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Abstract. We use contemporary evolutionary models for Very Massive Stars (VMS)
to assess whether the Eddington limit constrains the upper stellar mass limit. We also
consider the interplay between mass and age for the wind properties and spectral mor-
phology of VMS, with reference to the recently modified classification scheme for O2–
3.5 If* /WN stars. Finally, the death of VMS in the local universe is considered in the
context of pair instability supernovae.

1. Eddington limit

Empirical determinations for the upper stellar mass limit,Mmax, have led to the adoption
of Mmax ∼ 150M⊙ (e.g. Figer 2005; Oey & Clarke 2005). This limit closely coincides
with the ‘first approximation’ forMEdd

max ∼ 200M⊙, i.e. the intersection between the
Eddington limit and theL ∝ M3 mass-luminosity relation for main sequence stars
(e.g. Maeder 2009, his Fig 3.6). Therefore, two obstacles need to be overcome for
these findings to be reconciled with the claimed 320M⊙ initial mass for R136a1 by
Crowther et al. (2010). Massey (2011) has provided convincing arguments regarding
the empirical estimates ofMmax, so here we focus attention onMEdd

max.
Main sequence models for very massive stars (VMS) have been calculated using

the Geneva evolutionary code by R. Hirschi and N. Yusof (see Crowther et al. 2010) and
the Bonn evolutionary code by K. Friedrich (see Gräfener etal. 2011). In Figure 1 we
present the mass–luminosity relation for non-rotating, solar metallicity ZAMS, incor-
porating 9-85M⊙ models from Meynet & Maeder (2000). Althoughx = 3 represents a
sensible average forL ∝ Mx across all stellar masses,x ∼ 2.5 for 10–20M⊙ and flattens
further at higher masses, reachingx ∼ 1.5 close to 200M⊙.

The Eddington parameter,Γe, can be expressed as

Γe = ge/g = 3× 10−5q
L/L⊙
M/M⊙

whereq = 0.86 for main sequence hot stars. A decrease in the slope of the mass-
luminosity relation at very high masses reducesΓe, and so raisesMEdd

max. Of course,Γe
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Figure 1. Mass-luminosity relation for non-rotating, solar metallicity ZAMS stars
from Meynet & Maeder (2000,≤ 85M⊙) and Crowther et al. (2010,≥ 120M⊙).

increases once a star evolves away from the ZAMS (L/M increases), and sincėM ∝
L(Γe/(1 − Γe))2/3 for radiatively driven winds with a CAK power index ofα ∼ 0.6
(Owocki 2003), stronger winds are anticipated both qualitatively (Smith & Conti 2008)
and quantitatively (Gräfener & Hamann 2008) with age.

Figure 2 comparesΓe for ZAMS spanning 10–500M⊙ at solar composition. This
illustrates that the Eddington limit is not approached, soMEdd

max ≫ 500M⊙. In fact,
x → 1 asM → ∞, so the Eddington limit might never be reached for ZAMS stars.
Once on the main sequence,Γe, and in turn mass-loss rates, increase with both age
and mass, so strong wind signatures may correspond either toa relatively evolved high
mass star or an unevolved very high mass star. Table 1 compares the influence of mass
and age upon spectral type for the case of the coeval cluster R136a whose age is∼1.5
Myr (Crowther et al. 2010).

Table 1. Influence of mass (vertical) and age (horizontal) upon spectral type for
the young LMC star cluster R136a

Initial Sp Type Sp Type Example
Mass (M⊙) (ZAMS) (1.5 Myr)

240 O2 If*? WN5h R136a2
140 O2 III? O2 If* R136a5
100 O2–3 V? O3 III(f*) R136a7
50 O3 Vz? O3V [HSH95] 50‡

‡: Hunter et al. (1995, HSH95)
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Figure 2. Eddington parameter,Γe, for non-rotating, solar metallicity ZAMS stars
from Meynet & Maeder (2000,≤ 85M⊙) and Crowther et al. (2010,≥ 120M⊙).

2. Transition Of/WN stars

From the previous section, highΓe’s develop either in young, very high mass stars or
evolved lower mass stars. Spectroscopic signatures of strong winds in early type stars
include Heii λ4686 and/or Hα emission, corresponding to OBA supergiants or Wolf-
Rayet stars in the case of very strong emission features. From Table 1, the current
spectral type of R136a2 is WN5h, while its ZAMS spectral typemay have resembled
an O2 supergiant. Had we witnessed R136 perhaps 0.5 million years ago, it would
have exhibited an intermediate spectral type. Indeed, a hybrid O3 If* /WN category –
spectroscopically intermediate between early O stars and WN stars – was introduced
by Walborn (1982).

Following the extension of the MK sequence to O2 (Walborn et al. 2002) and re-
visions to WN classifications, this has been refined recentlyby Crowther & Walborn
(2011). Spectroscopically the morphology of Hβ is key to O2–3.5 If*, O2–3.5 If*/WN
or WN subtypes, while a qualitative interpretation led Crowther & Walborn (2011) to
conclude that most O2–3.5 If*/WN stars (e.g. Melnick 35) are very luminous, young
stars with 150±30M⊙. However, some Of/WN stars are substantially lower in luminos-
ity/mass (e.g. Sk –67◦ 22, Melnick 51), with correspondingly larger ages, even though
these may be spectroscopically indistinguishable from other examples, as illustrated in
Fig. 3.

The incidence of O2–3.5 If*/WN stars in the LMC is significantly higher than
in the Milky Way. Radiatively driven winds of Galactic starswould be expected to be
modestly higher than LMC counterparts, so one would predicta slightly higher percent-
age of O2–3.5 If*/WN stars in the LMC with respect to the Milky Way. In fact, O2–
3.5 If*/WN stars comprise 7% of the 106 WN-type stars in the LMC (Breysacher et al.
1999), versus only 2% of the highly incomplete 175 WN stars compiled by van der Hucht
(2001, 2006). Since transition spectral types arise preferentially in very massive stars,
one would expect them predominantly in regions of the highest star formation. In-
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Figure 3. Spectrograms of transition Of/WN stars (Crowther & Walborn 2011)

deed, the 30 Dor region of the LMC dominates Of/WN statistics in the Local Group
(Crowther & Walborn 2011).

3. Death of Very Massive Stars

A natural question relating to VMS is whether they would follow the usual path to core-
collapse supernovae (CCSNe) or explode prematurely as pair-creation supernovae (PC-
SNe)? Heger et al. (2003) concluded that metal-free, singlemassive stars with 140–260
M⊙ would explode as PCSNe. However, unbiased transient surveys have recently iden-
tified exceptionally bright supernovae in the local universe, some of which have been
attributed to PCSNe from initially∼ 200M⊙ stars with more modest metal-deficiencies
(e.g. SN 2007bi Gal-Yam et al. 2009).

VMS models have been calculated throughout their post-mainsequence evolution
using Vink et al. (2001) mass-loss prescriptions for the main sequence and Nugis & Lamers
(2000) for the post-main sequence Wolf-Rayet phase, the results of which are pre-
sented in Fig. 4. H-deficient CCSNe are predicted for 100–300M⊙ stars at solar and
LMC metallicities, whereas CO core masses of 60–130M⊙ are obtained for rotating
150–200M⊙ stars at SMC metallicity. Therefore, VMS at low metallicitymay indeed
produce PCSNe. Indeed, Quimby et al. (2011) have identified aclass of luminous H-
deficient supernovae located in faint, metal-poor host galaxies. Quimby et al. attributed
such bright SNe to a strong interaction between the CCSN of a very massive star and
a H-free shell produced by violent pulsations, that was perhaps initiated by the pair
instability.
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Figure 4. Final CO mass versus initial mass for VMS at SMC, LMCand so-
lar metallicities, with the domain of PCSNe shown in grey, based upon mass-loss
prescriptions of Vink et al. (2001) and Nugis & Lamers (2000)for, respectively, the
H-rich and H-poor phases (from Yusof et al. in prep.).

However, these predictions are very sensitive to mass-lossprescriptions, especially
for the post-main sequence phase. For the Wolf-Rayet phase separate expressions are
adopted for WN and WC stars, in which mass-loss rates are expressed in terms of lu-
minosity and composition (Nugis & Lamers 2000, eqns. 20–21). Such calibrations,
based on results for Wolf-Rayet stars at solar composition,imply a factor of∼30 in-
crease in mass-loss rate from the H-rich (Vink et al. 2001) tothe H-deficient phase of a
300 M⊙ star at SMC metallicity. To illustrate the sensitivity, letus alternatively adopt
equation 25 from Nugis & Lamers (2000), albeit modified to allow for theṀ ∝ Z0.7

Fe de-
pendence of mass-loss upon ambient (Fe-peak) metallicity,ZFe (Crowther et al. 2002;
Vink & de Koter 2005; Crowther 2006), i.e.

log ˙M/(M⊙yr−1) = −5.7+ 0.88 log(M/M⊙) + 0.7 log(ZFe/ZFe,⊙)

This would exceed the Vink et al. (2001) prediction by only a factor of 2 for the case of
a SMC metallicity 300M⊙ star, leading to significantly higher CO masses than those
presented in Fig. 4, raising the possibility of PCSNe from VMS progenitors at higher
metallicity.
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Discussion

Krysztof Stanek Is there any photometric variability information for your most mas-
sive stars?:

Paul Crowther Not that we know, although their location at the centres of very crowded
clusters makes photometric studies challenging (R136a1 and R136a2 are separated by
only 0.1 arcsec):
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