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Abstract— This work proposes a method which enables us
to perform kernel Fisher discriminant analysis in the whole
eigenspace for face recognition. It employs the ratio of eigenvalues
to decompose the entire kernel feature space into two subspaces:
a reliable subspace spanned mainly by the facial variation
and an unreliable subspace due to finite number of training
samples. Eigenvectors are then scaled using a suitable weighting
function. This weighting function circumvents undue scaling
of projection vectors corresponding to the undependable small
and zero eigenvalues. Eigenfeatures are only extracted after the
discriminant evaluation in the whole kernel feature space. These
efforts facilitate a discriminative and stable low-dimensional
feature representation of the face image. Experimental results
comparing other popular kernel subspace methods on FERET,
ORL and GT databases show that our approach consistently
outperforms others.

Keywords - Face recognition, kernel Fisher discriminant analysis,
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I. I NTRODUCTION

How the mammalian brain solves the problem of visual
recognition has been a topic of study since the early days
of brain science. Psychological experiments on human beings
have shown that faces are recognized more holistically than
other kinds of objects (e.g. houses, inverted faces, scrambled
faces). Recently, there has been a growing interest in the
holistic/appearance based approaches for face recognition.
These appearance based approaches, in general, use statistical
estimates for creating subspaces, which are utilized in sub-
sequent face recognition. Although linear subspace methods
have gained considerable attention, they cannot capture the
nonlinearities and complex relationships among the input
data that exist due to the large expression, illumination and
pose variations. While nonlinear or kernel based subspace
methods like kernel principal component analysis (KPCA)
[1] and kernel Fisher discriminant analysis (KFDA) [2] have
shown promising results. Good reviews on linear and nonlinear
subspace based face recognition can be found in [3], [4], [5].

These kernel methods apply nonlinear mappingΦ : X ∈
Rn → Φ(X) ∈ H in the image spaceRn, followed by linear
subspace methods like PCA and FDA in the mapped feature
spaceH. Examples include KPCA [1] and KFDA [2], [6].

Since the feature spaceH can be very high or possibly infinite
dimensional and the orthogonality needs to be characterized
in such a space, it is reasonable to viewH as a Hilbert
space. It is difficult to compute the dot products in the high
dimensional feature spaceH. Instead of mapping the data
explicitly, the feature space can be computed by using the
kernel trick, in which the inner products〈Φ(Xi), Φ(Xj)〉 in
H can be replaced with a kernel functionK(Xi, Xj), where
K(Xi, Xj) = 〈Φ(Xi),Φ(Xj)〉 = Φ(Xi)T ·Φ(Xj) andXi, Xj

are sample vectors in the image spaceRn. So, the nonlinear
mappingΦ can be performed implicitly in image spaceRn

[7], [8]. Numerous studies [4], [9], [10] demonstrate that
these kernel based approaches are very effective in many real-
world applications. However, the basic subspace analysis has
still outstanding challenging problems when applied to the
face recognition due to the high dimensionality of the face
image and the finite number of training samples in practice.
Although, in this work, we take advantages from the nonlin-
ear mapping, it does not explore the optimization of kernel
mapping functions or any of its parameters. Nevertheless,
throughout this paper, we assume a popular nonlinear mapping
function with its parameters fixed for all the experiments and
perform our proposed algorithm in this nonlinearly mapped
feature space.

Over the last decade KFDA and its numerous variations
have been applied in face recognition to solve the expression,
pose and illumination problems [2], [6], [10]. Liuet al.[11]
performed a good experimental analysis on KFDA and showed
that KFDA gives better performance than that of KPCA.
KFDA applies PCA first for dimensionality reduction so as to
make the within-class scatter matrix nonsingular before the ap-
plication of LDA. However, applying PCA for dimensionality
reduction may lose important discriminative information [12],
[13], [14], [15]. In fact, most of the nonlinear subspace based
face recognition methods perform dimensionality reduction or
discard a subspace before the discriminant evaluation. The
null space approach, NKDA [16] eliminates the principal
subspace and extracts eigenfeatures only from the eigenvectors
corresponding to the zero eigenvalues. Therefore, NKDA
assumes that the null space contains the most discriminative



information which is contradictory to KFDA.
To solve the small sample size problem Luet al. [17]

proposed kernel Direct-LDA (KDDA) method, which first
removes the null space of the between-class scatter matrix and
then extracts the eigenvectors corresponding to the smallest
eigenvalues of the within-class scatter matrix. However, as
pointed out in [18], the removal of the null components
of between-class scatter matrix influence the projection of
within-class matrix and hence they should not be discarded.
Moreover, it is an open question of how to scale the extracted
features as the smallest eigenvalues are very sensitive to noise.
A common problem of KFDA, NKDA and KDDA approaches
is that they all lose some discriminative information, either in
the principal or in the null space because they perform the
discriminant evaluation in a subspace.

In fact, the discriminative information resides in both sub-
spaces. Recently, Yanget al. [19] proposed a complete kernel
Fisher discriminant framework (CKFD), where features ex-
tracted from the two complementary subspaces are combined
by a summed distance measures in the recognition phase [19].
Open questions of this approach are how to divide the space
into the principal and the complementary subspaces and how
to apportion a given number of features to the two subspaces.
Furthermore, as the discriminative information resides in the
both subspaces, it is inefficient or only suboptimal to extract
features separately from the two subspaces.

This paper proposes a method which performs kernel Fisher
discriminant analysis in full eigenspace (KFDAFE). Eigenra-
tios (shown in Fig. 1) are used to decompose the nonlinear
within-class eigenspace into two subspaces: a reliable sub-
space spanned mainly by the facial variation and an unreliable
subspace due to limited number of training samples. To allevi-
ate the problems of scaling eigenfeatures caused by unreliable
small and zero eigenvalues we propose a weighting function
(shown in Fig. 2). This weighting function circumvents undue
scaling of projection vectors corresponding to the small and
zero eigenvalues. Eigenfeatures are then extracted after the
discriminant evaluation in the whole nonlinear eigenspace. In
section 2, we first study the behavior of the unreliable small
eigenvalues and eigenratios of within-class variation matrix,
then propose a methodology to decompose the eigenspace into
principal and unreliable subspaces. Eigenfeature scaling and
extraction are presented in Section 3. Experimental results and
discussions are presented in section 4. Conclusions are drawn
in section 5.

II. FEATURE SCALING AND SUBSPACEDECOMPOSITION

A. Overview of Kernel Fisher Discriminant Analysis

For a nonlinear mappingΦ, the image data spaceRn can
be mapped into the feature spaceH:

Φ : X ∈ Rn → Φ(X) ∈ H. (1)

Consequently, a pattern in the original image spaceRn is
mapped into a potentially much higher dimensional feature
vector in the feature spaceH. Given a set of properly normal-
izedh-by-w face images, we can form a training set of column

vectors{Xij}, whereXij ∈ Rn=hw is called image vector,
by lexicographic ordering the pixel elements of imagej of
personi. Let the training set containp persons andqi sample
images for personi. The total number of training samples is
l =

∑p
i=1 qi. The within-class scatter matrix is defined by

Sw =
1
p

p∑

i=1

1
qi

qi∑

j=1

(Φ(Xij)− Φ(Xi))(Φ(Xij)− Φ(Xi))T ,

(2)
whereΦ(Xi) = 1

qi

∑qi

j=1 Φ(Xij). The between-class scatter
matrix Sb is defined by

Sb =
1
p

p∑

i=1

(Φ(Xi)− Φ(X))(Φ(Xi)− Φ(X))T , (3)

where Φ(X) = 1
p

∑p
i=1 Φ(Xi), assuming all classes have

equal prior probability.
The well known Fisher objective function [20], [21], [22]

can be written in the mapped spaceH as

J(Ω) = arg max
Ω

| ΩT SbΩ |
| ΩT SwΩ | . (4)

Because any solutionΩ ∈ H must lie in the span of all the
samples inH, there exist coefficientsψi for i = 1, 2, . . . , l,
such that

Ω =
l∑

i=1

ψiΦ(Xi). (5)

As shown in [21], combining (4) and (5), we can write

ΩT SwΩ = ΨT Sw
ΦΨ, (6)

ΩT SbΩ = ΨT Sb
ΦΨ, (7)

whereΨ = {ψi}l
i=1 and

{
Sw

Φ = 1
p

∑p
i=1

1
qi

∑qi

j=1(ζj − µi)(ζj − µi)T ,

ζj = (K(X1, Xj),K(X2, Xj), . . . , K(Xl, Xj))T , (8)





µi = ( 1
qi

∑qi

j=1 K(X1, Xj), 1
qi

∑qi

j=1 K(X2, Xj), . . . ,
1
qi

∑qi

j=1 K(Xl, Xj))T ,

Sb
Φ = 1

p(p−1)

∑p
i=1

∑p
j=1(µi − µj)(µi − µj)T

.

(9)
So the solution of function (4) can be obtained by maximizing

J(Ψ) = arg max
Ψ

| ΨT Sb
ΦΨ |

| ΨT Sw
ΦΨ | (10)

and the problem of kernel discriminant analysis is converted
into finding the leading eigenvectors ofSw

Φ
−1Sb

Φ. However,
in practice, the inversion ofSw

Φ is impossible as it is often
singular due to the limited number of training samples. For a
new imageX, its projection ontoΩ in H can be calculated
by

(Ω · Φ(X)) =
l∑

i=1

ψiK(Xi, X). (11)

Let Sg
Φ, g ∈ {w, b} represent one of the above scatter

matrices. If we regard the elements of the image vector or



the class mean vector as features, these preliminary features
will be de-correlated by solving the eigenvalue problem

Λg = ΨgT Sg
ΦΨg, (12)

where Ψg = [ψg
1 , ..., ψg

l ] is the eigenvector matrix ofSg
Φ,

andΛg is the diagonal matrix of eigenvaluesλg
1, ..., λ

g
l corre-

sponding to the eigenvectors. We assume that the eigenvalues
are sorted in descending orderλg

1 ≥, ...,≥ λg
l . The plot of

eigenvaluesλg
k against the indexk is called eigenspectrum of

the training data in the nonlinear plane. It plays a critical role
in the subspace methods as the eigenvalues are used to scale
and extract features.

B. Problems in Feature Scaling and Extraction of KFDA

Fisher’s discriminant criteria (10) is known to be the
Bayes optimal classifier for normal distributions with equal
covariance. However, in all kernel subspace applications any
of the scatter matrices (8) and (9) can be singular [20],
[17], [23]. If we compute all the eigenvaluesdiag(Λw) =
[λw

1 , ..., λw
l ] and eigenvectorsΨw = [ψw

1 , ..., ψw
l ] of the l-

by-l dimensional matrixSw
Φ using (12), the projection matrix

Ψ̄w = [ψw
1 /σw

1 , ..., ψw
l /σw

l ] is so called whitened eigenvector
matrix of Sw

Φ with ||ψw
k || = 1 andσw

k =
√

λw
k . This implies

that if any one of the eigenvalues in (12) of these matrices is
zero then the corresponding eigenvector (10) gets an infinite
weighting factor. In practice, most of the subspace based
algorithms circumvent this problem by ignoring the eigenvec-
tors corresponding to zero eigenvalues. However, as pointed
out earlier that the null space ofSw

Φ contain indispensable
discriminative information essential for improving recognition
accuracy.

The above argument can be viewed as anl-dimensional
pattern vector∆ij = K(Xi, Xj) is first represented by an
l-dimensional eigenfeature vectorYij = ΨwT ∆ij , and then
multiplied by a weighting function

ww
k =

{
1/

√
λw

k , k ≤ rw

0, rw < k ≤ l
, (13)

as shown in Fig. 2, whererw is the rank ofSw
Φ. It is apparent

from (13) that the eigenvectors{ψw
k }l

k=rw+1 or the null space
of Sw

Φ are weighted by zero and thus the corresponding
eigenvectors fail to contribute to the whole space discriminant
evaluation, which is done in the later portion of the algorithm.
This is unreasonable because features in the null space have
zero within-class variances based on the training data and
hence should be more heavily weighted. It seems anomalous
that the weighting function increases with the decrease of
the eigenvalues and then suddenly has a big drop from the
maximum value to zero as shown in Fig. 2. Furthermore,
weights determined by the inverse ofσw

k is, though optimal
in terms of the ML estimation, dangerous whenσw

k is small
(m < k ≤ rw). The small and zero eigenvalues are training-
set-specific and very sensitive to different training sets [24].
Adding new samples to the training set or using different
training set may easily change some zero eigenvalues to
nonzero and make some very small eigenvalues several times

larger. Therefore, these eigenvalues of the within-class scatter
matrix are unreliable.

C. Eigenratiospectrum and Subspace Decomposition

In order to alleviate the above problem we first work on the
eigenspectrum of the within-class variation matrix. It is not
difficult to estimate the rank ofSw

Φ, which is rw ≤ (l − p).
The eigenvalues whose indices are close torw (m < k ≤ rw)
are very small or close to zero, their inverses give undue
overemphasis to the eigenvectors corresponding to this region
(or indices) as shown in Fig. 2. To successfully differentiate the
unreliable eigenvalues from the larger ones we propose to use
the eigenratios of the eigenspectrum to decompose the whole
eigenspace into two subspaces: a principal or reliable subspace
spanned mainly by the facial variation,P = {ψw

k }m
k=1 and an

unreliable or noise dominating subspace due to limited number
of training samples,̄P = {ψw

k }l
k=m+1. For a clearer illustra-

tion, we first define the eigenratios asΓw
Φ = {γw

1 , ..., γw
rw−1},

such that

γw
k =

λw
k

λw
k+1

, 1 ≤ k < rw, (14)

the plot of eigenratiosγw
k of a typical real eigenspectrum

against the indexk is called kernel eigenratiospectrum of the
training data as shown in Fig. 1.
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Fig. 1. Plot of eigenratios based on (14) and finding indexm using (15) on
a typical real kernel eigenratiospectrum ofSw

Φ matrix.

For a robust training, the database size should be signif-
icantly larger than the (face or reliable) dimensionalitym,
although it could be and in practice is, much smaller than the
number of training samplesl. Also, in practical applications,
there always exist large variations in face images and their
dimensionality in various databases. Thus, one robust way of
finding such a point would be finding the minimum of the
eigenratios. The start point of the unreliable regionm + 1 is
estimated by

γw
m+1 = min{∀γw

k , 1 ≤ k < rw}. (15)

A typical suchm value of a real kernel eigenspectrum is shown
in Fig. 1.



The main purpose of finding the value ofm using the
eigenratios is to distinguish the reliable eigenvalues from
the unreliable ones, which facilitates the decomposition of
the entire eigenspace into reliableP and unreliableP̄ sub-
spaces. Eigenvalues in the unreliable subspaceP̄, spanned by
{ψw

k }l
k=m+1, will be replaced by a constant. This enables us

to perform discriminant evaluation and feature extraction from
the whole eigenspace ofSw

Φ matrix (as described in section
3).

We conducted several experiments on different face image
databases, the eigenratio plots shown in Fig. 1 is a general
behavioral pattern that all the eigenratios of different databases
portray. Thus, this depicts the general behavioral character-
istics of eigenvalues. It is apparent from the graph that the
eigenratios first decreases very rapidly, then stabilizes and
finally increases. The increase of the eigenratios should not be
the behavior of the true variances but occurs due to the limited
number of training samples. The corresponding eigenvalues
are therefore unreliable. Similarly, the zero eigenvalues are
caused by the limited number of training samples and hence
are unreliable. These unreliable eigenvalues may result in
serious problems if their inverses are used to weight the
eignefeatures as shown in Fig. 2. Therefore, we should not
trust the eigenvalues,λk, k > m, wherem is determined by
the minimal eigenratios as given by (15).

III. SCALING OF KERNEL EIGENSPECTRUM ANDFEATURE

EXTRACTION

A. Scaling of Kernel Eigenfeatures

As pointed out in [25], the largest sample-based eigenvalues
are biased high and the smallest ones are biased low due to the
finite number of training samples. The eigenspectrum in the
principal/reliable subspace is dominated by the face structural
component, hence, we keep the eigenvalues in the principal
subspace unchanged. In the unreliable subspaceP̄, however,
the limited number of training samples results in faster decay
of the eigenvalues than the true variances. Therefore, the decay
of the eigenvalues should be slowed down to compensate the
effect of the finite number of training samples.

From Fig. 2 it is evident that when the inverses of the
eigenvalues{λw

k }l
k=m+1 are used for feature weighting (13),

the corresponding eigenvectors get undue over-scaling in this
range. Therefore, we propose to replace the unreliable or noise
dominating region eigenvalues{λw

k }l
k=m+1 by choosing the

eigenvalue corresponding to the valuem obtained from (15),
which is given by

λw
const = max{∀λw

k , m ≤ k ≤ rw}. (16)

Thus, the final weighting function can be written as

w̃w
k =

{
1/

√
λw

k , k ≤ m

1/
√

λw
const, m < k ≤ l

. (17)

Fig. 2 shows the proposed feature weighting functionw̃w
k

calculated by (14), (15), (16) and (17) comparing with that
ww

k of (13). Obviously, the new weighting functioñww
k is

identical toww
k in the principal space, remains constant along

1 l
 0

 P  P

 σw
k

 ww
k

 ww
k

~

r
wm

Fig. 2. Weighting functions of (13) and (17) in the principal- and unreliable-
subspaces based on a typical real kernel eigenspectrum.

with k at a much lower value thanww
k in the unreliable space

and has maximal weights instead of zero ofww
k in the null

space.

Using this weighting function and the eigenvectorsψw
k ,

training pattern data are transformed to

Ỹij = Ψ̃wT

l ∆ij , (18)

where

Ψ̃w
l = [w̃w

k ψw
k ]lk=1 = [w̃w

1 ψw
1 , ..., w̃w

l ψw
l ] (19)

is a full rank matrix that transforms a training pattern vector
to an intermediate feature vector. There is no dimension
reduction in this transformation as̃Yij and∆ij have the same
dimensionalityl.

The problems of dimensionality reduction and discriminant
evaluation in KFDA are also discussed in [22], where Chen
et al. proposed kernel machine-based regularized Fisher dis-
criminant (K1PRFD) algorithm. Although this method uses the
full eigenspace, their approach regularize the pooled within-
class scatter matrix equivalently by adding a constant to all
eigenvalues. Although the largest sample-based eigenvalues
are biased high and the smallest ones are biased low, as pointed
out in [25], the bias is most pronounced when the population
eigenvalues tend toward equality, and it is correspondingly
less severe when their values are highly disparate. For the
application of face recognition, it is well-known that the
eigenspectrum first decays very rapidly and then stabilizes.
Hence, adding a constant to the eigenspectrum may bias back
the rapidly changing eigenvalues in principal space too much
that introduces additional error source, and bias back the flat
eigenvalues in null space too little at the same time [25].



B. Kernel Eigenfeature Extraction

After the feature scaling, a new between-class scatter matrix
is formed by vectors̃Yij of the training data as

S̃b
Φ =

1
p

p∑

i=1

(Ỹ i − Y )(Ỹ i − Y )T , (20)

where Ỹ i = 1
qi

∑qi

j=1 Ỹij and Y = 1
p

∑p
i=1

1
qi

∑qi

j=1 Ỹij .

The weighted features̃Yij will be de-correlated for̃Sb
Φ by

solving the eigenvalue problem as (12). Suppose that the
eigenvectors in the eigenvector matrix̃Ψb

l = [ψ̃b
1, ..., ψ̃

b
l ] are

sorted in descending order of the corresponding eigenvalues.
The dimensionality reduction is performed here by keeping
the eigenvectors with thed largest eigenvalues

Ψ̃b
d = [ψ̃b

k]dk=1 = [ψ̃b
1, ..., ψ̃

b
d], (21)

whered is the number of features usually selected by a specific
application. Thus, the proposed feature scaling and extraction
matrix UΦ is given by

UΦ = Ψ̃w
l Ψ̃b

d. (22)

This transforms a pattern image vector∆ij = K(Xi, Xj) ∈
H of dimensionalityl, into a feature vectorF , F ∈ H of
dimensionalityd, by

F = UT
Φ∆ij . (23)

It is apparent from the above equations that we perform
the subspace decomposition to apply our weighting scheme
for feature scaling. The discriminant evaluation (here the
evaluation of the eigenvalues of̃Sb

Φ) is performed in the full
kernel spaceH. As a result of this, the feature extraction is not
restricted to project a kernel vector into one of these subspaces.
More specifically, any single feature inF is extracted from the
whole kernel spaceH since any final projection vectorUΦ

may have nonzero components in all the other subspaces.

C. The Proposed Algorithm

The proposed kernel Fisher discriminant analysis in full
eigenspace (KFDAFE) approach is summarized below:

At the training stage:

1) Given a training set of face image vectors{Xij} and a
kernel functionK(Xi, Xj), compute∆ij = K(Xi, Xj).

2) ComputeSw
Φ by (8) and solve the eigenvalue problem

as (12).
3) Decompose the kernel eigenspace into principal- and

unreliable-spaces by determining them value using (14)
and (15).

4) Transform the training pattern samples represented by
∆ij into Ỹij by (18) with the weighting function (17)
determined by (14), (15) and (16).

5) ComputeS̃b
Φ by (20) with Ỹij and solve the eigenvalue

problem as (12).
6) Obtain the final feature scaling and extraction matrix by

(19), (21) and (22) with a predefined number of features
d. ¤

At the recognition stage:

1) Transform eachn-D face image vectorX into l-D
feature pattern vector∆ij using the kernel functionK,
such that∆ij = K(Xi, Xj).

2) Transform eachl-D feature pattern vector∆ij into d-D
feature vectorF by (23) using the feature regularization
and extraction matrixUΦ obtained in the training stage.

3) Apply a classifier trained on the gallery set to recognize
the probe feature vectors.¤

In the experiments of this work, a simple first nearest
neighborhood classifier (1-NNK) is applied to test the pro-
posed kernel Fisher discriminant analysis in full eigenspace
(KFDAFE) approach for face recognition. Euclidean distance
measure between a probe feature vectorFP and a gallery
feature vectorFG

dst(FP ,FG) =
√

(FP − FG)T (FP − FG) (24)

is applied to the proposed approach.

IV. EXPERIMENTS AND DISCUSSIONS

In all experiments reported in this work, images are pre-
processed following the CSU Face Identification Evaluation
System [26]. Three databases: ORL, GT and FERET are
used for testing. Each database is partitioned into training
and testing sets. For FERET databases, there is no overlap
in subject between the training and testing sets. As ORL and
GT databases have only a small number of subjects, both
training and testing sets contain all subjects. However, there
is no overlap in the sample image between the training and
testing sets. In our experiments, the polynomial kernel function
is chosen,K(Xi, Xj) = 〈Φ(Xi), Φ(Xj)〉 = (a〈Xi ·Xj〉+b)c,
since it gave good performances in the experiments of [11],
[27], [10], [16], [28]. The kernel parameters are set same as
that of in [11], [27], [28]. The recognition error rate given in
this work is the percentage of the incorrect top 1 match on
the testing set. The proposed KFDAFE method is tested and
compared with KFDA [2], KDDA [17], NKDA [16], CKFD
[19] and K1PRFD [22] approaches. The parameters of CKFD
are applied that are mentioned in the experiments of [19].

A. Results on FERET Database

In FERET database, the face image variations include facial
expression and other details (like glasses or no glasses),
illumination, pose, and aging [29]. We select 2388 images
comprising of 1194 subjects (two images per subject) from
this database. Images are cropped into the size of38 × 33.
Images of 250 subjects are randomly selected for training and
the remaining images of 944 subjects are used for testing.
Hence, there is no overlap in subject between the training and
testing sets. The recognition error rate given in this work is the
percentage of the incorrect top 1 match on the testing set. The
recognition error rates are shown in Fig. 3. Both KFDA and
KDDA perform badly because the smaller number of training
images does not well represent the variations of testing images.
K1PRFD achieves higher accuracy gain than CKFD. This



shows that the summed distance used in CKFD does not well-
handle the database with smaller number of training samples.
The KFDAFE approach consistently outperforms all other
approaches for all number of features. The gain is significant
for smaller number of features.
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Fig. 3. Recognition error rate against the number of features used in the
matching on the FERET database of 500 training images (250 subjects) and
1888 testing images (944 subjects).

B. Results on ORL Database

In the experiments on ORL database [30], images are
cropped into the size of57× 50. The ORL database contains
400 images of 40 subjects (10 images per subject). Some
images were captured at different times and have different
variations including expression (open or closed eyes, smiling
or nonsmiling) and facial details (glasses or no glasses). The
images were taken with a tolerance for some tilting and
rotation of the faces up to 20 degrees. In this experiment, we
test various approaches using the first 5 samples per subject
(200 images) for training and the remaining 5 samples per
subject (200 images) for testing. Fig. 4 shows the recog-
nition error rate on the testing set against the number of
features. As the training set has only 200 images, it does
not well represent the variations of testing images. Therefore,
the small principal space does not capture the discriminative
information well. This results in poor performance of KFDA
and KDDA approaches. Similar to the previous experiment,
CKFD and K1PRFD outperform KFDA, KDDA and NKDA
approaches. CKFD, which extracts the features separately
from the two subspaces outperforms K1PRFD significantly
for larger number of features. Again, the proposed KFDAFE
approach consistently outperforms all other approaches for all
number of features.

C. Results on Georgia Tech Database

The Georgia Tech (GT) Face Database [31] consists 750
color images of 50 subjects (15 images per subject). For most
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Fig. 4. Recognition error rate against the number of features used in the
matching on the ORL database of 200 training images (40 subjects) and 200
testing images (40 subjects).

of the subjects the face images were taken in two or three
sessions over a period of three months, allowing for strong
variation in size, facial expression, illumination, and rotation
in both the image plane and perpendicular to the image plane.
These images are converted to gray-scale and cropped into
the size of112× 92. The first 8 images of all the subjects are
used in the training and the remaining 7 images serve as testing
images. The testing results are numerically recorded in Table
I. All the approaches perform relatively similar to the previous

TABLE I

RECOGNITION ERRORRATE OF DIFFERENTAPPROACHES FORDIFFERENT

NUMBER OF FEATURES ONGT DATABASE.

Database GT (400 / 350 training / testing images)
# Feature 6 10 14 20 28 38 46

KFDA 38.57 26.57 22.00 18.00 14.86 12.86 12.57
KDDA 33.14 22.00 15.43 12.00 9.14 9.14 9.43
NKDA 35.43 20.00 17.14 13.43 13.43 12.29 12.29
CKFD 38.00 23.43 15.71 12.86 10.86 10.29 8.86

K1PRFD 31.71 19.43 17.14 13.71 13.14 11.71 12.57
KFDAFE 26.29 17.71 12.86 10.00 8.29 8.29 8.29

experiments. KDDA outperforms CKFD but not consistently.
Both KDDA and CKFD outperform KFDA, NKDA and
K1PRFD approaches but not consistently, this probably shows
that KDDA and CKFD perform better when more number
of samples per subject are present in the training database.
The proposed KFDAFE approach consistently outperform all
other approaches for all number of features. This demonstrates
the effectiveness of the proposed kernel Fisher discriminant
analysis and feature extraction in the full eigenspace of the
within-class variation in alleviating the over-fitting problem
or better discrimination ability.



V. CONCLUSIONS

In this paper, we have addressed the problems of eigen-
feature scaling and its extraction from the principal and
null subspaces. Information residing in the eigenratios of the
within-class scatter matrix in the nonlinear space is used to
decompose the eigenspace into two subspaces. Eigenfeatures
are then scaled differently using a suitable weighting func-
tion. This weighting function circumvents undue scaling of
projection vectors corresponding to the unreliable small and
zero eigenvalues. Our proposed scaling and feature extraction
method performs discriminant evaluation in the whole space
and the feature extraction or dimensionality reduction occurs
only at the final stage after the discriminant assessment.
This facilitates a discriminative and stable low-dimensional
feature representation of the image vectors. Experiments on the
FERET, ORL and GT databases demonstrate that the proposed
approach consistently outperforms other popular methods.
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