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I. NUMERICAL ALGORITHM FOR DNS

The DNS algorithm used in this paper is based on the
Zakharov integrodifferential equation for water waves,
which was derived in 1968 ([1]), but long considered to be
inconvenient and expensive to simulate numerically (e.g.
[2]). Nevertheless, it has important advantages from the
point of view of numerics, due to the elimination of non-
resonant interaction terms by canonical transformation,
and complete freedom in the choice of a computational
grid. Since there is no need to perform a Fourier trans-
form during time stepping, there is no restriction to a
regular grid of wavenumbers, which is an important ad-
vantage over spectral methods for the simulation of wave
interactions over a range of spatial scales.
An algorithm based on the Zakharov equation was pro-

posed in [3] (see also [4]) and successfully applied to the
study of a number of physical problems with a relatively
small number of degrees of freedom. The essence of the
method is in the efficient computational strategy, where
all the coefficients are computed by a preprocessing rou-
tine and stored in a way that facilitates all subsequent
operations of integration in time, as well as optimizing
them for parallel computation. A wave field b(k, t) is
considered as an ensemble of discrete harmonics of the
form

b(k, t) =
N∑

j=1

bj(kj , t), (1)

position of points kj in Fourier space being arbitrary.
However, application of this algorithm to the evolution

of continuous random wave fields is not straightforward.
Any dynamical algorithm for the simulation of a wave
field has to include a discretisation of the field. The dif-
ficulty is that such a discretisation produces a discrete
wave system, with properties qualitatively different from
those of a continuous field.
In order to model a continuous wave field correctly,

a discretised wave field must be capable of represent-
ing interactions between all degrees of freedom, which is,
strictly speaking, not possible. The usual remedy is to
assume that a sufficiently large and refined regular grid,
with its high density of resonant and non-resonant inter-
actions, has properties similar to those of a continuous
field. However, as noted above, a regular grid is rather
inconvenient, since it has inhomogeneous properties at
different scales. In addition, it can manifest undesirable
artefacts of a resonator. It has been long known that
the use of regular grids for the numerical simulation of
wave turbulence leads to “frozen turbulence” effects (see
discussion in [5]).

An alternative way to model a continuous wave field
was first suggested by [6], and used to study the adjust-
ment of a wave field to instantly changing [7] or rapidly
fluctuating [8] forcing, and to simulate numerically the
evolution of higher statistical moments [9]. The idea be-
hind the algorithm is to perform coarse-graining of a con-
tinuous wave field, retaining fundamental properties of
nonlinear interactions.
A wave field is represented by a grid consisting of wave

packets, coupled through exact and approximate reso-
nant interactions. A wave packet, centred at k0, is char-
acterised by one amplitude and one phase, but has finite
bandwidth in Fourier space, and is allowed to enter into
nonlinear interactions with other wavepackets, provided
that the wavevector mismatch

∆k = k0 + k1 − k2 − k3

does not exceed a certain threshold (the coarse-graining
parameter). Thus, the standard resonance condition
k0 + k1 − k2 − k3 = 0 is relaxed. As in the standard
discretisation case, we need to consider only resonant
and approximately resonant interactions, prescribing a
similar condition on the frequency mismatch ∆ω, where

∆ω = ω0 + ω1 − ω2 − ω3.

The values of ∆k and ∆ω should ensure the homogeneity
of interactions on different scales (that is, the number of
interactions should not change if all wavenumbers are
rescaled). For this purpose, a quartet of grid points is
assumed to be in approximate resonance if its wavevector
and frequency mismatch satisfies

∆ω/ωmin < λω, |∆k|/kmin < λkω̄/ωmin, (2)

where ∆ω and |∆k| are the frequency and wavevector
mismatch in the quartet, ωmin and kmin are the mini-
mum values of frequency and wavenumber in the quartet,
ω̄ is the mean frequency, and λω and λk are the detun-
ing parameters, chosen to ensure that the total number
of resonances is O(N2), where N is the number of grid
points. The resulting system of N discrete equations can
be integrated in time by a standard timestepping scheme.
The construction of the algorithm depends on the

choice of two parameters: the coarse-graining parame-
ter λk and the detuning parameter λω. For consistency
and efficiency of the algorithm λk should be kept small,
and, ideally, there should be no dependence on its value.
However, a zero value of λk would mean the absence of
evolution on a generic non-regular grid, since the condi-
tion k0 + k1 − k2 − k3 = 0 is unlikely to be satisfied at
all.
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FIG. S1. Evolution of significant wave height Hs on 321× 71
grid for different values of λk

The algorithm was used by the authors in a number of
studies (e.g. [7–9]), and was described in detail in [5]. In
the latter work, the choice of the grid resolution and of λk

and λω parameters was made after extensive numerical
trials. It that paper, we used a non-regular grid with 161
logarithmically spaced points in the range ωp/2 ≤ ω ≤
3ωp, where ωp = 1, and 41 uniformly spaced angles in the
range −4π/9 ≤ θ ≤ 4π/9. For this grid resolution, the
trials showed that the rate of the spectral evolution was
dependent on the value of λk as it was increased from
zero, but this dependence approached saturation close to
λk = 0.03. This value was chosen for all computations
in [5]. It was also found that there was practically no
dependence on the specific value of λω , provided that
λω = O(10−2) or above. Thus, λω = 0.01 was set.

In the present work, we leave unchanged the parame-
ters used in [5], except for extending the range of angles
in the grid, while retaining the same angular resolution.
That is, the current grid has 161 logarithmically spaced
frequencies in the range ωp/2 ≤ ω ≤ 3ωp, and 71 uni-
formly spaced angles in the range−7π/9 ≤ θ ≤ 7π/9. We
also use the refined 321× 71 resolution, and vary param-
eter λk as a method to create wave fields with the same
wave steepness and different nonlinear energy. Again, we
find that the dependence on λk approaches saturation for
λk > 0.02. In figure S1, we plot the evolution in time of
the significant wave height for different values of λk on
the 321× 71 grid. This figure, which can be seen as com-
plementary to Figure 4 of the main text of the paper,
shows that there is little dependence on λk above 0.02.

Next, we will discuss the important modification of the
DNS algorithm presented in [5]. This modification is the
inclusion of wind forcing and a simple parameterization
of wave breaking.
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FIG. S2. Evolution of significant wave height Hs on 321× 71
grid with λk = 0.1 and different values of εc

II. WIND FORCING AND WAVE BREAKING

The DNS algorithm described in [5] did not include
wind forcing or wave breaking, but only dissipation at
high frequencies (ω ≥ 2.5ωp). In the present paper, the
same dissipation is used, and wind forcing is applied to
ω ≤ 2.2ωp, using the formula by [10]. However, a DNS
algorithm with wind forcing must also include a certain
parameterization of wave breaking. The reason for this
is not the intention to model wave breaking as a physical
process, but simply due to the fact that without such a
parameterization the algorithm would not be functional.
A wave field in a DNS algorithm is averaged over real-
izations, and amplitudes of individual harmonics in each
realization are random and can become large. If these
harmonics are also forced by wind, the randomly attained
high amplitudes will grow fast and eventually will destroy
the spectrum, so a certain procedure of limiting the fast
growth is necessary.
Wind forcing is applied in the standard way by adding

Sin,

Sin = β(k)b(k) (3)

to the right-hand side of the Zakharov equation. On
every time step, and in each realization, the non-
dimensional quantity

εk =

√
2Ek|k|
2π

(4)

is calculated, where Ek = ω|bk|2/g is the energy of the
(discrete) harmonic with wavevector k. For convenience,
εk is normalized as the steepness of the harmonic when
it is taken separately. If εk exceeds the critical value
εc, forcing (3) for the harmonic is replaced by strong
damping with β = −0.15ω. When, after a few periods,
εk drops below 0.1εc, the forcing is resumed. A number of
numerical tests did not show any noticeable dependence
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FIG. S3. Normalized spectral shape at kp = 1.0, for 321× 71
grid with λk = 0.1 and different values of εc
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FIG. S4. Evolution of significant wave height Hs: DNS on
161 × 71 grid with λk = 0.03 and KE, for values of wind
speed at U/c1 = 2.0, lower by 5% (for KE) and higher by 5%
(for DNS)

on the damping level, or on the lower critical value of the
non-dimensional amplitude.

Although there is only a small number of “breaking
events” (usually about 3–6 harmonics are affected at any
one time, randomly and, generally speaking, differently
chosen in each realization, out of O(104) total harmon-
ics), they strongly affect the position of the spectral slope
and, thus, the total energy. Figure S2 shows evolution
of significant wave height for moderate value of λk and
different values of parameter εc.

Thus, the evolution of a wave field has a strong depen-
dendence on a free parameter of the numerical scheme,
which, at first glance, looks like a major shortcoming of
the DNS algorithm. The optimal value of this parameter
is grid-dependent and cannot be deduced from physical
considerations. However, if εc is set to a sufficiently high
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FIG. S5. Evolution of the spectral peak kp vs time in simu-
lations on 321 × 71 grid for different values of λk and εc (a)
εc = 0.0075, 0.003 ≤ λk ≤ 0.03, (b) λk = 0.01, three different
values of εc

value, it affects only the position of the spectral slope, not
the value of the slope or the shape of the spectral peak.
In figure S3, we plot the self-similar spectral shape for
λk = 0.01 and the same values of εc as in the previous
figure. When εc is set at 0.005, the “breaking events”
occur around the peak and even on the spectral front,
distorting the shape of the peak. For higher values of εc,
there is no difference in the peak shape, so that changing
the value of εc has virtually the same effect as slightly
changing the growth rate due to wind. Since this growth
rate is known only approximately, the choice of εc is not
very significant, provided that it is set to a value that is
not too low.

In Figure S4, we plot the evolution of significant wave
height obtained with the KE and the DNS (cf. figure
4 in the text of the paper), and the same evolution for
wind speed that is different only by 5%. Although the
difference between the KE and the DNS results appears
to be significant, in reality only a small change of wind
speed compensates for it.

In addition to the discussion of the growth of signif-
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icant wave height Hs under constant wind forcing, we
show the evolution of another important integral char-
acteristics of a wave field, the wavenumber of the spec-
tral peak. Figure S5 shows the dependence of the evo-
lution of the peak wavenumber on parameters of the
DNS numerical scheme. First, we fix εc and plot the
peak wavenumber vs time for different values of λk. As
it was the case with the significant wave height, with
the increase of λk the evolution becomes faster, up to a
certain, grid-dependent value where it approaches near-
saturation. Second, we plot the evolution for the fixed
moderate value of λk and different εc. Since this param-
eter controls the total amount of energy in the system,
the evolution of the peak wavenumber shows dependence
on it, although this dependence can be absorbed by only

a small variation of wind forcing
We conclude our discussion of the DNS parameters by

summarising the parameters used in the main text of the
paper in Table I.

Grid λk λω εc
Number of

realizations

161x71 0.03 0.01 0.01 100

321x71
various,

up to 0.03
0.01 0.0075 20

TABLE I. Parameters of the simulations used in this study
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