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Abstract

We derive a reduced theory describing the incremental deformation of an
electrodes-coated dielectric plate that takes the leading-order thickness effec-
t into account. By focusing on deformations that are symmetric with respect
to the mid-plane, a power series expansion of the incremental deformation
and electric field in the thickness direction is used to reduce the second vari-
ation of the total energy to an optimal form. The associated Euler-Lagrange
equations are then the governing equations for the reduced model. The valid-
ity of this reduced model is verified by comparing the bifurcation condition
derived from it with the two-term expansion of the exact bifurcation condi-
tion in two special cases. We compare our model with another approximate
theory that recently appeared in the literature.

Keywords: Nonlinear electroelasticity, dielectric membranes, Euler-Lagrange
equations, stability, bifurcation.

1. Introduction

Stability and bifurcation criteria of dielectric plates and membranes have
received considerable attention during the last few years. Early experimental
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studies include the works by Stark and Garton [39] and Blok and LeGrand
[2]. They stipulated that non-uniform thinning of an electroelastic plate is
caused by microscopic imperfections in the material that experience higher
than average fields, resulting in confined indentations. The intensity of the
electric field ceases to be uniform, increases locally, and induces electrome-
chanical instability and inhomogeneous deformations.

More recently, pre-stretched membranes have been investigated to quan-
tify (i) pull-in failure which is thought to occur when the voltage reaches a
maximum in uniform loading, (ii) dielectric strength failure when the elec-
tric field in the material exceeds a critical value and electric discharge oc-
curs between the electrodes and (iii) material failure when the membrane is
stretched beyond a critical value [34]. Failure due to electro-creasing and
electro-cavitation as well as methods to suppress instabilities are discussed
in [52].

The theory of small deformations superimposed on large deformations for
a general electroelastic material is developed in [17] and used in [18, 44] to
analyze stability of a biaxially stretched electroelastic plate. The theory [17]
is used in [6, 36, 1, 37, 38] to investigate multilayered dielectric composites
and in [22] to study both diffuse and shear-band type modes of instability.
Of interest are also the results reported in [47], where the effect of an electric
actuation on the appearance of a pear-shaped configuration of an elastomer
ballon and its dependence on the material models are analyzed.

Theoretical predictions of instabilities in electroelastic plates and mem-
branes are frequently restricted to the use of the Hessian approach, where
the deformation is assumed homogeneous. This approach was used in, for
example, [49, 50, 32, 31, 12, 13, 28, 14, 29, 45, 53, 48, 51, 24]. In a recent
paper it is shown that marginal violation of the Hessian stability criterion
corresponds exactly to the satisfaction of the bifurcation condition for lo-
calized necking [21]. This necking phenomenon is usually unstable and is
quickly followed by the two-phase deformation described in [23, 49].

A simplified model to account for the initial uniform thinning followed by
non-homogeneous deformation of thin electroelastic films was developed in
[8]. In [9] an approach based on tension field theory was used to determine
the onset of compression induced wrinkling. More recently, the same authors
employed an energy approach to determine the existence of non-homogeneous
equilibrium configurations in thin films [10, 11]. See also the analysis in
[15], which is concerned with wrinkling instabilities. The effect of thickness
imperfections on electromechanical instabilities is evaluated in [35]. Non-
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homogeneous deformations are used in [54] to estimate the onset of pull-in
instability noting that non-local effects significantly decrease the instability
threshold.

Although in many applications dielectric elastomers are used as thin
sheets which can be modeled by a membrane theory to leading order, there
is very often a need to take the leading-order thickness effect into account
in order to explain some of the phenomena observed (for instance, localized
thinning). Therefore, in this paper we derive a reduced model that can be
used to investigate the stability of a thin electroelastic sheet with flexible
electrodes coated on the top and bottom faces. We compare our model with
the approximate theory proposed in [11, 55].

The paper is organized as follows. Section 2 defines kinematic quantities
to describe the deformation of highly deformable materials. We also summa-
rize the basic equations of the nonlinear theory of electroelasticity and the
corresponding constitutive equations. The framework governing linearized
incremental deformations and electric fields superimposed on a known finite-
ly deformed configuration is included. The problem is defined in Section 3
and the reduced model derived in Section 4. In Section 5 we specialize the
associated Euler-Lagrange equations to two specific problems when the ma-
terial is assumed to be a neo-Hookean dielectric. First, we consider a pure
shear where the primary and incremental deformations are both plane strain
and show that the bifurcation condition is consistent with the results ob-
tained from [18]. In the second problem the stability of a thin plate subject
to biaxial extension is analyzed. The associated Euler-Lagrange equations
are derived and compared with the corresponding formulation in [18]. It is
also shown that the derived model is different from the model proposed in
[11, 55] even in the purely mechanical case. To understand this discrepancy,
we derive in Section 6 another reduced model by starting from the same rep-
resentation for the total energy functional as in [11] but using the expansion
of Section 4. It is shown that this model recovers the model of [11, 55] under
the same assumptions made in the latter papers, but is different from the
model of Section 5 due to the approximation that is introduced in the elec-
tric part of the total energy. The paper is concluded with a summary and
additional remarks in the final section.
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2. Basic equations

2.1. Kinematics

Consider a deformable electro-sensitive body, which in the absence of
mechanical loads and electric fields is unstressed and occupies the reference
configuration Br with boundary ∂Br. The location of a typical material par-
ticle in Br is identified by its position vector X relative to some fixed origin.
The body is then subject to an electric field and mechanical loads as a result
of which it deforms and occupies the configuration B with boundary ∂B. The
corresponding deformation is described in terms of the vector function χ as
x = χ(X), where x denotes the position of the particle in B and X ∈ Br. It
is assumed that χ has sufficient regularity for the ensuing analysis.

The deformation gradient tensor F relative to the configuration Br is given
by

F = Gradχ(X) = Gradx (1)

so that dx = FdX, where Grad is the gradient operator with respect to X.
The deformation gradient has Cartesian components FiA = ∂xi/∂XA, where
i, A ∈ {1, 2, 3}. Small roman indices are associated with the configuration
B and capital indices with the reference configuration Br. Let J denote the
determinant of F

J = detF > 0, (2)

which relates an infinitesimal volume element dv in B to its counterpart dV
in Br via

dv = JdV. (3)

Associated with F are the left and right Cauchy–Green deformation ten-
sors defined, respectively, by

B = FFT, C = FTF, (4)

where the superscript T indicates the transpose of a second-order tensor.

2.2. The equations of nonlinear electroelasticity

For more detailed background on nonlinear electroelasticity, we refer to
the books by Landau and Lifshitz [27], Kovetz [26] and Dorfmann and Ogden
[19].
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Assuming that there are no volumetric free charges within the material,
as appropriate for a dielectric material, the equations satisfied by the electric
field vector E and the electric displacement vector D are

curlE = 0, divD = 0. (5)

Assume that B is surrounded by a vacuum within which the electric and
electric displacement fields are denoted by E⋆ and D⋆, respectively. These
satisfy the equations

curlE⋆ = 0, divD⋆ = 0, (6)

and are connected by the standard relation D⋆ = ε0E
⋆, where ε0 is the

electric permittivity in vacuum, [30, 20].
If there is a free surface charge σf per unit area of ∂B then the electric

boundary conditions that have to be satisfied are

n× (E⋆ − E) = 0, n · (D⋆ −D) = σf , (7)

where n is the unit outward normal to ∂B.
Throughout this paper we assume that there are no mechanical body

forces, in which case the equation of equilibrium can be written in the simple
form

divτ = 0, (8)

where τ is the so-called total Cauchy stress tensor, which incorporates elec-
trostatic body forces. It is symmetric and satisfies the boundary condition

τn = ta + t⋆e (9)

on any part of ∂B where the mechanical traction ta is prescribed (per unit
area) and t⋆e = τ ⋆

en is the Maxwell traction associated with the electrostatic
Maxwell stress τ ⋆

e. The Maxwell traction is calculated on the outside of ∂B
where τ ⋆

e is defined by

τ ⋆
e = ε0E

⋆ ⊗ E⋆ − 1

2
ε0(E

⋆ · E⋆)I, (10)

with I being the identity tensor. It follows from equation (6) and the con-
nection D⋆ = ε0E

⋆ that divτ ⋆
e = 0.

The Lagrangian forms of the electric field and electric displacement vec-
tors are denoted by EL and DL, respectively, and defined by

EL = FTE, DL = JF−1D. (11)
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These satisfy the field equations

CurlEL = 0, DivDL = 0, (12)

where Curl and Div are the curl and divergence operators with respect to
X. The Lagrangian forms of the boundary conditions (7) are obtained as

(FTE⋆ − EL)×N = 0, (JF−1D⋆ −DL) ·N = σF, (13)

where N is the unit outward normal to ∂Br and σF is the free charge density
per unit area of ∂Br.

The appropriate transformation of τ yields the total nominal stress tensor
T defined by

T = JF−1τ , (14)

which in the absence of body forces satisfies the equilibrium equation

DivT = 0. (15)

The corresponding traction boundary condition can be written as

TTN = tA + t⋆E on ∂Br, (16)

where tA is the mechanical traction per unit area of ∂Br and t⋆E = T⋆
E
TN

with T⋆
E = JF−1τ ⋆

e , defined on ∂Br.

2.3. Electroelastic constitutive equations

Following Dorfmann and Ogden [16, 20] we may describe the properties
of an electroelastic material in terms of a total energy density function, either
Ω(F,EL) or Ω∗(F,DL). Here, we focus on the former, for which the total
nominal stress and the Lagrangian electric field are given for a mechanically
unconstrained material by

T =
∂Ω

∂F
, DL = − ∂Ω

∂EL

. (17)

For an incompressible material these are modified to

T =
∂Ω

∂F
− pF−1, DL = − ∂Ω

∂EL

, with detF = 1, (18)

where p is a Lagrange multiplier associated with the incompressibility con-
straint. The corresponding expressions for τ and D are then given by

τ = F
∂Ω

∂F
− pI, D = −F

∂Ω

∂EL

. (19)
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2.4. Incremental formulation

In this section we summarize the equations governing linearized incre-
mental deformations and electric fields superimposed on the known finitely
deformed configuration B. For full details, including forms of the electroe-
lastic moduli tensors, we refer to [17]. An incremental displacement and an
increment in the deformation gradient, which are denoted respectively by χ̇
and Ḟ = Gradχ̇, define the current configuration. Here and henceforth a su-
perimposed dot represents an increment in the quantity concerned. In what
follows, it is convenient to identify χ̇ with its Eulerian equivalent denoted by
u(x). It follows that

Ḟ = LF, J̇ = JtrL, ( ˙F−T) = −LTF−T, (20)

where L = gradu and grad is the gradient operator with respect to x. Sim-
ilarly, the increments of T,DL,EL are denoted by Ṫ, ḊL, ĖL and satisfy the
incremental governing equations

DivṪ = 0, DivḊL = 0, CurlĖL = 0. (21)

From (5)1 follows that the electric field E can be specified in terms of an
electrostatic potential ϕ, such that E = −gradϕ. Hence,

EL = −FTgradϕ = −GradΦ, (22)

where
ϕ(x) = ϕ (χ(X)) = Φ(X). (23)

This allows us to write the increment of the electric field as

ĖL = −FTgradϕ̇ = −GradΦ̇. (24)

We also introduce the push forward versions of the Lagrangian variables Ṫ,
ḊL and ĖL, which are defined by

Ṫ0 = J−1FṪ, ḊL0 = J−1FḊL, ĖL0 = F−TĖL. (25)

The incremental form of the boundary condition (16) becomes

ṪTN = ṫA + J τ̇ ⋆
eF

−TN− Jτ ⋆
eF

−TḞTF−TN+ J̇τ ⋆
eF

−TN on ∂Br (26)

or, when updated to Eulerian form,

ṪT
0 n = ṫA0 + τ̇ ⋆

en− τ ⋆
eL

Tn+ (divu)τ ⋆
en on ∂B. (27)
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3. Problem formulation

We now consider an electroelastic plate with flexible electrodes on its
top and bottom faces. The plate may be deformed by the application of
a potential difference to the electrodes and by mechanical traction forces.
Without loss of generality, we assume that the electric potential ϕ takes
the constant and fixed values Φ0 and 0 on the upper and lower surfaces,
respectively. Hence, no field is generated in the surrounding space, assuming
that the geometry is such that the end effects can be neglected. It follows
that the total energy functional, which depends on the deformation χ(X)
and the scalar electric potential Φ, has the form

Π {χ,Φ} =

∫
Br

Ω (F,EL) dV −
∫
∂Br

tA · x dS. (28)

The first variation of Π vanishes if and only if the derived electric dis-
placement and total nominal stress satisfy the appropriate governing equa-
tions (12)2, (15) combined with the boundary conditions (13)2 with D⋆ = 0
and (16) with t⋆E = 0; for details we refer to [3, 4].

We now consider an incremental deformation χ̇ and expand Π around
the configuration B up to and including quadratic terms in u and ϕ̇. The
linear terms in u and ϕ̇ must vanish since the energy functional is stationary
at the configuration B. The quadratic terms thus obtained are simply half
the second variation of the total energy (28) given by

Π2 =

∫
B

(
AijlkLjiLkl + 2Aij|lLjiϕ̇,l + Aijϕ̇,iϕ̇,j

)
dv, (29)

where ϕ̇,i = ∂ϕ̇/∂xi and Lij = ∂ui/∂xj. The electroelastic moduli tensors in
the configuration B have the explicit forms

Aijlk = J−1FiAFlB
∂2Ω

∂FjA∂FkB

, Aij|l = −J−1FiAFlB
∂2Ω

∂FjA∂ELB

, (30)

Aij = J−1FiAFjB
∂2Ω

∂ELA∂ELB

, (31)

endowed with the symmetries

Aijlk = Alkij, Aij|l = Aji|l, Aij = Aji. (32)
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For incompressible materials, on which we focus henceforth, J ≡ 1 in the
above and u satisfies the incremental incompressibility condition

divu = 0. (33)

The variables Ṫ0, ḊL0 and ĖL0, defined in (25), have the explicit forms

Ṫ0ij = AijlkLkl + Aij|lϕ̇,l + pLij − ṗδij, (34)

ḊL0i = −Ajl|iLlj − Aijϕ̇,j. (35)

It can be shown that the first variation of Π2 vanishes if and only if the
following governing equations and boundary conditions are satisfied:

divṪ0 = 0, divḊL0 = 0 in B, (36)

Ṫ0n = 0, ϕ̇ = 0 on ∂B. (37)

Using equations (34) and (35) in (28) yields the compact form

Π2 =

∫
B

[
tr

(
Ṫ0L

)
− ḊL0 · gradϕ̇

]
dv. (38)

4. Reduced model

In what follows the configuration B is identified by the domain

ω ×
[
−h

2
,
h

2

]
, (39)

where ω is the mid-plane of the deformed plate and h is the thickness, which
is assumed small compared with a typical length scale of the deformation (e.g.
the wavelength of a bifurcation mode). We introduce unit vectors e1, e2, e3
to identify the three coordinate axes, with e3 the out-of-plane direction.

The central idea is to assume a power expansion for u, ϕ̇ and ṗ in terms
of x3, and then to expand the above energy functional further, in a consistent
manner, up to and including terms cubic in h. The associated Euler-Lagrange
equations then yield an approximate theory for thin plates. Such a reduc-
tion has been carried out in [43] for a generally anisotropic, compressible
and unstressed plate, and in [7] for the flexural/bending deformation of an
incompressible pre-stressed plate.
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We introduce Greek subscripts and adopt the convention that they range
from 1 to 2. We assume that the mid-plane is a symmetry plane and that
the pre-stress takes the form ταβ eα ⊗ eβ, hence τ13 = τ23 = τ33 = 0. Under
these assumptions, the flexural and extensional deformations are decoupled.
For extensional deformations, we employ the following Taylor expansions

u =

(
v +

1

2
x2
3 b+ . . .

)
+

(
x3 a3 +

1

6
x3
3 c3 + . . .

)
e3, (40)

ṗ = ṗ(0) +
1

2
x2
3 ṗ

(2) + . . . , ϕ̇ = ϕ̇(0) +
1

2
x2
3 ϕ̇

(2) + . . . , (41)

where the vectors v and b are functions of xα and are perpendicular to e3,
whereas a3, c3, ṗ

(0), ϕ̇(0), ṗ(2), ϕ̇(2), . . . are all scalar functions of xα. The above
forms are based on the fact that for the extensional mode under investigation,
in-plane displacement, the pressure, and the electric potential should be even
functions of x3, whereas the out-of-plane displacement (i.e. the coefficient
of e3 in (40)) should be an odd function of x3. We observe that similar
expansions were used in [42, 43, 5, 46], but in [11, 55] the authors only
included the terms v + x3a3e3 in their expression for u. One of the aims
of the present study is to assess the stability implications of this additional
approximation.

In what follows, we decompose the gradient of a function f(x) as

gradf =
∂f

∂xi

⊗ ei =
∂f

∂xα

⊗ eα +
∂f

∂x3

⊗ e3 = ∇f +
∂f

∂x3

⊗ e3, (42)

where ∇ denotes the 2D gradient operator. Thus, the gradient of the incre-
mental displacement vector u can be expressed in the convenient form

L = gradu = L(0) + x3 L
(1) +

1

2
x2
3 L

(2) + . . . (43)

where

L(0) = vα,βeα ⊗ eβ + a3e3 ⊗ e3,

L(1) = a3,αe3 ⊗ eα + bαeα ⊗ e3, (44)

L(2) = bα,βeα ⊗ eβ + c3e3 ⊗ e3.

It follows from the incompressibility condition (33) that divL(j) = 0, j =
0, 1, . . . , from which we obtain

a3 = −divv, c3 = −divb. (45)
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On substituting (40), (41) and (43) into the incremental forms (34) and
(35), we obtain

Ṫ0ij = Ṫ
(0)
0ij + x3Ṫ

(1)
0ij +

1

2
x2
3 Ṫ

(2)
0ij + . . . , (46)

ḊL0i = Ḋ
(0)
L0i + x3Ḋ

(1)
L0i +

1

2
x2
3 Ḋ

(2)
L0i + . . . , (47)

where

Ṫ
(0)
0ij = AijlkL

(0)
kl + pL

(0)
ij − ṗ(0)δij + Aij|αϕ̇

(0)
,α , (48)

Ṫ
(1)
0ij = AijlkL

(1)
kl + pL

(1)
ij + Aij|3ϕ̇

(2),

Ṫ
(2)
0ij = AijlkL

(2)
kl + pL

(2)
ij − ṗ(2)δij + Aij|αϕ̇

(2)
,α ,

and

Ḋ
(0)
L0i = −Ajl|iL

(0)
lj − Aiαϕ̇

(0)
,α , (49)

Ḋ
(1)
L0i = −Ajl|iL

(1)
lj − Ai3ϕ̇

(2),

Ḋ
(2)
L0i = −Ajl|iL

(2)
lj − Aiαϕ̇

(2)
,α .

The equilibrium equations (36) specialize to

Ṫ
(0)
0βj,β + Ṫ

(1)
03j +

(
Ṫ

(1)
0βj,β + Ṫ

(2)
03j

)
x3 + · · · = 0, (50)

Ḋ
(0)
L0β,β + Ḋ

(1)
L03 +

(
Ḋ

(2)
L03 + Ḋ

(1)
L0β,β

)
x3 + · · · = 0. (51)

Since they are valid for any x3, it follows that

Ṫ
(0)
0βα,β + Ṫ

(1)
03α = 0, Ṫ

(1)
0βα,β + Ṫ

(2)
03α = 0, (52)

Ḋ
(0)
L0β,β + Ḋ

(1)
L03 = 0, Ḋ

(2)
L03 + Ḋ

(1)
L0β,β = 0. (53)

From (53)1 we find that

A33ϕ̇
(2) = −Ajl|βL

(0)
lj,β − Aβαϕ̇

(0)
,αβ − Ajl|3L

(1)
lj , (54)

= −Aγα|βvα,γβ − A33|βa3,β − Aβαϕ̇
(0)
,αβ − Aα3|3a3,α − A3α|3bα.

The stress free boundary conditions at the top and bottom surfaces, by
specializing (27) to the current problem, become

Ṫ03j = 0 on x3 = ±h

2
, (55)
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and, by using (46), can be written in the equivalent form

Ṫ
(0)
03j ±

h

2
Ṫ

(1)
03j +

h2

8
Ṫ

(2)
03j +O(h3) = 0. (56)

Adding and subtracting these two boundary conditions results in

Ṫ
(0)
03j = O(h2), Ṫ

(1)
03j = O(h2), (57)

and (52)1 gives

Ṫ
(0)
0βα,β = O(h2). (58)

By taking j = 3 in (57)1 and j = α in (57)2, we have

A33lkL
(0)
kl + pL

(0)
33 − ṗ(0) + A33|αϕ̇

(0)
,α = O(h2), (59)

A3αlkL
(1)
kl + pL

(1)
3α + A3α|3ϕ̇

(2) = O(h2), (60)

from which we deduce

ṗ(0) = A33αβvβ,α + a3 (A3333 + p) + A33|αϕ̇
(0)
,α +O(h2), (61)

A3α3βbβ = (A3αβ3 + p δαβ) (divv),β − A3α|3ϕ̇
(2) +O(h2). (62)

Note that equation (62) can be solved simultaneously with (54) to find b and
ϕ̇(2).

We now specialize Π2, given in (38), to the reduced model. Substituting
(41)2, (43), (46) and (47) into (38) and integrating from x3 = −h/2 to
x3 = h/2, yields

Π2 =

∫
ω

[
hṪ

(0)
0ij L

(0)
ji +

h3

12

(
1

2
Ṫ

(0)
0ij L

(2)
ji + Ṫ

(1)
0ij L

(1)
ji +

1

2
Ṫ

(2)
0ij L

(0)
ji

)
(63)

−hḊ
(0)
L0α ϕ̇

(0)
,α − h3

12

(
1

2
Ḋ

(0)
L0α ϕ̇

(2)
,α + Ḋ

(1)
L03 ϕ̇

(2) +
1

2
Ḋ

(2)
L0α ϕ̇

(0)
,α

)]
ds.

This can be simplified to

Π2 =

∫
ω

[
hṪ

(0)
0ij L

(0)
ji − hḊ

(0)
L0α ϕ̇

(0)
,α (64)

+
h3

12

(
Ṫ

(0)
0ij L

(2)
ji + Ṫ

(1)
0ij L

(1)
ji − Ḋ

(0)
L0α ϕ̇

(2)
,α − Ḋ

(1)
L03 ϕ̇

(2)
)]

ds,
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or equivalently,

Π2 =

∫
ω

[
hṪ

(0)
0αβL

(0)
βα + hṪ

(0)
033L

(0)
33 − hḊ

(0)
L0α ϕ̇

(0)
,α (65)

+
h3

12

(
Ṫ

(0)
0αβL

(2)
βα + Ṫ

(0)
033L

(2)
33 + Ṫ

(1)
0α3L

(1)
3α + Ṫ

(1)
03αL

(1)
α3 − Ḋ

(0)
L0α ϕ̇

(2)
,α − Ḋ

(1)
L03 ϕ̇

(2)
)]

ds.

From the results shown in (59) and (60) follows that h3Ṫ
(0)
033 and h3Ṫ03α are

of order h5 and the corresponding terms can therefore be neglected. Thus,

Π2 =

∫
ω

[
hṪ

(0)
0αβ vβ,α + hṪ

(0)
033 a3 − hḊ

(0)
L0α ϕ̇

(0)
,α (66)

+
h3

12

(
Ṫ

(0)
0αβ bβ,α + Ṫ

(1)
0α3 a3,α − Ḋ

(0)
L0α ϕ̇

(2)
,α − Ḋ

(1)
L03 ϕ̇

(2)
)]

ds.

With the use of (58) we find that

Ṫ
(0)
0αβ bβ,α =

(
Ṫ

(0)
0αβ bβ

)
,α
− Ṫ

(0)
0αβ,α bβ,α =

(
Ṫ

(0)
0αβ bβ

)
,α
+O(h2) (67)

and, using the divergence theorem, we obtain∫
ω

Ṫ
(0)
0αβ bβ,αds =

∫
∂ω

Ṫ
(0)
0αβ bβ nαdγ +O(h2), (68)

where ∂ω is the edge of the mid-plane and nα is the component of the unit
normal to the mid-plane. For the case of dead loading at the edge of the
plate we have Ṫ

(0)
0αβ nα = 0 and so the integral involving Ṫ

(0)
0αβ bβ,α is of order

h2 and can be dropped from (66). Hence, we retain

Πd
2 =

∫
ω

[
hṪ

(0)
0αβ vβ,α + hṪ

(0)
033 a3 − hḊ

(0)
L0α ϕ̇

(0)
,α (69)

+
h3

12

(
Ṫ

(1)
0α3 a3,α − Ḋ

(0)
L0α ϕ̇

(2)
,α − Ḋ

(1)
L03 ϕ̇

(2)
)]

ds,

where the superscript d is added to signify the fact that the expression is
associated with the dead-load case.
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For convenience we now write the components of the incremental stress
tensor Ṫ0 in the explicit forms

Ṫ
(0)
0αβ = AαβlkL

(0)
kl + pL

(0)
αβ − ṗ(0)δαβ + Aαβ|γϕ̇

(0)
,γ ,

= (Aαβδγ + p δαγδδβ) vγ,δ −Aαβ33divv − ṗ(0)δαβ + Aαβ|γϕ̇
(0)
,γ ,

Ṫ
(0)
033 = A33δγ vγ,δ − (A3333 + p) divv − ṗ(0) + A33|γϕ̇

(0)
,γ ,

and

Ṫ
(1)
0α3 = Aα3lkL

(1)
kl + pL

(1)
α3 + Aα3|3ϕ̇

(2),

= −Aα3δ3 (divv),δ + (Aα33γ + pδαγ) bγ + Aα3|3ϕ̇
(2).

Similarly, the components of the incremental displacement vector ḊL0 be-
come

Ḋ
(0)
L0α = −Ajl|αL

(0)
lj − Aαβϕ̇

(0)
,β = −Aγβ|αvβ,γ + A33|αdivv − Aαβϕ̇

(0)
,β ,

Ḋ
(1)
L03 = −Ajl|3L

(1)
lj − A33ϕ̇

(2) = −A3α|3bα + Aα3|3(divv),α − A33ϕ̇
(2).

It follows that

Ṫ
(0)
0αβ vβ,α + Ṫ

(0)
033 a3 − Ḋ

(0)
L0α ϕ̇

(0)
,α

= (Aαβδγ + p δαγδδβ) vγ,δvβ,α + 2Aαβ33vβ,αa3 + (A3333 + p) a23

+2Aαβ|γϕ̇
(0)
,γ vβ,α + 2a3A33|γϕ̇

(0)
,γ + Aαβϕ̇

(0)
,β ϕ̇(0)

,α ,

where use has been made of the relation trL(0) = vα,α + a3 = 0 to eliminate
the term involving ṗ(0). Thus, the evaluation of the O(h) term in (69) does
not involve ṗ(0), hence

Πd
2 = h

∫
ω

{
(Aαβδγ + p δαγδδβ) vγ,δvβ,α + 2Aαβ33vβ,αa3 + (A3333 + p) a23

+2Aαβ|γϕ̇
(0)
,γ vβ,α + 2A33|γϕ̇

(0)
,γ a3 + Aαβϕ̇

(0)
,β ϕ̇(0)

,α +
h2

12

[
Aα3δ3a3,δa3,α

+ (Aα33γ + pδαγ) bγa3,α + Aα3|3ϕ̇
(2)a3,α − Ḋ

(0)
L0α ϕ̇

(2)
,α − Ḋ

(1)
L03 ϕ̇

(2)
]}

ds.

(70)
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The quantities ϕ̇(2) and bγ are determined by solving simultaneously e-
quations (54) and (62), which are copied here for ease of reference

A33ϕ̇
(2) + A3α|3bα = −Aγα|βvα,γβ − A33|βa3,β − Aβαϕ̇

(0)
,αβ − Aα3|3a3,α, (71)

A3α|3ϕ̇
(2) +A3α3γbγ = (A3αβ3 + p δαβ) (divv),β. (72)

The Euler-Lagrange equations associated with the functional (70) become
the governing equations for our reduced model. They can be derived in a
straightforward manner even for a general material model, but they are quite
involved and are hence not written out for the sake of brevity. However, in
the next section, these governing equations will be given for a special choice
of the free energy function.

5. Validation and comparison with the model in [11]

In the following we consider an energy function Ω(F,EL) that is addi-
tively decomposed in a purely mechanical contribution and a part associated
with the electric field. We consider the special case of an incompressible ma-
terial with the mechanical energy given by the neo-Hookean model and the
electric contribution by an isotropic constitutive formulation with constant
permittivity ε. This implies that the electric displacement D is connected
to the electric field E by D = εE such that the electroelastic energy has the
form εE · E/2. Therefore, using (11)1, we obtain

Ω(F,EL) =
1

2
µ (I1 − 3)− 1

2
εEL ·C−1EL, (73)

where µ is the shear modulus of the material in the reference configuration.
It follows from (11)1, (5) and (7)2 that∫

Br

εEL ·C−1EL dV = −
∫
B
D · gradϕ dv = −

∫
B
div(ϕD) dv

= −
∫
∂B

ϕD · nda = Φ0Q, (74)

where da and dv denote the surface and volume elements in the configuration
B, Φ0 is defined at the beginning of Section 3, and Q denotes the total charge
on the upper plate surface. Thus, the total energy (28) can also be written
as

Π =

∫
Br

1

2
µ(I1 − 3)dV −

∫
∂Br

tA · x dS − 1

2
Φ0Q. (75)
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For what follows it is useful to recall the connections

∂F−1
Aj

∂FmD

= −F−1
AmF

−1
Dj ,

∂C−1
DE

∂FjA

= −C−1
AEF

−1
Dj − C−1

DAF
−1
Ej . (76)

The specialized forms of electroelastic moduli tensors (30) and (31) are

Aijlk = µδjkBil − ε (EjEkδil + EjElδik + EiEkδjl) (77)

and
Aij|l = ε (Ejδil + Eiδjl) , Aij = −εδij. (78)

Using (19) we find that the total Cauchy stress is given by

τ = µB+ εE⊗ E− pI. (79)

5.1. Pure shear

We first consider the case when the primary and incremental deformations
are both plane-strain. The deformation gradient tensor of the configuration
B relative to Br is given by

F = λ e1 ⊗ e1 + e2 ⊗ e2 + λ−1e3 ⊗ e3, (80)

where e3 again identifies the out of plane direction. It follows that the in-
cremental quantities defined in (40) and (41) are independent of x2 and that
the component v2 of the vector v vanishes.

The electric field E in the material, which is generated by a potential
difference between the flexible membranes, has the nonzero component E3

with the corresponding Lagrangian form EL3 = λ−1E3. The out of plane
component of the total stress τ vanishes and (79) gives

p = µλ−2 + εE2
3 . (81)

It follows that the associated Lagrangian components of the electric displace-
ment and the total nominal stress (14) in the 1-direction are

DL3 = ελ2EL3, T11 = µ
(
λ− λ−3

)
− ελE2

L3. (82)

Hence, the functional (70) reduces to

Πd
2 = h

∫
ω

{(
µλ2 + 3µλ−2 − εE2

3

)
v′1

2 − εϕ̇′ 2 (83)

+
h2

12

(
µλ2 − µλ−2 − εE2

3

)
v′′1

2 − εϕ̇′′ 2 + εϕ̇′ϕ̇′′′
}
ds,
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where the superscript ′ is used to denoted the derivative with respect to x1

and equation (72) results in b1 = v′′1 .
The associated Euler-Lagrange equations are

ϕ̇′′ − h2

6
ϕ̇(4) = 0, (84)

(
λ2 + 3λ−2 − ε̄E2

3

)
v′′1 −

h2

12

(
λ2 − λ−2 − ε̄E2

3

)
v
(4)
1 = 0, (85)

where ε̄ = ε/µ. On substituting a buckling solution of the form v1 = eikx1

into (85), we obtain

3 + λ4 − ε̄E2
3λ

2 − 1

3
(kh)2 = 0, (86)

where the leading-order result ε̄E2
3 = λ2+3λ−2 is used to eliminate ε̄E2

3 from
the O(h2) term.

We next compare the result (86) with the exact bifurcation condition
presented in [18]. Their incremental equations (99) and (100) give a 6 × 6
matrix, the determinant of which can be factorized into two factors. The two
factors correspond to the extensional and flexural modes, respectively. On
expanding the factor corresponding to the extensional mode in terms of kh
and setting the result to zero, we obtain

3 + λ4 − ε̄E2
3λ

2 +K1(kh)
2 +O(h4) = 0, (87)

where

K1 =
1

6

[
10 + 9λ2 + 7λ4 + 3λ6 + λ8 − ε̄E2

3λ
2(4 + 3λ2 + λ4)

]
.

It follows from (87) that ε̄E2
3 = λ2 + 3λ−2 + O(h2). With the use of this

result, the bifurcation condition (87) can be reduced to

3 + λ4 − ε̄E2
3λ

2 − 1

3
(kh)2 +O

(
h4
)
= 0, (88)

which is consistent with (86).
We observe that in the limit kh → 0, equation (88) yields ε̄E2

3λ
2 = 3+λ4,

and (82)2 then gives T11 = −4µλ−3 which is negative. This means that
the bifurcation condition cannot be satisfied when the dead-load is tensile.
However, this is a consequence of the specific constitutive assumption (73).
We may easily construct a material model for which the bifurcation condition
(88) with kh = 0 can be satisfied when the dead-load is tensile.

17



5.2. Bi-axial extension

In this subsection we consider planar bi-axial extension with associated
deformation gradient

F = λ e1 ⊗ e1 + λ e2 ⊗ e2 + λ−2e3 ⊗ e3. (89)

The electric field E in the material is again generated by a potential difference
between flexible membranes attached to the on the top and bottom surfaces
with components E1 = E2 = 0 and E3 = λ2EL3. There are no mechanical
traction applied at the top or bottom surface, and therefore the out of plane
component of the total stress τ vanishes. From (79) follows that

p = µλ−4 + εE2
3 , (90)

and hence the non-zero components of the total Cauchy stress are

τ ≡ τ11 = τ22 = µ
(
λ2 − λ−4

)
− εE2

3 , (91)

which corresponds to the results shown by equation (105) in [18]. Relation
(91) may also be compared with equation (54) in [11].

We now specialize the functional (70) to biaxial extension to obtain

Πd
2=µh

∫
ω

{
λ2tr (∇v∇vT ) +

(
λ−4 + ε̄E2

3

)
tr (∇v)2 + 2

(
λ−4 − ε̄E2

3

)
a23 − ε̄|∇ϕ̇(0)|2

+
h2

12

[(
λ2 − λ−4 − ε̄E2

3

)
|∇a3|2 + ε̄

(
(∇ϕ̇(0))T∇∆ϕ̇(0) − (∆ϕ̇(0))2

)]}
ds, (92)

where use has been made of the equations

b = ∇(divv) = −∇a3, ϕ̇(2) = −∆ϕ̇(0), (93)

derived from (71) and (72), ∆ is the 2D Laplace operator, and∇vT stands
for (∇v)T. The associated Euler-Lagrange equations are

λ2∆v +
(
3λ−4 − ε̄E2

3

)
∇divv − h2

12

(
λ2 − λ−4 − ε̄E2

3

)
∇∆divv = 0, (94)

and

∆

(
ϕ̇(0) − h2

6
∆ϕ̇(0)

)
= 0. (95)
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We note that the equations for v and ϕ̇(0) are decoupled.
To compare with the bifurcation condition given in [18], we specialize (94)

to plane strain deformation to obtain

(
λ2 + 3λ−4 − ε̄E2

3

)
v1,11 −

h2

12

(
λ2 − λ−4 − ε̄E2

3

)
v1,1111 +O(h4) = 0. (96)

Looking for a buckling solution of the form v1 = eikx1 , we obtain(
λ2 + 3λ−4 − ε̄E2

3

)
+

1

12
(kh)2

(
λ2 − λ−4 − ε̄E2

3

)
+O(h4) = 0. (97)

On replacing ε̄E2
3 by the leading-order approximation λ2 +3λ−4 in the order

(kh)2 term, we obtain

λ6 + 3− ε̄ E2
3λ

4 − 1

3
(kh)2 +O(h4) = 0. (98)

On the other hand, on expanding the bifurcation condition in [18] for the
extensional mode in terms of kh, we obtain

3 + λ6 − ε̄E2
3λ

4 +K2(kh)
2 +O

(
h4
)
= 0, (99)

where

K2 =
1

6

[
10 + 9λ3 + 7λ6 + 3λ9 + λ12 − ε̄E2

3λ
4(4 + 3λ3 + λ6)

]
.

Without compromising the accuracy of the first two terms, the above bifur-
cation condition (99) can be reduced to

3 + λ6 − ε̄E2
3λ

4 − 1

3
(kh)2 +O

(
h4
)
= 0, (100)

which is consistent with (98).
We observe that in the limit kh → 0, equation (100) yields ε̄E2

3λ
4 = 3+λ6,

and (91) then gives τ11 = −4µλ−4 which is negative. As in the case of pure
shear, this is a consequence of the specific constitutive assumption (73), and
it is possible to find material models for which the bifurcation condition can
be satisfied when the dead-load is tensile.
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5.3. Comparison with the model in [11]

For the case when the primary deformation is an equi-biaxial extension,
De Tommasi et al. [11] derived a reduced plate model using a different pro-
cedure. Under the additional assumption that the incremental deformation
is polar axisymmetric so that ∇v = (∇v)T, they obtained an equation for
v, which, in our current notation, takes the form

Γ1(λ)∇divv + Γ2(λ)∇∆divv = 0, (101)

where

Γ1(λ) = λ3 + 3λ−3 − λε̄Φ2
0

h2
, Γ2(λ) =

h2

12

(
3λε̄Φ2

0

2h2
− λ3

)
.

Under the same assumptions, our equation (94) reduces to

Γ1(λ)∇divv +
h2

12

(
λε̄Φ2

0

h2
− λ3 + λ−3

)
∇∆divv = 0. (102)

This is seen to be different from (101), even in the purely mechanical case
when Φ0 = 0. Interestingly, with the use of (91) the above equation can be
rewritten in the form

Γ1(λ)∇divv − λh2τ

12µ
∇∆divv = 0. (103)

For each fixed nominal stress τ/λ, the equilibrium equation (91) defines the
electric potential Φ0 as a function of the stretch λ. We may refer to its graph
in the (λ,Φ0)-plane as the loading path. It was observed in [11] that equation
(101) admits a non-trivial solution if Γ2/Γ1 > 0 (which may be replaced by
Γ2 > 0 since Γ1 is positive in the domain of interest), and that this inequality
may be satisfied along any loading path with τ positive. This means that
a bifurcation may take place for all positive values of τ . However, based on
our model equation (103), the above inequality can never be satisfied along
any loading path with positive τ . Therefore, our model excludes the type of
bifurcation identified in [11] when τ is positive.

6. Further evaluation of the model in [11]

In order to understand why our current model is different from the model
developed in [11], we now analyze the same energy functional as in [11],
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namely,

Π =
1

2
µ

∫
Br

(
Ĩ1 − 3

)
dV −

∫
∂Br

tA · x̃ dS − 1

2
Φ0Q̃, (104)

where Ĩ1 = trB̃, x̃ is the position vector of a representative particle in the
current configuration B̃ that is perturbed from the finitely deformed configu-
ration B, and Q̃ is the total charge on the upper surface. It is seen that (104)
has the same form as (75) except that the configuration B is now replaced by
B̃. Thus, the expression (104) is exact under the assumption that the total
energy can be decomposed into a mechanical part given by the neo-Hookean
model and an electric contribution corresponding to constant permittivity.

In [11, 55] the total charge Q̃ is computed according to the approximation

Q̃ = ε

∫
S̃

Φ0

h̃
dã, (105)

where h̃ denotes the plate thickness in the configuration B̃, and S̃ the upper
surface. We shall adopt this same assumption, but use the full expansion
(40) for u.

Consider an incremental deformation described by the vector function χ̇,
which is superimposed on the configuration B. The corresponding deforma-
tion gradient tensor, denoted F̃, relative to the reference configuration Br has
the form

F̃ = (I+ L)F, (106)

where we recall that L is the gradient of the incremental displacement vector
u and F is the deformation gradient of the configuration B relative to Br.
Equation (4)1 gives the corresponding left Cauchy-Green tensor

B̃ = B+BLT + LB+ LBLT, (107)

which, when combined with (43), becomes

B̃ = B+BL(0)T + L(0)B+ L(0)BL(0)T +M1x3 +M2x
2
3 . . . . (108)

The M1 in the above equation will not appear in our subsequent analysis,
while M2 is given by

M2 =
1

2

(
BL(2)T + L(2)B+ L(0)BL(2)T + L(2)BL(0)T + 2L(1)BL(1)T

)
.

(109)
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If the primary deformation is an equi-biaxial extension with stretch λ, we
then have

tr
(
L(0)B

)
= λ2divv + λ−4a3, tr

(
L(0)BL(0)T

)
= λ2tr

[
∇v∇vT

]
+ λ−4a23,

tr
(
BL(2)T

)
= λ2divb+ λ−4c3, tr

(
L(0)BL(2)T

)
= λ2tr

[
∇v∇bT

]
+ λ−4a3c3,

tr
(
L(1)BL(1)T

)
= λ2|∇a3|2 + λ−4|b|2,

where we recall that ∇ is the 2D gradient operator. The expressions of
a3 and c3 are again obtained from the incompressibility requirement of the
incremental deformation, i.e. det(I+ L) = 1. Thus,

a3 = −divv +
1

2
(divv)2 +

1

2
tr (∇v)2 + . . . , (110)

c3 = −divb+ 2bT∇a3 + tr (∇v∇b) + divv divb+ . . . , (111)

where details are given in Appendix A.
The expression of the mechanical part of the total energy (104), keeping

the terms quadratic in the incremental displacement, has the form

h
{
λ−4

[
2 (divv)2 + tr (∇v)2

]
+ λ2tr

(
∇v∇vT

)}
+

h3

12λ4

{
−2bT∇divv

+tr [∇v∇b] + 2 divv divb+ λ6tr
[
∇v∇bT

]
+ λ6|∇divv|2 + |b|2

}
.

To expand the third term on the right hand side of (104), we write

1

2
εΦ2

0

∫
S̃

1

h̃
dã =

εΦ2
0

2h

∫
S

h

h̃

dã

da
da, (112)

where da and S are the images of dã and S̃ in the configuration B. Using
the incremental deformation tensor and Nanson’s formula we find that

h̃

h
= 1 + a3,

dã

da
= | (I+ L)−T e3|. (113)

In Appendix B it is shown that

h

h̃

dã

da
= 1+2divv+2 (divv)2−tr (∇v)2+

h2

8

(
divb+ 3divv divb+ |∇ divv|2

)
.

(114)
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Introducing the short-hand notation U2(v,b) to define the quadratic
terms in the energy functional (104) gives

Π2 = µh

∫
S

U2(v,b)da, (115)

where

U2(v,b) = λ−4
[
2 (divv)2 + tr (∇v)2

]
+ λ2tr

(
∇v∇vT

)
+

h2

12λ4

{
−2bT∇divv

+ tr [∇v∇b] + 2 divv divb+ λ6tr
[
∇v∇bT

]
+ λ6|∇divv|2 + |b|2

}
− ε̄Φ2

0

h2

[
2 (divv)2 − tr (∇v)2 +

h2

8

(
3 divv divb+ |∇ divv|2

)]
. (116)

To recover the model equation (101), we take b = 0 in (116) to obtain

U2(v,0) = λ−4
[
2 (divv)2 + tr (∇v)2

]
+ λ2tr

(
∇v∇vT

)
+

h2

12
λ2|∇divv|2

− ε̄Φ2
0

h2

[
2 (divv)2 − tr (∇v)2 +

h2

8

(
|∇ divv|2

)]
.

The associated Euler-Lagrange equation is

λ3∆v +

(
3λ−3 − ε̄Φ2

0λ

h2

)
∇divv +

h2

12

(
3ε̄Φ2

0λ

2h2
− λ3

)
∇∆divv = 0. (117)

Under the further assumption that the incremental deformation is polar axi-
symmetric, see the statement above equation (50) in [11], we have ∆v =
∇divv, and the above equation then reduces to (101). Thus, the discrepancy
between our model and the model in [11] is due to the exclusion of b, and
hence c3 (since c3 = −divb, see (45)), in the expansion of u in [11]. Because
of this exclusion, the two models are different even in the purely mechanical
case when Φ0 ≡ 0.

In order to compare with the results derived in Section 4, we substract
from (116) the O(h4) term h2Ṫ

(0)
0αβbβ,α/12. Using equation (67), with (48),

(61), (77), (78), (89) and (90), we have

h2

12λ4
Ṫ

(0)
0αβbβ,α =

h2

12λ4

[
µλ6tr

(
∇v∇bT

)
+
(
µ+ ελ4E2

3

)
tr (∇v∇b)

+ 2
(
µ− ελ4E2

3

)
divv divb

]
. (118)
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Thus, we replace (116) by

U2(v,b) = λ−4
[
2 (divv)2 + tr (∇v)2

]
+ λ2tr

(
∇v∇vT

)
+

h2

12λ4

(
−2bT∇divv + λ6|∇divv|2 + |b|2

)
− ε̄Φ2

0

h2

[
2 (divv)2 − tr (∇v)2

]
− ε̄Φ2

0

24

[
5 divv divb+ 2tr (∇v∇b) + 3|∇ divv|2

]
. (119)

Following the approach in [42], we allow b to vary independently. Then,
setting the variation of Π2 with respect to b equal to zero gives

b =

(
1− 7

4

ε̄Φ2
0λ

4

h2

)
∇divv. (120)

If we specialize the above result to the purely mechanical case by setting
Φ0 = 0, we have b = ∇divv. On substituting this expression back into
(119), the reduced expression agrees with (92) under the same assumption.
This provides a partial check on the expansions carried out in the current
section.

However, our analysis in Section 5 shows that the result b = ∇divv is
also valid when electric effects are taken into account. This expression for b is
different from (120). Obviously, the discrepancy is due to the approximation
adopted in (105).

7. Conclusion

Reduced models for plates have enjoyed continued attention in the sci-
ence community and have played an important role in helping us understand
the essential features of plate response without the need to use the fully
three-dimensional elasticity theory. Our current research is motivated by the
observation that there exist very few reduced models for electroelastic plates
and what has been achieved in the purely mechanical case has not yet been
fully extended to the electroelastic case. Our current study provides a first
such extension of the methodology employed by [40, 41, 42, 43], although in
contrast with the purely mechanical case we have chosen not to derive the
associated edge conditions; this is because in practice electrodes are rarely ex-
tended to the plate edge. The power expansion approach has also been used
in the derivation of dynamic plate theories; see [25, 33] for instance. This
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approach is well-tested and, in the pure mechanical case under appropriate
limits, recovers the classical Kirchhoff-Love plate theory.

In contrast, the electroelastic plate model employed by [11, 55] is derived
using a different methodology. It involves two assumptions. Firstly, the ex-
pansion for the incremental displacement is linear in terms of the transverse
coordinate x3; it does not include the quadratic and cubic terms in (40). Sec-
ondly, the total charge that appears in the computation of the total energy
is calculated with the use of the approximate formula (105). The main con-
clusion from our comparison is that the type of bifurcation modes described
by [11, 55] are not predicted by the current model. To shed further light on
the reduced model of [11, 55], we have analyzed the same energy functional
as in [11] but used the full expansion (40) for the displacement. Our analysis
does recover their model under appropriate assumptions, but the associated
Euler-Lagrange equation is still different from the one corresponding to the
model we derived, due to the approximation adopted in (105).
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Appendix

A. Derivation of (110) and (111)

The deformation gradient F̃ relative to the the reference configuration Br

is given in (106). Incompressibility of the incremental deformation requires
that det (I+ L) = 1. To evaluate the determinant we use the formula

det (ηI− L) = η3 − I1Lη
2 + I2Lη − I3L, (121)

where I1L, I2L, I3L are the principal invariants of L, and η is any scalar. In
particular, taking η = −1 we find that the incompressibility condition may
be written as

I1L +
1

2

(
I21L − trL2

)
+ · · · = 0, (122)

where here and hereafter the dots denote cubic and higher order terms that
do not participate in our analysis.

From (43) it follows that

I1L = trL = divv + a3 +
1

2
x2
3 (divb+ c3) + . . . , (123)

trL2 = tr(∇v)2 + a23 + x2
3 [tr(∇v∇b) + a3c3 + 2bT∇a3] + · · · . (124)

On substituting these expressions into (122) and equating the coefficients of
x0
3 and x2

3 to zero, respectively, we obtain

(divv + a3)

{
1 +

1

2
(divv + a3)

}
− 1

2

[
tr (∇v)2 + a23

]
= 0, (125)

(divb+ c3) (1 + divv + a3)− tr(∇v∇b)− a3c3 − 2b2∇a3 = 0. (126)

These two exact equations are equivalent to

(divv + a3)−
1

2

[
tr (∇v)2 + a23

]
+ · · · = 0, (127)

and
(divb+ c3)− tr(∇v∇b)− a3c3 − 2bT∇a3 + · · · = 0. (128)

Equations (110) and (111) are obtained if a3 is replaced by −divv and c3 by
−divb in the quadratic terms since the errors induced are at least cubic.
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B. Derivation of (114)

In (113)2 Nanson’s formula relates an infinitesimal small area element dã
in the current configuration to the corresponding quantity in the configura-
tion B. This requires the inverse of I+L where I is again the identity and L
the spacial gradient of the incremental displacement vector defined in (43).
We use the decomposition

I+ L = K1 +
h

2
K2 = K1

(
I+

h

2
K−1

1 K2

)
, (129)

where
K1 = K3 + ζe3 ⊗ e3, K2 + a3,αe3 ⊗ eα + bαeα ⊗ e3, (130)

K3 = (I− e3 ⊗ e3) +∇v +
h2

8
bα,βeα ⊗ eβ, ζ = 1 + a3 +

h2

8
c3. (131)

The reason for this decomposition is that K1 is in block form, therefore the
inverse is simply K−1

1 = K−1
3 + ζ−1e3 ⊗ e3. It follows that

K−T
1 = K−T

3 + ζ−1e3 ⊗ e3, K−T
1 e3 = ζ−1e3, (132)

KT
2K

−T
1 e3 = ζ−1∇a3,

(
KT

2K
−T
1

)2
e3 = ζ−1bTK−T

3 ∇a3e3. (133)

Thus,

(I+ L)−T = K−T
1

[
I− h

2
KT

2K
−T
1 +

h2

4

(
KT

2K
−T
1

)2]
+O(h2),

(I+ L)−T e3 = −h

2
ζ−1K−T

3 ∇a3 +

(
ζ−1 +

h2

4
ζ−2bTK−T

3 ∇a3

)
e3 +O(h2).

Note that the two terms in the last expression are mutually orthogonal.
Hence we obtain

| (I+ L)−T e3| = ζ−1

[
1 +

h2

2
ζ−1bTK−T

3 ∇a3 +
h2

4
|K−T

3 ∇a3|2
]1/2

+O(h2),

and a Taylor expansion then gives

| (I+ L)−T e3| = ζ−1

[
1 +

h2

4
ζ−1bTK−T

3 ∇a3 +
h2

8
|K−T

3 ∇a3|2
]
+O(h2).

Equation (114) is then obtained from (113) by direct expansion, followed by
the use of (110) and (111) to eliminate a3 and c3.
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A.Q. López, Theoretical modelling and experimental results of elec-
tromechanical actuation of an elastomer. J. Phys. D: Appl. Phys. 46
(2013) 235305.

[16] A. Dorfmann, R.W. Ogden, Nonlinear electroelasticity. Acta Mech. 174
(2005) 167–183.

[17] A. Dorfmann, R.W. Ogden, Nonlinear electroelasticity: incremental
equations and stability. Int. J. Eng. Sci. 48 (2010) 1–14.

[18] L. Dorfmann, R.W. Ogden, Instabilities of an electroelastic plate. Int.
J. Eng. Sci. 77 (2014) 79–101.

[19] L. Dorfmann, R.W. Ogden, Nonlinear Theory of Electroelastic and
Magnetoelastic Interactions, Springer-Verlag (2014).

[20] L. Dorfmann, R.W. Ogden, Nonlinear electroelasticity: materials, con-
tinuum theory and applications. Proc. R. Soc. A 473 (2017) 20170311.

29



[21] Y.B. Fu, L. Dorfmann, Y.-X. Xie, Necking of a dielectric membrane.
Extreme Mechanics Letters 21 (2018) 44–48.

[22] M. Gei, S. Colonelli, R. Springhetti, The role of electrostriction on
the stability of dielectric elastomer actuators. Int. J. Solids Struct. 51
(2013) 848–860.

[23] R. Huang, Z. Suo, Electromechanical phase transition in dielectric e-
lastomers. Proc. R. Soc. A 468 (2012) 1014-1040.

[24] W. Hong, Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59
(2011) 637–650.

[25] J.D. Kaplunov, E.V. Nolde, G.A. Rogerson, A low-frequency model for
dynamic motion in pre-stressed incompressible elastic structures. Proc.
R. Soc. A 456 (2000) 2589C2610.

[26] A. Kovetz, Electromagnetic Theory, University Press, Oxford (2000).

[27] L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media, 2nd
edn. Pergamon, Oxford (1984).

[28] J. Leng, L. Liu, Y. Liu, K. Yu, S. Sun, Electromechanical stability of
dielectric elastomer Appl. Phys. Lett. 94 (2009) 211901.

[29] Y. Liu, L. Liu, S. Sun, J. Leng, Electromechanical stability of a
Mooney–Rivlin-type dielectric elastomer with nonlinear variable per-
mittivity, Polym. Int. 59 (2010) 371–377.

[30] R.M. McMeeking, C.M. Landis, Electrostatic forces and stored energy
for deformable dielectric materials. J. Appl. Mech. 72 (2005) 581–590.

[31] M. Moscardo, X. Zhao, Z. Suo, Y. Lapusta, On designing dielectric
elastomer actuators. J. Appl. Phys. 104 (2008) 093503.

[32] A.N. Norris, Comment onMethod to analyze electromechanical stability
of dielectric elastomers [Appl. Phys. Lett. 91, 061921 (2007)]. Appl.
Phys. Lett. 92 (2008) 026101.

[33] A.V. Pichugin, G.A. Rogerson, An asymptotic membrane-like theory
for long-wave motion in a pre-stressed elastic plate. Proc. R. Soc. Lond.
A 458 (2002) 1447C1468.

30



[34] J.S. Plante, S. Dubowsky, Large-scale failure modes of dielectric elas-
tomer actuators. Int. J. Solids Struct. 43 (2006) 7727–7751.

[35] G. Puglisi, G. Zurlo, Electric field localizations in thin dielectric films
with thickness non-uniformities. J. Electrostat. 70 (2012) 312–316.

[36] S. Rudykh, G. deBotton, Stability of anisotropic electroactive polymers
with application to layered media. Z. Angew. Math. Phys. (ZAMP) 62
(2011) 1131–1142.

[37] S. Rudykh, K. Bhattacharya, G. deBotton, Snap-through actuation of
thick-wall electroactive balloons. Int. J. Non-Linear Mech. 47 (2012)
206–209.

[38] S. Rudykh, K. Bhattacharya, G. deBotton, Multiscale instabilities in
soft heterogeneous dielectrics. Proc. R. Soc. A 470 (2014) 20130618.

[39] K.H. Stark, C.G. Garton, Electric strength of irradiated polythene.
Nature 176 (1955) 1225–1226.

[40] D. Steigmann, Two-dimensional models for the combined bending and
stretching of plates and shells based on three-dimensional linear elas-
ticity. Int. J. Eng. Sci. 46 (2008) 654-676.

[41] D. Steigmann, A well-posed finite-strain model for thin elastic sheets
with bending stiffness. Math. Mech. Solids 18 (2012) 103-112.

[42] D. Steigmann, Koiter’s shell theory from the perspective of three-
dimensional nonlinear elasticity. J. Elasticity 111 (2013) 91–107.

[43] D. Steigmann, R.W. Ogden, Classical plate buckling theory as the
small-thickness limit of three-dimensional incremental elasticity. Z.
Angew. Math. Mech.(ZAMM) 94 (2014) 7–20.

[44] Y.P. Su, H.C. Broderick, W.Q. Chen, M. Destrade, Wrinkles in soft
dielectric plates. J. Mech. Phys. Solids 119 (2018) 298–318.

[45] Z. Suo, Theory of dielectric elastomers. Acta Mech. Solida Sin. 23
(2010) 549–578.

31



[46] J. Wang, Z.L. Song, H.-H. Dai, On a consistent finite-strain plate theo-
ry for incompressible hyperelastic materials. Int. J. Solids Struct. 78-79
(2016) 101-109.

[47] Y.X. Xie, J.-C. Liu, Y.B. Fu, Bifurcation of a dielectric elastomer bal-
loon under pressurized inflation and electric actuation. Int. J. Solids
Struct. 78 (2016) 182–188.

[48] B.X. Xu, R. Mueller, M. Klassen, D. Gross, On electromechanical sta-
bility analysis of dielectric elastomer actuators. Appl. Phys. Lett. 97
(2010) 162908.

[49] X. Zhao, W. Hong, Z. Suo, Electromechanical hysteresis and coexistent
states in dielectric elastomers. Phys. Rev. B 76 (2007) 134113.

[50] X. Zhao, Z. Suo, Method to analyze electromechanical stability of di-
electric elastomers, Appl. Phys. Lett. 91 (2007) 061921.

[51] X. Zhao, S.J. A. Koh, Z. Suo, Nonequilibrium thermodynamics of di-
electric elastomers, Int. J. App. Mech. 3 (2011) 203–217.

[52] X. Zhao, Q. Wang, Harnessing large deformation and instabilities of
soft dielectrics: theory, experiment, and application. Appl. Phys. Rev.
1 (2014) 021304.

[53] J. Zhu, H. Stoyanov, G. Kofod, Z. Suo, Large deformation and elec-
tromechanical instability of a dielectric elastomer tube actuator, J.
Appl. Phys. 108 (2010) 074113.

[54] G. Zurlo, Non-local elastic effects in electroactive polymers. Int. J.
Nonlin. Mech. 56 (2013) 115–122.

[55] G. Zurlo, M. Destrade, D. DeTommasi, G. Puglisi, Catastrophic thin-
ning of dielectric elastomers. Phys. Rev. Lett. 118 (2017) 078001.

32


