eigenspectrum of the within-class variation matrix. It is not
sponding to the eigenvectors. We assume that the eigenvalggficult to estimate the rank o8%, which isr,, < (I — p).
are sorted in descending ordg{ >,...,> A/. The plot of The eigenvalues whose indices are closetdm < k < r,,)
eigenvalues\ against the index is called eigenspectrum of are very small or close to zero, their inverses give undue
the training data in the nonlinear plane. It plays a critical roléveremphasis to the eigenvectors corresponding to this region
in the subspace methods as the eigenvalues are used to sealdices) as shown in Fig. 2. To successfully differentiate the
and extract features. unreliable eigenvalues from the larger ones we propose to use
the eigenratios of the eigenspectrum to decompose the whole
eigenspace into two subspaces: a principal or reliable subspace

Fisher's discriminant criteria (10) is known to be th%panned mainly by the facial variatioR, = {1’} | and an
Bayes optimal classifier for normal distributions with equalnreliable or noise dominating subspace due to limited number
covariance. However, in all kernel subspace applications agltraining samplesP = {y}L_. .. For a clearer illustra-

of the scatter matrices (8) and (9) can be singular [2Q]gn, we first define the eigenratios B = {71, ..., _;},
[17], [23]. If we compute all the eigenvalueBag(A™) = gsuch that b

AV, ..., AP’] and eigenvectorsl™ = [¢},...,¢"] of the [-
by-/ dimensional matriXS}y using (12), the projection matrix Ve = w
WY = [ /ol ..., /oP] is so called whitened eigenvector ] ) . )
matrix of S% with ||¢/%|| = 1 and ol = \/AP. This implies the _plot of eigenratiosy;’ of a typlpal rea_l eigenspectrum

that if any one of the eigenvalues in (12) of these matrices3g@inst the index is called kernel eigenratiospectrum of the
zero then the corresponding eigenvector (10) gets an infinfi@ining data as shown in Fig. 1.

weighting factor. In practice, most of the subspace based
algorithms circumvent this problem by ignoring the eigenvec-
tors corresponding to zero eigenvalues. However, as pointedq 129}
out earlier that the null space & contain indispensable

discriminative information essential for improving recognition
accuracy.

The above argument can be viewed as/atimensional
pattern vectord;; = K(X;, X;) is first represented by an  1.069}
I-dimensional eigenfeature vectdf; = wvTA,;, and then
multiplied by a weighting function 1.039-

w_ [ IAY, k<, J
w’f‘{a o <k <1 (13) |

1.009¢
as shown in Fig. 2, where, is the rank ofS}. It is apparent 1 m r
from (13) that the eigenvectofs)’}}_, ., or the null space v
of S§ are weighted by zero and thus the correspondi
eigenvectors fail to contribute to the whole space discriminant

valuation, which i ne in the later portion of the algorithm. - . -
evaluation, ch is done in the later portion of the algorit For a robust training, the database size should be signif-

This is unr nabl f res in the null Vi . : : i
s Is unreasonable because features in the null space ha Er‘1tly larger than the (face or reliable) dimensionality

zero within-class variances based on the training data aﬁﬁlou h it could be and in practice is, much smaller than the
hence should be more heavily weighted. It seems anomalous 9 P '

that the weighting function increases with the decrease lf'mber of training samples Also, in practical applications,

the eigenvalues and then suddenly has a big crop from 8% SEEIE I SR8 B8 08 T e LToen Ot
maximum value to zero as shown in Fig. 2. Furthermor din h y int would b findi.n th ' minimum ftrzl
weights determined by the inverse @f is, though optimal . g such a po ou € g the num ot the

: Lo : eigenratios. The start point of the unreliable regiont- 1 is

in terms of the ML estimation, dangerous whefi is small estimated b

(m < k <ry,). The small and zero eigenvalues are training- y
set—;peuﬂc and very sensitive to (_jlfferent training sets [24]. V2 =min{Vyl, 1<k <7y} (15)
Adding new samples to the training set or using different

training set may easily change some zero eigenvalues Adypical suchm value of a real kernel eigenspectrum is shown
nonzero and make some very small eigenvalues several tinre§ig. 1.

B. Problems in Feature Scaling and Extraction of KFDA

1<k <ry, (14)

1.15

1.099¢

ig. 1. Plot of eigenratios based on (14) and finding indexising (15) on
pical real kernel eigenratiospectrum®§ matrix.



The main purpose of finding the value ef using the
eigenratios is to distinguish the reliable eigenvalues from
the unreliable ones, which facilitates the decomposition of
the entire eigenspace into reliabRe and unreliableP sub-
spaces. Eigenvalues in the unreliable subsfcspanned by
{41}~ 1, Will be replaced by a constant. This enables us
to perform discriminant evaluation and feature extraction from
the whole eigenspace & matrix (as described in section
3).

We conducted several experiments on different face image
databases, the eigenratio plots shown in Fig. 1 is a general
behavioral pattern that all the eigenratios of different databases
portray. Thus, this depicts the general behavioral character-
istics of eigenvalues. It is apparent from the graph that they :
eigenratios first decreases very rapidly, then stabilizes andl m M |
finally increases. The increase of the eigenratios should not be o _ _ o _
the behavior of the true variances but occurs due to the limit ' 's%ac\évselt?:;?c? gr’]”gt't‘;giscgf Eg Eg;jngg ég;g%gg{?&ff"' and unreliable-
number of training samples. The corresponding eigenvalues
are therefore unreliable. Similarly, the zero eigenvalues are
caused by the limited number of training samples and hence
are unreliable. These unreliable eigenvalues may result Vifith & at a much lower value tham;’ in the unreliable space
serious problems if their inverses are used to weight tii@d has maximal weights instead of zerowgf in the null
eignefeatures as shown in Fig. 2. Therefore, we should rigace.
trust the eigenvalues\,k > m, wherem is determined by  Using this weighting function and the eigenvectas¥,

s

the minimal eigenratios as given by (15). training pattern data are transformed to
Ill. SCALING OF KERNEL EIGENSPECTRUM ANDFEATURE
~ ~ T
EXTRACTION Vi =9 Ay, (18)

A. Scaling of Kernel Eigenfeatures

As pointed out in [25], the largest sample-based eigenval
are biased high and the smallest ones are biased low due to the
finite number of training samples. The eigenspectrum in the
principal/reliable subspace is dominated by the face structural \i/}” = [0PYP]L ) = [P, .. DY (19)
component, hence, we keep the eigenvalues in the principal
subspace unchanged. In the unreliable subsi@aceowever, ) .
the limited number of training samples results in faster deciy@ full rank matrix that transforms a training pattern vector
of the eigenvalues than the true variances. Therefore, the detyan intermediate feature vector. There is no dimension
of the eigenvalues should be slowed down to compensate fgguction in this transformation as; andA;; have the same
effect of the finite number of training samples. dimensionalityl.

From Fig. 2 it is evident that when the inverses of the The problems of dimensionality reduction and discriminant
eigenv::xlues{)(,;”}fgszrl are used for feature weighting (13),evaluation in KFDA are also discussed in [22], where Chen
the corresponding eigenvectors get undue over-scaling in thisal. proposed kernel machine-based regularized Fisher dis-
range. Therefore, we propose to replace the unreliable or noiseninant (KLPRFD) algorithm. Although this method uses the
dominating region eigenvalue\’}, _ ., by choosing the full eigenspace, their approach regularize the pooled within-
eigenvalue corresponding to the valueobtained from (15), class scatter matrix equivalently by adding a constant to all
which is given by eigenvalues. Although the largest sample-based eigenvalues
are biased high and the smallest ones are biased low, as pointed

const = MaX{VAY, m <k <} (16) out in [25], the bias is most pronounced when the population
Thus, the final weighting function can be written as eigenvalues tend toward equality, and it is correspondingly
» 1/\/3F, k<m Iess_se\_/ere when their vall_J_es are _hlghly disparate. For the
wy = )\’ﬁ’ p<l (17) application of face recognition, it is well-known that the
1/ Aonsty m <k < eigenspectrum first decays very rapidly and then stabilizes.

Fig. 2 shows the proposed feature weighting functiofi Hence, adding a constant to the eigenspectrum may bias back
calculated by (14), (15), (16) and (17) comparing with thahe rapidly changing eigenvalues in principal space too much
wy of (13). Obviously, the new weighting functio@;’ is that introduces additional error source, and bias back the flat
identical tow}’ in the principal space, remains constant alongigenvalues in null space too little at the same time [25].



B. Kernel Eigenfeature Extraction At the recognition stage:
After the feature scaling, a new between-class scatter matrixl) Transform eachn-D face image vectorX into [-D

is formed by vectoréN/ij of the training data as feature pattern vectof\;; using the kernel functio,
P such thatAij = K(X“ X])
gg) _ 1 Z(?i _ Y)(?: YT, (20) 2) Transform eacli-D feature_ pattern vectad;; into dD
P feature vectotr” by (23) using the feature regularization
_ o - o and extraction matriftUs obtained in the training stage.
whereY; = =370 Vi, andY = 370, -370,Yi;.  3) Apply a classifier trained on the gallery set to recognize
The weighted featured; will be de-correlated forS}, by the probe feature vectorg]

solving the eigenvalue problem as (12). Suppose that then the experiments of this work, a simple first nearest
eigenvectors in the eigenvector matdk? = 4%, ...,4"] are neighborhood classifier (1-NNK) is applied to test the pro-
sorted in descending order of the corresponding eigenvalupssed kernel Fisher discriminant analysis in full eigenspace
The dimensionality reduction is performed here by keepir¢tFDAFE) approach for face recognition. Euclidean distance
the eigenvectors with the largest eigenvalues measure between a probe feature vedigr and a gallery

-~ ~ ~ ~ feature vectoF 4
W = [Wplizs = [, . b, (21)

whered is the number of features usually selected by a specific dst(Fp,Fg) = \/(FP —Fo)'(Fp—Fq) (24)
application. Thus, the proposed feature scaling and extractggr}ipp“ed to the proposed approach.
matrix Ug is given by

= b V. EXPERIMENTS AND DISCUSSIONS
Ug = ¥ 0. (22)
In all experiments reported in this work, images are pre-
This transforms a pattern image vectty; = K(X;,X;) € processed following the CSU Face Identification Evaluation
H of dimensionality/, into a feature vecto#', F € H of System [26]. Three databases: ORL, GT and FERET are
dimensionalityd, by used for testing. Each database is partitioned into training
F=ULA,;. (23) and testing sets. For FERET databases, there is no overlap
in subject between the training and testing sets. As ORL and
It is apparent from the above equations that we perfor@T databases have only a small number of subjects, both
the subspace decomposition to apply our weighting schemnaining and testing sets contain all subjects. However, there
for feature scaling. The discriminant evaluation (here thig no overlap in the sample image between the training and
evaluation of the eigenvalues 6f;) is performed in the full testing sets. In our experiments, the polynomial kernel function
kernel spacél. As a result of this, the feature extraction is nois chosenK (X, X;) = (®(X;), ®(X;)) = (a(X;- X;)+b)C,
restricted to project a kernel vector into one of these subspacsiace it gave good performances in the experiments of [11],
More specifically, any single feature i is extracted from the [27], [10], [16], [28]. The kernel parameters are set same as
whole kernel spacél since any final projection vectdds that of in [11], [27], [28]. The recognition error rate given in
may have nonzero components in all the other subspaces.this work is the percentage of the incorrect top 1 match on
the testing set. The proposed KFDAFE method is tested and
compared with KFDA [2], KDDA [17], NKDA [16], CKFD
The proposed kernel Fisher discriminant analysis in fulf9] and K1PRFD [22] approaches. The parameters of CKFD
eigenspace (KFDAFE) approach is summarized below:  are applied that are mentioned in the experiments of [19].
At the training stage:

1) Given a training set of face image vectd¥;;} and a

C. The Proposed Algorithm

A. Results on FERET Database

kernel functionk (X;, X;), computed;; = K(X;, X;). In FERET database, the face image variations include facial
2) ComputeSg by (8) and solve the eigenvalue problenexpression and other details (like glasses or no glasses),
as (12). illumination, pose, and aging [29]. We select 2388 images

3) Decompose the kernel eigenspace into principal- andmprising of 1194 subjects (two images per subject) from
unreliable-spaces by determining thevalue using (14) this database. Images are cropped into the siz@8ok 33.
and (15). Images of 250 subjects are randomly selected for training and
4) Transform the training pattern samples represented the remaining images of 944 subjects are used for testing.
A;; into }7” by (18) with the weighting function (17) Hence, there is no overlap in subject between the training and

determined by (14), (15) and (16). testing sets. The recognition error rate given in this work is the
5) ComputeS}, by (20) with Y;; and solve the eigenvalue percentage of the incorrect top 1 match on the testing set. The
problem as (12). recognition error rates are shown in Fig. 3. Both KFDA and

6) Obtain the final feature scaling and extraction matrix b DDA perform badly because the smaller number of training
(19), (21) and (22) with a predefined number of featurémages does not well represent the variations of testing images.
d.Od K1PRFD achieves higher accuracy gain than CKFD. This



shows that the summed distance used in CKFD does not well-
handle the database with smaller number of training samples.

——KFDA ||

v testing images (40 subjects).

The KFDAFE approach consistently outperforms all other o
N < —— KDDA
approaches for all number of features. The gain is significantZ NKDA
for smaller number of features. © CKED
o
= ——K1PRFD i
o o —o— KFDAFE
—+— KFDA o
9 —>— KDDA §
£ 18] ——NKDA = § 1
£\ ——CKFD S 7 ,
= 14 ——K1PRFD L 6
= —o— KFDAFE 5
GC) 3 k 4T | | | | | | @ | . ! . B
& 101 § 4 6 8 10 12 14 16 18 20 22 24 26 28
29 Number of features
2 8
8 7 Fig. 4. Recognition error rate against the number of features used in the
nd 6 matching on the ORL database of 200 training images (40 subjects) and 200
5
1

Number of features
of the subjects the face images were taken in two or three
Fig. 3.  Recognition error rate against the number of features used in ®@ssjons over a period of three months, allowing for strong
matching on the FERET database of 500 training images (250 subjects) P . . . . . . . .
1888 testing images (944 subjects). %dnatlon |n'S|ze, facial expression, |I!um|nat|on, gnd rotation
in both the image plane and perpendicular to the image plane.
These images are converted to gray-scale and cropped into
B. Results on ORL Database the size of112 x 92. The first 8 images of all the subjects are
. . used in the training and the remaining 7 images serve as testin
In the experiments on ORL database [30], images are 9 g 71mag . 9
images. The testing results are numerically recorded in Table

cropped into the size af7 x 50. The ORL database containsl All the approaches perform relatively similar to the previous
400 images of 40 subjects (10 images per subject). Some P P y P

images were captured at different times and have different

variations including expression (open or closed eyes, smiling TABLE |
or nonsmiling) and facial details (glasses or no glasses). TRecoeNITIoON ERRORRATE OF DIFFERENTAPPROACHES FORDIFFERENT
images were taken with a tolerance for some tilting and NUMBER OF FEATURES ONGT DATABASE.

rotation of the faces up to 20 degrees. In this experiment, we =5 L
test various approaches using the first 5 samples per sub-egﬁgafrg 5 - ( L e e 'm%%es) 5
(200 images) for training and the remaining 5 samples PETKFDA | 38.57 | 26.57 | 22.00 | 18.00 | 14.86 | 12.86 | 12.57
subject (200 images) for testing. Fig. 4 shows the recqg-KDDA | 33.14 [ 22.00 | 15.43 [ 12.00 | 9.14 | 9.14 | 9.43
nition error rate on the testing set against the number [of NKDA | 35.43 | 20.00 | 17.14 | 13.43 | 13.43 | 12.29 | 12.29
features. As the training set has only 200 images, it d eﬁ%EED o800 | 2343 | 5.7 | 12,80 | 10.80 | 10.29 | 880
; 31.71 | 19.43 | 17.14 | 13.71 | 13.14 | 11.71 | 12.57
not well represent the variations of testing images. Therefof&KFDAFE | 26.29 | 17.71 | 12.86 | 10.00 | 8.29 | 829 | 8.29
the small principal space does not capture the discriminative
information well. This results in poor performance of KFDA
and KDDA approaches. Similar to the previous experimergxperiments. KDDA outperforms CKFD but not consistently.
CKFD and K1PRFD outperform KFDA, KDDA and NKDA Both KDDA and CKFD outperform KFDA, NKDA and
approaches. CKFD, which extracts the features separatklyPRFD approaches but not consistently, this probably shows
from the two subspaces outperforms K1PRFD significantthat KDDA and CKFD perform better when more number
for larger number of features. Again, the proposed KFDAF& samples per subject are present in the training database.
approach consistently outperforms all other approaches for Blle proposed KFDAFE approach consistently outperform all
number of features. other approaches for all number of features. This demonstrates
the effectiveness of the proposed kernel Fisher discriminant
analysis and feature extraction in the full eigenspace of the
The Georgia Tech (GT) Face Database [31] consists 7&@thin-class variation in alleviating the over-fitting problem
color images of 50 subjects (15 images per subject). For mastbetter discrimination ability.

C. Results on Georgia Tech Database
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