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Abstract

This paper introduces a new type of graph grammar for representing recursively struc­

tured two­dimensional geometric patterns, for the purposes of syntactic pattern recogni­

tion. The grammars are noise­tolerant, in the sense that they can accommodate patterns

that contain pixel noise, variability in the geometric relations between symbols, miss­

ing parts, or ambiguous parts, and that overlap other patterns. Geometric variability

is modelled using fleximaps, drawing on concepts from the theory of Lie algebras and

tensor calculus.

The formalism introduced here is intended to be generalisable to all problem do­

mains in which complex, many­layered structures occur in the presence of noise.

Keywords: graph grammars, context­free grammars, recursive symbol processing, pars­

ing, syntactic pattern recognition, noise tolerance, affine invariance.
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1. Introduction

1.1 Aims

This work is an exercise in syntactic pattern recognition. The aim is to represent complex

geometric patterns as symbol systems, in a robust way that can cope with missing or

deformed symbols, variability in the geometric relations between parts of a symbol, and

other types of noise. More generally, the long­term aim of my research is to combine

the expressive power of recursive symbol systems (such as formal grammars) with the

noise­tolerance of massively parallel, distributed computational systems (such as neural

networks).

A symbol system is a structure consisting of finitely many elements of various types,

called symbols; a symbol may contain other symbols, and may stand in certain relations

to neighbouring symbols. The permitted relations of containment and neighbourhood

are specified by a grammar, which is also a symbol system. The grammar is finite,

but by means of recursion it can describe infinitely many symbol systems. The most

familiar examples of grammars are those used to describe programming languages and

natural languages; these are called string grammars, because they describe sequences

of symbols. Graph grammars are more powerful than string grammars, as they can

represent more complex, non­sequential configurations of symbols.

The importance of recursive symbol systems was emphasised in the so­called ‘clas­

sical’ tradition of artificial intelligence and cognitive science; it became the subject of

controversy between the ‘classical’ tradition and connectionism in the 1980s and 1990s

(Smolensky, 1988; Fodor & Pylyshyn, 1988; Barnden & Pollack, 1991; Dinsmore, 1992;

Horgan & Tienson, 1996; Garfield, 1997; Sougné, 1998; Hadley, 1999). There is no

doubt that recursive symbol systems have an expressive power and computational flex­

ibility that is unmatched by any other type of representation. Their big weakness is

their ‘brittleness’: their inability to cope with noise, vagueness, incomplete or contra­

dictory information, ambiguity, context­dependency, and so on. The aim of my work is

to overcome this brittleness.

In this paper I shall set up a mathematical theory of noisy symbol systems and

of how they may be used to represent complex, recursively structured two­dimensional

geometric patterns. (My choice of geometric patterns as a problem domain is simply for

the sake of convenience; the theory is intended to be of wider application.)

The grammars I shall use are essentially a kind of graph grammar. In my previous

work (Fletcher, 2001) I showed how regular graph grammars describing two­dimensional

geometric patterns could be parsed and learned from positive examples. The present

paper goes beyond this in the following ways.

• The grammatical framework is extended from regular to context­free graph gram­

mars.

• The full geometry of the plane is used, whereas previously the plane was represented

by a discrete square grid.

• Noise is permitted, in the form of pixel noise, variability in the geometric relations

between parts, incomplete patterns, and overlapping patterns.
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§1. Introduction

1.2 Terminology

We must distinguish between symbol types and symbol tokens. The Roman alphabet

consists of 26 letters, in upper and lower case, which gives 52 symbol types. A particular

occurrence of a symbol type at a particular position, orientation and size is a symbol

token. Thus a text document may contain thousands of symbol tokens, each of which

is an instance of one of the 52 symbol types (ignoring punctuation marks and other

non­letter symbols).

A grammar is a system of symbol types. A pattern is the system of all symbol

tokens present in a given image. A grammar specifies a (usually infinite) set of possible

patterns.

The shape of a symbol type is described by a template, which depicts how a token

of that type would look, occurring at a standard position, orientation and size, without

noise. Each symbol type has a template.

The position, orientation, size, and degree of stretching and shearing of a symbol

token in an image is specified by an affine transformation, known as the embedding of

the token. It is a mapping from the template of the symbol token’s type into the image

plane.

1.3 The contents of this paper

§2 provides necessary algebraic and analytic preliminaries from the theory of real

finite­dimensional vector spaces and linear transformations. All the material here

is standard, but to ensure that this paper is self­contained and rigorous I have

re­derived all results in precisely the form in which I shall need them in the later

sections.

§3 sets up the basic theory of affine transformations, which are used to describe the

embedding of symbol tokens in the image plane and the relations of symbol tokens

to one another. I use coordinate­free concepts from the theory of Lie algebras and

tensor calculus but also give coordinate­based calculation techniques for use in a

computational implementation. (See Price (1977), Hausner & Schwartz (1968) and

Boothby (1986) for more details on these mathematical concepts.)

§4 deals with templates, which describe the concrete appearance of symbols in the

image plane. The goodness of match of a template with an image is measured by

a correlation function; I calculate the derivative of this function so that it can be

maximised.

§5 defines the concept of a fleximap, which is used to represent a flexible affine transfor­

mation, i.e., one that can be deformed from its nominal value along certain degrees

of freedom.

§6 defines the central concept of a network, which is used to represent symbol systems

(both grammars and patterns). The parsing of a pattern under a grammar is

represented by a homomorphism between networks (rather than by a parse tree, as

in conventional grammatical formalisms).
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§1. Introduction

§7 sets up the problem of recognising the pattern in a given image. I state the recog­

nition problem formally with the help of a Match function and show how the em­

bedding of the pattern can be optimised by gradient ascent on the Match function.

The next step (to be dealt with in a future paper) is to introduce a parsing algorithm to

find the best pattern and homomorphism. The problem of learning the grammar from

a given set of example images is left for future work.

In this paper lemmas and theorems will be numbered consecutively 1, 2, 3, . . . within

each section, and will be cited outside the section by adding the section number: e.g.,

lemma 2.3 is lemma 3 of §2.
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2. Algebraic and Analytic Preliminaries

2.1 The norm of a vector

Let V be a real finite­dimensional vector space. Choose a basis {e1, . . . en}, and define a

norm on V by
∣

∣

∣

∣

n
∑

i=1

viei

∣

∣

∣

∣

=

√

√

√

√

n
∑

i=1

(vi)2.

This norm is said to be induced by the basis.

LEMMA 1. The norm satisfies the usual axioms:

(i) ∀u, v∈V |u+ v| ≤ |u|+ |v|
(ii) ∀k∈R∀v∈V |kv| = |k||v|
(iii) v 6= 0 ⇒ |v| > 0

Proof. (i) For any u =
∑n

i=1 u
iei and any v =

∑n
i=1 v

iei, by the Cauchy­Schwarz inequality

we have
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∑
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∑
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(ui)2 +

n
∑
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(vi)2 + 2

n
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uivi

≤
n
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√

√

√

√

n
∑
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√

√

√

√

n
∑

i=1

(vi)2 = |u|2 + |v|2 + 2|u||v| = (|u|+ |v|)2

so |u+ v| ≤ |u|+ |v|.
(ii) For any k∈R and any v =

∑n
i=1 v

iei,

|kv|2 =

n
∑

i=1

(kvi)2 = k2
n

∑

i=1

(vi)2 = k2|v|2

so |kv| = |k||v|.
(iii) For any v =

∑n
i=1 v

iei, if v 6= 0 then we must have at least one vi 6= 0, so

|v|2 =
∑n

i=1(v
i)2 > 0.

LEMMA 2. If a norm | · | is induced by a basis {e1, . . . en}, and a second norm | · |′ is

induced by another basis {f1, . . . fn}, then the two norms are related by

∃α∈R ∀v∈V |v| ≤ α|v|′, ∃β∈R ∀v∈V |v|′ ≤ β|v|.

Proof. Since {e1, . . . en} is a basis, every vector fj can be expressed as a linear combination

fj =
∑n

i=1 M
i
jei, for some real numbers Mi

j.

Any vector v∈V can be expressed in terms of the basis {f1, . . . fn} as
∑n

j=1 b
jfj. Then

v =

n
∑

j=1

bjfj =

n
∑

j=1

n
∑

i=1

bjMi
jei =

n
∑

i=1

(

n
∑

j=1

bjMi
j

)

ei

so, by the definition of the norms and the Cauchy­Schwarz inequality,

|v|2 =

n
∑

i=1

(

n
∑

j=1

bjMi
j

)2

≤
n

∑

i=1

(

n
∑

j=1

(bj)2
)(

n
∑

j=1

(Mi
j)
2
)

= |v|′2
n

∑

i,j=1

(Mi
j)
2

so taking α =

√

∑n
i,j=1(M

i
j)2 verifies the first half of the lemma. The other half is proved

similarly.
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§2. Algebraic and analytic preliminaries

2.2 Convergence

The norm induced by a basis induces a topology on V:

xk → l as k → ∞ iff ∀ε > 0 ∃N ∀k > N |xk − l| < ε.

By lemma 2, the topology is independent of the choice of basis.

2.3 Vanishing and limited functions

Let V and W be real finite­dimensional vector spaces, each with a norm induced by a

basis.

• A function f :V → W is vanishing iff ∀ε > 0 ∃δ > 0 ∀v∈V |v| < δ ⇒ |f (v)| ≤ ε|v|.
• A function f :V → W is limited iff ∃ε > 0 ∃δ > 0 ∀v∈V |v| < δ ⇒ |f (v)| ≤ ε|v|.

By lemma 2, these concepts are independent of the choice of bases. In the lemmas that

follow, U, V and W are any real finite­dimensional vector spaces, each with a norm

induced by a basis.

LEMMA 3. Any vanishing function is limited.

Proof. Immediate from the definitions.

LEMMA 4. Any linear function is limited and continuous.

Proof. Let F:V → W be linear. Let {e1, . . . em} be the basis on V and {f1, . . . fn} the

basis on W used to induce the norms. Let A be the n ×m matrix representing F, i.e.,

F(ei) =
∑n

j=1 A
j
ifj. Choose ε =

√

∑m
i=1

∑n
j=1(A

j
i)2. Then, for any v =

∑m
i=1 v

iei in V,

F(v) =
∑n

j=1

(
∑m

i=1 A
j
iv

i
)

fj, and, by the Cauchy­Schwarz inequality,

|F(v)|2 =

n
∑

j=1

(

m
∑

i=1

Aj
iv

i
)2

≤
n

∑

j=1

(

m
∑

i=1

(Aj
i)
2
)(

m
∑

i=1

(vi)2
)

= ε2|v|2

so |F(v)| ≤ ε|v|. This verifies that F is limited (δ may be chosen arbitrarily), and also

implies that F is continuous, since

∀x,a∈V |F(x)− F(a)| = |F(x− a)| ≤ ε|x− a|.

LEMMA 5. If f :V → W is limited then f (0) = 0 and f is continuous at 0.

Proof. There exist positive ε0, δ0 such that

∀v∈V |v| < δ0 ⇒ |f (v)| ≤ ε0|v|.

Taking v = 0 gives |f (0)| ≤ ε0|0| = 0, so f (0) = 0 as required.

To show that f is continuous at 0, for any ε > 0, choose δ = min(δ0,
ε

ε0
); then

∀v |v| < δ ⇒ |f (v)| ≤ ε0|v| < ε0δ ≤ ε

as required.
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§2. Algebraic and analytic preliminaries

LEMMA 6. If f , g:V → W are vanishing and k∈R then f + g and kf are also vanishing.

Proof. For any ε > 0, we know that there exist δ1 > 0 and δ2 > 0 such that

∀v |v| < δ1 ⇒ |f (v)| ≤ ε
2
|v|,

∀v |v| < δ2 ⇒ |g(v)| ≤ ε
2
|v|.

Now, choose δ = min(δ1, δ2). Then

∀v |v| < δ ⇒ |(f + g)(v)| ≤ |f (v)| + |g(v)| ≤ ε|v|

so f + g is vanishing.

Secondly, for any ε > 0, we know that there exists δ > 0 such that

∀v |v| < δ ⇒ |f (v)| ≤ ε
|k|+ 1

|v|.

Hence

∀v |v| < δ ⇒ |(kf )(v)| = |k||f (v)| ≤ ε
|k|

|k|+ 1
|v| < ε|v|

so kf is vanishing.

LEMMA 7. If f , g:V → W are limited and k∈R then f + g and kf are also limited.

Proof. We know that there exist positive ε1, δ1, ε2, δ2 such that

∀v |v| < δ1 ⇒ |f (v)| ≤ ε1|v|,
∀v |v| < δ2 ⇒ |g(v)| ≤ ε2|v|.

Now, choose ε = ε1 + ε2 and δ = min(δ1, δ2). Then

∀v |v| < δ ⇒ |(f + g)(v)| ≤ |f (v)| + |g(v)| ≤ ε|v|

so f + g is limited.

For the second part, choose ε = (|k|+ 1)ε1 > 0. Then

∀v |v| < δ1 ⇒ |(kf )(v)| = |k||f (v)| ≤ ε|v|

so kf is limited.

LEMMA 8. If f :V → W is vanishing and g:U → V is limited then f ◦ g is vanishing.

Proof. We know that there exist positive ε1, δ1 such that

∀u∈U |u| < δ1 ⇒ |g(u)| ≤ ε1|u|.

Also, for any ε > 0, we know that there exists δ2 > 0 such that

∀v∈V |v| < δ2 ⇒ |f (v)| ≤ ε
ε1

|v|.

Choose δ = min(δ1,
δ2
ε1
). Then

∀u |u| < δ ⇒ |g(u)| ≤ ε1|u| < ε1δ ≤ δ2 ⇒ |f (g(u))| ≤ ε
ε1

|g(u)| ≤ ε|u|

as required.
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§2. Algebraic and analytic preliminaries

LEMMA 9. If f :V → W is limited and g:U → V is vanishing then f ◦ g is vanishing.

Proof. We know that there exist positive ε2, δ2 such that

∀v∈V |v| < δ2 ⇒ |f (v)| ≤ ε2|v|.

Also, for any ε > 0, we know that there exists δ1 > 0 such that

∀u∈U |u| < δ1 ⇒ |g(u)| ≤ min
( ε

ε2
, δ2

)

|u|.

Choose δ = min(δ1, 1). Then, for any u with |u| < δ, we have |u| < δ1, so |g(u)| ≤
min

( ε
ε2
, δ2

)

|u|, so |g(u)| ≤ δ2|u| < δ2 (since |u| < 1). Hence |f (g(u))| ≤ ε2|g(u)|. But we

also have |g(u)| ≤ ε
ε2
|u|, so |f (g(u))| ≤ ε|u| as required.

2.4 Application of the theory to linear transformations

For any real finite­dimensional vector spaces V and W, let L(V,W) be the vector space of

all linear transformations from V to W. A basis {e1, . . . em} for V and a basis {f1, . . . fn}
for W induce a basis {hi

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n } for L(V,W), where

hi
j(ek) =

{

fj if i = k

0 if i 6= k

Then any A∈L(V,W) can be represented in terms of this basis by

A =

m
∑

i=1

n
∑

j=1

Aj
ih

i
j

giving

A(ei) =

n
∑

j=1

Aj
ifj.

For any element v =
∑m

i=1 v
iei of V we have

A(v) =

n
∑

j=1

(

m
∑

i=1

Aj
iv

i
)

fj.

Assume that V, W and L(V,W) have the norms induced by these bases. For any

A =
∑m

i=1

∑n
j=1 A

j
ih

i
j we have

|A|2 =

m
∑

i=1

n
∑

j=1

(Aj
i)
2
=

m
∑

i=1

|A(ei)|2.

In the lemmas that follow, let U,V,W be any real finite­dimensional vector spaces with

norms induced by bases.

LEMMA 10. If v∈V and A∈L(V,W) then |Av| ≤ |A||v|.
Proof. Let v =

∑m
i=1 v

iei. Then

|A(v)|2 =

∣

∣

∣

m
∑

i=1

viA(ei)
∣

∣

∣

2

≤
(

m
∑

i=1

|vi||A(ei)|
)2

≤
m
∑

i=1

(vi)2
m
∑

i=1

|A(ei)|2 = |v|2|A|2

using the triangle inequality and the Cauchy­Schwarz inequality. Hence |A(v)| ≤ |A||v|.
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§2. Algebraic and analytic preliminaries

LEMMA 11. If A ∈ L(V,W) and B ∈ L(U,V) then |AB| ≤ |A||B|.

Proof. Let {d1, . . . dl} be the basis on U that induces the norm. By the previous lemma,

|AB|2 =

l
∑

k=1

|AB(dk)|2 ≤
l

∑

k=1

|A|2|B(dk)|2 = |A|2|B|2

so |AB| ≤ |A||B|.

LEMMA 12. If (Ak) is a sequence in L(V,W) and L ∈ L(V,W) then

Ak → L as k → ∞ iff ∀v∈V Ak(v) → L(v) as k → ∞.

(A special case of this is:
∑∞

k=1 Vk = L iff ∀v∈V
∑∞

k=1 Vk(v) = L(v).)

Proof. If Ak → L as k → ∞ then, for any v∈V,

|Ak(v)− L(v)| = |(Ak − L)(v)| ≤ |Ak − L||v|

so, by comparison, Ak(v) → L(v) as k → ∞, as required.

Conversely, suppose ∀v Ak(v) → L(v) as k → ∞. Let {e1, . . . em} be the basis that

induces the norm on V. Then

|Ak − L|2 =

m
∑

i=1

|(Ak − L)(ei)|2 → 0 as k → ∞

as required.

For any normed vector space S and any ε > 0, let Bε(S) = { v∈S | |v| < ε }.

LEMMA 13. If (cn) is a real sequence, and
∑∞

n=0 cnl
n is absolutely convergent for some

positive real l, then
∑∞

n=0 cnA
n is absolutely convergent for all A∈Bl(L(V,V)), and if f

is a function satisfying

∀A∈Bl(L(V,V)) f (A) =

∞
∑

n=0

cnA
n

then f is continuous on Bl(L(V,V)).

Proof. Consider any A∈Bl(L(V,V)). Let a = |A| < l, θ = l+a
2
, and ε = l−a

2
. For all n, we

have |cnAn| ≤ |cnan| ≤ |cnln|, so
∑∞

n=0 cnA
n is absolutely convergent by comparison with

∑∞
n=0 cnl

n.

Also, for any X∈Bε(L(V,V)), we have

|(A+ X)n − An| = |Rn(A,X)| ≤ Rn(a, x)

where x = |X|, Rn(A,X) is the sum of the 2n − 1 terms in the expansion of (A + X)n

other than An, and Rn(a, x) is the same sum of terms with A and X replaced by the real

numbers a and x.
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§2. Algebraic and analytic preliminaries

Now,

0 ≤ Rn(a, x) = (a+ x)n − an
= x

(

(a+ x)n−1
+ (a+ x)n−2a+ · · · + (a+ x)an−2

+ an−1
)

≤ x(nθn−1) since a < θ and a+ x < θ

≤ x
(θ + ε)n

ε
since (θ + ε)n = θn + nθn−1ε + · · ·+ εn

=
x

ε
ln.

Hence
∑∞

n=0 |cnRn(a, x)| exists, by comparison with
∑∞

n=0 |cnln|, with

∞
∑

n=0

|cnRn(a, x)| ≤
x

ε

∞
∑

n=0

|cnln| = Mx

where M = 1
ε

∑∞
n=0 |cnln|. Hence, by comparison,

∑∞
n=0 |cn(A + X)n − cnA

n| also exists,

with
∞
∑

n=0

|cn(A+ X)n − cnA
n| ≤

∞
∑

n=0

|cnRn(a, x)| ≤ Mx.

Now, we have A,A+X ∈ Bl(L(V,V)), so f (A) =
∑∞

n=0 cnA
n and f (A+X) =

∑∞
n=0 cn(A+X)n,

so

|f (A + X)− f (A)| =
∣

∣

∣

∣

∞
∑

n=0

cn(A+ X)n − cnA
n

∣

∣

∣

∣

≤
∞
∑

n=0

|cn(A+ X)n − cnA
n| ≤ Mx.

Hence f is continuous at A, as required.

LEMMA 14. If (cn) is a real sequence, and
∑∞

n=2 cnl
n is absolutely convergent for some

positive real l, and f :L(V,V) → L(V,V) satisfies

∀A∈Bl(L(V,V)) f (A) =

∞
∑

n=2

cnA
n,

then f is vanishing.

Proof. For any A in Bl(L(V,V)) and any n ≥ 2, we have

|cnAn| ≤ |cn||A|n ≤ |A|2
l2

|cnln|

so
∑∞

n=2 |cnAn| converges, by comparison with
∑∞

n=2 |cnln|, and

|f (A)| =
∣

∣

∣

∣

∞
∑

n=2

cnA
n

∣

∣

∣

∣

≤
∞
∑

n=2

|cnAn| ≤
∞
∑

n=2

|A|2
l2

|cnln| = M|A|2

where M = 1
l2

∑∞
n=2 |cnln|. Hence we can show that f is vanishing: for any ε > 0, choose

δ = min(l, ε
M+1

), giving

∀A |A| < δ ⇒ |f (A)| ≤ M|A|2 ≤ Mδ|A| ≤ ε|A|

as required.
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§2. Algebraic and analytic preliminaries

LEMMA 15. If f , g:V → L(W,W) are limited functions, and h:V → L(W,W) is defined by

∀v∈V h(v) = f (v)g(v), then h is vanishing.

Proof. We know that there exist positive ε1, δ1, ε2, δ2 such that

∀v |v| < δ1 ⇒ |f (v)| ≤ ε1|v|,
∀v |v| < δ2 ⇒ |g(v)| ≤ ε2|v|.

Now, for any ε > 0, choose δ = min(δ1, δ2,
ε

ε1ε2
). Then

∀v |v| < δ ⇒ |h(v)| ≤ |f (v)||g(v)| ≤ ε1ε2|v|2 ≤ ε1ε2δ|v| ≤ ε|v|

so h is vanishing.

LEMMA 16. In L(V,V), if xn → X and yn → Y as n → ∞ then xnyn → XY as n → ∞.

Proof. For any ε > 0, set ε′ = min{1, ε
2(|X|+|Y|+1)

}; there exists N1 such that

∀n > N1 |xn − X| < ε′,

and there exists N2 such that

∀n > N2 |yn − Y| < ε′.

Now, choose N = max{N1,N2}. Then

∀n > N |xnyn − XY| = |xn(yn − Y)+ (xn − X)Y| ≤ |xn||yn − Y|+ |xn − X||Y|
≤ (|X|+ ε′)ε′ + ε′|Y| ≤ ε′(|X|+ |Y|+ 1) ≤ ε

2
< ε,

so xnyn → XY as n → ∞, as required.

LEMMA 17. (Cauchy product) In L(V,V), if
∑∞

n=0 an and
∑∞

n=0 bn converge absolutely

then
∑∞

n=0 cn also converges absolutely, where cn =
∑n

i=0 aibn−i, and

∞
∑

n=0

an

∞
∑

n=0

bn =

∞
∑

n=0

cn.

Proof. Let A0 =
∑∞

n=0 |an|, B0 =
∑∞

n=0 |bn|, A =
∑∞

n=0 an, B =
∑∞

n=0 bn. Assume A0 > 0

and B0 > 0, since otherwise the result is immediate. First I shall show that
∑∞

n=0 cn

converges absolutely. For any n, we have

n
∑

k=0

|ck| =
n

∑

k=0

∣

∣

∣

∣

k
∑

i=0

aibk−i

∣

∣

∣

∣

≤
n

∑

k=0

k
∑

i=0

|ai||bk−i| ≤
n

∑

i=0

n
∑

j=0

|ai||bj| =
n

∑

i=0

|ai|
n

∑

j=0

|bj| ≤ A0B0,

so
∑∞

k=0 |ck| exists, as required.

Next I shall derive the formula for
∑∞

n=0 cn. For any n,

∣

∣

∣

∣

n
∑

k=0

ck −
n

∑

i=0

ai

n
∑

j=0

bj

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

(i,j)∈S

aibj

∣

∣

∣

∣

≤
∑

(i,j)∈S

|ai||bj|

13



§2. Algebraic and analytic preliminaries

where S = { (i, j) | 0 ≤ i ≤ n, 0 ≤ j ≤ n, i + j > n }. Now, if i, j ≤ ⌊n
2
⌋ then 2i, 2j ≤ n, so

i+ j ≤ n, so (i, j) /∈ S. Thus

S ⊆
(

{1, . . . n} × {1, . . . n}
)

\
(

{1, . . . ⌊n
2
⌋} × {1, . . . ⌊n

2
⌋}
)

and hence

∑

(i,j)∈S

|ai||bj| ≤
n

∑

i,j=0

|ai||bj| −
⌊ n
2
⌋

∑

i,j=0

|ai||bj| =
n

∑

i=0

|ai|
n

∑

j=0

|bj| −
⌊ n
2
⌋

∑

i=0

|ai|
⌊ n
2
⌋

∑

j=0

|bj|.

For any ε > 0, set ε′ = min{A0,B0,
ε

A0+B0+1
} > 0. We know that there exists N1 such

that

∀n > N1 A0 − ε′ <
n

∑

i=1

|ai| ≤ A0

and there exists N2 such that

∀n > N2 B0 − ε′ <
n

∑

j=1

|bj| ≤ B0.

We also have
(
∑n

i=1 ai

)(
∑n

j=1 bj
)

→ AB as n → ∞, by lemma 16, so there exists N3 such

that

∀n > N3

∣

∣

∣

∣

n
∑

i=1

ai

n
∑

j=1

bj − AB

∣

∣

∣

∣

< ε′.

Choose N = max(2N1 + 1, 2N2 + 1,N3). Then, for any n > N, we have ⌊n
2
⌋ > N1,N2, so

∣

∣

∣

∣

n
∑

k=0

ck − AB

∣

∣

∣

∣

≤
∣

∣

∣

∣

n
∑

k=0

ck −
n

∑

i=1

ai

n
∑

j=1

bj

∣

∣

∣

∣

+

∣

∣

∣

∣

n
∑

i=1

ai

n
∑

j=1

bj − AB

∣

∣

∣

∣

≤
n

∑

i=0

|ai|
n

∑

j=0

|bj| −
⌊ n
2
⌋

∑

i=0

|ai|
⌊ n
2
⌋

∑

j=0

|bj|+ ε′

< A0B0 − (A0 − ε′)(B0 − ε′)+ ε′

= ε′(A0 + B0 − ε′ + 1) < ε′(A0 + B0 + 1) ≤ ε.

Thus
∑∞

k=0 ck = AB, as required.

2.5 Application of the theory to Rn and matrices

Rn is a finite­dimensional vector space. If we choose a basis consisting of unit vectors

then this induces the norm
∣

∣

∣

∣

∣

∣

















x1

...

xn

















∣

∣

∣

∣

∣

∣

=

√

√

√

√

n
∑

i=1

(xi)2.

Therefore all the above theory for finite­dimensional vector spaces applies to Rn with

this basis and norm.

14



§2. Algebraic and analytic preliminaries

Let Mnm be the vector space of all n×m matrices. Mnm is isomorphic to L(Rm,Rn)

in the obvious way: a matrix A with components Aj
i corresponds to the linear transfor­

mation
∑m

i=1

∑n
j=1 A

j
ih

i
j. Hence we can transfer across from L(Rm,Rn) to Mnm the basis

and the induced norm, giving

|A| =

√

√

√

√

m
∑

i=1

n
∑

j=1

(Aj
i)2.

Thanks to the isomorphism, lemmas 10–17 continue to hold when the L(V,W) spaces

are replaced by Mnm spaces. In the following sections I shall apply these lemmas both

to L(V,W) spaces and to Mnm spaces.

2.6 Notation

In the following sections I shall sometimes use the notation o(x) to mean a term of the

form R(x), for some vanishing function R, and the notation O(x) to mean a term of the

form R(x), for some limited function R.
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3. Affine Transformations

3.1 Affine transformations and affine matrices

Any two­dimensional affine transformation G:R2 → R2 may be represented by a matrix

G =













h11 h12 t1
h21 h22 t2
0 0 1













such that, if we represent a point (x1, x2)∈R2 by a column vector

(x1, x2) =













x1
x2
1













,

then application of an affine transformation to a point is represented by matrix multi­

plication: G(x) = G x . The homogeneous part of the transformation is represented by

h11,h12,h21,h22, and the translation part is represented by t1, t2. I shall refer to such

a matrix G as an affine matrix. I shall write the combination of two affine transfor­

mations as G1 · G2, but shall represent matrix multiplication by juxtaposition; thus,

G1 ·G2 = G1 G2 .

3.2 The Lie group and the Lie algebra

Let G be the Lie group of all non­singular two­dimensional affine transformations and

let A be the corresponding Lie algebra. Any member A of A may be represented by a

matrix A of the form

A =













h11 h12 t1
h21 h22 t2
0 0 0













These matrices are called affine generator matrices. Let M33 be the vector space of all

3× 3 matrices, and let A′ be the subspace consisting of all affine generator matrices. A′

is closed under the commutator operation [M,N] = MN −NM and so can be considered

as a Lie algebra; we can use this to define the Lie bracket [A,B] on A,

[A,B] = [A , B] = AB − BA .

A norm is defined on M33 by

∀M∈M33 |M| =

√

√

√

√

3
∑

a,b=1

(Mab)2,

and this induces a norm on A′ and a norm on A:

∀A∈A |A| = |A | =

√

√

√

√

2
∑

a=1

3
∑

b=1

(Aab)2.

Thus A and A′ are isomorphic as Lie algebras and normed vector spaces.
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§3. Affine transformations

There is an exponential function exp:M33 → M33, defined by

∀M∈M33 expM =

∞
∑

n=0

Mn

n!
.

This series converges absolutely for all M. Note that, for any affine generator matrix

M, expM is an affine matrix. The inverse function log is defined on a subset of M33

including all affine matrices such that

h11h22 − h12h21 > 0 and h11 + h22 > −2
√

h11h22 − h12h21.

log maps all such affine matrices to affine generator matrices. For all M ∈M33 with

|M| < 1, log(I +M) exists and is given by the absolutely convergent power series

log(I +M) =

∞
∑

n=1

(−1)n+1Mn

n
,

where I is the identity matrix.

There is also an exponential function exp:A → G, with an inverse function log

defined on a subset of G, related to the exp and log functions on M33 by

expA = exp A , logA = log A .

To calculate exp and log efficiently without using power series, we first consider the

problem of exponentiating 2× 2 matrices.

3.3 Exponential of a 2× 2 matrix

Let X be any 2× 2 matrix. Let X0 = X − 1
2
tr(X)I, the traceless part of X.

Case 1: det(X0) > 0. Then expX = etr(X)/2( sin θ
θ · X0 + cos θ · I), where θ =

√

det(X0).

Case 2: det(X0) = 0. Then expX = etr(X)/2(X0 + I).

Case 3: det(X0) < 0. Then expX = etr(X)/2( sinh θ
θ · X0 + cosh θ · I), where θ =

√

−det(X0).

Note that exp is injective on the set of matrices X with det(X − 1
2
tr(X)I) < π2.

3.4 Logarithm of a 2× 2 matrix

Let Y be any 2 × 2 matrix satisfying det(Y) > 0 and tr(Y) > −2
√
det(Y). Let Y1 =

Y/
√
det(Y).

Case 1: −2 < tr(Y1) < 2. Then logY = θ
sin θ (Y1 − 1

2
tr(Y1)I)+

1
2
log(det(Y))I, where θ =

cos−1( 1
2
tr(Y1)) ∈ (0, π).

Case 2: tr(Y1) = 2. Then logY = Y1 − 1
2
tr(Y1)I +

1
2
ln(det(Y))I.

Case 3: 2 < tr(Y1). Then logY = θ
sinh θ (Y1 − 1

2
tr(Y1)I)+

1
2
ln(det(Y))I, where θ =

cosh
−1

( 1
2
tr(Y1)).
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§3. Affine transformations

3.5 Exponential of an affine generator matrix

Let M be any affine generator matrix. Thus M is of the form

M =







X x

0 0 0







where X is 2× 2 and x is 2× 1. Then

expM =







expX y

0 0 1







where expX is as given above and y is given as follows.

Case 1: det(X) 6= 0. Then y = (expX − I)X−1x.

Case 2: det(X) = 0 and tr(X) 6= 0. Then y = (I + etr(X)−1−tr(X)
tr(X)2

X)x.

Case 3: det(X) = 0 and tr(X) = 0. Then y = (I + 1
2
X)x.

3.6 Logarithm of an affine matrix

Let M be any affine matrix. Thus M is of the form

M =







Y y

0 0 1







where Y is 2× 2 and y is 2× 1. Then logM exists iff logY exists, in which case

logM =







X x

0 0 0







where X = logY and x is given as follows.

Case 1: det(X) 6= 0. Then x = X(Y − I)−1y.

Case 2: det(X) = 0 and tr(X) 6= 0. Then x = (I + ( 1
etr(X)−1

− 1
tr(X)

)X)y.

Case 3: det(X) = 0 and tr(X) = 0. Then x = (I − 1
2
X)y.

LEMMA 1. log(expA) = A for all A∈A with |A| <
√
2 π.

Proof. For any A∈A with |A| <
√
2 π, we have

A =







X x

0 0 0





 , with X =







h11 h12

h21 h22





 .

and hence

det(X − 1
2
tr(X)I) = − 1

4
(h11 − h22)

2 − h12h21 ≤ −h12h21 ≤ 1
2
(h2

12 + h2
21) ≤ 1

2
|A|2 < π2.

Hence log(expX) = X, by the log construction for 2× 2 matrices, and log(expA) = A by

the log construction for affine matrices.
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§3. Affine transformations

3.7 The dual vector space, F

Let F be the dual vector space to A: that is, F consists of all linear transformations

from A to R.

Given any basis {a1, . . . a6} for A, we can define a dual basis {f 1, . . . f 6} for F by

f i(aj) =

{

1 if i = j,

0 if i 6= j.

Any vectors A∈A and F∈F can be expressed in terms of the bases as A =
∑6

i=1 A
iai

and F =
∑6

i=1 Fif
i, for unique sequences of real numbers A1, . . .A6 and F1, . . .F6. Then

we have Fi = F(ai), A
i = f i(A), and F(A) =

∑6
i=1 FiA

i.

For example, one possible basis {a1, . . . a6} for A is defined by

a1 =













1 0 0

0 0 0

0 0 0













a2 =













0 1 0

0 0 0

0 0 0













a3 =













0 0 1

0 0 0

0 0 0













a4 =













0 0 0

1 0 0

0 0 0













a5 =













0 0 0

0 1 0

0 0 0













a6 =













0 0 0

0 0 1

0 0 0













.

Then any element A∈A, where

A =













h11 h12 t1
h21 h22 t2
0 0 0













,

may be expressed uniquely in terms of this basis as A =
∑6

i=1 A
iai, where

A1
= h11, A2

= h12, A3
= t1, A4

= h21, A5
= h22, A6

= t2.

The corresponding basis for F is {f 1, . . . f 6}, where

f 1(A) = h11, f 2(A) = h12, f 3(A) = t1,

f 4(A) = h21, f 5(A) = h22, f 6(A) = t2,

and any F∈F operates on any A∈A by the rule

F(A) =

6
∑

i=1

FiA
i
= F1h11 + F2h12 + F3t1 + F4h21 + F5h22 + F6t2.

Using this basis, F can be represented by a matrix

F =













F1 F4 a

F2 F5 b

F3 F6 c













where a,b, c are arbitrary; when I say that F represents F, what I mean is that F and

F are related by the formula

∀A∈A F(A) = tr(F A ).
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§3. Affine transformations

The norm induced on A by {a1, . . . a6} (see §2.1) is the one we have already defined:

|A|2 =

∣

∣

∣

6
∑

i=1

Aiai

∣

∣

∣

2

=

6
∑

i=1

(Ai)2 =

6
∑

i=1

f i(A)2.

Similarly, a norm is induced on F by {f 1, . . . f 6}:

|F|2 =

∣

∣

∣

6
∑

i=1

Fif
i
∣

∣

∣

2

=

6
∑

i=1

(Fi)
2
=

6
∑

i=1

F(ai)
2.

Given any linear transformation T:A → A the adjoint linear transformation T†:F →
F is defined by

∀F∈F ∀A∈A T†(F)(A) = F(T(A)).

The basis {a1, . . . a6} induces a basis on L(A,A), the vector space of linear transfor­

mations from A to A, as described in §2.4. This basis induces a norm on L(A,A):

|T|2 =

6
∑

i,j=1

(f j(T(ai)))
2
=

6
∑

i=1

|T(ai)|2.

Likewise the basis {f 1, . . . f 6} induces a basis on L(F ,F), which induces a norm on

L(F ,F):

|S|2 =

6
∑

i,j=1

(S(f i)(aj))
2
=

6
∑

i=1

|S(f i)|2.

LEMMA 2. For any T∈L(A,A), |T†| = |T|.

Proof. |T†|2 =
∑6

i,j=1(T
†(f i)(aj))

2 =
∑6

i,j=1(f
i(T(aj)))

2 = |T|2.

3.8 Inner automorphisms of the Lie algebra

Define Ad:G → (A → A), in terms of matrix representations, by

∀G∈G ∀A∈A Ad(G)(A) = GAG−1.

Note that, for any G ∈ G, Ad(G) is a linear transformation on A, and that Ad(G1) ◦
Ad(G2) = Ad(G1G2).

LEMMA 3. For any G∈G and A∈A, exp(Ad(G)(A)) = G · exp(A) ·G−1.

Proof. In terms of the matrix representations,

exp(Ad(G)(A)) = exp Ad(G)(A) = exp(GAG−1)

=

∞
∑

n=0

1

n!
(GAG−1)n = G

(

∞
∑

n=0

1

n!
An

)

G−1

= G exp(A )G−1
= G exp(A) G−1

= G · exp(A) ·G−1 .
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§3. Affine transformations

LEMMA 4. For any G∈ G and F ∈ F , if F is a matrix representing F then the matrix

G−1F G represents Ad(G)†(F).

Proof. For any A∈A,

Ad(G)†(F)(A) = F(Ad(G)(A)) = tr(F Ad(G)(A)) = tr(F GAG−1) = tr(G−1F GA)

which shows that G−1F G represents Ad(G)†(F).

Define a linear function ad:A → (A → A) by

∀A,V∈A ad(A)(V) = [A,V].

Note that, for any A, ad(A):A → A is a linear transformation.

LEMMA 5. For any A∈A, |ad(A)| ≤
√
5|A|.

Proof. Let {a1, . . . a6} be the basis that induces the norm on A. The representing matrix

A of any A∈A can be written in the form

A =













h11 h12 t1
h21 h22 t2
0 0 0













.

Then we have

|ad(A)|2 =

6
∑

i=1

|ad(A)(ai)|2 =

6
∑

i=1

|[A,ai]|2 =

6
∑

i=1

∣

∣[A,ai]
∣

∣

2
=

6
∑

i=1

∣

∣[A , ai ]
∣

∣

2

= 2(h11 − h22)
2
+ h2

11 + h2
22 + 5h2

12 + 5h2
21 + 2t21 + 2t22

≤ 5h2
11 + 5h2

22 + 5h2
12 + 5h2

21 + 2t21 + 2t22 ≤ 5|A |2 = 5|A|2

so |ad(A)| ≤
√
5|A|.

LEMMA 6. For any A∈ A and F ∈ F , if F is a matrix representing F then the matrix

[F , A] represents ad(A)†(F).

Proof. For any V∈A,

ad(A)†(F)(V) = F(ad(A)(V)) = tr(F ad(A)(V) ) = tr(F [A,F]) = tr(F [A , V ]) = tr([F , A]V )

which shows that [F , A] represents ad(A)†(F).

3.9 Approximation lemmas for exp and log

LEMMA 7. For all A∈A′, expA = I + A+ RE(A), where RE:A′ → A′ is vanishing.

Proof. Define R:M33 → M33 by ∀A∈M33 R(A) = expA − I − A. By the power series

expansion for exp, we have

∀A∈M33 R(A) =

∞
∑

n=2

An

n!
.

The corresponding real power series
∑∞

n=2
tn

n!
is absolutely convergent for all t∈R, so,

by lemma 2.14 (transferred to M33, as explained in §2.5), R is vanishing. Note that

R(A′) ⊆ A′, so we can define RE as the restriction of R to A′.
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§3. Affine transformations

LEMMA 8. For all A ∈ A′ with |A| < 1, log(I + A) = A + RL(A), where RL:A′ → A′ is

vanishing.

Proof. Let N be the set of all A∈M33 such that |A| < 1. Define R:M33 → M33 such that

∀A∈N R(A) = log(I + A) − A (the values of R outside N are arbitrary). By the power

series expansion for log, we have

∀A∈N R(A) =

∞
∑

n=2

(−1)n+1An

n
.

The corresponding real power series
∑∞

n=2
(−1)n+1tn

n
is absolutely convergent for all t ∈

(−1, 1), so, by lemma 2.14 (transferred to M33), R is vanishing. Note that R(A′) ⊆ A′,

so we can define RL as the restriction of R to A′.

LEMMA 9. If S is any finite­dimensional vector space, F:S → A′ is linear, and R1:S → A′

is vanishing, then there is a vanishing function R2:S → A′ such that, for all V∈S in a

neighbourhood of 0,

I + F(V)+ R1(V) = exp(F(V)+ R2(V)).

Proof. F is linear and hence limited, R1 is vanishing and hence limited, so F + R1 is

limited and hence continuous at 0, with (F + R1)(0) = 0 (lemmas 2.3, 2.4, 2.5, 2.7).

Therefore there is a neighbourhood N of 0 for which

∀V∈N |F(V)+ R1(V)| < 1.

For all V∈N, we have

log(I + F(V)+ R1(V)) = F(V)+ R1(V)+ RL(F(V)+ R1(V))

by lemma 8. Define R2 = R1 + RL ◦ (F + R1), giving

∀V∈N I + F(V)+ R1(V) = exp(F(V)+ R2(V)).

Now, RL is vanishing and F + R1 is limited, so RL ◦ (F + R1) is vanishing, so R2 is

vanishing (lemmas 2.6, 2.8), as required.

LEMMA 10. For any A,B∈A, there is a vanishing function R:R → A, such that, for all

real ε in a neighbourhood of 0,

exp(εA) · exp(εB) = exp(ε(A+ B)+ R(ε)).

Proof. By lemma 7,

∀ε exp(εA) exp(εB ) = (I + εA + RE(εA))(I + εB + RE(εB )) = I + ε(A + B)+ R1(ε)

where R1:R → A′ is defined by

∀ε R1(ε) = RE(εA)+RE(εB)+ ε2AB + εA RE(εB)+ RE(εA) εB +RE(εA)RE(εB).
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If we define linear functions L1,L2:R → A′ by

∀ε L1(ε) = εA , L2(ε) = εB ,

then L1,L2 are limited, so RE ◦L1,RE ◦L2 are vanishing, so R1 is vanishing (lemmas 2.3,

2.4, 2.6, 2.8, 2.15).

Then, by lemma 9, there is a vanishing function R2:R → A′ such that, for all ε in

a neighbourhood of 0,

I + ε(A + B )+ R1(ε) = exp(ε(A + B )+ R2(ε))

giving

exp(εA) exp(εB ) = exp(ε(A + B )+ R2(ε)).

Using the isomorphism between A′ and A we can obtain from R2 a vanishing function

R:R → A such that, for all ε in a neighbourhood of 0,

exp(εA) · exp(εB) = exp(ε(A+ B)+ R(ε))

as required.

3.10 Derivatives of functions to and from G
Let S be any finite­dimensional vector space.

The derivative of a partial function f :G → S is the unique maximal partial function

f∗:G → (A → S) such that, for every G∈ G for which f∗(G) is defined, f∗(G) is a linear

transformation and there is a vanishing function R:A → S such that, for all V∈A in a

neighbourhood of 0,

f (G · expV) = f (G)+ f∗(G)(V)+ R(V).

f is differentiable at G iff f∗(G) is defined.

The derivative of a partial function f :S → G is the unique maximal partial function

f∗:S → (S → A) such that, for every x ∈ S for which f∗(x) is defined, f∗(x) is a linear

transformation and there is a vanishing function R:S → A such that, for all v∈S in a

neighbourhood of 0,

f (x+ v) = f (x) · exp(f∗(x)(v) + R(v)).

f is differentiable at x iff f∗(x) exists.

LEMMA 11. If G∈G, f :G → S is differentiable at G, and R1:R → A is vanishing, then

there is a vanishing function R2:R → S such that, for all V ∈A and for all real ε in a

neighbourhood of 0,

f (G · exp(εV + R1(ε))) = f (G)+ εf∗(G)(V)+ R2(ε).

Proof. Since f is differentiable at G, there is a vanishing function R:A → S and a

neighbourhood N ⊆ A of 0 such that

∀A∈N f (G · expA) = f (G)+ f∗(G)(A)+ R(A).
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Given any V∈A, define the linear function L:R → A by ∀ε∈R L(ε) = εV. Now, L and

R1 are limited, so L + R1 is limited and hence continuous at 0, with (L + R1)(0) = 0

(lemmas 2.3, 2.4, 2.5, 2.7). Hence there is a neighbourhood N′ ⊆ R of 0 such that, for

all ε∈N′, we have εV + R1(ε) = (L+ R1)(ε) ∈ N and hence

f (G · exp(εV +R1(ε))) = f (G)+ f∗(G)(εV +R1(ε))+R(εV +R1(ε)) = f (G)+ εf∗(G)(V)+R2(ε)

where R2 = f∗(G)◦R1+R◦(L+R1). Now, f∗(G) is linear and hence limited, so f∗(G)◦R1 is

vanishing. Also, R◦(L+R1) is vanishing. Thus R2 is vanishing, as required (lemmas 2.4,

2.6, 2.8, 2.9).

3.11 Calculation of the derivative of exp in terms of matrices

For this section only, we shall need a function ad:A′ → (A′ → A′) defined by ∀A,V ∈
A′ ad(A)(V) = [A,V], analogous to the function ad:A → (A → A) already defined.

LEMMA 12. For any natural number n and A,V∈A′,

VAn
=

n
∑

i=0

(−1)i
(

n

i

)

An−i ad(A)i(V).

Proof. By induction on n.

THEOREM 13. For any A∈A,

exp∗(A) =
∞
∑

n=0

(−1)nad(A)n

(n+ 1)!

and thus, for any A,V∈A,

exp∗(A)(V) =

∞
∑

n=0

(−1)nad(A)n(V)

(n+ 1)!
= V − 1

2
[A,V]+ 1

6
[A, [A,V]] − 1

24
[A, [A, [A,V]]] + · · · .

Both series converge absolutely for all A and V.

Proof. I shall prove the theorem for A,V ∈A′ and then transfer the result to A,V ∈A,

using the isomorphism between A′ and A.

For any A,V ∈ A′,

exp(A+ V) =

∞
∑

n=0

1

n!
(A+ V)n =

∞
∑

n=0

(Xn(A)+ Yn(A,V)+ Zn(A,V))

where Xn(A) = 1
n!
An, Yn(A,V) = 1

n!

∑n
r=1 A

n−rVAr−1, and Zn(A,V) is the sum of the

remaining terms in the expansion of 1
n!
(A+V)n. Note that Zn(A,V) consists of a sum of

products of A and V, with positive coefficients. For every n we have a similar expansion

of 1
n!
(|A|+ |V|)n:

1

n!
(|A|+ |V|)n = Xn(|A|)+ Yn(|A|, |V|) + Zn(|A|, |V|)
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with

|Xn(A)| ≤ Xn(|A|) =
1

n!
|A|n,

|Yn(A,V)| ≤ Yn(|A|, |V|) ≤ 1

n!
(|A|+ |V|)n,

|Zn(A,V)| ≤ Zn(|A|, |V|) ≤ 1

n!
(|A|+ |V|)n.

Hence
∑∞

n=0 Xn(A),
∑∞

n=0 Yn(A,V), and
∑∞

n=0 Zn(A,V) all converge absolutely, by com­

parison with
∑∞

n=0
1
n!
(|A|+ |V|)n = e|A|+|V|. Hence

exp(A+ V) =

∞
∑

n=0

Xn(A)+

∞
∑

n=0

Yn(A,V)+

∞
∑

n=0

Zn(A,V).

We already know the sum of the first series:
∑∞

n=0 Xn(A) = expA. As for the third series,

for fixed A, define RA:A′ → A′ by

∀V∈A′ RA(V) =

∞
∑

n=0

Zn(A,V).

I shall show that RA is vanishing. As pointed out above, we have

|Zn(A,V)| ≤ Zn(|A|, |V|) = 1

n!
(|A|+ |V|)n − Xn(|A|)− Yn(|A|, |V|)

=
1

n!
((|A|+ |V|)n − |A|n − n|A|n−1|V|)

so

|RA(V)| ≤
∞
∑

n=0

|Zn(A,V)| ≤
∞
∑

n=0

1

n!
((|A|+ |V|)n − |A|n − n|A|n−1|V|)

= e|A|+|V| − e|A| − e|A||V| = e|A|f (|V|)

where f :R → R is defined by ∀t∈R f (t) =
∑∞

n=2
tn

n!
. This real power series is absolutely

convergent for all t, so, by lemma 2.14 (transferred to M11, i.e., R), f is vanishing.

Hence RA is also vanishing.

Returning to the second series,
∑∞

n=0Yn(A,V), we have Y0(A,V) = 0 and, for any

n > 0, by lemma 12,

Yn(A,V) =
1

n!

n
∑

r=1

An−rVAr−1

=
1

n!

n
∑

r=1

r−1
∑

i=0

(−1)i
(

r− 1

i

)

An−i−1 ad(A)i(V)

=
1

n!

n−1
∑

i=0

n
∑

r=i+1

(−1)i
(

r− 1

i

)

An−i−1 ad(A)i(V)

=
1

n!

n−1
∑

i=0

(−1)i
(

n

i+ 1

)

An−i−1 ad(A)i(V)

=

n−1
∑

i=0

An−i−1

(n− i− 1)!

(−1)iad(A)i(V)

(i+ 1)!
.
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I wish to apply the Cauchy product formula (lemma 2.17, transferred to M33) to this

expression to evaluate
∑∞

n=1Yn(A,V). This is justified since the series
∑∞

j=0 A
j/j! and

∑∞
i=0(−1)iad(A)i(V)/(i+ 1)! are absolutely convergent: in the case of the latter series we

have
∣

∣

∣

∣

(−1)iad(A)i(V)

(i+ 1)!

∣

∣

∣

∣

≤ |
√
5A|i

(i+ 1)!
|V|

by lemma 5. The Cauchy product formula gives

∞
∑

n=1

Yn(A,V) =

∞
∑

n=1

n−1
∑

i=0

An−i−1

(n− i− 1)!

(−1)iad(A)i(V)

(i+ 1)!

=

∞
∑

m=0

m
∑

i=0

Am−i

(m− i)!

(−1)iad(A)i(V)

(i+ 1)!

=

∞
∑

j=0

Aj

j!

∞
∑

i=0

(−1)iad(A)i(V)

(i+ 1)!

= exp(A)

∞
∑

i=0

(−1)iad(A)i(V)

(i+ 1)!
.

Putting all three pieces together gives

exp(A+ V) = exp(A)+ exp(A)

∞
∑

i=0

(−1)iad(A)i(V)

(i+ 1)!
+ RA(V)

= exp(A)

(

I +

∞
∑

i=0

(−1)iad(A)i(V)

(i+ 1)!
+ EA(RA(V))

)

where EA:A′ → A′ is the linear transformation defined by ∀X∈A′ EA(X) = exp(−A)X.

By lemma 2.4, EA is limited, so, by lemma 2.9, EA ◦RA is vanishing. Hence, by lemma 9,

there is a vanishing function R:A′ → A′ such that, for all V in a neighbourhood of 0,

exp(A+ V) = exp(A) exp

( ∞
∑

i=0

(−1)iad(A)i(V)

(i+ 1)!
+R(V)

)

.

This equation has been proved for A,V ∈ A′. Since A′ is isomorphic to A the equation

also holds for A,V ∈ A. This gives exp∗(A)(V) =
∑∞

i=0
(−1)iad(A)i(V)

(i+1)!
and hence exp∗(A) =

∑∞
i=0

(−1)iad(A)i

(i+1)!
by lemma 2.12, as required. As indicated above, these series are absolutely

convergent by comparison with
∑∞

i=0
|
√
5A|i

(i+1)!
|V| and ∑∞

i=0
|
√
5A|i

(i+1)!
.

3.12 Calculation of log∗

Define a real sequence (an) by

an =

n
∑

m=0

∑

r1,...rm≥1
r1+···+rm=n

(−1)n−m

(r1 + 1)! · · · (rm + 1)!
.

LEMMA 14. The real power series
∑∞

n=0 anx
n converges absolutely if |x| < 1.
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Proof. We have

|an| ≤
n

∑

m=0

∑

r1,...rm≥1
r1+···+rm=n

1

(r1 + 1)! · · · (rm + 1)!
≤

n
∑

m=0

( n
∑

r=1

1

(r+ 1)!

)m

<

n
∑

m=0

(e− 2)m <
1

1− (e− 2)
=

1

3− e

so the series
∑∞

n=0 |anx
n| converges by comparison with 1

3−e

∑∞
n=0 |x|n, if |x| < 1.

In fact, the convergence of the power series is much better than this: the first few

terms of (an) are (1, 1
2
, 1
12
, 0,− 1

720
, 0, 1

30240
, 0,− 1

1209600
, . . .). The next lemma shows that

∑∞
n=0 anx

n is the inverse of
∑∞

n=0
(−1)n

(n+1)!
xn, in the sense of the Cauchy product of series.

LEMMA 15. For any p ≥ 0,

p
∑

n=0

(−1)n

(n+ 1)!
ap−n =

{

1 if p = 0

0 if p > 0

Proof. Define Sn = (−1)n+1

(n+1)!
. Then the definition of an may be rewritten as

an =

n
∑

m=0

bnm, where bnm =
∑

r1,...rm≥1
r1+···+rm=n

Sr1Sr2 · · ·Srm .

Note that S0 = −1, b00 = 1, b
p
0 = 0 if p > 0, and bnm = 0 if m > n. Then

p
∑

n=0

(−1)n

(n+ 1)!
ap−n =

p
∑

n=0

(−Sn)

p−n
∑

m=0

bp−n
m = −

p
∑

n=0

p
∑

m=0

Snb
p−n
m

= −
p

∑

m=0

S0b
p
m −

p
∑

n=1

p
∑

m=0

Snb
p−n
m =

p
∑

m=0

bpm −
p

∑

m=0

p
∑

n=1

Snb
p−n
m

=

p
∑

m=0

bpm −
p

∑

m=0

b
p
m+1 = b

p
0 − b

p
p+1 =

{

1 if p = 0

0 if p > 0

THEOREM 16. For any A∈A with |A| < 1√
5
,

log∗(expA) =
∞
∑

n=0

an ad(A)
n;

thus, for any V∈A,

log∗(expA)(V) =

∞
∑

n=0

an ad(A)
n(V)

= V + 1
2
[A,V]+ 1

12
[A, [A,V]] − 1

720
[A, [A, [A, [A,V]]]]

+ 1
30240

[A, [A, [A, [A, [A, [A,V]]]]]]

− 1
1209600

[A, [A, [A, [A, [A, [A, [A, [A,V]]]]]]]] + · · · .
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Both series converge absolutely for |A| < 1√
5
.

Proof. For |A| < 1√
5

we have |ad(A)| < 1, by lemma 5, so
∑∞

n=0 an ad(A)
n and

∑∞
n=0 an ad(A)

n(V) converge absolutely by lemma 14 and lemma 2.13. I intend to apply

the inverse function theorem, so I must show that exp is continuously differentiable and

exp∗(A) is invertible.

Theorem 13 shows that exp is differentiable, with exp∗ = F ◦ ad, where F:L(A,A)

→ L(A,A) is defined by

∀T∈L(A,A) F(T) =

∞
∑

n=0

(−1)n

(n+ 1)!
Tn.

The corresponding real power series
∑∞

n=0
(−1)n

(n+1)!
xn is absolutely convergent for all x∈R,

so by lemma 2.13 the power series for F is absolutely convergent for all T and F is

continuous. The linear function ad is also continuous, by lemma 2.4, so exp∗ = F ◦ ad

is continuous.

Since the series
∑∞

n=0
(−1)n

(n+1)!
ad(A)n and

∑∞
n=0 an ad(A)

n are absolutely convergent (for

|A| < 1√
5
), we can compose them, using the Cauchy product formula (lemma 2.17) and

lemma 15, to give

∞
∑

n=0

(−1)n

(n+ 1)!
ad(A)n ◦

∞
∑

n=0

an ad(A)
n
=

∞
∑

p=0

( p
∑

n=0

(−1)n

(n+ 1)!
ap−n

)

ad(A)p

= 1 · ad(A)0 + 0 · ad(A)1 + 0 · ad(A)2 + · · · = I

where I is the identity function. This shows that exp∗(A) is invertible and that
∑∞

n=0 an ad(A)
n is its inverse.

Hence, by the inverse function theorem, exp maps an open neighbourhood of A

bijectively onto an open neighbourhood of expA, and its inverse log is continuously dif­

ferentiable. It follows that log∗(expA) is the inverse of exp∗(A), which is
∑∞

n=0 an ad(A)
n.

Applying lemma 2.12 gives log∗(expA)(V) =
∑∞

n=0 an ad(A)
n(V).

3.13 The dual mapping, log∗

We can define a function log
∗
:G → (F → F) dual to log∗:G → (A → A) by

∀G∈G log
∗
(G) = (log∗(G))†

or, more explicitly,

∀G∈G ∀F∈F ∀V∈A log
∗
(G)(F)(V) = F(log∗(G)(V)).

THEOREM 17. For any A∈A with |A| < 1√
5
,

log∗(expA) =
∞
∑

n=0

an(ad(A)
†)n
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where the real sequence (an) is as above; thus, for any F∈F ,

log∗(expA)(F) =
∞
∑

n=0

an(ad(A)
†)n(F).

Both series converge absolutely for |A| < 1√
5
.

Proof. For any V∈A we have

log∗(expA)(V) =

∞
∑

n=0

an ad(A)
n(V)

by theorem 16. So, for any F∈F ,

F(log∗(expA)(V)) =

∞
∑

n=0

anF(ad(A)
n(V))

since F is continuous by lemma 2.4. Hence

log∗(expA)(F)(V) = F(log∗(expA)(V)) =

∞
∑

n=0

anF(ad(A)
n(V)) =

∞
∑

n=0

an(ad(A)
†)n(F)(V).

Applying lemma 2.12 gives log
∗
(expA)(F) =

∑∞
n=0 an(ad(A)

†)n(F) and log
∗
(expA) =

∑∞
n=0 an(ad(A)

†)n, as required. These series converge absolutely for |A| < 1√
5

since

|ad(A)†| = |ad(A)| < 1, by lemma 2 and lemma 5.
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4. Matching a Template to an Image

4.1 Images and templates

An image is a function I:R2 → [0,∞). For any point p ∈ R2, I(p) is the image intensity

at the pixel p. The domain of I is called the image plane.

As mentioned in §1, each symbol type has a template, depicting the appearance of

any token of that symbol type at a standard position, size and orientation, in the absence

of noise. Formally, a template is a differentiable function T:R2 → [0,∞) such that the

set { x∈R2 | T(x) > 0 } is bounded. The domain of T is called the template plane.

Suppose that we believe that a token of this symbol type occurs in the image at a

certain position, orientation and size (with a certain degree of stretching and shearing).

We can describe this by an affine transformation G from the template plane into the

image plane, which is called the embedding of the symbol token in the image. If the

symbol token really is present where we think it is, there will be a good match between

the functions T and I ◦G, at least in the region where T is non­zero.

The aim of this section is to measure the goodness of match by a correlation function

between T and I◦G, and to calculate its derivative so that we can adjust G incrementally

to maximise the correlation.

Recall from §3.1 that an affine transformation G can be represented by a 3 × 3

matrix G and a point u∈R2 can be represented by a 3× 1 column vector u , such that

G(u) = Gu . For any template T we can define a modified function T on 3 × 1 column

vectors, such that ∀u∈R2 T (u ) = T(u).

4.2 The correlation function

Given T, I and G, define the correlation ρI,T(G) between T and I ◦G by

ρI,T(G) = |det(G )|
∫

T(u) (I(G(u))− I0) d
2u =

∫

T(G−1(x)) (I(x) − I0) d
2x

where I0 is a positive real constant associated with T. The integrals are over the whole

of R2, or equivalently over a large enough region to include in its interior all the points

where T is non­zero.

LEMMA 1. For any template T, any image I, and any affine transformations G,G′,

ρI,T◦G′(G ·G′) = ρI,T(G).

Proof.

ρI,T◦G′(G ·G′) =

∫

(T ◦G′)((G ·G′)−1(x)) (I(x) − I0) d
2
x

=

∫

T(G′(G′−1(G−1(x)))) (I(x) − I0) d
2
x

=

∫

T(G−1(x)) (I(x) − I0) d
2
x = ρI,T(G).
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§4. Matching a template to an image

4.3 Derivative of the correlation function

Let G be an affine transformation, and consider the effect on ρI,T(G) of making a small

change in G, i.e., replacing G by G · expA, for some A∈A. We have

ρI,T(G · expA) =
∫

T((G · expA)−1(x)) (I(x) − I0) d
2
x

=

∫

T ((G exp A)−1x ) (I(x)− I0) d
2
x

=

∫

T (exp(−A )G−1x) (I(x) − I0) d
2x

=

∫

T ((I − A + o(A))G−1x ) (I(x)− I0) d
2
x

= ρI,T(G) −
∫

(∇T(G−1(x)))AG−1x (I(x)− I0) d
2
x + o(A)

where ∇T is defined by

∇T(u) = ( ∂T(u)
∂u1

∂T(u)
∂u2

0 ) .

Hence the derivative ρI,T ∗:G → (A → R) is given by

∀G∈G ∀A∈A ρI,T ∗(G)(A) = −
∫

(∇T(G−1(x)))AG−1x (I(x)− I0) d
2
x

= −|det(G )|
∫

(∇T(u))A u (I(G(u))− I0) d
2
u.

ρI,T ∗(G) is a linear transformation from A to R, and hence is an element of F ; it is

called the force exerted by I and T on G.

4.4 Matrix representation of the force

LEMMA 2. Using the matrix representation of F (see §3.7), the force ρI,T ∗(G) is repre­

sented by the matrix

ρI,T ∗(G) = −|det(G )|
∫













u1

u2

1













( ∂T(u)
∂u1

∂T(u)
∂u2

0 ) (I(G(u))− I0) d
2
u

= −|det(G )|
∫

u (∇T(u)) (I(G(u))− I0) d
2
u.

Proof. Let M be the matrix on the right­hand side of the equation. For any A∈A, we

have

tr(MA ) = −|det(G )|
∫

tr(u (∇T(u))A) (I(G(u))− I0) d
2
u

= −|det(G )|
∫

tr((∇T(u))A u ) (I(G(u))− I0) d
2
u

= −|det(G )|
∫

(∇T(u))A u (I(G(u))− I0) d
2
u

= ρI,T ∗(G)(A)

showing that M does indeed represent ρI,T ∗(G).
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§4. Matching a template to an image

4.5 The mass of a symbol token

The mass, m, of a symbol token, whose type has template T, and which is embedded in

the image I by G, is defined by

m = |det(G )|
∫

T(u) d
2
u =

∫

T(G−1(x)) d
2
x.
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5. Fleximaps

5.1 Introduction

A symbol contains other symbols as parts. The geometric relation between a part and

the whole, or between two neighbouring parts, is not absolutely rigid but is allowed

to vary along certain degrees of freedom, by certain amounts. For example, figure 1

shows a symbol token of type ‘A’, with three line tokens as parts. The figure shows the

nominal relationships between the parts, i.e., the relationships in the absence of noise.

But the relationship between two parts σ1 and σ2 may vary in several ways: σ1 may

rotate (by a limited angle) around a certain point on σ2; σ1 may slide up or down σ2 (by

a limited distance); and σ1 may be shifted across σ2 (but only by a very small amount).

σ1

2σ

Figure 1. The geometric relation between symbol tokens σ1 and σ2 may vary

along several degrees of freedom.

The purpose of a fleximap is to represent both the nominal geometric relationship

and the permitted degrees of variation. The actual geometric relationship G between

the symbol tokens σ1 and σ2 may be expressed in the form G = F · expA, where F is

the nominal relationship and A is an element of the Lie algebra A, representing the

deviation of the actual relationship from the nominal one.

We wish to impose ‘soft’ constraints on the deviation A. For example, we would like

to say, not ‘you may rotate up to ±θ0 radians and no further’, but ‘there is a penalty

of kθ2 for a rotation by θ radians’; the smaller the value of the coefficient k, the more

rotation is tolerated. In general, the penalty function is a quadratic function depending

on six independent variables (e.g., angle of rotation around a certain point, distance of

translation in a certain direction, amount of dilation about a certain centre, etc.); there

must always be six degrees of freedom because A is a six­dimensional vector space. This

quadratic penalty function is technically known as a metric tensor.

The fleximap, then, is a pair (F, g), where F is the nominal relationship and g is

the metric tensor specifying the penalty for deviations from the nominal.

5.2 Metric tensors

A metric tensor is a function g:A → (A → R) such that

• ∀c1, c2∈R ∀A,B1,B2∈A g(A)(c1B1 + c2B2) = c1g(A)(B1)+ c2g(A)(B2),
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§5. Fleximaps

• ∀A,B∈A g(A)(B) = g(B)(A),

• ∀A∈A A 6= 0 ⇒ g(A)(A) > 0.

Note that, as a consequence of the first condition, ∀A ∈ A g(A) ∈ F ; in fact, g is an

isomorphism from A to F .

5.3 Fleximaps

A fleximap is a pair (F, g), where F ∈ G and g is a metric tensor. Let Flex be the set of

all fleximaps. Associated with any fleximap τ = (F, g) is an energy function Eτ:G → R

defined by

∀G∈G Eτ(G) = g(log(F−1 ·G))(log(F−1 ·G)).

The informal interpretation of a fleximap τ = (F, g) is as indicated above. Any affine

transformation G not too far from F can be represented in the form G = F · expA, for
some A∈A; then we have Eτ(G) = g(A)(A). F is called the nominal transformation, A

measures how far G deviates from F, and Eτ(G) is the penalty incurred by the deviation.

The way in which this works can be seen most clearly if we adopt a basis for A under

which g is diagonal: then, in terms of components, we have g(A)(A) =
∑6

i=1 gii(A
i)2. For

example, the six basis elements might represent a rotation around a certain point, a

dilation about a certain centre, a one­dimensional stretch in a certain direction, a shear

in a certain direction, a translation in a certain direction, and a translation in another

direction; these types of deviation would be penalised at the rates g11, g22, g33, g44, g55, g66

respectively. A metric tensor is a convenient way of summing up the six independent

degrees of freedom and the six penalty coefficients g11, g22, g33, g44, g55, g66 associated

with them.

The derivative of Eτ may be calculated as follows. For any G∈G and any V∈A, we

have

log(F−1 ·G · expV) = log(F−1 ·G)+ log∗(F
−1 ·G)(V)+ o(V)

(see §3.10), so

Eτ(G · expV) = g(log(F−1 ·G · expV))(log(F−1 ·G · expV))

= g(log(F−1 ·G))(log(F−1 ·G))+ 2g(log(F−1 ·G))(log∗(F
−1 ·G)(V))+ o(V)

= Eτ(G)+ 2 log
∗
(F−1 ·G)(g(log(F−1 ·G)))(V)+ o(V)

so Eτ∗(G)(V) = 2 log
∗
(F−1 ·G)(g(log(F−1 ·G))).

Given a fleximap (F, g) and a transformation G∈G, we can define the composition

of the two by
G · (F, g) = (G · F, g)
(F, g) ·G = (F ·G, g′)

where g′ is the metric defined by

∀A,B∈A g′(A)(B) = g(Ad(G)(A))(Ad(G)(B)).

LEMMA 1. For any fleximap τ and any G,G′∈G,

EG′·τ(G
′ ·G) = Eτ(G) = Eτ·G′(G ·G′).
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Proof. Let τ = (F, g). For the first equation,

EG′·τ(G
′ ·G) = g(log((G′ · F)−1 ·G′ ·G))(log((G′ · F)−1 ·G′ ·G))

= g(log(F−1 ·G))(log(F−1 ·G))

= Eτ(G).

For the second equation,

Eτ·G′(G ·G′) = g′(log((F ·G′)−1 ·G ·G′))(log((F ·G′)−1 ·G ·G′))

= g′(log(G′−1 · F−1 ·G ·G′))(log(G′−1 · F−1 ·G ·G′))

= g′(Ad(G′−1)(log(F−1 ·G)))(Ad(G′−1)(log(F−1 ·G)))

= g(log(F−1 ·G))(log(F−1 ·G)) = Eτ(G)

using lemma 3.3.
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6. Networks and Homomorphisms

6.1 Introduction

The central concept of this paper is that of a network, which represents a symbol system.

Networks are used for two purposes: a grammar is represented as a network of symbol

types, and a particular pattern is represented as a network of symbol tokens. The rela­

tionship between a pattern and a grammar is represented by a homomorphism from the

pattern network to the grammar network. The task of constructing the homomorphism

is called parsing. (All this is very different from conventional grammatical formalisms,

in which a grammar is a set of production rules and the relationship between a pattern

and a grammar is represented by a derivation or a parse tree.)

A pattern is the system of all symbol tokens present (or believed to be present)

in a given image. The position of each symbol token in the image is expressed by its

embedding, an affine transformation. The embeddings of all the symbol tokens of the

pattern are combined together into a single mathematical object, called the embedding

token of the pattern.

The grammar includes constraints on the embedding token, expressed in terms of

fleximaps. These constraints are combined together into a single mathematical object,

called the embedding type of the grammar.

6.2 Networks

A network is a 9­tuple (Σ,N,H,E,W,P,A,F,S), where Σ,N,H,E are disjoint sets, and

W,P:N → Σ, A:H → N and F,S:E → H. The elements of Σ,N,H,E are called symbols,

nodes, hooks and edges, respectively. The purpose of a node is to represent a part­whole

relation between symbols: if a symbol σ1 is a part of a symbol σ2 then there is a node

n with P(n) = σ1 and W(n) = σ2. Each node has zero or more hooks attached to it; if a

hook h is attached to a node n then A(h) = n. The purpose of an edge is to represent

neighbourhood relations between two parts of a common whole: if symbols σ1 and σ2 are

both parts of a symbol σ3, and n1 and n2 are the nodes representing the two part­whole

relations, then there may be an edge e from one of the hooks of n1 to one of the hooks

of n2; this will be represented by F(e) = h1 and S(e) = h2, where h1 is a hook of n1 and

h2 is a hook of n2.

A network is coherent iff W is the coequaliser of A ◦ F and A ◦ S in the category of

sets. This is equivalent to the conjunction of the following two conditions:

• W ◦ A ◦ F = W ◦ A ◦ S,
• for every σ∈Σ, the graph whose set of nodes is W−1({σ}) and whose set of edges is

F−1(A−1(W−1({σ}))), where each edge e connects A(F(e)) to A(S(e)), is connected.

A network is definite iff the following conditions hold:

• ∀h∈H |F−1({h})| + |S−1({h})| = 1,

• ∀σ∈Σ |P−1({σ})| ≤ 1.

A grammar is required to be coherent but not necessarily definite. A pattern is required

to be both coherent and definite at the end of the recognition process; but while it is

being constructed it is not required to be coherent or definite.
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§6. Networks and homomorphisms

6.3 Homomorphisms

The parse of a pattern is represented by a homomorphism between the pattern and the

grammar. If N = (Σ,N,H,E,W,P,A,F,S) and N ′ = (Σ′
,N′,H′,E′,W′,P′,A′,F′,S′) are

networks, a homomorphism f :N → N ′ is a function from Σ∪N∪H∪E to Σ′∪N′∪H′∪E′

such that

f |Σ:Σ → Σ′
, f |N :N → N′, f |H :H → H′, f |E:E → E′,

W′ ◦ f = f ◦W, P′ ◦ f = f ◦ P, F′ ◦ f = f ◦ F, S′ ◦ f = f ◦ S, and

H
f |H−−→ H′



yA



yA′

N
f |N−−→ N′

is a pullback (in the category of sets).

(Note that the pullback condition means that, for every n∈N, f maps the hooks of n

bijectively onto the hooks of f (n).)

An isomorphism is a homomorphism that is a bijection. An automorphism is an isomor­

phism from a network N to itself.

6.4 Embeddings

An embedding token for a network (Σ,N,H,E,W,P,A,F,S) is a function u:Σ ∪ N → G.
It specifies the way a pattern is embedded in the image plane: u(σ) is the embedding

of a symbol σ, and u(n) is the embedding of a node n. If P(n) = σ then u(σ) and u(n)

will be very closely related: they will differ only by one of σ’s symmetry transformations

(this constraint is called the symmetry condition; see §7.3 below).

Given two embedding tokens, u1 and u2, for the same network, we can define a new

embedding token u1 · u2 by

∀x∈Σ ∪N (u1 · u2)(x) = u1(x) · u2(x).

Given a homomorphism f :N → N ′ and an embedding token u for N ′, clearly u ◦ f
is an embedding token for N .

An embedding type for a network (Σ,N,H,E,W,P,A,F,S) is a quintuple (con, rel,

symm, tem, in), in which con:N → Flex, rel:E → Flex, symm:Σ → sub(G), tem:Σ → Tem,

and in:Σ → Flex where Flex is the set of all fleximaps, sub(G) is the set of all subgroups

of G, and Tem is the set of all templates; for every σ ∈ Σ, the fleximap in(σ) must have

nominal part equal to the identity transformation.

The purpose of an embedding type is to impose constraints on the embedding token.

For any node n, con(n) is a fleximap describing the relationship between the embeddings

of a part and a whole (or, more precisely, of the node n and the symbol W(n)). For any

edge e, rel(e) is a fleximap describing the relationship between the embeddings of two

neighbouring parts (or, more precisely, of their nodes A(F(e)) and A(S(e))). For any symbol

σ, symm(σ) is its symmetry group, tem(σ) is its template, and in(σ) is (I, g), where I is

the identity transformation and g is called the inertial metric of σ and determines how

σ moves in response to forces (see §7.7).
The Match function, defined below in §7.3, defines how well a given embedding

token matches a given embedding type.
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Given an embedding type v = (con1, rel1, symm1, tem1, in1) and an embedding token

u for a network (Σ,N,H,E,W,P,A,F,S), we can define an embedding type v · u for the

same network by v · u = (con2, rel2, symm1, tem2, in2), where

∀n∈N con2(n) = u(W(n))−1 · con1(n) · u(n)
∀e∈E rel2(e) = u(A(S(e)))−1 · rel1(e) · u(A(F(e)))

∀σ∈Σ tem2(σ) = tem1(σ) ◦ u(σ)
∀σ∈Σ in2(σ) = u(σ)−1 · in1(σ) · u(σ)

Given an embedding type v = (con, rel, symm, tem, in) for a network N ′ and a homo­

morphism f :N → N ′, we can define an embedding type v ◦ f for N by

v ◦ f = (con ◦ f , rel ◦ f , symm ◦ f , tem ◦ f , in ◦ f ).

LEMMA 1. If f :N → N ′ is a homomorphism, v is an embedding type for N ′, and u is an

embedding token for N ′, then

(v · u) ◦ f = (v ◦ f ) · (u ◦ f ).

Proof. Let N = (Σ,N,H,E,W,P,A,F,S), N ′ = (Σ′
,N′,H′,E′,W′,P′,A′,F′,S′) and v =

(con1, rel1, symm1, tem1, in1). Then v · u = (con2, rel2, symm1, tem2, in2), where

∀n∈N′ con2(n) = u(W′(n))−1 · con1(n) · u(n)
∀e∈E′ rel2(e) = u(A′(S′(e)))−1 · rel1(e) · u(A′(F′(e)))

∀σ∈Σ′
tem2(σ) = tem1(σ) ◦ u(σ)

∀σ∈Σ′
in2(σ) = u(σ)−1 · in1(σ) · u(σ)

and hence

(v · u) ◦ f = (con2 ◦ f , rel2 ◦ f , symm1 ◦ f , tem2 ◦ f , in2 ◦ f ).
We also have v ◦ f = (con1 ◦ f , rel1 ◦ f , symm1 ◦ f , tem1 ◦ f , in1 ◦ f ), and hence (v ◦ f ) · (u ◦ f ) =
(con3, rel3, symm1 ◦ f , tem3, in3), where

∀n∈N con3(n) = (u ◦ f )(W(n))−1 · (con1 ◦ f )(n) · (u ◦ f )(n)
= u(f (W(n)))−1 · con1(f (n)) · u(f (n))
= u(W′(f (n)))−1 · con1(f (n)) · u(f (n))
= con2(f (n)) = (con2 ◦ f )(n)

∀e∈E rel3(e) = (u ◦ f )(A(S(e)))−1 · (rel1 ◦ f )(e) · (u ◦ f )(A(F(e)))
= u(f (A(S(e))))−1 · rel1(f (e)) · u(f (A(F(e))))
= u(A′(S′(f (e))))−1 · rel1(f (e)) · u(A′(F′(f (e))))

= rel2(f (e)) = (rel2 ◦ f )(e)
∀σ∈Σ tem3(σ) = (tem1 ◦ f )(σ) ◦ (u ◦ f )(σ)

= tem1(f (σ)) ◦ u(f (σ))
= tem2(f (σ)) = (tem2 ◦ f )(σ)

∀σ∈Σ in3(σ) = (u ◦ f )(σ)−1 · (in1 ◦ f )(σ) · (u ◦ f )(σ)
= u(f (σ))−1 · in1(f (σ)) · u(f (σ))
= in2(f (σ)) = (in2 ◦ f )(σ)

which shows that (v · u) ◦ f = (v ◦ f ) · (u ◦ f ).
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7. The Recognition Problem

7.1 Introduction

Given an image, we wish to detect all the symbol tokens present in it, determine how

they are embedded in it and how they are related to one another, and relate the system

of symbol tokens to the grammar. This is the recognition problem. To restate this using

the terminology of §6: we need to construct the pattern, determine the embedding token

of the pattern, and construct the homomorphism from the pattern to the grammar. The

recognition problem will be stated formally in §7.4.
While the pattern is being constructed it may temporarily be in a inconsistent state:

it may be incoherent or indefinite (these terms were defined in §6.2). Also, the symbols,

nodes and edges of the pattern may be only ‘tentatively present’: this is represented by

inclusion functions (e.g., i(σ) is the degree to which it is believed that a symbol token σ
should be present in the pattern). However, by the end of the recognition process the

pattern must become coherent and definite, and every symbol, node and edge must be

unequivocally present.

The recognition process is governed by a Match function, which measures how well

a pattern matches the given image and grammar. The aim of recognition is to maximise

this function. Only one aspect of the recognition problem is solved in this paper: for a

given pattern and homomorphism, the optimal embedding token for the pattern is found

by a process of gradient descent on the Match function (see §7.7).

7.2 Inclusion functions

During the course of recognition, the pattern is accompanied by inclusion functions

i:Σ ∪N ∪ E → [0, 1] and j:Σ ∪N ∪H → [0, 1], which are subject to the conditions

∀σ∈Σ i(σ) = j(σ)+
∑

n∈P−1({σ})
i(n)

∀n∈N i(W(n)) = j(n)+ i(n)

∀h∈H i(A(h)) = j(h)+
∑

e∈F−1({h})∪S−1({h})
i(e)

These functions reflect the uncertainty during recognition concerning which parts of the

pattern should really be present: i(σ) represents the degree of belief that σ should be

present, and similarly for i(n) and i(e) (there is no need for an inclusion value for hooks

because a hook is present iff its node is). The j function is concerned with missing

parts: j(h) represents the degree of belief that the hook h should be present but that

the correct edge to be connected to it has not yet been found; j(n) represents the degree

of belief that the symbol W(n) should be present but the node n should not be; j(σ)
represents the degree of belief that σ should be present but as a top­level symbol, i.e.,

with P−1({σ}) = ∅.
At the end of recognition we must have ∀x∈Σ∪N∪E i(x) = 1, i.e., complete certainty.

In addition there is a function B:H → R that imposes a penalty on bare hooks: if

a hook h has no edges attached to it then a penalty of B(h) is incurred. When a node
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§7. The recognition problem

is first formed its hooks have low values of B(h), since they cannot be expected to have

acquired edges yet; but if they remain bare the value of B(h) is increased to force them

to acquire edges. At the end of the recognition process every hook must have an edge,

to satisfy the definiteness condition.

7.3 The match function between an embedding type and an embedding token

Given a network N = (Σ,N,H,E,W,P,A,F,S), an image I, an embedding token u for

N , and an embedding type v = (con, rel, symm, tem) for N , the match function, which

measures how well u matches v and I, is defined by

Match(I,N ,u, v) =
∑

σ∈Σ

(

i(σ)ρI,tem(σ)(u(σ))− j(σ)θ
)

−
∑

n∈N

i(n)Econ(n)(u(W(n))−1 · u(n))−
∑

h∈H

j(h)B(h)

−
∑

e∈E

i(e)
(

Erel(e)(u(A(S(e)))
−1 · u(A(F(e)))) +Ein(W(A(F(e))))(u(W(A(S(e))))−1 · u(W(A(F(e)))))

)

where θ is a positive real constant. The symmetry condition for N ,u, v is

∀n∈N u(P(n))−1 · u(n) ∈ symm(P(n)).

The terms in the definition of Match can be explained as follows. For any symbol σ,
u(σ) is the embedding of σ in the image plane. For any node n, u(n) is equal to u(P(n)),

the embedding of the symbol P(n), possibly adjusted by a symmetry transformation

(a member of symm(P(n))). The term ρI,tem(σ)(u(σ)) measures how well the template

of σ, embedded in the image by u(σ), matches the image (see §4). The term θ is

a fixed penalty incurred by any top­level symbol, i.e., any symbol that is not a part

of any other symbol. The term Econ(n)(u(W(n))−1 · u(n)) measures how well the part­

whole relationship between P(n) and W(n) matches the fleximap con(n). The term

B(h) is a penalty incurred by a hook h with no incident edges (see §7.2). The term

Erel(e)(u(A(S(e)))
−1 · u(A(F(e)))) measures how well the neighbourhood relation between

the symbols P(A(F(e))) and P(A(S(e))) matches the fleximap rel(e). The final term,

Ein(W(A(F(e))))(u(W(A(S(e))))−1 ·u(W(A(F(e))))) is only non­zero if the network is not coherent:

if an edge e has W(A(S(e))) 6= W(A(F(e))) then this term penalises the difference in

embedding between W(A(S(e))) and W(A(F(e))). By the end of the recognition process,

the symbols W(A(S(e))) and W(A(F(e))) will either have been forced together by this term

and merged, or the edge will have been removed.

All these terms are weighted by inclusion functions, i(σ), j(σ), i(n), j(h), i(e), to reflect

the different degrees to which σ, etc., are believed to be present.

LEMMA 1. For any image I, network N , embedding tokens u,u′ for N , and embedding

type v for N ,

Match(I,N ,u · u′, v · u′) = Match(I,N ,u, v),

provided u′ ◦W ◦ A ◦ F = u′ ◦W ◦ A ◦ S.
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Proof. Let v = (con1, rel1, symm1, tem1, in1); then v · u′ = (con2, rel2, symm1, tem2, in2),

where

∀n∈N con2(n) = u′(W(n))−1 · con1(n) · u′(n)

∀e∈E rel2(e) = u′(A(S(e)))−1 · rel1(e) · u′(A(F(e)))

∀σ∈Σ tem2(σ) = tem1(σ) ◦ u′(σ)

∀σ∈Σ in2(σ) = u′(σ)−1 · in1(σ) · u′(σ)

Now, first, for any σ∈Σ,

ρI,tem2(σ)((u · u′)(σ)) = ρI,tem1(σ)◦u′(σ)(u(σ) · u′(σ)) = ρI,tem1(σ)(u(σ))

using lemma 4.1.

Secondly, for any n∈N,

Econ2(n)((u · u′)(W(n))−1 · (u · u′)(n))

= Eu′(W(n))−1·con1(n)·u′(n)(u
′(W(n))−1 · u(W(n))−1 · u(n) · u′(n))

= Econ1(n)(u(W(n))−1 · u(n))

by lemma 5.1.

Thirdly, for any e∈E, using the abbreviations n1 = A(F(e)) and n2 = A(S(e)),

Erel2(e)((u · u′)(n2)
−1 · (u · u′)(n1)) = Eu′(n2)−1·rel1(e)·u′(n1)

(u′(n2)
−1 · u(n2)

−1 · u(n1) · u′(n1))

= Erel1(e)(u(n2)
−1 · u(n1))

and, using the abbreviations σ1 = W(A(F(e))) and σ2 = W(A(S(e))),

Ein2(σ1)((u · u′)(σ2)
−1 · (u · u′)(σ1)) = Eu′(σ1)−1·in1(σ1)·u′(σ1)

(u′(σ2)
−1 · u(σ2)

−1 · u(σ1) · u′(σ1))

= Ein1(σ1)(u(σ2)
−1 · u(σ1))

since u′(σ1) = u′(σ2).

Thus each term of Match(I,N ,u · u′, v · u′) equals the corresponding term of

Match(I,N ,u, v).

7.4 The recognition problem

Given a coherent network N0 (representing a grammar), an embedding type v for N0,

and an image I, the recognition problem is to find a coherent and definite network N1

(representing a pattern), with inclusion function i satisfying ∀x∈Σ1 ∪ N1 ∪ E1 i(x) = 1,

a homomorphism p:N1 → N0 (representing a parse of the pattern according to the

grammar), and an embedding token u for N1, that maximises Match(I,N1,u, v ◦ p),

subject to the symmetry condition for N1,u, v ◦ p.
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7.5 Symmetries

A symmetry of a network N = (Σ,N,H,E,W,P,A,F,S), with respect to the embed­

ding type v = (con, rel, symm, tem, in), is an automorphism a:N → N together with an

embedding token s for N , such that

∀σ∈Σ s(σ) ∈ symm(σ),

∀n∈N s(n) ∈ symm(P(n)),

v · s = v ◦ a.

LEMMA 2. (Global application of a symmetry.) Given a symmetry a, s of the grammar N0

with respect to the embedding type v, a homomorphism p:N1 → N0, and an embedding

token u for N1, we can produce a new parse p′ = a ◦ p:N1 → N0 and embedding token

u′ = u · (s ◦ p). Provided the grammar is coherent, this gives

Match(I,N1,u
′, v ◦ p′) = Match(I,N1,u, v ◦ p),

and the symmetry condition holds for N1,u
′, v ◦ p′ iff it holds for N1,u, v ◦ p.

Proof. Let N0 = (Σ0,N0,H0,E0,W0,P0,A0,F0,S0) and N1 = (Σ1,N1,H1,E1,W1,P1,A1,F1,

S1). Applying the definition of a symmetry, followed by lemma 6.1 and lemma 1, gives

Match(I,N1,u
′, v ◦ p′) = Match(I,N1,u · (s ◦ p), v ◦ a ◦ p)

= Match(I,N1,u · (s ◦ p), (v · s) ◦ p)
= Match(I,N1,u · (s ◦ p), (v ◦ p) · (s ◦ p))
= Match(I,N1,u, v ◦ p).

Note that the application of lemma 1 is justified since we have s ◦ p ◦ W1 ◦ A1 ◦ F1 =

s ◦W0 ◦ A0 ◦ F0 ◦ p = s ◦W0 ◦ A0 ◦ S0 ◦ p = s ◦ p ◦W1 ◦ A1 ◦ S1, since N0 is coherent.

The symmetry condition is checked as follows. Let v = (con, rel, symm, tem, in). For

any n∈N1, we have

u′(P1(n))
−1 · u′(n) = s(p(P1(n)))

−1 · u(P1(n))
−1 · u(n) · s(p(n)).

Note that, since a, s is a symmetry of N0, we have s(p(P1(n))) ∈ symm(p(P1(n))) and

s(p(n)) ∈ symm(P0(p(n))) = symm(p(P1(n))), and symm = symm ◦ a. Now, the symmetry

condition for N1,u, v ◦ p requires

u(P1(n))
−1 · u(n) ∈ symm(p(P1(n))),

whereas the symmetry condition for N1,u
′, v ◦ p′ requires

u′(P1(n))
−1 · u′(n) ∈ symm(a(p(P1(n)))).

From the above information we see that these two conditions are equivalent.
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7.6 The derivative of the match function

Given a network N = (Σ,N,H,E,W,P,A,F,S), an image I, an embedding token u for N ,

and an embedding type v = (con, rel, symm, tem, in) for N , we can consider the derivative

of the Match function with respect to the embeddings of the symbols: that is, we can

consider the change in Match(I,N ,u, v) produced by a small change in u.

Let us introduce the following abbreviations:

∀n∈N Sn = u(P(n))−1 · u(n)
∀n∈N Cn = u(W(n))−1 · u(n)
∀e∈E Re = u(A(S(e)))−1 · u(A(F(e)))
∀e∈E R′

e = u(W(A(S(e))))−1 · u(W(A(F(e))))

This gives

Match(I,N ,u, v) =
∑

σ∈Σ

(

i(σ)ρI,tem(σ)(u(σ))− j(σ)θ
)

−
∑

n∈N

i(n)Econ(n)(Cn)−
∑

h∈H

j(h)B(h)

−
∑

e∈E

i(e)
(

Erel(e)(Re)+ Ein(W(A(F(e))))(R
′
e)
)

and the symmetry condition is

∀n∈N Sn ∈ symm(P(n)).

Now, consider the effect of making a small change in the embedding token from u to

u · ∆u, where
∀σ∈Σ ∆u(σ) = exp(εVσ)

∀n∈N ∆u(n) = exp(εVn)

where ε is a real number in a neighbourhood of 0 and Vσ,Vn ∈ A. The movement Vσ

of each symbol σ may be chosen arbitrarily, but, in order to preserve the symmetry

condition, the movement Vn of each node n must then be Vn = Ad(S−1
n )(VP(n)), thus

leaving Sn invariant.

THEOREM 3. For ∆u defined as above,

Match(I,N ,u · ∆u, v) = Match(I,N ,u, v) + ε
∑

σ∈Σ

Fσ(Vσ)+ o(ε)

where, for each σ∈Σ, n∈N and e∈E,

Fσ = F0
σ + F1

σ + F2
σ + F3

σ ∈ F
F0

σ = i(σ) ρI,tem(σ) ∗(u(σ))

F1
σ = −

∑

n∈W−1({σ})
Ad(C−1

n )†(Fn) +
∑

n∈P−1({σ})
Ad(S−1

n )†(Fn)

F2
σ =

∑

n∈P−1({σ})
Ad(S−1

n )†
(

−
∑

e∈S−1(A−1({n}))
Ad(R−1

e )†(Fe) +
∑

e∈F−1(A−1({n}))
Fe

)

F3
σ = −

∑

e∈S−1(A−1(W−1({σ})))
Ad(R′

e
−1

)†(F′
e) +

∑

e∈F−1(A−1(W−1({σ})))
F′
e

Fn = −i(n)Econ(n) ∗(Cn)

Fe = −i(e)Erel(e) ∗(Re)

F′
e = −i(e)Ein(W(A(F(e)))) ∗(R

′
e)
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Proof. The effect of the change u 7→ u · ∆u on Cn is

Cn 7→ exp(−εVW(n)) · Cn · exp(εVn)

= Cn · exp(−εAd(C−1
n )(VW(n))) · exp(εVn)

= Cn · exp
(

−εAd(C−1
n )(VW(n))+ εVn + o(ε)

)

using lemma 3.10. The effect of the change u 7→ u · ∆u on Re is

Re 7→ exp(−εVA(S(e))) ·Re · exp(εVA(F(e)))

= Re · exp(−εAd(R−1
e )(VA(S(e)))) · exp(εVA(F(e)))

= Re · exp(εVe + o(ε))

where Ve = −Ad(R−1
e )(VA(S(e)))+VA(F(e)), using lemma 3.10 again. The effect of the change

u 7→ u · ∆u on R′
e is

R′
e 7→ exp(−εVW(A(S(e)))) · R′

e · exp(εVW(A(F(e))))

= R′
e · exp(−εAd(R′

e
−1

)(VW(A(S(e))))) · exp(εVW(A(F(e))))

= R′
e · exp(εV ′

e + o(ε))

where V ′
e = −Ad(R′

e
−1

)(VW(A(S(e)))) + VW(A(F(e))), by lemma 3.10. We are interested in

calculating the consequent change in the value of the match function. Using lemma 3.11,

Match(I,N ,u · ∆u, v) =Match(I,N ,u, v) + ε
∑

σ∈Σ

i(σ) ρI,tem(σ) ∗(u(σ))(Vσ)

− ε
∑

n∈N

i(n)Econ(n) ∗(Cn)(−Ad(C−1
n )(VW(n))+ Vn)

− ε
∑

e∈E

i(e)
(

Erel(e) ∗(Re)(Ve)+ Ein(W(A(F(e)))) ∗(R
′
e)(V

′
e)
)

+ o(ε). (∗)

Using the above definition of Fn, the sum over nodes in equation (∗) can be rewritten:

−ε
∑

n∈N

i(n)Econ(n) ∗(Cn)(−Ad(C−1
n )(VW(n))+ Vn)

= −ε
∑

n∈N

Fn(Ad(C
−1
n )(VW(n)))+ ε

∑

n∈N

Fn(Vn)

= −ε
∑

n∈N

Fn(Ad(C
−1
n )(VW(n)))+ ε

∑

n∈N

Fn(Ad(S
−1
n )(VP(n)))

= −ε
∑

n∈N

Ad(C−1
n )†(Fn)(VW(n))+ ε

∑

n∈N

Ad(S−1
n )†(Fn)(VP(n))

= ε
∑

σ∈Σ

F1
σ(Vσ).

Similarly, using the above definition of Fe, we can rewrite part of the sum over edges in

equation (∗) as
−ε

∑

e∈E

i(e) Erel(e) ∗(Re)(Ve) = ε
∑

e∈E

Fe(−Ad(R−1
e )(VA(S(e)))+ VA(F(e)))

= −ε
∑

e∈E

Fe(Ad(R
−1
e )(VA(S(e))))+ ε

∑

e∈E

Fe(VA(F(e)))

= −ε
∑

e∈E

Fe(Ad(R
−1
e )(Ad(S−1

A(S(e))
)(VP(A(S(e))))))+ ε

∑

e∈E

Fe(Ad(S
−1
A(F(e))

)(VP(A(F(e)))))

= −ε
∑

e∈E

Ad(S−1
A(S(e))

)†(Ad(R−1
e )†(Fe))(VP(A(S(e))))+ ε

∑

e∈E

Ad(S−1
A(F(e))

)†(Fe)(VP(A(F(e))))

= ε
∑

σ∈Σ

F2
σ(Vσ).
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Using the above definition of F′
e, we can rewrite the other part of the sum over edges in

equation (∗):

−ε
∑

e∈E

i(e)Ein(W(A(F(e)))) ∗(R
′
e)(V

′
e) = ε

∑

e∈E

F′
e(−Ad(R′

e
−1

)(VW(A(S(e))))+ VW(A(F(e))))

= −ε
∑

e∈E

F′
e(Ad(R

′
e
−1

)(VW(A(S(e)))))+ ε
∑

e∈E

F′
e(VW(A(F(e))))

= −ε
∑

e∈E

Ad(R′
e
−1

)†(F′
e)(VW(A(S(e))))+ ε

∑

e∈E

F′
e(VW(A(F(e))))

= ε
∑

σ∈Σ

F3
σ(Vσ).

Hence equation (∗) finally reduces to

Match(I,N ,u · ∆u, v) = Match(I,N ,u, v) + ε
∑

σ∈Σ

Fσ(Vσ)+ o(ε)

as required.

Thus Fσ ∈ F measures the effect on the value of the Match function, to first order in

ε, of the change in the embedding of σ. Fσ is called the force on σ, and consists of

four components: F0
σ, the force exerted by σ’s template; F1

σ, the force exerted by the

part­whole fleximaps in which σ participates; F2
σ, the force exerted by the neighbourhood

fleximaps in which σ participates; and F3
σ, the force that pulls two symbols W(A(F(e)))

and W(A(S(e))) together, whenever any edge e has W(A(F(e))) 6= W(A(S(e))).

7.7 Gradient ascent on the match function

The aim of gradient ascent is to make a small change to the embedding token u of

the pattern so as to increase Match(I,N1,u, v ◦ p) as much as possible (while pre­

serving the symmetry condition). Let N1 = (Σ1,N1,H1,E1,W1,P1,A1,F1,S1) and v =

(con, rel, symm, tem, in). As shown in theorem 3, the effect of changing the embeddings

of the symbol tokens by

∀σ∈Σ1 u(σ) 7→ u(σ) · exp(εVσ)

(with a corresponding change in the embeddings of the nodes) is to produce a change in

Match(I,N1,u, v ◦ p) of ε
∑

σ∈Σ1
Fσ(Vσ), to first order in ε.

The cost of making this change is defined as 1
2

ε
∑

σ∈Σ1
mσgσ(Vσ)(Vσ), where mσ is

the mass of σ (see §4.5) and (I, gσ) = in(p(σ)), i.e., gσ is the inertial metric tensor for σ
provided by v ◦ p. Hence we wish to choose the Vσ’s to maximise

ε
∑

σ∈Σ1

Fσ(Vσ)− 1
2

ε
∑

σ∈Σ1

mσgσ(Vσ)(Vσ)

= 1
2

ε
∑

σ∈Σ1

1
mσ

Fσ(g
−1
σ (Fσ))− 1

2
ε
∑

σ∈Σ1

1
mσ

(mσgσ(Vσ)− Fσ)(mσVσ − g−1
σ (Fσ))

This is maximised by taking Vσ = 1
mσ

g−1
σ (Fσ), for each σ.
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7.8 The grand conclusion

Given a grammar N0, an embedding type v for N0, and an image I, the recognition

problem is to construct a pattern N1, a parse homomorphism p:N1 → N0, and an

embedding token u for N1. This paper has solved one part of the problem: it has shown

that u can be optimised incrementally by applying the gradient ascent rule

∀σ∈Σ1 u(σ) 7→ u(σ) · exp(εVσ)

∀n∈N1 u(n) 7→ u(n) · exp(εAd(S−1
n )(VP(n))),

where

Vσ = 1
mσ

g−1
σ (Fσ)

and Fσ is the force on σ, defined in theorem 3.

46



References

Barnden, J.A. & Pollack, J.B. (1991) Problems for high­level connectionism. In

Barnden, J.A. & Pollack, J.B. (eds) High­Level Connectionist Models. Advances

in Connectionist and Neural Computation Theory, vol. 1. Norwood, New Jersey:

Ablex, pp. 1–16.

Boothby, W.M. (1986) An Introduction to Differentiable Manifolds and Riemannian

Geometry. Orlando, Florida: Academic Press.

Dinsmore, J. (ed.) (1992) The Symbolic and Connectionist Paradigms: Closing the Gap.

Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Fletcher, P. (2001) Connectionist learning of regular graph grammars. Connection

Science, 13, no. 2, 127–188.

Fodor, J.A. & Pylyshyn, Z.W. (1988) Connectionism and cognitive architecture: a critical

analysis. Cognition, 28, nos 1 & 2, 3–71.

Garfield, J.L. (1997) Mentalese not spoken here: computation, cognition and causation.

Philosophical Psychology, 10, no. 4, 413–435.

Hadley, R.F. (1999) Connectionism and novel combinations of skills: implications for

cognitive architecture. Minds and Machines, 9, no. 2, 197–221.

Hausner, M & Schwartz, J.T. (1968) Lie Groups, Lie Algebras. London: Nelson.

Horgan, T. & Tienson, J. (1996) Connectionism and the Philosophy of Psychology.

Cambridge, Massachusetts: MIT Press.

Price, J.F. (1977) Lie Groups and Compact Groups. London Mathematical Society

Lecture Note Series, vol. 25. Cambridge: Cambridge University Press.

Smolensky, P. (1988) On the proper treatment of connectionism. Behavioral and Brain

Sciences, 11, no. 1, 1–23.

Sougné, J. (1998) Connectionism and the problem of multiple instantiation. Trends in

Cognitive Science, 2, no. 5, 183–189.

47


