# Outcomes Following Primary Percutaneous Coronary Intervention in patients with previous Coronary Artery Bypass Surgery

Short title: PPCI in patients with CABG

Javaid Iqbal<sup>1\*</sup>, Chun Shing Kwok<sup>2,3\*</sup>, Evangelos Kontopantelis<sup>4</sup>, Mark A de Belder<sup>5</sup>, Peter F. Ludman<sup>6</sup>, Marilena Giannoudi<sup>7</sup>, Mark Gunning<sup>3</sup>, Azfar Zaman<sup>7</sup>\*\*, MBChB, MD; Mamas A. Mamas<sup>2,3,4</sup>\*\*, BMBCh, DPhil on behalf of the British Cardiovascular Intervention Society (BCIS) and the National Institute for Cardiovascular Outcomes Research (NICOR).

1. Manchester Heart Centre, Manchester Royal Infirmary, Manchester, UK

2. Cardiovascular Research Group, Institute of Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK

3. Royal Stoke Hospital, University Hospital North Midlands NHS Trust, UK

4. Farr Institute, University of Manchester, Manchester, UK

5. The James Cook University Hospital, Middlesbrough, UK

6. Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK

7. Freeman Hospital and Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK

## **Corresponding Author:**

Mamas A. Mamas

Professor of Cardiology

Cardiovascular Research Group

University of Keele

Stoke-on-Trent, United Kingdom

**Tel:** +44 (0) 1612768666

Fax: +44 (0) 1612763335

Email: mamasmamas1@yahoo.co.uk

\*These authors contributed equally

**\*\*** Joint senior authors

Word count: 5,447

## **Abbreviations and Acronyms**

- CAD = coronary artery disease
- CABG = coronary artery bypass grafting
- IRA = infarct related artery
- PCI = percutaneous coronary intervention
- PPCI = primary percutaneous coronary intervention
- STEMI = ST-segment elevation myocardial infarction
- SVG = saphenous vein graft

What is Known:

- There is limited data on outcomes of patients with previous coronary artery bypass grafting (CABG) presenting with ST-segment elevation myocardial infarction (STEMI) and undergoing primary percutaneous coronary intervention.
- Many of the existing studies are limited because of small sample size.

What the Study Adds:

- This largest study to date found that patients with previous CABG are older, have more co-morbid conditions and adverse procedural variables.
- Once differences are adjusted for, patients with previous CABG are not at increase risk of 30-day or longer term mortality.

#### Abstract

**Background:** There are limited data on outcomes of patients with previous coronary artery bypass grafting (CABG) presenting with ST-segment elevation myocardial infarction (STEMI) and undergoing primary percutaneous coronary intervention (PPCI). We report outcomes in STEMI patients undergoing PPCI with or without previous CABG surgery in a large real-world, all-comer population.

**Methods and Results:** Clinical, demographic, procedural and outcomes data were collected for all patients undergoing PPCI in the UKEngland and Wales from January 2007 to December 2012. All-cause mortality at 30-days and\_1-year follow-up-were evaluated in the whole and a propensity-matched cohort. Of 79,295 STEMI patients studied, 2,658 (3.4%) patients had prior CABG, of whom 44% (n=1,168) underwent PPCI to native vessels and 56% (n=1,490) to bypass grafts. There were significant differences in the demographic, clinical and procedural characteristics of these groups. Patients with prior CABG (with primary PCI to native artery or graft) had higher mortality at 30-days (6.2% with PPCI to native artery, 6.1% with PPCI to bypass graft) than patients with no prior CABG (4.5%, p<0.001). However after risk factor adjustments there was no significant difference in outcomes. There were also no significant\_differences in 30-day mortality, in-hospital MACE, in-hospital stroke and in-hospital bleeding in the propensity-matched population.

**Conclusion:** A prior history of CABG in patients presenting with STEMI and undergoing PPCI does not independently confer additional risk of mortality, although it is a marker of other high-risk features.

**Keywords:** Coronary artery bypass graft, Saphenous vein graft, Percutaneous coronary intervention, Mortality, Cardiovascular disease

#### Introduction

Primary percutaneous coronary intervention (PPCI) is the gold standard of care for patients presenting with acute ST-elevation myocardial infarction (STEMI).<sup>1,2</sup> However, in patients with previous coronary artery bypass grafts (CABG) undergoing PPCI there is limited outcome data with many studies derived from small-scale registries or *post-hoc* analysis of selected small groups of patients with previous CABG from randomized trials.<sup>3-5</sup>

Patients with CABG tend to be older, have a higher incidence of comorbidities, poorer LV function and multi-vessel disease,<sup>6,7</sup> that may contribute to poorer outcomes reported in the setting of PPCI in these patients.<sup>3,5,8</sup> Even after adjustment for such differences adverse clinical characteristics, some studies report adverse outcomes in patients with previous CABG persist<sup>3,5,9</sup> although others show either a modest<sup>10</sup> or no difference in outcomes.<sup>8</sup> Many of these studies in patients with prior CABG do not differentiate between outcomes if PPCI is performed on native vessel or in the saphenous vein graft (SVG)<sup>4,5,11</sup> that may limit interpretation of outcomes.

Current STEMI guidelines do not specifically address the management of this complex group of patients in the PPCI setting, on account of the limited available evidence and limited outcome data in this cohort of patients, particularly from RCTs. This paucity of evidence may lead to delay or denial of PPCI therapy in patients with prior CABG presenting with STEMI.<sup>5,11</sup> For example, in HORIZONS AMI only 84% of patients with previous CABG presenting with STEMI underwent PPCI whilst this was significantly higher at 93% in those patients with no prior CABG (P=0.0002).<sup>5</sup> Many of the previous studies have reported on outcomes in only a small number of patients, often with cohort sizes of around 100<sup>3-5,9</sup> or have been derived from cohorts

in which contemporary pharmacotherapy was not used and PCI was undertaken using mainly bare metal stents or balloon angioplasty<sup>3,9</sup> hence the applicability of outcomes reported to contemporary practice is unclear. We therefore study early (30-day) and late (1-year) outcomes of PPCI in patients with previous CABG in a large contemporary unselected national cohort from the database of the British Cardiovascular Intervention Society (BCIS) to define whether there are differences in outcomes between native vessel IRA and bypass graft IRA interventions in patients with previous CABG.

#### Methods

#### Study design and data collection

This is a retrospective analysis of prospectively collected national data for all patients undergoing PPCI for STEMI in England and Wales from January 2007 to December 2012 in the BCIS database. BCIS records information on PCI practices in UK with data collection managed by the National Institute of Cardiovascular Outcomes Research (NICOR).<sup>12-14</sup> The BCIS database contains 113 clinical, procedural and outcome variables with approximately 80,000 new records added each year. Using data from the Office of National Statistics, mortality was tracked for all patients in England and Wales using the patient's unique NHS number. Patients from Scotland and Northern Ireland were excluded due to the absence of the Office of National Statistics linked mortality data. Institutional review board approval was not sought for this study as all data was anonymized and routinely collected as a part of a national audit.

#### Variables and outcomes collected

We collected data on participants' demographics, risk factors and comorbidities. In addition, data were also collected on the clinical state at the time of the intervention, left ventricular ejection fraction (LVEF), and all aspects of the interventional treatment and adjunctive pharmacology.

We evaluated all-cause mortality at 30-days and 1-year follow up. We also examined in-hospital major adverse cardiovascular events (MACE, defined as a composite of in-hospital mortality, in-hospital myocardial re-infarction and target vessel revascularization) and in-hospital major bleeding (defined as gastrointestinal bleed, intracerebral bleed, retroperitoneal hematoma, blood or platelet transfusion, or an arterial access site complication requiring surgery). In-hospital stroke included ischemic stroke, hemorrhagic stroke or transient ischemic attack (TIA).

## Statistical methods

The study population was divided into three groups: i) no previous CABG, ii) prior CABG with PPCI to native coronary arteries, iii) Prior CABG with PPCI to bypass grafts. Patients with missing values for follow up time, sex and age were also excluded. The characteristics of patients were compared across the three groups of interest (pairwise) and also across inclusion and exclusion due to missing data. These comparisons were performed using <u>Fisher's exact testschi-square tests</u> for binary/categorical and ANOVA (ANalysis Of Variance) for continuous variables.

To be more inclusive with the data to analyze, account for data missing data and better protect against biases due to informative missing data mechanisms, we used multiple imputation with chained equations to impute data for all variables with missing information. Age, sex, group of participant and study outcomes were registered as complete variables in the imputation models which were used to generate 10 datasets on which we ran the analyses (incomplete and imputed variables were: smoking status, diabetes, hypertension, hyperlipidemia, previous MI, previous stroke, peripheral vascular disease, renal disease, family history, radial access site, glycoprotein IIb/IIIa, shock, circulatory support, number of stents, thrombus aspiration, mechanical ventilation, femoral closure device and LVEF). The STATA code and output of the imputations is shown in Supplementary Data 1. \_\_\_\_\_The risk of adverse outcomes by comparison group was estimated with univariable and multivariable logistic regressions. The former were not controlled for any covariates, while the latter were controlled (adjusted) for various patient characteristics. Covariates in the models included age, sex, smoking status, diabetes, hypertension, hyperlipidemia, previous MI, previous stroke, peripheral vascular disease, renal disease, family history, radial access site, glycoprotein IIb/IIIa, multivessel PCI, shock, circulatory support, number of stents, thrombus aspiration, mechanical ventilation, femoral closure device, LVEF, PCI to left main stem, PCI to left anterior descending artery, and distal protection device.

We used multiple imputations with propensity score matching (mi estimate:teffects psmatch) to estimate the average treatment effect (ATE) to account for baseline difference across the groups of participants. We used two separate multiple imputation logistic regression models for which we calculated propensity scores for each group member: a) PCI to native vessel no graft (group 0) vs PCI to native vessel in patient with graft (group 1); and b) PCI to native vessel no graft (group 0) vs PCI to graft (group 2). The scores were then used to perform the matching and simple logistic regression were run (the only predictor being group membership) to obtain the ATE.

\_\_\_\_\_We performed additional Kaplan Meier survival analysis and Cox proportional hazards regression analysis for 30-day mortality and 1-year mortality by participant group. Statistical analyses were performed using Stata version 13.1 (Stata Corp., Texas, USA).

#### RESULTS

## Study cohort

The study cohort consisted of 79,295 participants who had PPCI for STEMI in England and Wales and did not have missing values for death, follow-up, sex and age. The process of participant inclusion is shown in Figure 1. <u>A total of</u> 76,637 (96.6%) of patients had no previous CABG whereas 2,658 (3.4%) patients had prior CABG. Among patients with prior CABG, 44% (n=1,168) patients received PPCI to native vessels and 56% (n=1,490) underwent PPCI to bypass grafts. The mean follow up for these participants was  $2.4\pm1.6$  years\_and <u>86.5% of patients were followed-up for a minimum of one year (or until death if occurring within a year).</u>

## Characteristics of participants

There were significant differences in the demographic, clinical and procedural characteristics of the three groups (Table 1). Patients with previous CABG were significantly older, and had a higher prevalence of diabetes, hypertension, peripheral vascular disease and previous MI or a stroke. The characteristics of those included in the study and those excluded are shown in Supplementary Table 1.

#### Unadjusted outcomes

There was a significant difference in unadjusted mortality and in-hospital MACE among the three groups (Table 2). Figures 2a and b show the unadjusted Kaplan Meier survival curves for the 3 groups at 30 days (Figure 2a) and 1 year (Figure 2b) with significant differences in survival between the 3 groups noted (log-rank test; P<0.001 and P<0.0001 for 30-day and 1-year mortality respectively).

Patients with prior CABG (with primary PCI to native artery or graft) had higher mortality at 30-days (6.2% with PPCI to native artery, 6.1% with PPCI to bypass graft) than patients with no prior CABG (4.5%, p<0.001). Similar observations were recorded for 1-year mortality with the lowest rates observed in patients with no previous history of CABG (9.1%) with similar rates in patients with previous CABG and PCI to native vessels and bypass grafts (14.5% vs 11.9%; P<0.001).

In-hospital MACE rates, were higher in patients with prior CABG undergoing native vessel PCI (6.0%) compared with prior CABG undergoing PCI to a bypass graft (4.7%) or no prior CABG (4.2%). In contrast, in-hospital stroke rates and in-hospital bleeding rates were similar across all three groups: 0.3% vs. 0.2% vs. 0.2%, respectively for stroke and 0.8% vs. 0.9% vs. 0.7%, respectively for in-hospital bleeding.

#### Outcomes after risk-adjustment and imputations

The unadjusted, adjusted and imputed risk of mortality, in-hospital MACE, inhospital major bleeding and stroke outcomes are shown in Table 3. In unadjusted univariate analysis the risk of 30-day mortality was significantly higher in PPCI undertaken in native coronary arteries in patients with previous CABG (OR 1.39 95% CI 1.10-1.77, p=0.007) and PPCI in bypass grafts (OR 1.38 95% CI 1.11-1.71, p=0.003) compared to PPCI in native coronary arteries (n=79,295). However following adjustments for baseline co-variates (in both the presence and absence of multiple imputations) there was no significant differences in outcomes for PPCI in native vessels in patients with CABG (OR 1.02 95% CI 0.77-1.34, p=0.89) but significant increase in 30-day mortality among patients with primary PCI to bypass grafts (OR 1.33 95% CI 1.03-1.71, p=0.026).

Similarly, for in-hospital MACE, there were no significant differences in outcomes between PPCI undertaken in native coronary arteries in patients with previous CABG and PPCI in bypass grafts compared to PPCI in native coronary arteries once differences in baseline co-variates were adjusted for PPCI to native arteries in patients with CABG (OR 0.95 95% CI 0.71-1.26, p=0.72) and PPCI to bypass grafts (OR 0.93 95% CI 0.70-1.22, p=0.58). There were no significant differences after adjustments with and without imputations and for all evaluations for risk of in-hospital stroke (OR 0.56 95% CI 0.14-2.30, p=0.42 and OR 0.69 95% CI 0.22-2.21, p=0.53, respectively) and in-hospital bleeding (OR 0.95 95% CI 0.50-1.81, p=0.88 and OR 0.74 95% CI 0.39-1.43, p=0.38, respectively).

Cox proportional hazards regression yielded similar results to those of unadjusted and adjusted logistic regressions for 30-day and 1 year mortality (Supplementary Table 2)

## Outcomes with propensity score matching

We performed a propensity-matching to correct for baseline characteristics (balance diagnostics for propensity model presented in Supplementary Table 3) and there were no differences in outcomes between patients with or without previous CABG or in patients with previous CABG where PCI was performed in either the native vessel or the graft (Table 4).

## Discussion

This study from a national unselected cohort represents the largest analysis of patients with prior CABG undergoing PPCI in the literature. We show that patients with prior CABG are older, have more co-morbidities and adverse procedural characteristics but once these differences are adjusted for, patients with prior CABG have similar clinical outcomes following PPCI to patients without prior CABG.

Our unadjusted analysis shows that patients with a history of CABG have the highest mortality and MACE following PPCI when compared to patients with no CABG irrespective of whether the PCI is undertaken in the native coronary vessel or the bypass graft. Patients with a prior CABG have higher co-morbid burden and an overall higher adverse risk profile, which may contribute to poor outcomes observed. Indeed patients with previous CABG undergoing PCI to native vessels had significantly higher rates of cardiogenic shock presentation, mechanical ventilator support and circulatory support. Once adjustment is undertaken for such confounding risk factors, no <u>statistically significant</u> differences in clinical outcomes are seen between patients with or without prior CABG undergoing PPCI, irrespective of whether the PCI is performed in the native vessel or graft.

Previous studies have suggested that patients with prior CABG may have adverse outcomes when presenting with STEMI and treated with PPCI. These studies were either small-scale single center registries or *post-hoc* analysis of small numbers of patients derived from RCT. In the APEX-AMI (Assessment of Pexelizumab in Acute Myocardial Infarction) trial, patients with previous CABG (n=128) had increased 90-day mortality that remained significant after multivariable adjustment (HR 1.9, 95% CI 1.08 to 3.33, p = 0.025).<sup>3</sup> In HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial,

previous CABG (n=105) was associated with a higher incidence of MACE (36.4% vs 21.4%, p <0.001) and mortality (11.2% vs 6.7%, p=0.08) at 3 years.<sup>5</sup> In PAMI-2 (Second Primary Angioplasty in Myocardial Infarction) trial, patients with previous CABG (n=58) were reported to have higher in-hospital (9.4% vs. 2.6%, p=0.02) and 6-month (14.3% vs. 4.1%, p=0.001) mortality.<sup>9</sup> A small registry from New York hospitals reported that patients with previous CABG presenting with STEMI (n=93) had higher unadjusted in-hospital mortality and MACE and on multivariate analysis, prior CABG (HR 3.40; 95% CI 1.15-10.00) was independently associated with inhospital mortality.<sup>4</sup> In another study of 192 patients undergoing PPCI with a SVG culprit were shown to have higher unadjusted rates of mortality at 30 days and MACE at 1 year; although these effects were only modest after multivariable adjustment.<sup>10</sup> A more recent analysis, from Kohl and colleagues, of 249 patients with prior CABG undergoing PPCI has suggested no significant differences in unadjusted rates of inhospital death (4.8% vs 5.9%, p=0.49), MACE at 30 days (6.8% vs 7.4%, p=0.76) (including stroke, recurrent infarction, recurrent ischemia, or death) or rates of hospital readmission at 30 days (1.7% vs 2.3%, p=0.82)- between PPCI in patients with previous CABG compared to those with no history of CABG although no adjustments were made for differences in baseline co-variates.<sup>8</sup> Furthermore, no significant differences in mortality or MACE outcomes where observed in those patients with previous CABG who underwent PCI to either the graft or the native vessel.<sup>8</sup> An overview of these studies is presented in Supplementary Table 4.

Our data suggests differences in the unadjusted clinical outcomes in patients with previous history of CABG, although once differences in baseline co-morbid conditions and procedural characteristics were adjusted for, outcomes were similar to those observed in patients without prior CABG. It has been well documented that patients with prior CABG presenting with STEMI are less likely to be offered PPCI than patients without prior CABG with similar observations recorded in patients with NSTEMI.<sup>15</sup> In APEX-AMI, PCI was performed less frequently in patients with prior CABG compared with those with no history of CABG (78.9% vs. 93.9%, p<0.001)<sup>3</sup> with similar findings reported by the HORIZON-AMI investigators and the PAMI-2 study.<sup>9</sup> Similarly, in older studies such as reports derived from the National Registry of Myocardial Infarction (NRMI)-3, patients presenting with STEMI with prior CABG were significantly less likely to receive PCI or thrombolysis than those without prior CABG.<sup>16</sup> This practice may be influenced by the paucity of data in patients with prior CABG undergoing PPCI and the perceived lack of efficacy of PPCI in these patients.

Previous reports have debated whether the outcomes are different if PPCI is performed on native vessel or SVG in patients with previous CABG.<sup>3,5,17-19</sup> Although PPCI to vein grafts is often more technically challenging and complex, our data show no significant difference in adjusted outcomes in patients with prior CABG undergoing native or bypass graft PPCI.

Our analysis has several strengths. The BCIS dataset includes an almost complete collection of all PCI procedures performed in the United Kingdom representing unselected real-world experience including high-risk patient often excluded from RCTs and represents the largest analysis of primary PCI for STEMI patients with previous CABG to be reported.

We recognize that this study has several potential limitations. Firstly, whilst mortality tracking within the United Kingdom is very robust, all other outcomes and complications are self-reported without formal adjudication. Therefore, the analysis is potentially vulnerable to reporting biases, and complications may be under-reported. Second, whilst this analysis reports on outcomes in patients undergoing PPCI, previous studies have suggested that PPCI is less likely to be performed when the infarct-related vessel was a bypass graft rather than a native coronary artery<sup>9</sup> which may contribute to selection/referral biases in our cohort. The BCIS dataset does not record information regarding patients who presented with STEMI but were medically managed and so cannot exclude significant referral or selection bias particularly for those patients with previous CABG similar to other studies.<sup>3, 5, 16</sup> Third, our analysis report outcomes derived from grafts as the BCIS dataset does not differentiate between venous and arterial grafts. Previous data derived from the National Cardiovascular Data Registry (NCDR) CathPCI registry suggests that arterial grafts represented 2.5% of all PCI procedures undertaken to bypass grafts in the United States although this did not report practice or outcomes in a primary PCI cohort specifically.<sup>17</sup>

In conclusion, our data demonstrate that after adjusting for co-morbidities, PPCI for STEMI results in similar outcomes for patients who have had previous CABG (either in a native vessel or a bypass graft) when compared to those who have not had previous CABG. PPCI for STEMI should be the primary treatment strategy for patients who have had previous CABG.

## Acknowledgement

None

## **Funding sources**

None

## Disclosures

None

## REFERENCES

1. Keeley EC, Boura JA and Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. *Lancet*. 2003;361:13-20.

2. O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ and Zhao DX. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial InfarctionA Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology*. 2013;61:e78-e140.

3. Welsh RC, Granger CB, Westerhout CM, Blankenship JC, Holmes DR, Jr., O'Neill WW, Hamm CW, Van de Werf F, Armstrong PW and APEX AMI Investigators. Prior coronary artery bypass graft patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. *JACC Cardiovascular interventions*. 2010;3:343-51.

4. Bench TJ, Parikh PB, Jeremias A, Brener SJ, Naidu SS, Shlofmitz RA, Pappas T, Marzo KP and Gruberg L. The impact of previous revascularization on clinical outcomes in patients undergoing primary percutaneous coronary intervention. *The Journal of invasive cardiology*. 2013;25:166-9.

5. Nikolsky E, Mehran R, Yu J, Witzenbichler B, Brodie BR, Kornowski R, Brener S, Xu K, Dangas GD and Stone GW. Comparison of outcomes of patients with ST-segment elevation myocardial infarction with versus without previous coronary artery bypass grafting (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial). *The American journal of cardiology*. 2013;111:1377-86.

6. Labinaz M, Sketch MH, Jr., Ellis SG, Abramowitz BM, Stebbins AL, Pieper KS, Holmes DR, Jr., Califf RM and Topol EJ. Outcome of acute ST-segment elevation myocardial infarction in patients with prior coronary artery bypass surgery receiving thrombolytic therapy. *American heart journal*. 2001;141:469-77.

7. Grines CL, Booth DC, Nissen SE, Gurley JC, Bennett KA, O'Connor WN and DeMaria AN. Mechanism of acute myocardial infarction in patients with prior coronary artery bypass grafting and therapeutic implications. *Am J Cardiol*. 1990;65:1292-6.

8. Kohl LP, Garberich RF, Yang H, Sharkey SW, Burke MN, Lips DL, Hildebrandt DA, Larson DM and Henry TD. Outcomes of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction patients with previous coronary bypass surgery. *JACC Cardiovascular interventions*. 2014;7:981-7.

9. Stone GW, Brodie BR, Griffin JJ, Grines L, Boura J, O'Neill WW and Grines CL. Clinical and angiographic outcomes in patients with previous coronary artery bypass graft surgery treated with primary balloon angioplasty for acute myocardial infarction. Second Primary Angioplasty in Myocardial Infarction Trial (PAMI-2) Investigators. *Journal of the American College of Cardiology*. 2000;35:605-11. 10. Gaglia MA, Jr., Torguson R, Xue Z, Gonzalez MA, Ben-Dor I, Suddath WO, Kent KM, Satler LF, Pichard AD and Waksman R. Outcomes of patients with acute myocardial infarction from a saphenous vein graft culprit undergoing percutaneous coronary intervention. *Catheter Cardiovasc Interv*. 2011;78:23-9.

11. Neuman Y, Pereg D, Boyko V, Behar S and Mosseri M. Primary angioplasty in patients following coronary artery bypass surgery: trends in application and outcome. Results from the acute coronary syndrome Israeli Survey (ACSIS) 2000-2008. *Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions*. 2011;78:532-6.

12. Ludman PF and British Cardiovascular Intervention S. British Cardiovascular Intervention Society Registry for audit and quality assessment of percutaneous coronary interventions in the United Kingdom. *Heart*. 2011;97:1293-7.

13. Mamas MA, Ratib K, Routledge H, Neyses L, Fraser DG, de Belder M, Ludman PF, Nolan J, British Cardiovascular Intervention S and the National Institute for Cardiovascular Outcomes R. Influence of arterial access site selection on outcomes in primary percutaneous coronary intervention: are the results of randomized trials achievable in clinical practice? *JACC Cardiovascular interventions*. 2013;6:698-706.

14. Mamas MA, Anderson SG, O'Kane PD, Keavney B, Nolan J, Oldroyd KG, Perera D, Redwood S, Zaman A, Ludman PF, de Belder MA, British Cardiovascular Intervention S and the National Institute for Cardiovascular Outcomes R. Impact of left ventricular function in relation to procedural outcomes following percutaneous coronary intervention: insights from the British Cardiovascular Intervention Society. *European heart journal*. 2014;35:3004-12.

15. Kim MS, Wang TY, Ou FS, Klein AJ, Hudson PA, Messenger JC, Masoudi FA, Rumsfeld JS and Ho PM. Association of prior coronary artery bypass graft surgery with quality of care of patients with non-ST-segment elevation myocardial infarction: a report from the National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes Network Registry-Get With the Guidelines. *American heart journal*. 2010;160:951-7.

16. Mathew V, Gersh B, Barron H, Every N, Tiefenbrunn A, Frederick P and Malmgren J. Inhospital outcome of acute myocardial infarction in patients with prior coronary artery bypass surgery. *American heart journal*. 2002;144:463-9.

17. Brilakis ES, Rao SV, Banerjee S, Goldman S, Shunk KA, Holmes DR, Jr., Honeycutt E and Roe MT. Percutaneous coronary intervention in native arteries versus bypass grafts in prior coronary artery bypass grafting patients: a report from the National Cardiovascular Data Registry. *JACC Cardiovascular interventions*. 2011;4:844-50.

18. Varghese I, Samuel J, Banerjee S and Brilakis ES. Comparison of percutaneous coronary intervention in native coronary arteries vs. bypass grafts in patients with prior coronary artery bypass graft surgery. *Cardiovascular revascularization medicine* : including molecular interventions. 2009;10:103-9.

19. Liu W, Liu YY, Mukku VK, Shi DM, Lu SZ and Zhou YJ. Long-term outcome of native artery versus bypass graft intervention in prior coronary artery bypass graft patients with ST-segment elevation myocardial infarction. *Chinese medical journal*. 2013;126:2281-5.

| Variable                           | Group 1 (n=76,637)    | Group 2 (n=1,168) | Group 3 (n=1,490) |
|------------------------------------|-----------------------|-------------------|-------------------|
| Age                                | 63.3 (±13.1)          | 67.1 (±11.5)      | 67.3 (±11.5)      |
| Female sex                         | 19,846/76,637 (25.9%) | 216/1,168 (18.5%) | 301/1,490 (20.2%) |
|                                    | 46,429/68,505 (67.8%) | 708/999 (70.9%)   | 855/1,285 (66.5%) |
| Smoking<br>Diabetes                | , , , , ,             | · · · ·           |                   |
|                                    | 9,733/73,562 (13.2%)  | 269/1,081 (24.9%) | 279/1,430 (19.5%) |
| Hypertension                       | 29,757/75,483 (39.4%) | 661/1,154 (57.3%) | 750/1,470 (51.0%) |
| Hyperlipidemia                     | 29,368/75,483 (38.9%) | 698/1,154 (60.5%) | 727/1,470 (49.5%) |
| Previous MI                        | 8,202/70,196 (11.7%)  | 555/1,050 (52.9%) | 638/1,370 (46.6%) |
| Previous CVA                       | 2,670/75,483 (3.5%)   | 71/1,154 (6.2%)   | 85/1,470 (5.8%)   |
| Peripheral vascular                | 2,329/75,483 (3.1%)   | 78/1,154 (6.8%)   | 93/1,470 (6.3%)   |
| disease                            |                       |                   |                   |
| Previous renal                     | 1,121/70,583 (1.6%)   | 43/1,023 (4.2%)   | 48/1,382 (3.5%)   |
| disease                            |                       |                   |                   |
| LVEF                               | 10 505 (50 00)        |                   |                   |
| Good                               | 12,535 (53.0%)        | 176 (48.4%)       | 206 (46.6%)       |
| Moderate                           | 8,701 (36.8%)         | 127 (34.9%)       | 187 (42.3%)       |
| Poor                               | 2,401 (10.2%)         | 61 (16.8%)        | 49 (11.1%)        |
| Family history of                  | 24,220/65,018 (37.3%) | 426/959 (44.4%)   | 489/1,238 (39.5%) |
| heart disease                      |                       |                   |                   |
| Access site                        |                       |                   |                   |
| Femoral                            | 36,849 (50.4%)        | 846 (76.9%)       | 968 (69.3%)       |
| Radial                             | 36,272 (49.6%)        | 254 (23.1%)       | 428 (30.7%)       |
| Glycoprotein<br>IIb/IIIa inhibitor | 36,831/67,562 (54.5%) | 478/1,041 (45.9%) | 716/1,341 (53.4%) |
| Target vessel                      |                       |                   |                   |
| LAD                                | 34,262 (44.7%)        | 280 (24.0%)       | 37 (2.5%)         |
| Left main                          | 1,221 (1.6%)          | 119 (10.2%)       | 10 (0.7%)         |
| Circumflex                         | 12,094 (15.8%)        | 264 (22.6%)       | 44 (3.0%)         |
| Right coronary                     | 33,222 (43.4%)        | 515 (44.1%)       | 70 (4.7%)         |
| artery                             | 0 (0%)                | 0 (0%)            | 1,490 (100%)      |
| Graft                              |                       |                   |                   |
| Multivessel PCI                    | 8,084/76,637 (10.6%)  | 101/1,168 (8.7%)  | 150/1,490 (10.1%) |
| Cardiogenic shock                  | 4,396/76,126 (5.8%)   | 93/1,164 (8.0%)   | 79/1,478 (5.4%)   |
| Circulatory support                | 3,426/71,346 (4.8%)   | 81/1,101 (7.4%)   | 80/1,417 (5.7%)   |
| DES use                            | 42,236/73,837 (57.2%) | 618/1,127 (54.8%) | 709/1,418 (50.0%) |
| Number of stents                   |                       |                   |                   |
| 0                                  | 31,601 (42.8%)        | 509 (45.1%)       | 709 (50.0%)       |
| 1                                  | 26,290 (35.6%)        | 368 (32.7%)       | 396 (27.9%)       |
| 2                                  | 11,561 (15.7%)        | 171 (15.2%)       | 213 (15.0%)       |
| ≥3                                 | 4,385 (5.9%)          | 79 (7.0%)         | 100 (7.1%)        |
| Thrombus                           | 35,550/72,525 (49.0%) | 394/1,113 (35.4%) | 648/1,443 (44.9%) |
| aspiration                         |                       |                   |                   |
| Mechanical                         | 2,166/67,023 (3.2%)   | 48/1,028 (4.7%)   | 51/1,274 (4.0%)   |
| ventilator support                 |                       |                   |                   |
| Femoral closure                    | 24,893/71,187 (35.0%) | 500/1,090 (45.9%) | 564/1,428 (39.5%) |
| device                             |                       |                   |                   |
| Use of distal                      | 278/70,259 (0.4%)     | 17/1,076 (1.6%)   | 132/1,398 (9.4%)  |
| protection device                  |                       |                   |                   |

Table 1: Baseline characteristics of patients

| Symptom to         | 2.3±2.0 | 2.6±2.2 | 2.4±1.8 |
|--------------------|---------|---------|---------|
| balloon time (hrs) |         |         |         |

Group 1: Primary PCI in native coronary arteries

Group 2: Primary PCI in native coronary arteries in patient with CABG

Group 3: Primary PCI in bypass grafts

MI = myocardial infarction, CVA = cerebrovascular accident, LVEF = left ventricular ejection fraction, LAD = left anterior descending, DES = drug eluting stent

| Outcome                     | Group 1 (n=76,637)  | Group 2 (n=1,168) | Group 3 (n=1,490) | p-value    | p-value    | p-value    |
|-----------------------------|---------------------|-------------------|-------------------|------------|------------|------------|
|                             | _                   |                   |                   | Group 1 vs | Group 1 vs | Group 2 vs |
|                             |                     |                   |                   | Group 2*   | Group 3*   | Group 3*   |
| In-hospital mortality       | 2,465/73,677 (3.4%) | 55/1,080 (5.1%)   | 53/1,442 (3.7%)   | 0.003      | 0.46       | 0.091      |
| 30-day mortality            | 3,447/76,637 (4.5%) | 72/1,168 (6.2%)   | 91/1,490 (6.1%)   | 0.009      | 0.005      | 1.00       |
| 1-year mortality            | 6,026/66,217 (9.1%) | 147/1,014 (14.5%) | 158/1,329 (11.9%) | < 0.001    | 0.001      | 0.072      |
| In-hospital MACE            | 3,108/74,369 (4.2%) | 65/1,089 (6.0%)   | 69/1,455 (4.7%)   | 0.006      | 0.29       | 0.18       |
| In-hospital re-infarction   | 264/74,319 (0.4%)   | 4/1,084 (0.4%)    | 12/1,454 (0.8%)   | 0.80       | 0.012      | -          |
| In-hospital re-intervention | 447/74,319 (0.6%)   | 6/1,084 (0.6%)    | 8/1,454 (0.6%)    | 1.00       | 1.00       | -          |
| In-hospital emergency       | 69/74,319 (0.1%)    | 2/1,084 (0.2%)    | 1/1,454 (0.1%)    | 0.27       | 1.00       | -          |
| CABG                        |                     |                   |                   |            |            |            |
| In-hospital stroke          | 215/74,319 (0.3%)   | 2/1,084 (0.2%)    | 3/1,454 (0.2%)    | 0.78       | 0.80       | -          |
| In-hospital embolic stroke  | 129/74,319 (0.2%)   | 2/1,084 (0.2%)    | 3/1,454 (0.2%)    | 0.71       | 0.74       | -          |
| In-hospital TIA             | 53/74,319 (0.1%)    | 0/1,084 (0%)      | 0/1,454 (0%)      | 1.00       | 0.63       | -          |
| In-hospital hemorrhagic     | 34/74,319 (0.1%)    | 0/1,084 (0%)      | 0/1,454 (0%)      | 1.00       | 1.00       | -          |
| stroke                      |                     |                   |                   |            |            |            |
| In-hospital bleeding        | 578/74,320 (0.8%)   | 10/1,084 (0.9%)   | 10/1,454 (0.7%)   | 0.60       | 0.88       | 0.51       |

## Table 2: Unadjusted outcomes

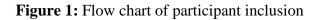
Group 1: Primary PCI in native coronary arteries

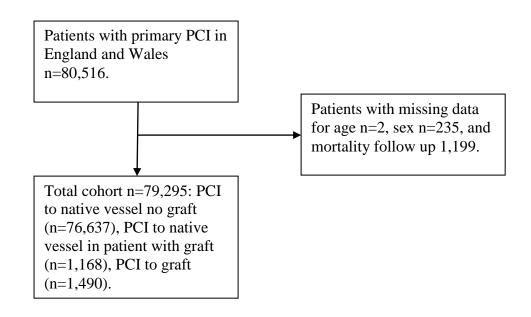
Group 2: Primary PCI in native coronary arteries in patient with CABG

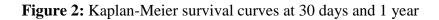
Group 3: Primary PCI in bypass grafts

MACE = major adverse cardiovascular events, CABG = coronary artery bypass graft, TIA = transient ischemic attack

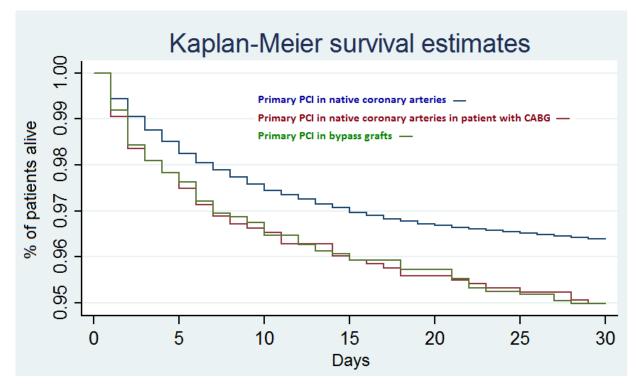
\*P-value determined by Fisher's exact test


| Variable              | Group 1:<br>Primary PCI<br>in native<br>coronary<br>arteries | Group 2: Primary PCI in<br>native coronary arteries<br>in patient with CABG | Group 3: Primary PCI in<br>bypass grafts |
|-----------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|
| In-hospital mortality |                                                              |                                                                             |                                          |
| Unadjusted (n=76,199) | Reference                                                    | 1.55 (1.18-2.04), p=0.002                                                   | 1.10 (0.84-1.45), p=0.49                 |
| Adjusted† (n=76,199)  | Reference                                                    | 1.07 (0.78-1.48), p=0.66                                                    | 0.99 (0.72-1.37), p=0.96                 |
| 30 day mortality      |                                                              |                                                                             |                                          |
| Unadjusted (n=79,295) | Reference                                                    | 1.39 (1.10-1.77), p=0.007                                                   | 1.38 (1.11-1.71), p=0.003                |
| Adjusted† (n=79,295)  | Reference                                                    | 1.02 (0.77-1.34), p=0.89                                                    | 1.33 (1.03-1.71), p=0.028                |
| 1 year mortality      |                                                              |                                                                             |                                          |
| Unadjusted (n=68,560) | Reference                                                    | 1.69 (1.42-2.02), p<0.001                                                   | 1.35 (1.14-1.59), p=0.001                |
| Adjusted† (n=68,560)  | Reference                                                    | 1.17 (0.95-1.43), p=0.15                                                    | 1.16 (0.95-1.41), p=0.14                 |
| In-hospital MACE      |                                                              |                                                                             |                                          |
| Unadjusted (n=76,913) | Reference                                                    | 1.46 (1.13-1.87), p=0.004                                                   | 1.14 (0.89-1.46), p=0.29                 |
| Adjusted† (n=76,913)  | Reference                                                    | 0.95 (0.71-1.26), p=0.72                                                    | 0.93 (0.70-1.22), p=0.58                 |
| In-hospital Stroke    |                                                              |                                                                             |                                          |
| Unadjusted (n=76,857) | Reference                                                    | 0.64 (0.16-2.57), p=0.53                                                    | 0.71 (0.23-2.23), p=0.56                 |
| Adjusted† (n=76,857)  | Reference                                                    | 0.56 (0.14-2.30), p=0.42                                                    | 0.69 (0.22-2.21), p=0.53                 |
| In-hospital Bleeding  |                                                              |                                                                             |                                          |
| Unadjusted (n=76,858) | Reference                                                    | 1.19 (0.63-2.23), p=0.59                                                    | 0.88 (0.47-1.65), p=0.70                 |
| Adjusted† (n=76,858)  | Reference                                                    | 0.95 (0.50-1.81), p=0.88                                                    | 0.74 (0.39-1.43), p=0.38                 |


Table 3: Risk of adverse outcomes with unadjusted and adjusted results


<sup>†</sup>Adjusted for age, sex, smoking status, diabetes, hypertension, hyperlipidemia, previous myocardial infarction, previous stroke, peripheral vascular disease, renal disease, family history, radial access site, glycoprotein IIb/IIIa inhibitor, multivessel, PCI to left anterior descending artery, PCI to left main artery, shock, circulatory support, no of stents, thrombus aspiration, ventilation, femoral closure device, distal protection device, symptom to balloon with 10 imputations for all variables.

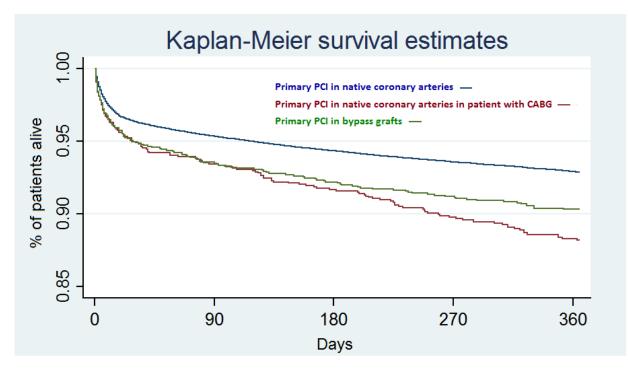
| Analysis    | Group                                 | Coefficient | 95% CI  |        | p-value |
|-------------|---------------------------------------|-------------|---------|--------|---------|
| In-hospital | Group 1: Primary PCI in native        | Reference   |         |        |         |
| mortality   | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | 0.0143      | -0.0163 | 0.0448 | 0.36    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=72,068)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | 0.1505      | -0.2237 | 0.5247 | 0.42    |
|             | (n=72,407)                            |             |         |        |         |
| 30 day      | Group 1: Primary PCI in native        | Reference   |         |        |         |
| mortality   | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | 0.0121      | -0.0212 | 0.0454 | 0.47    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=74,964)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | 0.1524      | -0.2252 | 0.5300 | 0.42    |
|             | (n=75,255)                            |             |         |        |         |
| 1 year      | Group 1: Primary PCI in native        | Reference   |         |        |         |
| Mortality   | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | 0.2689      | -0.0129 | 0.0666 | 0.19    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=64,756)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | 0.1450      | -0.2877 | 0.5778 | 0.50    |
|             | (n=65,039)                            |             |         |        |         |
| In-hospital | Group 1: Primary PCI in native        | Reference   |         |        |         |
| MACE        | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | 0.0135      | -0.0176 | 0.0445 | 0.39    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=72,735)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | 0.1494      | -0.2371 | 0.5359 | 0.44    |
|             | (n=73,078)                            |             |         |        |         |
| In-hospital | Group 1: Primary PCI in native        | Reference   |         |        |         |
| stroke      | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | -0.0011     | -0.0057 | 0.0035 | 0.63    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=72,683)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | -0.0014     | -0.0043 | 0.0015 | 0.33    |
|             | (n=73,030)                            |             |         |        |         |
| In-hospital | Group 1: Primary PCI in native        | Reference   |         |        |         |
| bleeding    | coronary arteries                     |             |         |        |         |
|             | Group 2: Primary PCI in native        | -0.0025     | -0.0117 | 0.0067 | 0.59    |
|             | coronary arteries in patient with     |             |         |        |         |
|             | CABG_(n=72,684)                       |             |         |        |         |
|             | Group 3: Primary PCI in bypass grafts | -0.0061     | -0.0084 | -      | < 0.001 |
|             | (n=73,031)                            |             |         | 0.0038 |         |


**Table 4:** Propensity score matched analysis with average treatment effects








A)



| Follow up                   | Day 0  | Day 10 | Day 20 | Day 30 |
|-----------------------------|--------|--------|--------|--------|
| Number at risk in PCI to    | 75,932 | 74,097 | 73,440 | 73,190 |
| native coronary arteries    |        |        |        |        |
| Number at risk in PCI to    | 1,154  | 1,115  | 1,103  | 1,096  |
| native coronary arteries in |        |        |        |        |
| patient with CABG           |        |        |        |        |
| Number at risk in PCI to    | 1,473  | 1,425  | 1,410  | 1,399  |
| bypass graft                |        |        |        |        |

Log-rank test p<0.001

B)



## Log-rank test p<0.001

| Follow up                   | Day 0  | Day 90 | Day 180 | Day 270 | Day 365 |
|-----------------------------|--------|--------|---------|---------|---------|
| Number at risk in PCI to    | 75,932 | 72,373 | 70,513  | 65,259  | 60,456  |
| native coronary arteries    |        |        |         |         |         |
| Number at risk in PCI to    | 1,154  | 1,078  | 1,041   | 953     | 871     |
| native coronary arteries in |        |        |         |         |         |
| patient with CABG           |        |        |         |         |         |
| Number at risk in PCI to    | 1,473  | 1,378  | 1,341   | 1,258   | 1,177   |
| bypass graft                |        |        |         |         |         |

## Supplementary Table 1: Missing data table

| Variable                    | Data available for | Missing data or |
|-----------------------------|--------------------|-----------------|
|                             | imputations        | excluded        |
| Age                         | 79,295             | 1,221           |
| Female                      | 79,295             | 1,221           |
| Smoking                     | 70,789             | 9,727           |
| Diabetes                    | 76,073             | 4,443           |
| Hypertension                | 78,107             | 2,409           |
| Hyperlipidemia              | 78,107             | 2,409           |
| Previous MI                 | 72,616             | 7,900           |
| Previous CVA                | 78,107             | 2,409           |
| Peripheral vascular disease | 78,107             | 2,409           |
| Previous renal disease      | 72,988             | 7,528           |
| LVEF                        | 24,443             | 56,073          |
| Family history of heart     | 67,215             | 13,301          |
| disease                     |                    |                 |
| Access site                 | 75,617             | 4,899           |
| Glycoprotein IIb/IIIa       | 69,944             | 10,572          |
| inhibitor                   |                    |                 |
| Target vessel               |                    |                 |
| LAD                         | 79,205             | 1,311           |
| Left main                   | 79,205             | 1,311           |
| Circumflex                  | 79,205             | 1,311           |
| Right coronary artery       | 79,205             | 1,311           |
| Graft                       | 79,205             | 1,311           |
| Multivessel                 | 79,295             | 1,221           |
| Thrombectomy device         | 72,599             | 7,917           |
| Cardiogenic shock           | 78,768             | 1,748           |
| Circulatory support         | 73,864             | 6,652           |
| DES use                     | 76,382             | 4,134           |
| Number of stents            | 76,382             | 4,134           |
| Thrombus aspiration         | 75,081             | 5,435           |
| Ventilatory support         | 69,325             | 11,191          |
| Femoral closure device      | 73,705             | 6,811           |
| Use of distal protection    | 72,733             | 7,783           |
| device                      |                    |                 |

**Supplementary Table 2:** Logistic regression and Cox proportional hazards analysis for 30-day mortality and 1-year mortality

| Outcome                     | Logistic regression odds ratio | Cox proportional hazard ratio |
|-----------------------------|--------------------------------|-------------------------------|
|                             | for outcome (95% CI), p-value  | for outcome (95% CI), p-value |
| Unadjusted 30 day mortality |                                |                               |
| Group 1                     | 1.00 (ref)                     | 1.00 (ref)                    |
| Group 2                     | 1.39 (1.10-1.77), p=0.007      | 1.40 (1.08-1.82), p=0.011     |
| Group 3                     | 1.38 (1.11-1.71), p=0.003      | 1.40 (1.11-1.76), p=0.004     |
| Adjusted 30 day mortality*  |                                |                               |
| Group 1                     | 1.00 (ref)                     | 1.00 (ref)                    |
| Group 2                     | 1.02 (0.77-1.34), p=0.89       | 1.07 (0.81-1.40), p=0.65      |
| Group 3                     | 1.33 (1.03-1.70), p=0.028      | 1.41 (1.10-1.79), p=0.006     |
| Unadjusted 1-year mortality |                                |                               |
| Group 1                     | 1.00 (ref)                     | 1.00 (ref)                    |
| Group 2                     | 1.69 (1.42-2.02), p<0.001      | 1.67 (1.41-1.98), p<0.001     |
| Group 3                     | 1.35 (1.14-1.59), p=0.001      | 1.34 (1.14-1.59), p=0.001     |
| Adjusted 1-year mortality*  |                                |                               |
| Group 1                     | 1.00 (ref)                     | 1.00 (ref)                    |
| Group 2                     | 1.17 (0.95-1.43), p=0.15       | 1.11 (0.92-1.33), p=0.28      |
| Group 3                     | 1.16 (0.95-1.41), p=0.14       | 1.21 (1.01-1.44), p=0.035     |

Group 1: Primary PCI in native coronary arteries, Group 2: Primary PCI in native coronary arteries in patient with CABG, Group 3: Primary PCI in bypass grafts

\*Adjusted for age, sex, smoking status, hypertension, hyperlipidemia, diabetes mellitus, previous stroke, peripheral vascular disease, renal disease, family history, access site, use of glycoprotein IIb/IIIa inhibitor, multivessel PCI, femoral closure device, cardiogenic shock, use of circulatory support, number of stents, use of thrombectomy device, receipt of ventilation, LV ejection fraction, embolic protection device, left main stem disease, left anterior descending disease, balloon time.

| Groups                |           | Mean (SD) | Median (IQR)           |
|-----------------------|-----------|-----------|------------------------|
|                       | 0         |           |                        |
| Group 1: Primary PCI  | Case      | 0.9850    | 0.9939                 |
| in native coronary    |           | (0.0314)  | (0.9865, 0.9969)       |
| arteries vs Group 2:  | Control   | 0.9850    | 0.9939                 |
| Primary PCI in native |           | (0.0.314) | (0.9865, 0.9969)       |
| coronary arteries in  | Abs(Case- | 0.00005   | 0.00002                |
| patient with CABG     | Control)  | (0.00036) | $(7*10^{-6}, 0.00004)$ |
| Group 1: Primary PCI  | Case      | 0.9811    | 0.9907                 |
| in native coronary    |           | (0.0440)  | (0.9812, 0.9995)       |
| arteries vs Group 3:  | Control   | 0.9811    | 0.9907                 |
| Primary PCI in        |           | (0.0439)  | (0.9811, 0.9994)       |
| bypass grafts         | Abs(Case- | 0.0001    | 0.00004                |
|                       | Control)  | (0.0007)  | (0.00001, 0.00013)     |

Supplementary Table 3: Balance diagnostics for propensity model

| Study ID    | No. of participants                                   | Unadjusted results                                                           | Adjusted results                                                       |
|-------------|-------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Bench 2013  | 1,649 PPCI in patient with STEMI. 93 with prior CABG. | Prior CABG vs no revascularization:<br>MACCE 6.5% vs 2.7%, in-hospital death | Prior CABG was not associated with increased MACE (OR 1.77 95%CI 0.67- |
|             | STEMI. 33 with prior CABG.                            | 6.5% vs 2.2%.                                                                | 4.70) but was associated with increased in-                            |
|             |                                                       | 0.570 VS 2.270.                                                              | hospital mortality (OR 3.40 95%CI 1.15-                                |
|             |                                                       |                                                                              | 10.00).                                                                |
| Gaglia 2011 | 4,192 PCI in patient with acute                       | Saphenous vein graft versus native                                           | Prior CABG and 30 day mortality HR 2.13                                |
|             | myocardial infarction. 192 with                       | vessel: in-hospital cardiac mortality 6.6%                                   | 95% CI 1.06-4.26. 1 year MACE HR 1.87                                  |
|             | prior CABG.                                           | vs 3.3% and overall mortality at 30 days                                     | 95% CI 1.22-2.87.                                                      |
|             |                                                       | 14.3% vs 8.4%. 1 year MACE 36.8% vs                                          |                                                                        |
|             |                                                       | 24.5%, 1 year mortality 29.8% vs 16.4%.                                      |                                                                        |
| Kohl 2014   | 3,542 patients with STEMI.                            | Previous CABG vs no previous CABG                                            | No adjusted results.                                                   |
|             | 249 had prior CABG.                                   | and outcomes at 30 days: death 4.8% vs                                       |                                                                        |
|             |                                                       | 5.9%, p=0.49, MACE 6.8% vs 7.4%,                                             |                                                                        |
|             |                                                       | p=0.76. Outcomes at 1 year: death 10.8%                                      |                                                                        |
|             |                                                       | vs 9.1%, p=0.36, MACE 15.7% vs                                               |                                                                        |
|             |                                                       | 14.2%, p=0.12.                                                               |                                                                        |
| Nikolsky    | 3,599 patients with STEMI.                            | Previous CABG and no previous CABG                                           | Prior CABG was not a predictor of 3 year                               |
| 2013        | 105 had prior CABG.                                   | at outcomes at 30 days: death 3.8% vs                                        | mortality HR 0.37 95% CI 0.10-1.34, 3 year                             |
|             |                                                       | 2.6%, MACE 8.6% vs 5.4%.                                                     | MACE HR 0.81 95% CI 0.42-1.55.                                         |
| Stone 2000  | 1,100 patients with acute                             | Previous CABG and no previous CABG                                           | No adjusted results.                                                   |
|             | myocardial infarction. 58 had                         | and in-hospital outcomes: death 6.9% vs                                      |                                                                        |
|             | prior CABG.                                           | 2.6%, MACE 15.5% vs 19.4%.                                                   |                                                                        |
| Welsh 2010  | 5,745 patients with STEMI.                            | Previous CABG vs no previous CABG                                            | Prior CABG was associated with 90-day                                  |
|             | 128 had prior CABG.                                   | and 90 day outcomes: death 11.9% vs                                          | death HR 1.90 95% CI 1.08-3.33 but not                                 |
|             | _                                                     | 4.6%, death/congestive heart                                                 | death/congestive heart failure/shock HR                                |
|             |                                                       | failure/shock 16.4% vs 10.1%.                                                | 1.06 95% CI 0.66-1.70.                                                 |

**Supplementary Table 4:** Summary of the studies evaluating mortality and major adverse cardiovascular events in patient with and without prior coronary artery bypass graft who present with STEMI or acute myocardial infarction.

## Supplementary Data 1: Stata code for multiple imputations

## mi set mlong

mi register imputed balloontime shock mi dm gpi circsupp femclose smoking fh hchol htn pvd cva ventilate fem0rad1 lvef /\*device\*/ renal stents des emboli thromb (66636 m=0 obs. now marked as incomplete)

mi register regular group age sex multivessel mfu inhospdeath dead30 dead365 dead mace cvableed cvaembolic tia emergcabg reintervention reinfarction bleed stroke lmain lad cx rca graft

mi impute chained (truncreg) balloontime (logit) shock mi dm gpi circsupp femclose smoking fh hchol htn pvd cva ventilate fem0rad1 /\*device\*/ renal emboli thromb (mlogit) stents (ologit) lvef = age i.sex i.group i.multivessel mfu, add(10) /\*noisily\*/ augment report chaindots

Checking equations:

-- above applies to specification (logit) shock = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) hchol = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) htn = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) pvd = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) cva = age i.sex i.group i.multivessel mfu -- above applies to specification (mlogit) stents = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) dm = age i.sex i.group i.multivessel mfu-- above applies to specification (logit) femOrad1 = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) thromb = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) circsupp = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) femclose = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) renal = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) emboli = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) mi = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) smoking = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) gpi = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) ventilate = age i.sex i.group i.multivessel mfu -- above applies to specification (logit) fh = age i.sex i.group i.multivessel mfu -- above applies to specification (truncreg) balloontime = age i.sex i.group i.multivessel mfu -- above applies to specification (ologit) lvef = age i.sex i.group i.multivessel mfu

Conditional models:

shock: logit shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu, augment

hchol: logit hchol i.shock i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

htn: logit htn i.shock i.hchol i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

pvd: logit pvd i.shock i.hchol i.htn i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

cva: logit cva i.shock i.hchol i.htn i.pvd i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

stents: mlogit stents i.shock i.hchol i.htn i.pvd i.cva i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

dm: logit dm i.shock i.hchol i.htn i.pvd i.cva i.stents i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

fem0rad1: logit fem0rad1 i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

thromb: logit thromb i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

circsupp: logit circsupp i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

femclose: logit femclose i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

renal: logit renal i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

emboli: logit emboli i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.mi i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

mi: logit mi i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.smoking i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

smoking: logit smoking i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.gpi i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

gpi: logit gpi i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.ventilate i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

ventilate: logit ventilate i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.fh balloontime i.lvef age i.sex i.group i.multivessel mfu, augment

fh: logit fh i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate balloontime i.lvef age i.sex i.group i.multivessel mfu , augment

balloontime: truncreg balloontime i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh i.lvef age i.sex i.group i.multivessel mfu

lvef: ologit lvef i.shock i.hchol i.htn i.pvd i.cva i.stents i.dm i.fem0rad1 i.thromb i.circsupp i.femclose i.renal i.emboli i.mi i.smoking i.gpi i.ventilate i.fh balloontime age i.sex i.group i.multivessel mfu , augment

Performing chained iterations:

| imputing m=1: burn-in 10 done  |
|--------------------------------|
| imputing m=2: burn-in 10 done  |
| imputing m=3: burn-in 10 done  |
| imputing m=4: burn-in 10 done  |
| imputing m=5: burn-in 10 done  |
| imputing m=6: burn-in 10 done  |
| imputing m=7: burn-in 10 done  |
| imputing m=8: burn-in 10 done  |
| imputing m=9: burn-in 10 done  |
| imputing m=10: burn-in 10 done |

| Multivariate imputation   | Imputations $= 10$ |
|---------------------------|--------------------|
| Chained equations         | added = $10$       |
| Imputed: m=1 through m=10 | updated $= 0$      |

Initialization: monotone

Iterations = 100 burn-in = 10

balloontime: truncated regression shock: logistic regression mi: logistic regression dm: logistic regression gpi: logistic regression circsupp: logistic regression femclose: logistic regression smoking: logistic regression fh: logistic regression hchol: logistic regression htn: logistic regression pvd: logistic regression cva: logistic regression ventilate: logistic regression femOrad1: logistic regression

## renal: logistic regression emboli: logistic regression thromb: logistic regression stents: multinomial logistic regression lvef: ordered logistic regression

| Observations per m |                                 |  |
|--------------------|---------------------------------|--|
|                    |                                 |  |
| Variable   Compl   | lete Incomplete Imputed   Total |  |
|                    | +                               |  |
|                    | 492 13803 13803   79295         |  |
|                    | 8 527 527   79295               |  |
|                    | 6679 6679 79295                 |  |
|                    | 3 3222 3222   79295             |  |
| gpi   69944        | 9351 9351   79295               |  |
| circsupp   7386    | 64 5431 5431   79295            |  |
| femclose   7370    | 05 5590 5590   79295            |  |
| smoking   707      | 789 8506 8506 79295             |  |
| fh   67215         | 12080 12080   79295             |  |
| hchol   78107      | 7 1188 1188   79295             |  |
| htn   78107        | 1188 1188   79295               |  |
| pvd   78107        | 7 1188 1188 79295               |  |
| cva   78107        | 1188 1188 79295                 |  |
| ventilate   6932   | 25 9970 9970 79295              |  |
| fem0rad1   756     | 617 3678 3678 79295             |  |
| renal   72988      | 8 6307 6307 79295               |  |
| emboli   7273      | 33 6562 6562 79295              |  |
| •                  | 81 4214 4214 79295              |  |
|                    | 2 2913 2913 79295               |  |
|                    | 54852 54852 79295               |  |
| ·                  | ·                               |  |

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)