
Chapter 8
Dispersion of the Bending Wave in a
Fluid-loaded Elastic Layer

Julius Kaplunov, Ludmila Prikazchikova, and Sheeru Shamsi

Abstract A plane strain problem is considered for an elastic layer immersed into a
compressible fluid. The dispersion relation for anti-symmetric waves is studied. The
associated three-term long-wave low-frequency expansion for a fluid-borne bend-
ing wave is derived, along with similar expansions corresponding to Kirchhoff and
Timoshenko-Reissner type fluid-loaded plates. The results of comparative asymp-
totic analysis are presented. The role of plate inertia and fluid compressibility are
discussed.
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8.1 Introduction

Fluid-structure interaction problems for elastic plates have been investigated since
long ago. However, asymptotic considerations in this area were usually restricted
to the classical Kirchhoff theory, e.g. see [2, 3]. Only a few publications has ap-
proached the subject using original equations in dynamic elasticity, e.g. see [5, 6, 9].
Until now to the best of authors’ knowledge there is no direct comparisons of the
asymptotic (not just numerical) results, obtained from linear elasticity and approx-
imate plate models. At the same time, nowadays there is a significant demand of
more rigorous and accurate predictions inspired by advanced industrial applications,
including soft robotics, e.g. see [8].

In this paper we study a plane strain problem for an elastic layer, governed by
2D equations in elasticity, in contact with a compressible non-viscous fluid. The
related dispersion equation for anti-symmetric waves is analysed at the long-wave
low-frequency limit. The ratio between dimensionless wavelength and frequency is
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not taken to be the same as for a bending wave on a free plate and corresponds to a
specific fluid-borne bending wave, e.g. see [10]. A three-term asymptotic expansion
of the aforementioned dispersion relation is derived and implemented for testing
the approximate dispersion relations for two simplified fluid-structure interaction
models based on thin plate asymptotic theories including the classical Kirchhoff
theory as well as Timoshenko-Reissner type theory, e.g. see [1, 7] and references
therein. The roles of fluid compressibility and plate inertia are also addressed.

It is shown in particular that the leading order term in the derived expansion of the
”exact” dispersion relation also follows from the dispersion relation for a Kirchhoff
plate immersed into incompressible fluid, neglecting the plate inertia. Moreover,
fluid compressibility appears to be outside the range of validity of both classical and
refined plate based formulations studied in the paper. It is also established that the
adapted refined theory has a higher asymptotic accuracy than the classical one. This
observation is far from being obvious, since consideration starts from the assump-
tion that fluid loading may be considered as a prescribed external stress field. The
latter assumption has been proved to be justified even at a higher order, although it
formally supports the asymptotic scaling characteristic of a bending wave on a plate
with traction free faces not incorporating accurately enough the effect of the fluid.

The paper is organised as follows. The linear equations in plane elasticity and
fluid dynamics are presented in Sect. 8.2, along with the approximate formulations
based on the Kirchhoff and Timoshenko-Reissner types plate theories. All associ-
ated dispersion relations are derived in Sect. 8.3. The Sect. 8.4 is concerned with a
comparative analysis of asymptotic expansions.

8.2 Basic Equations

Consider free in-plane vibrations of an elastic layer of thickness 2ℎ immersed in a
non-viscous compressible fluid. Let the mid-line of the layer be the 𝑥2 = 0 axis of the
Cartesian coordinate system (−∞ < 𝑥1, 𝑥2 <∞), see Fig. 8.1. Throughout the paper
we use the following notation: 𝜌 and 𝜌0 are solid and fluid densities, respectively;
𝐸 is Young’s modulus, 𝜈 is the Poisson ratio, 𝜆 and 𝜇 are Lamé elastic constants, 𝑐1
and 𝑐2 are the longitudinal and transverse wave speeds in solid, 𝑐0 is the wave speed
in fluid.

The equations of motion in terms of the elastic potentials 𝜙 and 𝜓 and the fluid
potential 𝜑 can be written as
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where


