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ABSTRACT

In this paper the nonlinear evolution of near-neutral modes in a pre-stressed
elastic half-space governed by an infinite system of evolution equations is discussed.
The theory is illustrated for the case in which the pre-stress is a uniaxial compression
and the perturbation consists initially of a single mode. It is shown that excitation
of harmonics due to nonlinear interaction always leads to the formation of shocks,
whether the elastic half-space is super-critically or sub-critically near-neutral and
that when the half-space is super-critically near-neutral shocks always form before
any significant growth in amplitude has taken place. In considering the static spe-
cialization of the evolution equations, two existing methods are assessed critically
and shown to be flawed.

1. INTRODUCTION

It is well known that an elastic half-space can transmit (Rayleigh) surface waves.
When the half-space is pre-stressed, the Rayleigh wave speed becomes a function
of the pre-stress. At a pre-stress for which the Rayleigh wavespeed vanishes the
half-space is said to be neutrally stable. When the wavespeed is small and real, the
half-space is said to be sub-critically near-neutral, and when it is imaginary but has
small magnitude the half-space is said to be super-critically near-neutral. The main
objective of a linear stability analysis is to find the conditions, usually referred to
as bifurcation conditions, under which neutral stability is attained. Linear stability
of pre-stressed elastic half-spaces has been studied for various materials and forms
of pre-stress by a number of authors (see [1–4] and the references therein). The
purpose of the present paper is to examine nonlinear aspects of the theory.

The initial motivation is the need to clarify the question of the existence and
determination of any post-buckling state (shape and amplitude) associated with a
pre-stressed half-space. In a linear analysis, the bifurcation condition is indepen-
dent of the forms and amplitudes of the instability modes, the amplitudes being
undetermined. Determination of the amplitude in the present context, which in-
volves non-dispersive modes, is a much harder problem than when dispersive modes
are involved. In the latter case, exemplified by the buckling of pre-stressed elastic
plates [5], it may be assumed that the leading-order solution takes the form of a



single sinusoidal mode. Nonlinear interaction produces a mean field and the second
harmonic at second order and, at third order, a resonance term, and the imposition
of a solvability condition determines the amplitude of the leading-order solution. In
the buckling of a pre-stressed half-space, the leading-order solution can no longer
be assumed to consist of a single mode, as pointed out by Wu and Cao [2]. In the
light of recent developments in nonlinear surface wave propagation in an unstressed

half-space, it is clear that any nonlinear solution involving non-dispersive modes
necessarily takes the form of an infinite Fourier sum (or a Fourier integral). A non-
linear stability analysis involving non-dispersive modes has been conducted recently
for a pre-stressed, infinite, inextensible elastic body [6, 7].

In this paper, the dynamic problem of determining the evolution of near-neutral
modes (i.e. modes with small wavespeed or growth rate) in a pre-stressed elastic
half-space is considered first. An infinite sum is assumed for the nonlinear solution,
and the evolution of the amplitudes of various Fourier modes, which depend on
a slow time variable, is determined at second order, leading to an infinite set of
coupled evolution equations. Determination of post-buckling states corresponds to
the solution of the static form of the evolution equations. The derivation of these
equations is similar to that for nonlinear surface waves in an unstressed half-space,
and the mathematical problem of determining the post-buckling configurations is
similar to that of determining nonlinear surface waves of permanent form in an
unstressed half-space. The latter problem has been considered by two research
groups with conflicting results. Parker and Talbot [8] claimed that they found non-
trivial nonlinear surface waves of permanent form, whereas Hamilton et al. [9] gave
a proof of the non-existence of non-trivial surface waves of permanent form. We
show that the analyses given by these authors are flawed. The existence question
therefore remains to be settled.

In Section 2, the governing equations are established and the main results from a
linear analysis are summarized. In Section 3, the evolution equations, derived using
the virtual work method proposed recently by Fu and Devenish [10], are given. The
equations are solved numerically subject to appropriate initial conditions and, in
Section 4, numerical results are presented for the case when there is initially only
a single mode. In Section 5 the post-buckling problem is considered briefly with
reference to the analysis in [8] and [9].

2. GOVERNING EQUATIONS AND LINEAR THEORY

We consider a homogeneous elastic half-space B composed of an isotropic ma-
terial which possesses an initial unstressed state B0. A pure homogeneous static
deformation is then imposed upon B0 to produce a finitely stressed equilibrium con-
figuration denoted by Be. The aim in this paper is to study the stability of Be. To
this end, a small amplitude time-dependent perturbation is superimposed on Be,
and the resulting (current) configuration is denoted by Bt. The position vectors of
a representative particle relative to a common coordinate system are denoted by
XA, xi(XA) and x̃i(XA, t) in B0, Be and Bt respectively. We write

x̃i(XA, t) = xi(XA) + ui(xj , t), (1)



where ui(xj , t) is a small time-dependent displacement associated with the deforma-
tion Be → Bt. The half-space occupies the region x2 ≤ 0 in Be.

The deformation gradients arising from the deformations B0 → Bt and B0 → Be

are denoted by F and F̄ respectively and defined by

FiA =
∂x̃i

∂XA
, F̄iA =

∂xi

∂XA
. (2)

It is clear from (1) and (2) that FiA = (δij + ui,j)F̄jA, where here and henceforth a
comma indicates differentiation with respect to the implied spatial coordinate. The
convention whereby upper case indices refer to coordinates in B0 and lower case
indices to coordinates in Be will be observed.

In the absence of body forces, the equations of motion and the incompressibility
constraint are given by

πiA,A = ρüi, det F = 1, (3)

where ρ is the (constant) density and π is the first Piola-Kirchhoff stress, whose
component form is

πiA =
∂W

∂FiA
− pF−1

Ai , (4)

W being the strain-energy function (per unit volume), and p an arbitrary hydrostatic
pressure. We denote by p̄ the value of p in Be.

Let N and n be the unit outward normals to the surfaces in B0 and Be, re-
spectively. In the subsequent stability analysis, it will be assumed that the traction
vector πN prescribed on the surface of the half-space in B0 is maintained during
the incremental deformation Be → Bt. Such an assumption is usually referred to as
a dead-load traction boundary condition and is represented by

(πiA − π̄iA)NA = 0 on X2 = 0, (5)

where π̄iA is the value of πiA calculated from (4) with F replaced by F̄ and p by p̄.
By introducing a tensor function with components χij , (3) and (5) may be written

χij,j = ρüi, χijnj = 0 (6)

in x2 < 0 and on x2 = 0 respectively, where, as in Fu and Ogden [11],

χij = A1
0jilkuk,l +

1

2
A2

0jilknmuk,lum,n + p̄(uj,i − uj,kuk,i) − p∗(δji − uj,i) +O(ǫ3). (7)

In (7), A1
0jilk and A2

0jilknm are the first- and second-order instantaneous elastic mod-
uli, whose expressions in terms of principal stretches can be found in [1] or [11], p∗

is the incremental pressure associated with the deformation Be → Bt, so that

p = p̄+ p∗, (8)

and ǫ is a small parameter characterizing the amplitude of p∗ and ui,j.



On expanding the constraint equation (3)2, we obtain

ui,i =
1

2
um,nun,m +O(ǫ3). (9)

Equations (6)1 and (9) are the nonlinear equations governing the incremental dis-
placement ui and pressure p∗ in x2 < 0, and (6)2 must be satisfied on x2 = 0.

Before proceeding further, we first non-dimensionalize the governing equations
and boundary conditions using L (to be defined) as the length scale (for ui, xi), µ

(to be defined) as the stress scale (for p̄, p∗,A1
0jilk etc.) and L

√

ρ/µ as the time

scale (for t). In order to avoid introducing additional notation, we shall use the
same symbols to denote the corresponding non-dimensionalized quantities. The
non-dimensionalized forms of the governing equations and boundary conditions then
remain unchanged except that ρ = 1.

¿From now on we assume that the incremental deformation is one of plane strain
(i.e. u3 ≡ 0 with u1 and u2 independent of x3) and that the principal axes of strain
in Be are aligned with the coordinate axes. Linearizing (9) and (6), we obtain

ui,i = 0, (10)

A1
0jilkuk,lj − p∗,i = üi, (11)

A1
02ilkuk,l + p̄u2,i − p∗δ2i = 0, on x2 = 0. (12)

Equation (10) implies the existence of a ‘stream function’ ψ such that

u1 = ψ,2, u2 = −ψ,1. (13)

On eliminating p∗ from (11) and (12) and then expressing the resulting equations
in terms of ψ, we obtain [3]

αψ,1111 + 2βψ,1122 + γψ,2222 = ∇2ψ,tt, (14)

γψ,22 − (γ − σ2)ψ,11 = 0,
γψ,222 + (γ + 2β − σ2)ψ,112 − ψ,2tt = 0,

}

on x2 = 0, (15)

where σ2 is the principal Cauchy stress in Be along the x2-axis and

α = A1
01212, γ = A1

02121, 2β = A1
01111 + A1

02222 − 2A1
01122 − 2A1

01221.

The eigenvalue problem (14)-(15) admits a Rayleigh wave solution of the form

ψ = H(x2)e
ik(x1−vt), (16)

where k is the wavenumber, v is the wavespeed and H(x2) is the shape function.
This form of solution has been studied in detail by Dowaikh and Ogden [3], and
their main results are now summarized in preparation for the nonlinear analysis.

The Rayleigh wavespeed v is determined by

γ(α− v2) − (γ − σ2)
2 = (v2 − 2γ + 2σ2 − 2β)

√

γ(α− v2), (17)



which, on setting v = 0, gives the bifurcation condition for neutral stability, namely

αγ − (γ − σ2)
2 = −2(γ − σ2 + β)

√
αγ. (18)

Since α, β, γ are functions of the principal stretches and σ2 is related to p̄, this
condition relates p̄ to the principal stretches for which neutral stability occurs.

When v = 0, the shape function H(x2) is given by

H(x2) =
1

|k|
(

ξ1e
s1|k|x2 + ξ2e

s2|k|x2

)

, (19)

where

ξ1 =
γs2

2 + γ − σ2

γ(s2
2 − s2

1)
, ξ2 =

γs2
1 + γ − σ2

γ(s2
1 − s2

2)
,

and s1, s2 are the roots with positive real part of s2 = γ−1
(

β ±
√
β2 − αγ

)

. In the

degenerate case s1 = s2, (19) is not valid but the appropriate shape function can be
obtained by taking the limit s2 → s1 in (19) and using l’Hopital’s rule.

On substituting (19) and (16) into (13), we obtain

u1 = ξmsme
sm|k|x2eikx1 ≡ U1(x2, k)e

ikx1, (20)

u2 = −i(k/|k|)ξmesm|k|x2eikx1 ≡ U2(x2, k)e
ikx1, (21)

where we have employed a modified summation convention in which a suffix appear-
ing more than once is summed from 1 to 2. This convention will be observed in the
subsequent analysis.

The corresponding incremental pressure can be determined by substituting p∗ =
P (x2, k)e

ikx1 into (11) with i = 1 and ∂/∂t = 0. This gives

p∗ = −ikξmF (sm)esm|k|x2eikx1 ≡ P (x2, k)e
ikx1, (22)

where
F (sm) = γs3

m + (v2 + A1
01122 + A1

02112 −A1
01111)sm. (23)

Although we have assumed a sinusoidal wave solution (16), we remark that equa-
tions (17) and (18) could have been obtained by adopting a more general form of
solution such as that considered in [2]. Thus, neither the amplitude nor the mode
of instability is determined by a linear analysis.

3. NONLINEAR ANALYSIS

Henceforth, we assume that Be is also a state of plane strain and we write the
principal stretches as λ1 = λ, λ2 = λ−1, λ3 = 1 so that Be is characterized by two
parameters, namely λ and p̄.

Let λ = λ0, p̄ = p̄0 be a solution of the bifurcation condition (18) and let

λ = λ0 + ǫλ1, p̄ = p̄0 + ǫp̄1 (24)



be the values of λ and p̄ in Be, which is now assumed to be a near-neutral con-
figuration. Suppose, for example, a perturbation in the form of a single mode is
excited in this near-neutral configuration. We aim to determine how such a mode
will evolve. The formulation is also valid for the case when more than one mode is
excited initially provided the modes are harmonics of a primary mode.

For near-neutral non-dispersive modes, the acceleration term üm is required to
balance the quadratic terms. From this we deduce that the appropriate modulation
time scale is defined by τ = ǫ1/2t. It is known that for non-dispersive waves, a
single mode will excite all the harmonics even at leading order because of nonlinear
interaction. Thus, the nonlinear solution takes the form

un = ǫ
∑

m

Am(τ)Un(x2, m)eimx1 , n = 1, 2, (25)

p∗ = ǫ
∑

m

Am(τ)P (x2, m)eimx1 , (26)

where Am(τ) is the amplitude of the m-th harmonic and here and henceforth the
indices under the summation signs range from −∞ to ∞ excluding zero. The form
of solutions (25) and (26) is appropriate to perturbations which are periodic in x1.
We have taken the wavenumber of the fundamental mode in (25) and (26) to be
unity, which corresponds to taking the lengthscale L in the non-dimensionalization
to be the inverse of the fundamental wavenumber. For perturbations which are not
periodic, (25) and (26) should be replaced by Fourier integrals. At any stage in
the subsequent analysis, conversion of sums to integrals to describe non-periodic
perturbations is straightforward.

The evolution equations for the amplitudes Am(τ) of various Fourier modes may
be derived using the virtual work method of Fu and Devenish [10]. This uses the
line integral

I =
∮

C
χijnj ûidS, (27)

where nj is the outward normal to the path, ûi is a 2π-periodic field given by
ûn = Un(x2,−k)e−ikx1, where k is an arbitrary integer, and C is the boundary of the
rectangular region S = [0 ≤ x1 ≤ 2π, −h ≤ x2 ≤ 0], where h is a positive constant.
In the limit h → ∞, we have I → 0 since (i) from (6)2 the integrand vanishes on
x2 = 0, (ii) the integrand tends to zero as x2 → ∞, and (iii) the integrals on the
two vertical paths cancel because of the periodicity of the integrand. On use of the
divergence theorem, (6)1 and the scaling τ = ǫ1/2t, equation (27) may be written

I =
∫

S
(χij,jûi + χij ûi,j)dx1dx2 =

∫

S

(

ǫ
∂2ui

∂τ 2
ûi + χij ûi,j

)

dx1dx2. (28)

The evolution equations are obtained by substituting (25) and (26) into this equation
and then taking the limit h→ 0. The detailed derivation follows that of [10] which
treated a related problem. It can be shown that the evolution equations are

c0
d2Ak

dτ 2
= c1k

2Ak + ik2
∑

k′

K(k, k′)Ak′Ak−k′ (A−k = A∗
k, k = 1, 2, 3, . . .), (29)



where the asterisk signifies complex conjugate,

c0 = −1

2

{

1 + s2
1

s1

ξ2
1 +

1 + s2
2

s2

ξ2
2 +

4ξ1ξ2
s1 + s2

(1 + s1s2)

}

, (30)

c1 = − ξaξb
sa + sb

{

λ1Â1
0nmqpΓ(p, q, k, a)Γ(m,n,−k, b) + p̄1Γ(p, q, k, a)Γ(q, p,−k, b)

}

,

(31)

K(k, k′) =
ξaξbξc|k′||k − k′|

2(sa|k| + sb|k′| + sc|k − k′|)
{

A2
0qpnmsrΓ(p, q,−k, a)×

Γ(r, s, k′, b)Γ(m,n, k − k′, c) +
2k′

|k′|F (sb)Γ(n,m,−k, a)Γ(m,n, k − k′, c)

− k

|k|F (sa)Γ(n,m, k′, b)Γ(m,n, k − k′, c)

}

, (32)

the function Γ being defined through

Γ(a, b, k,m) = (δ2ak/|k| + ismδ1a)(smδ2b + iδ1bk/|k|). (33)

The moduli in (32) are evaluated for λ = λ0 and

Â1
0jinm =

(

∂

∂λ
A1

0jinm

)∣

∣

∣

∣

∣

λ=λ0

. (34)

When the nonlinear terms are neglected, we deduce from the reduced form of (29)
that the linear Rayleigh wavespeed is given by v2 = −(c1/c0)ǫ. On the other hand,
with λ and p̄ given by (24), a leading order asymptotic expression for v2 may also
be obtained from (17). This provides a check on the expressions for c0 and c1.

4. DYNAMIC SOLUTIONS

In this section we describe the numerical solution of the system of equations
(29). We assume that the pre-stress is a uniaxial tension or compression in the
x1-direction (σ2 = 0) and that the strain-energy function is given by

W = 2µ(λm
1 + λm

2 − 2)/m2, (35)

where µ is the shear modulus and m is a real constant. With µ taken to be the µ
used in the non-dimensionalization, it does not feature in the analysis. Three values
of m often used in the literature are m = 2, 1, 1/2. The case m = 2 is associated with
the neo-Hookean strain-energy function, whilst m = 1 leads to the degenerate case
s1 = s2 mentioned in Section 2. To simplify the analysis and to allow for material
nonlinearity, we take m = 1/2. The bifurcation condition (18) then reduces to
λ3 − 3λ2 − 2λ+ 2 = 0 [3], which has positive real roots λ0 = 0.5858, 3.4142. In the
following calculations, we take λ0 = 0.5858.

The system of equations (29) is first replaced by a finite system by truncation at
k′ = ±N , where N is sufficiently large for the results to be essentially independent



Fig. 1. Plots of u1, u2, u1,1 and u2,1 for τ = 0, 2, 3, 3.63 and c1/c0 = −0.1. Profiles for

larger values of τ are steeper at the shock position.

of the choice of N . The finite system is then integrated by a Runge-Kutta method
with step-length self-adjusted. We focus on the initial conditions

Ak(0) = 0.1δ1k, dAk(0)/dτ = 0, k = 1, 2, 3, . . . . (36)

So, only the fundamental mode exists initially. We have taken A1(0) = 0.1 but
we note that other (complex) values having the same magnitude will yield results
which differ only by a constant phase shift since we can scale Ak by eikφ, where φ is
a constant, without affecting the form of (29). Also, we can fix the amplitude A1(0)
since any variation in A1(0) can be absorbed by scaling τ and varying c1. Thus, we
may fix the initial conditions as (36) and investigate the effect of varying c1/c0.

We first take c1/c0 = ±0.1. Numerical experimentation shows that N = 25 is
adequate, with higher values of N giving the same results except near the shock
formation time. Figures 1 and 2 show the evolution of u1, u2, u1,1 and u2,1 for
c1/c0 = −0.1 and 0.1, respectively. We note that when c1/c0 = −0.1 the half-space
is sub-critically near-neutral (and the linear theory predicts A1 = 0.1 cos(

√
0.1τ)),

while when c1/c0 = 0.1 the half space is super-critically near-neutral (and linear
theory predicts A1 = 0.1cosh(

√
0.1τ)). In each case, nonlinear modulation leads to

the formation of shocks in the profile of u2,1 and spikes in the profile of u1,1. The
super-critical case c1/c0 = 0.1 gives an earlier shock formation time and larger shock
amplitudes.

To show how energy is transferred to higher modes through nonlinear interaction,
the evolution of A1, A2, A3 and A25 up to the shock formation time is plotted in Fig. 3
for the two cases shown in Figs 1 and 2. The results for A1 given by the linear theory



Fig. 2. Plots of u1, u2, u1,1 and u2,1 for τ = 0, 1.9, 2.5, 2.93 and c1/c0 = 0.1. Profiles for

larger values of τ are steeper at the shock position.

are shown as dotted lines. In each case higher harmonics are continually generated
and grow monotonically. An important feature is that, despite the generation of
higher harmonics, the fundamental mode is also amplified by nonlinear effects. In
this sense nonlinear effects are destabilizing, but we observe that amplification by
nonlinear effects is almost negligible. Shocks form before any significant growth has
occurred. The main effect of nonlinearity is to generate higher harmonics and lead
to the formation of shocks. Further calculations show that these conclusions are also
valid for other positive values of c1/c0.

As c1/c0 decreases gradually from −0.1, it takes longer and longer for nonlinear
effects to become pronounced. There is then time for more higher harmonics to
be excited, and larger values of the truncation number N are needed for larger
values of |c1/c0|. As expected, shock formation time increases with decreasing c1/c0
(which corresponds to departure from the near-neutral regime into the non-neutral
regime for which the time scale is longer). Figs 4(a,b) show the evolution of various
harmonics for c1/c0 = −0.2 and −0.3 respectively, where we have taken N = 50.
Again, there is negligible deviation of the nonlinear from the linear A1 before shock
formation occurs.

We conclude that for all values of c1/c0 (positive or negative), the main effect of
nonlinearity is to excite higher harmonics and to lead to the formation of shocks.
The fundamental mode is little affected by nonlinear interaction. Nonlinear effects
become increasingly weaker as c1/c0 decreases from zero, resulting in longer shock
formation times.



Fig. 3. Plots ofA1, A2, A3 and 100A25 against τ for (a) c1/c0 = −0.1 and (b) c1/c0 = 0.1. Higher har-

monics have smaller amplitudes. Dotted lines are linear results for A1.

Fig. 4. Plots ofA1, A2, A3 and 100A50 against τ for (a) c1/c0 = −0.2 and (b) c1/c0 = −0.3. Higher

harmonics have smaller amplitudes. Dotted lines are linear results for A1.

5. STATIC SOLUTIONS

We now proceed to the determination of post-buckling states, which, if they exist,
correspond to static solutions of the evolution equations (29). They are governed
by

c1Ak + i
∑

k′

K(k, k′)Ak′Ak−k′ = 0 (A−k = A∗
k, k = 1, 2, 3, . . .). (37)

The form of these equations suggests that a possible class of solutions is given by
Ak = −iBk (k = 1, 2, . . .), with Bk real. In terms of Bk, (37) becomes

c1Bk +
∑

k′

K(k, k′)Bk′Bk−k′ = 0, (38)

and we now have B−k = −Bk (k = 1, 2, . . .). Systems of algebraic equations of this
form have been discussed in [8] and [9] with conflicting conclusions. Whereas in [8]
it was claimed that non-trivial solutions could be found, it was shown in [9] that the
system of equations can have no non-trivial solutions. The methods used in [8] and
[9] are now discussed in the context of the present problem.

5.1 The Method of Parker and Talbot [8]

Following [8], we first truncate the system (38) at k′ = ±3 and obtain three
equations for B1, B2 and B3 which can be solved exactly to yield four sets of real
solutions. We may use each of these solutions as a starting solution and increase the
truncation number gradually. After solution of N equations for B1, B2, · · · , BN , we



solve N + 1 equations with the initial guess for the first N unknowns taken as the
solution in the previous calculation and BN+1 set to zero. At each step the system
of equations is solved using Nag Library subroutine C05NBF, and the progression
stops when the solution converges. We find that the solution always converges to the
trivial solution if the truncation number is increased in unit steps. Since solutions
were obtained in [8] with the truncation number increased with a step of 3, we also
used this step for (38). Non-trivial convergent solutions were indeed found. Doubt
is therefore cast on the validity of solutions obtained with truncation number steps
other than unity. The simple equation H(θ)+H(θ)2 = 0 illustrates the problem. It
has only two solutions, H = 0 and a non-trivial solution H = −1. However, if we
substitute

H =
∞
∑

n=−∞

Aneinθ, A−n = An,

into the equation, we obtain the infinite system

An +
∞
∑

m=−∞

AmAn−m = 0, n = 0, 1, 2, . . . . (39)

With the procedure explained above and with the truncation number increased in
steps of unity, only the correct solutions are obtained, but if steps not equal to
unity (including 3) are used, spurious solutions can be found. Such solutions are
continuous but their derivatives suffer discontinuities (interestingly, the non-trivial
solutions found in [8] and the solutions we found for (38) also have this feature).
Thus, in general, solutions of equations of the form (38) obtained with the truncation
number increased in steps greater than unity may not be the correct solutions.

5.2 The Method of Hamilton et al. [9]

Using the property K(k, k − k′) = K(k, k′) and truncating the system (38) at
k′ = ±N , we obtain, after some manipulation,

c1Bk +
k−1
∑

k′=1

K(k, k′)Bk′Bk−k′ − 2
N
∑

k′=k+1

K(k, k′)Bk′Bk′−k = 0. (40)

For perturbations requiring representation in terms of a continuous spectrum, (40)
is replaced by

c1B(k)+
∫ k

0
K(k, k′)B(k′)B(k−k′)dk′−2

∫ kmax

k
K(k, k′)B(k′)B(k′−k)dk′ = 0, (41)

where kmax plays a role analogous to N . Following [9], we make the substitutions

k′ = kmaxy
′, k = kmaxy, f(y) = k2

maxB(kmaxy).

We then have B(k) = k−2
maxf(k/kmax), and (41) gives

c1f(y) +
∫ y

0
K(y, y′)f(y′)f(y − y′)dy′ − 2

∫ 1

y
K(y, y′)f(y′)f(y′ − y)dy′ = 0, (42)



where we have used the property K(ak, ak′) = aK(k, k′) deduced from (32). Accord-
ing to the argument given in [9], since the solution for f(y) obtained by solving (42)
is independent of kmax, B(k) → 0 as kmax → ∞, and this shows that any solution
of (41) converges to the trivial solution as kmax → ∞. Since (40) is analogous to
(41), it can be deduced further that the system (40) has no non-trivial solutions in
the limit N → ∞ either. Thus, if the argument in [9] were correct, the pre-stressed
half-space would not admit any post-buckling states.

However, the argument is flawed. To show this, we consider the infinite system

Ak =
1

k2

∞
∑

k′=1

(k − k′)2Ak′Ak−k′, k = 1, 2, 3, . . . (43)

This has a solution given by Ak = 6/π2k2 (k = 1, 2, . . .), but an application of
the argument in [9] would lead to the conclusion that (43) can have no non-trivial
solutions.
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