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Abstract

It is well-known that for most spherical rubber balloons the pressure versus vol-

ume curve associated with uniform inflation has an N-shape (the pressure increases

rapidly to a maximum, falls to a minimum, and subsequently increases monotoni-

cally), and that somewhere along the descending branch of this curve the spherical

shape may bifurcate into a pear shape through localized thinning near one of the

poles. The bifurcation is associated with the (uniform) surface tension reaching a

maximum. It is previously known that whenever a pear-shaped configuration be-

comes possible, it has lower energy than the co-existing spherical configuration, but

the stability of the pear-shaped configuration itself is unknown. With the use of

the energy stability criterion, it is shown in this paper that the pear-shaped con-

figuration is unstable under pressure control, but stable under mass control. Our

calculations are carried out using the Ogden material model as an example, but it is

expected that the qualitative stability results should also be valid for other material

models that predict a similar N-shaped behaviour for uniform inflation.

1 introduction

Inflating a membrane balloon is a classical problem in Finite Elasticity (Adkins and Rivlin

1952), which has been studied from a variety of perspectives; see, e.g., Crisp and Hart-

Smith (1971), Sagiv (1990), De Tommasi et al (2013), and the references therein. For

most spherical rubber balloons, the pressure versus volume curve associated with uniform

inflation has an N-shape, and it is well-known that somewhere along the descending
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branch of this curve (see Fig. 1) the spherical shape may bifurcate into a pear shape

through localized thinning near one of the poles; see Feodosev (1968), Needleman (1977),

Haughton and Ogden (1978), Haughton (1980), and Chen and Healey (1991). It was

shown by Chen and Healey (1991) that whenever the pear-shaped configuration is possible,

it has lower energy than the co-existing spherical configuration. This implies, via the

energy stability criterion, that the co-existing spherical configuration is unstable, but it

does not give any information about the stability of the pear-shaped configuration. Over

the remaining section of the descending curve where the pear-shaped configuration is

not possible, stability of the spherical configuration has only been studied with respect

to spherical perturbations, and it is thought that the spherical configuration is unstable

under pressure control but stable under mass control (Alexander 1971). There also exists

a number of studies on the inflation and stability of multi-lobed spherical balloons (see,

e.g., Crisp and Hart-Smith 1971, Müler and Struchtrup 2002), but again, stability is only

considered with respect to spherical perturbations.

In this paper, we fill a gap in the literature by studying the stability of both spherical

and pear-shaped solutions on the above-mentioned descending branch with respect to

axi-symmetric perturbations. In addition to its intrinsic theoretical value, the present

study may have some relevance to the mathematical modelling of the initiation and final

rupture of saccular aneurysms in human arteries (Austin et al. 1989). We also observe that

pressurized balloons are increasingly used in a variety of engineering situations, ranging

from extra-terrestrial use as foldable habitats (Jenkins 2001) to microelectromechanical

systems as actuators (Youda and Konishi 2002, Keplinger et al 2012, Rudykha et al 2012).

Such applications invariably require a good understanding of their stability properties.

Since the inflation problem under consideration is conservative, the main method

that we use to assess stability is the energy criterion although its connection with the

spectral method is also discussed. More precisely, we calculate the minimum of the second

variation of the total energy with respect to all kinematically admissible axi-symmetric

perturbations. An inflated configuration is said to be stable if this minimum is positive,

and unstable if it is negative. It is generally recognized that the energy stability criterion

should be used with caution. For conservative systems, it is known that under appropriate

assumptions, the solution being an energy minimizer implies (nonlinear) stability in the

Liapunov sense (van der Heijden 2009), but the converse has not been rigorously proved.

In contrast, the spectral method is a very effective method for predicting linear instability.

We shall show in this paper that if the above-mentioned minimum is negative, then linear

(spectral) instability is implied. For a more rigorous discussion of stability criteria for

nonlinear elasticity, we refer to the book by Marsden and Hughes (1993) and the more

recent article by Knops (2001).

The rest of this paper is divided into four sections as follows. After formulating the
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Figure 1: A typical profile of pressure P versus principal stretch λ in uniform inflation of

a spherical shell. Internal volume is proportional to λ3

inflation problem, we explain in Section 2 a procedure that can be used to find all axi-

symmetric solutions (spherical or pear-shaped in particular) whenever they exist. We then

examine in Section 3 the stability, under pressure control, of both the spherical and pear-

shaped solutions using a combination of the spectral method and the energy criterion. In

Section 4, stability of the pear-shaped solution under mass control is studied. The paper

is concluded in the final section with further discussions.

2 Pear-shaped configurations bifurcated from spher-

ical configurations

We consider a spherical balloon that is described by

R(θ) = sin θ, Z(θ) = 1− cos θ, 0 ≤ θ ≤ π,

in terms of cylindrical polar coordinates (R, θ, Z) in its undeformed configuration. With-

out loss of generality, we have assumed the constant radius to be unity, which is equivalent

to using the radius as the unit for length.

We focus on axisymmetric deformations described by

r = r(θ), z = z(θ), (2.1)

where (r, θ, z) are cylindrical polar coordinates in the deformed configuration. This form

includes uniformly inflated solutions and pear-shaped bifurcated solutions. Denote by dS

and ds the arclengths measured from θ = 0 in the undeformed and deformed configura-

tions, respectively. We then have dS = dθ and ds =
√
r′2 + z′2dθ, where a prime denotes

differentiation with respect to θ. The principal directions of stretch coincide with the lines

of latitude, the meridian and the normal to the deformed surface. Thus, the principal
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stretches are given by

λ1 =
r

R
, λ2 =

ds

dS
=

√
r′2 + z′2, λ3 =

h

H
, (2.2)

where H and h are the undeformed and deformed thicknesses, respectively.

By considering equilibrium of an infinitesimal volume element in the 1- and 2- direc-

tions, respectively, we obtain (Haughton 1980)

r(hσ2)
′ + hr′(σ2 − σ1) = 0, (2.3)

z′σ1

rλ2

+
σ2(r

′z′′ − z′r′′)

λ3
2

= λ1λ2P, (2.4)

where σ1 and σ2 denote the principal Cauchy stresses, and P is the actual internal pressure

scaled by H. The two equilibrium equations have one integral, which corresponds to the

constancy (zero in this case) of the resultant force at any cross-section, and is given by

z′ =
Prλ1λ

2
2

2σ2

. (2.5)

In particular, at any cross section where r′ = 0, we obtain

1 =
PR(θ)λ2

1λ2

2σ2

, (2.6)

which can be used to express λ2 in terms of λ1 at that particular cross section.

In some papers the equilibrium equations are given in terms of the principal curvatures

κ1 =
cosφ

r
, κ2 = −dφ

ds
=

(cosφ)′

sin φ λ2

=
r′z′′ − z′r′′

λ3
2

,

where φ is the angle between the meridian and the z-axis. The equilibrium equations

then take the alternative form

(hσ2r)
′ = (hσ1)r

′, κ1(hσ1) + κ2(hσ2) = HP. (2.7)

With the use of the relations r′ = λ2 sinφ, z′ = λ2 cosφ, the equilibrium equations can

be rewritten as a system of first-order ordinary differential equations:

λ′

1 =
λ2 sin φ− λ1 cos θ

sin θ
,

λ′

2 =
W1 − λ2W12

W22

· sinφ
sin θ

− W2 − λ1W12

W22

· cot θ, (2.8)

φ′ =
W1

W2

cosφ

sin θ
− Pλ1λ2

W2

,

where W1 = ∂W/∂λ1, W12 = ∂2W/∂λ1∂λ2, and etc, and W (λ1, λ2) = W̃ (λ1, λ2, λ
−1
1 λ−1

2 ),

W̃ being the three-dimensional strain-energy function (measured per unit volume in the

undeformed configuration). In writing down the above equations, use has also been made
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of the constitutive relations σ1 = λ1W1, σ2 = λ2W2, and the assumption that the rubber

material is incompressible. In our example calculations, we shall adopt the Ogden material

model (Ogden 1972) given by

W̃ =
3
∑

r=1

µ̃r(λ
αr

1 + λαr

2 + λαr

3 − 3)/αr, (2.9)

where the material constants are given by α1 = 1.3, α2 = 5.0, α3 = −2.0, µ̃1 = 1.491, µ̃2 =

0.003, µ̃3 = −0.023, and W̃ has been scaled by the shear modulus µ for infinitesimal

deformations.

The system of equations (2.8) obviously admits a uniform solution given by

λ1 = λ2 = λ, φ =
π

2
− θ, P =

2W2(λ, λ)

λ2
, (2.10)

where λ is a constant. This corresponds to uniform inflation. For most rubber materials,

and in particular for the Ogden material model given by (2.9), the dependence of pressure

on the volume has an N shape. An important question is under what conditions the

uniform solution will bifurcate into a non-uniform solution. This question is now well-

understood, and it is known that the bifurcation condition for a pear-shaped configuration

to initiate is given by

λ2

H

d(hσ1)

dλ
= λ2 d

dλ

(

W1

λ

)

= λ(W11 +W12)−W1 = 0, (2.11)

that is, when the membrane tension hσ1 reaches a maximum. It can easily be shown that

this condition cannot be satisfied before the pressure maximum is reached (Haughton and

Ogden 1978). For the Ogden material, the bifurcation condition has two roots given by

λcr1 = 1.7783, λcr2 = 2.5137, (2.12)

with the associated pressures

Pcr1 = 1.1056, Pcr2 = 0.7482, (2.13)

where here and hereafter the pressure values have been scaled by µH . The stretch values

corresponding to the pressure maximum Pmax (= 1.3013) and minimum Pmin (= 0.5662)

are given by

λmax = 1.3744, λmin = 4.2729, (2.14)

respectively. Thus, as expected, we have λmax < λcr1 < λcr2 < λmin; see Fig. 1.

Non-uniform bifurcated solutions can be obtained numerically by integrating the sys-

tem of equations (2.8) subject to appropriate boundary conditions. We note, however,

that this system has a removable singularity at the two poles θ = 0, π. To avoid evaluation

at the poles, we integrate from θ = δ to θ = π − δ instead, where δ is a sufficiently small
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constant. We then need sufficiently accurate estimates for the values of λ1, λ2 and φ at

the poles.

Because of the axi-symmetry at the poles, we first have

λ1(0) = λ2(0), λ1(π) = λ2(π), φ(0) =
π

2
, φ(π) = −π

2
,

and

λ′

1(0) = λ′

2(0) = φ′′(0) = 0.

On differentiating (2.8)1,2 with respect to θ and then evaluating at the two poles, we

obtain two linear equations for λ′′

1 and λ′′

2, the solution of which then gives

λ′′

1 =
(3λ1W11 − λ1W12 +W1) (1− φ′2)

8W11

, θ = 0, π, (2.15)

λ′′

2 =
(λ1 (W11 − 3W12) + 3W1) (1− φ′2)

8W11

, θ = 0, π. (2.16)

Expanding (2.8)3 at the two poles and solving the resulting equations, we obtain, at

θ = 0, π,

φ′ = −Pλ2
1

2W2

. (2.17)

φ′′′ =
λ1P

64W 4
1W11

(

P 2λ4
1 − 4W 2

1

) {

(W11 − 9W12)W1λ1 + 3
(

W 2
12 −W 2

11

)

λ2
1 + 6W 2

1

}

.

(2.18)

We may then write

λ1(δ) = λ1(0) +
1

2
λ′′

1(0)δ
2 +O(δ4), (2.19)

λ2(δ) = λ1(0) +
1

2
λ′′

2(0)δ
2 +O(δ4), (2.20)

φ(δ) =
π

2
+ φ′(0)δ +

1

6
φ′′′(0)δ3 +O(δ5), (2.21)

and near the pole θ = π, we have

E1(λ1(0)) ≡
π

2
+ φ(π − δ) + φ′(π − δ)δ = O(δ3), (2.22)

E2(λ1(0)) ≡ λ1(π − δ)− λ2(π − δ) + δ {λ′

1(π − δ)− λ′

2(π − δ)} = O(δ2). (2.23)

Thus, the initial data λ1(δ), λ1(δ), and φ(δ) can be expressed in terms of the single un-

known parameter λ1(0). The system of ODEs (2.8) can then be solved using a shooting

method. The errors E1 and E2 defined above are thus functions of λ1(0). We iterate on

λ1(0) so that the absolute value of either E1 or E2 is smaller than a prescribed tolerance

value. We have tried both error functions to validate our numerical code. We could also

shoot from both poles and match the solutions at θ = π/2, but this would require iteration

on two unknowns (namely λ1(0) and λ1(π)). We decide to use the approach of shooting
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from one pole to the other pole due to its simplicity. The only disadvantage is that the

off-target solutions tend to blow up when they reach the other pole, and so manual ad-

justment is required. In a typical calculation, we evaluate E1(λ1(0)) for a discrete set of

λ1(0) values from 1 to 15 in steps of 0.1 initially. As λ1(0) increases, E1(λ1(0)) would be

finite over one interval and then blow up over the next interval. This alternate behaviour

may occur a number of times. It is usually the case that E1(λ1(0)) would change sign

just before or after it experiences blow-up. The sign change is captured by increasing or

decreasing λ1(0) in smaller steps. Once a sign change is found, Newton method is then

used to find the root more precisely.

We wish to emphasize that by varying λ1(0) over the entire range (1,∞) (of course

for most rubber materials, the ∞ here can be replaced by 15), this approach enables us

to find all possible axi-symmetric solutions at any given pressure value. For the Ogden

material model, we find that

(i) For 0 < P < Pmin or P > Pmax, there is only one solution, corresponding to the

single uniform (i.e. spherical) solution;

(ii) For Pmin < P < Pcr2 or Pcr1 < P < Pmax, there are three solutions, corresponding

to three uniform solutions with different radii;

(iii) For Pcr2 < P < Pcr1, the interval where bifurcation is possible, there are five so-

lutions, three of them are uniform solutions and the other two are pear-shaped

solutions. The two pear-shaped configurations are mirror images of each other with

respect to the equatorial plane θ = π/2.

Although higher-mode bifurcated solutions are not excluded by a general bifurcation anal-

ysis (Haughton and Ogden 1978) unless additional constitutive assumptions are imposed

(Shield 1972), we confirm that they are not possible for the Ogden material model, as has

previously been shown by Needleman (1977).

3 Stability under pressure control

Take any solution of the equilibrium equations (3.3) (that is, either spherical or pear-

shaped), and denote by P̄ the associated pressure. We first consider the stability of such

a solution when inflation is pressure controlled. The sum of the strain energy and potential

energy, scaled by 2πH , is given by

E =

∫ π

0

W (λ1, λ2) sin θdθ −
1

2
P̄

∫ π

0

r2z′dθ. (3.1)

Before proceeding to detailed calculations, we first compare two commonly used stability

criteria, and show that they give complementary stability predications.
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To simplify notation, we shall write the above total energy symbolically as

E =

∫ π

0

L(u,u′)dθ, (3.2)

where u = {r(θ), z(θ)}. The above-mentioned equilibrium solution associated with pres-

sure P̄ will be denoted by ū = {r̄, z̄} (and the corresponding stretches by λ̄1 and λ̄2).

The Euler-Lagrange equations associated with (3.2) are given by

∂L

∂u
−
(

∂L

∂u′

)

′

= 0, (3.3)

which can be shown to be equivalent to (2.3) and (2.4). If dynamic effects are taken

into account with u allowed to depend on time t as well, the equations of motion can be

derived by applying the Principle of Least Action, and are given by

−∂L

∂u
+

(

∂L

∂u′

)

′

= sin θ ρü, (3.4)

where ρ is the material density and a superimposed dot denotes differentiation with respect

to time t.

To assess the stability of u = ū, we may consider perturbations of the form u =

ū + v eγt, where the mode function v and growth rate γ are to be determined. On

substituting this expansion into (3.4) and linearizing in terms of v, we obtain

J [v] ≡ Sv +Rv
′ − (RT

v +Qv
′)′ = − sin θ ργ2

v, (3.5)

where S,R and Q are matrix functions with components given by

Sij =
∂2L

∂ui∂uj

∣

∣

∣

∣

u=ū

, Rij =
∂2L

∂ui∂u
′

j

∣

∣

∣

∣

u=ū

, Qij =
∂2L

∂u′

i∂u
′

j

∣

∣

∣

∣

u=ū

,

and RT denotes the transpose of R. The differential operator J defined by (3.5)1 is called

the Jacobi operator in the calculus of variations literature. The equilibrium solution is

said to be (linearly) unstable if the above equations subjected to appropriate boundary

conditions, viewed as an eigenvalue problem determining ργ2, have a non-trivial solution

with positive ργ2. We note that this spectral method is not suitable for predicting stability

(i.e. its converse is definitely untrue) because, for instance, algebraic growth may still be

possible even if exponentially growing modes do not exist.

An effective method for predicting stability is the energy criterion by which u = ū is

a stable solution if it is a weak energy minimizer. For conservative systems such as the

one under consideration, there is a connection between this energy criterion and nonlinear

Liapunov stability (see, e.g., van der Heijden 2009). For sufficiently small variations v

(we only consider variations for which v and v
′ are of the same order), we have

E(ū+ v)− E(ū) =
1

2
δ2E +O(|v|3),
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where the second variation δ2E is given by

δ2E =

∫ π

0

(v · Sv + 2v · Rv
′ + v

′ ·Qv
′)dθ. (3.6)

Under the assumption that Q is positive definite throughout the interval 0 < θ < π

(or equivalently, J [v] is an elliptic operator), the second variation δ2E subject to the

normalization condition
∫ π

0

sin θ |v|2dθ = 1 (3.7)

has a minimum. With the use of a standard argument, it can easily be shown that this

constrained minimization problem gives rise to the same eigenvalue problem (3.5)2 with

ργ2 now playing the role of the Lagrangian multiplier associated with the constraint (3.7);

see, e.g., Giaquinta and Hilderbrandt (2004, p.269).

On forming the dot product of (3.5) with v and integrating the resulting expression

from 0 to π by parts, we find that −ργ2 is equal to δ2E. Thus, stability assessment

is reduced to the determination of the sign of the smallest eigenvalue of the eigenvalue

problem associated with (3.5). The solution ū is stable if the smallest eigenvalue is

positive (by the energy criterion) and unstable if the smallest eigenvalue is negative (by

the spectral method). In some studies, a negative minimum of the second variation of

the total energy implying instability is simply assumed to be part of the energy stability

criterion. In the rest of this paper we do not distinguish whether instability is deduced

by the spectral method or by the energy criterion.

We now proceed to detailed calculations. A straightforward calculation shows that

the second variation of energy can be reduced to the form

δ2E =

∫ π

0

(a1v
2
1 + 2a2v1v

′

2 + a3v
′2
2 + a4v

′2
1 + 2a5v

′

1v
′

2)dZ, (3.8)

where

a1 = W11/R(θ)− (W12r
′/λ2)

′ − P̄ z′,

a2 = W12z
′/λ2 − P̄ r,

a3 = R(θ)(λ2W22 −W2)λ
−3
2 z′2 +R(θ)W2λ

−1
2 , (3.9)

a4 = R(θ)(λ2W22 −W2)λ
−3
2 r′2 +R(θ)W2λ

−1
2 ,

a5 = R(θ)(λ2W22 −W2)λ
−3
2 r′z′,

and the right hand side of (3.9) is evaluated at the equilibrium state ū.

We observe that positive definiteness of the matrix function Q is equivalent to a3 >

0, a4 > 0, and a3a4 − a25 > 0. These are essentially the two dimensional version of the

strong ellipticity condition. We have checked to verify that these inequalities are indeed

satisfied for all the inflation solutions that we have found.
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In view of the fact that the integrand in (3.8) does not contain v2, we follow Chen

(1997) and replace the normalization condition (3.7) by
∫ π

0

(v21 + v′22 )dθ = 1. (3.10)

The advantage of using this normalization is that v′2 can then be eliminated from the two

equations satisfied by v1 and v′2:

a1v1 + a2v
′

2 − (a4v
′

1 + a5v
′

2)
′ = αv1, a2v1 + a3v

′

2 + a5v
′

1 = αv′2,

and we then end up with the simple eigenvalue problem

[b2v
′

1]
′

+ b0v1 = 0, 0 ≤ θ ≤ π; v1(0) = v1(π) = 0, (3.11)

where

b0 = −a1 −
(

a2a5
a3 − α

)

′

+
a22

a3 − α
+ α, b2 = a4 −

a25
a3 − α

, (3.12)

and α in (3.12) is the Lagrangian multiplier associated with the constraint (3.10). If we

were to use the normalization condition (3.7), v1 and v2 would satisfy

a1v1 + a2v
′

2 − (a4v
′

1 + a5v
′

2)
′ = α sin θ v1, (a2v1 + a3v

′

2 + a5v
′

1)
′ = −α sin θ v2,

from which we would not be able to eliminate v2. The two approaches should be equiva-

lent as far as determination of the sign of the smallest eigenvalue is concerned since the

normalization used should only affect the absolute value of the eigenvalue, but not its

sign. Calculations conducted by Fu and Xie (2010) for a similar problem show that the

variations of the smallest eigenvalue with respect to the inflation pressure, obtained from

the two approaches, become almost indistinguishable after they are appropriately scaled.

The multiplier α can again be shown to be equal to the value of δ2E. Thus, de-

termination of stability is reduced to finding the sign of the lowest eigenvalue of (3.11).

The static solution u = ū is unstable if the eigenvalue problem (3.11) has at least one

negative eigenvalue and is stable if no negative eigenvalues or zero eigenvalue exists. We

note that since a3 > 0, the expressions in (3.12) are not singular at least when α is

negative. In our numerical calculations, we only seek negative values of α since their

existence/non-existence alone is sufficient to establish instability/stability.

When α = 0 and the coefficients are evaluated at the uniform inflation solution λ1 =

λ2 = λ, the eigenvalue problem (3.11) reduces to the bifurcation problem for an adjacent

equilibrium. It is known that the mode-one bifurcation solution

v1 = sin θ cos θ (3.13)

is possible when the bifurcation condition (2.11) is satisfied. We have verified that when

(3.13) is assumed, the left hand side of (3.11) does indeed become a multiple of λ(W11 +

W12)−W1.
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We now proceed to solve the eigenvalue problem (3.11). The coefficients in (3.11)1

cannot be evaluated at the two poles directly. Thus, as in the previous section, we replace

the interval by [δ, π − δ]. By substituting the series solution

v1 = v′1(0)θ +
1

2
v′′1(0)θ

2 +
1

6
v′′′1 (0)θ

3 · · ·

into the left hand side of (3.11)1 and then equating the coefficients of powers of θ to

zero, we may express v′′1(0) and other higher order derivatives in terms of the lowest-order

derivative v′1(0). For instance, we have

v′′1(0)

v′1(0)
= − 2α

3W11

, (3.14)

and
v′′′1 (0)

v′1(0)
=

1

8b2λ2
1W11

{

−18W1(a
2λ1 + b2λ′′

2 − 3b2λ′′

1) + 2λ2
1b

2α2W−1
11

+λ2
1W11(30a

2 − 8b2) + 6a2λ2
1W12 − 6b2λ1(3W11 +W12)(3λ

′′

1 − λ′′

2)

+3b2λ2
1[W111(λ

′′

1 − 3λ′′

2)−W112(5λ
′′

1 + λ′′

2)− 2P
√

a2λ2
1 + b2λ1(λ′′

2 − 3λ′′

1)

}

. (3.15)

where the right hand sides are evaluated at the equilibrium state ū and at θ = 0. A

similar procedure can be applied at the pole θ = π. We find that

v′′1(π)

v′1(π)
=

2α

3W11

,

but the expression for v′′′1 (π)/v
′

1(π) has the same form as the right hand side of (3.15)

although it is now evaluated at θ = π. We note that although the second order equation

(3.11)1 should have two independent series solutions at each end, only one solution is

obtained near each pole after v1(0) = 0 or v1(π) = 0 has been imposed.

It can easily be deduced that

v1(δ)

v′1(δ)
= VL(δ) +O(δ4),

v1(π − δ)

v′1(π − δ)
= VR(δ) +O(δ4), (3.16)

where

VL(δ) = δ − v′′1(0)

2v′1(0)
δ2 +

{

1

2
(
v′′1(0)

v′1(0)
)2 − 1

3

v′′′1 (0)

v′1(0)

}

δ3, (3.17)

VR(δ) = −δ − v′′1(π)

2v′1(π)
δ2 +

{

−1

2
(
v′′1(π)

v′1(π)
)2 +

1

3

v′′′1 (π)

v′1(π)

}

δ3. (3.18)

We may then solve (3.11)1 subject to the initial conditions

v1(δ) = VL(δ), v′1(δ) = 1, (3.19)

and iterate on α so that the target condition

v1(π − δ)− VR(δ)v
′

1(π − δ) = 0 (3.20)
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Figure 2: Unstable eigenvalues for a pressurized spherical balloon. Solid lines: eigenvalues

associated with the spherical solution, the smaller eigenvalue having been magnified 10

times in order to show it together with the bigger eigenvalue. Dashed line: the single

eigenvalue associated with the pear-shaped solution.
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Figure 3: Eigenfunctions associated with the spherical solution. Left: P = 1.2 for which

there is a single unstable mode which is well approximated by sin θ (dashed line). Right:

P = 1 for which there are two unstable modes which are well approximated by sin θ and

sin 2θ, respectively (dashed lines).

is satisfied to within a specified tolerance. We have taken v′1(δ) = 1 without loss of

generality since this is a linear problem and the eigenfunction can be normalized in any

manner. It is found sufficient to choose δ = 0.05.

For the uniform (spherical) solutions on the descending branch of the pressure-stretch

curve in Fig. 1, we find that for each pressure value in (Pcr1, Pmax) or (Pmin, Pcr2) the

eigenvalue problem (3.11) has one negative eigenvalue, whereas for each pressure value

in (Pcr2, Pcr1), there are two negative eigenvalues. Existence of an additional eigenvalue

reflects the fact that the spherical configuration also has a tendency to move to a pear-

shaped configuration in order to achieve lower energy. Fig. 2 shows the variation of the

eigenvalues over their ranges of existence. When P = 1.2, the single negative eigenvalue

is equal to −1.073, whereas when P = 1, there are two negative eigenvalues, given by

−1.445 and −0.0612, respectively. The associated eigenfunctions are shown in Fig. 3. For

12



comparison, we have also shown sin θ and sin 2θ in dashed lines, the significance of which

is as follows: In the limit P → Pmax the eigenfunction associated with the unique unstable

eigenmode would tend to sin θ (corresponding to a spherical perturbation), whereas in the

limit P → Pcr1 or Pcr2, the eigenfunction of the second unstable eigenmode associated with

the spherical solution would tend to sin 2θ (corresponding the perturbed configuration

adopting a pear shape). In the next section, the first and second modes are referred to as

symmetric and anti-symmetric modes, respectively.

For each bifurcated pear-shaped solution that exists for pressure values in (Pcr2, Pcr1),

we have also found one negative eigenvalue (shown in dotted line in Fig. 2), and so the

pear-shaped configuration is also unstable under pressure control with respect to axi-

symmetric perturbations.

4 Stability when the balloon is inflated by an ideal

gas

In this section we consider the more realistic case when the balloon is inflated by an ideal

gas. In this case the scaled total energy (3.1) is replaced by

E =

∫ π

0

W (λ1, λ2) sin θdθ + φ(V,M), (4.1)

where

φ(V,M) = −kM ln
V

V0

,

with k and M denoting a positive constant of the gas and the total mass of the enclosed

gas (scaled by 2πH), and V0 the initial internal volume. The pressure P (scaled by

µH) is computed according to HP = −∂(2πHφ)/∂V = k(2πHM)/V . In the case of

mass control, the total mass M is fixed, but P and V are allowed to vary subject to the

constraint PV = 2πkM .

We first show that the two stability criteria discussed in the previous section again

give complementary stability predictions. To this end, we write (4.1) symbolically as

E =

∫ π

0

L(u,u′)dθ + φ(V,M) +
1

2
P̄

∫ π

0

r2z′dθ, (4.2)

where L has the same expression as in the previous section. The equation of motion (3.4)

is now replaced by

−∂L

∂u
+

(

∂L

∂u′

)

+ (P − P̄ )r

(

z′

−r′

)

= sin θ ρü, (4.3)

and the linearized perturbation equation (3.5) by

−Sv − Rv
′ + (RT

v +Qv
′)′ − P̄ V̇ r̄

V̄

(

z̄′

−r̄′

)

= sin θ ργ2
v, (4.4)
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where V̄ is the internal volume associated with the equilibrium state ū, and V̇ denotes

the volume variation given by

V̇ = π

∫ π

0

(2r̄z̄′v1 + r̄2v′2)dθ. (4.5)

Correspondingly, the second variation (3.6) is replaced by

δ2E =

∫ π

0

(v · Sv + 2v ·Rv
′ + v

′ ·Qv
′)dθ + φV V V̇

2, (4.6)

where φV V = ∂2φ/∂V 2|V=V̄ = P̄ /(2πV̄ ). Again, it can be shown that minimizing (4.6)

subject to the normalization condition (3.7) gives rise to the eigenvalue problem (4.4)

with −ργ2 playing the role of the Lagrangian multiplier associated with the normalization

condition. Thus, the two stability criteria will give complementary stability predictions

as in the previous pressure control case.

We rewrite (4.6) in the form

δ2E − φV V V̇
2 =

∫ π

0

(a1v
2
1 + 2a2v1v

′

2 + a3v
′2
2 + a4v

′2
1 + 2a5v

′

1v
′

2)dZ, (4.7)

where the coefficients a1, ..., a5 have the same expressions as in the previous section. Since

φV V > 0, it is seen immediately that the second variation of potential energy in the current

mass control case is always greater than its counterpart in the pressure controlled case,

giving rise to the possibility that some of the solutions studied in the previous section

may become stable under mass control.

On minimizing the second variation δ2E subject to the normalization condition (3.10),

we obtain the eigenvalue problem

[b2v
′

1]
′

+ b0v1 + b1L[v1] = 0, 0 ≤ θ ≤ π; v1(0) = v1(π) = 0, (4.8)

where

b1 =
a2r̄

2

2(a3 − α)
− 1

2

(

a5r̄
2

a3 − α

)

′

− r̄z̄′,

and L[v1] is a functional of v1 defined by

L[v1] =
P̄ V̇

V̄
.

The expressions for b0 and b2 are the same as in the pressure control case. After v′2 is

eliminated from the expression for V̇ , the functional L[v1] takes the form

L[v1] = −2

(

V̄

πP̄
+

1

2

∫ π

0

r̄4

a3 − α
dθ

)−1

·
∫ π

0

b1v1 dθ. (4.9)

Thus, equation (4.8)1 with L[v1] given by (4.9) is a linear integro-differential equation.

We solve the associated eigenvalue problem by considering two cases separately.

14



Case 1: L[v1] = 0.

In this case the eigenvalue problem (4.8) is the same as in the pressure control case.

However, each eigen solution found in the previous section is a solution for the present

mass control case only if the solution also satisfies (4.9) with L[v1] = 0. We note that

when ū corresponds to a spherical solution, the b1 is symmetric about the equatorial plane

θ = π/2. It then follows that any anti-symmetric mode found in the previous section

automatically satisfies (4.9) with L[v1] = 0. Physically, what this means is that the

existence of an anti-symmetric mode does not require any change in volume, pressure or

mass, and so it is independent of whether the perturbations are pressure, mass, or volume

controlled. Thus, we may conclude immediately that the spherical solutions corresponding

to Pcr2 < P < Pcr1 are unstable. This is consistent with Chen and Healey’s (1991) finding

that whenever the pear-shaped configuration were possible, it would have lower total

potential energy than the co-existing spherical configuration.

We find that none of the other eigen solutions found in the previous section satisfy

(4.9) with L[v1] = 0 and are therefore not solutions of the present eigenvalue problem.

Case 2: L[v1] 6= 0.

In this case it can easily be verified that (4.8) subject to (4.9) has a nontrivial solution if

and only if it has a non-trivial solution when L[v1] = 1 because the eigenvalue problem is

linear. Thus, the eigenvalue problem can be reduced to

[b2v
′

1]
′

+ b0v1 + b1 = 0, 0 ≤ θ ≤ π; v1(0) = v1(π) = 0, (4.10)

subject to

2

∫ π

0

b1v1 dθ +

(

V̄

πP̄
+

1

2

∫ π

0

r̄4

a3 − α
dθ

)

= 0. (4.11)

Now (4.10) is no longer an eigenvalue problem: it has a unique solution for any α not

equal to an eigenvalue associated with (3.11), and we expect that the unique solution will

blow up as an eigenvalue of (3.11) is approached, a fact that will manifest itself in our

numerical calculations (this behavior can also be seen explicitly in the simple prototypical

problem v′′1(θ) + α2v1(θ) + θ(θ − π) = 0, v1(0) = v1(π) = 0). Our solution strategy is to

decrease α in small steps from α = 0 to α = αmin, where αmin is the smallest eigenvalue

of (3.11). For each α we solve the boundary value problem (4.10) and then substitute

the unique solution into (4.11) to check whether the latter condition is satisfied or not. If

it is satisfied, the associated value of α is an eigenvalue of the eigenvalue problem under

consideration. We note that no solution can exist for α < αmin because the total energy

under mass control is always greater than the total energy under pressure control.

The asymptotic behavior of the unique solution of (4.10) as θ → 0 or π can be found

in the same manner as in the previous section. We find that

v′′1(0)

v′1(0)
= − 2α

3W11

,
v′′1(π)

v′1(π)
=

2α

3W11

, (4.12)
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Figure 4: Solutions of (4.10) for the pear-shaped configuration when P̄ = 1. The solution

associated with α = −1.2054 has been scaled by 10.

v′′′1 (0)

v′1(0)
=

1

8λ2
1W11

{

−18W1(λ1 + λ′′

2 − 3λ′′

1) + 2λ2
1α

2W−1
11 + 22λ2

1W11

+6λ2
1W12 − 6λ1(3W11 +W12)(3λ

′′

1 − λ′′

2) + 3λ2
1[W111(λ

′′

1 − 3λ′′

2)−W112(5λ
′′

1 + λ′′

2)]

−6λ2
1

(

P̄ − λ1

v′1(0)

)

√

a2λ2
1 + λ1(λ′′

2 − 3λ′′

1)

}

, (4.13)

v′′′1 (π)

v′1(π)
=

1

8λ2
1W11

{

−18W1(λ1 + λ′′

2 − 3λ′′

1) + 2λ2
1α

2W−1
11 + 22λ2

1W11

+6λ2
1W12 − 6λ1(3W11 +W12)(3λ

′′

1 − λ′′

2) + 3λ2
1[W111(λ

′′

1 − 3λ′′

2)−W112(5λ
′′

1 + λ′′

2)]

−6λ2
1

(

P̄ +
λ1

v′1(π)

)

√

a2λ2
1 + λ1(λ′′

2 − 3λ′′

1)

}

, (4.14)

where of course the right hand sides of (4.12) − (4.14) are evaluated at the equilibrium

solution ū and at the corresponding pole.

The asymptotic expansions for v1(δ)/v
′

1(δ) and v1(π − δ)/v′1(π − δ) take the same

form as in (3.16)−(3.18). The boundary value problem (4.10) is then solved using the

following shooting procedure. We first make a guess for v′1(δ) and compute v1(δ) according

to v′1(δ) = VL(δ)v
′

1(δ). Equation (4.10) is then integrated from θ = δ to θ = π − δ. We

iterate on v′1(δ) so that the target condition

v′1(π − δ)− VR(δ)v
′

1(π − δ) = 0 (4.15)

is satisfied. In evaluating (4.13) and (4.14) we may replace v′1(0) and v′1(π) in the last

terms by v′1(δ) and v′1(π − δ), respectively. We note that the left hand side of (4.15) is of

order δ4 and so typically we set the iteration to stop when the absolute value of the left

hand side is less than δ4.

Implementation of the above numerical procedure on the Mathematica platform (Wol-

fram 1991) is straightforward. In Fig. 4, we have shown solutions associated with the

pear-shaped configuration when α = −0.0001,−0.5355,−1.2054, respectively. It is seen
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Figure 5: A typical set of results for the pear-shaped configuration when P̄ = 1. Left:

Variation of v′1(δ) with respect to α. Right: Variation of the left hand side of (4.11) with

respect to α.
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Figure 6: A typical set of results for the spherical configuration when P̄ = 1.2. Left:

Variation of v′1(δ) with respect to α. Right: Variation of left hand side of (4.11) with

respect to α.

that the solution does blow up, as remarked earlier, when α approaches αmin which is

approximately −1.25 when P̄ = 1. For pear-shaped configurations which can only exist

for Pcr2 < P̄ < Pcr1, we find that a solution of (4.10) that also satisfies (4.11) does not

exist. In Fig. 5 we have shown a typical calculation corresponding P̄ = 1: the two figures

show variations of v′1(δ) and the left hand side of (4.11) with respect to α, respectively.

The figure on the right shows that (4.11) is never satisfied.

For spherical configurations, we only need to examine their stability for values of P̄

outside the interval (Pcr2, Pcr1) since in the latter interval instability has already been

demonstrated. Again, solutions of (4.10) that also satisfy (4.11) do not exist. In Fig. 6

we have shown a typical calculation corresponding P̄ = 1.2.

We thus conclude that under mass control, a pear-shaped configuration is stable when-

ever it exists, and that each spherical configuration is stable when an adjacent pear-shaped

configuration does not exist and is unstable otherwise.
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5 Conclusion

Stability of a pressurized membrane balloon is an important fundamental problem since

in a variety of applications it is necessary to determine whether a pressurized mem-

brane balloon is stable or not due to the fact that only stable configurations can be

observed/realized. In this paper we considered the simplest form of a pressurized bal-

loon – a balloon which is initially spherical. We determined the stability properties of

the spherical and pear-shaped configurations that can exist on the descending branch

of the pressure versus stretch/volume curve. The stability is determined with respect

to general axi-symmetric perturbations. We showed that the pear-shaped configuration

that bifurcates from the spherical configuration is stable under mass control but unsta-

ble under pressure control. This is consistent with the experimental observations made

by Alexander (1971). We remark that although our calculations are carried out for the

Ogden material model, we expect that the qualitative stability behaviour is also valid for

other material models that predict a similar N-shaped behaviour for uniform inflation.

Previous stability studies have mostly been concerned with spherical perturbations.

The associated results can be recovered from our general formulation as follows. For

a uniformly inflated configuration corresponding to λ1 = λ2 = λ, if the variations are

spherical such that v1 = sin θ, v2 = − cos θ (we take the amplitude to be unity without

loss of generality), then the second variations (3.8) and (4.6) reduce, respectively, to

δ2E = 4(W11 +W12 − P̄λ) = 2λ2dP̄

dλ
, (5.1)

and

δ2E = 2(2W11 + 2W12 + P̄ λ) = 2λ2

{

dP̄

dλ
− dP̄gas

dλ

∣

∣

∣

∣

fixed M

}

, (5.2)

where P̄ is equal to the P given by (2.10)4, P̄gas is given by P̄gas = kM/V with V = 4λ3/3,

and we have P̄ = P̄gas at any particular equilibrium state. On the descending branch of

the pressure versus stretch curve, dP̄ /dλ is negative, but dP̄gas/dλ is usually more negative

than dP̄/dλ (Alexander 1971). This is the basis on which each uniform solution associated

with the descending branch was thought to be unstable under pressure control but stable

under mass control. However, this simple argument fails to predict the instability of the

spherical configuration whenever an adjacent pear-shaped configuration is possible.

Finally, we remark that although we have not discussed the spherical solutions as-

sociated with the two ascending branches of the pressure versus stretch curve, a few

sample calculations using our methodology do confirm the usual expectation that these

configurations are stable under both pressure and mass controls.
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