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Abstract. The propagation of  nonlinear elastic  anti-plane shear waves in a

unidirectional fibre-reinforced composite material is studied. A model of structural

nonlinearity  is  considered,  for  which the nonlinear  behaviour  of  the composite

solid  is  caused  by  imperfect  bonding  at  the  “fibre-matrix”  interface.   A

macroscopic  wave  equation  accounting  for  the  effects  of  nonlinearity  and

dispersion is derived using the higher-order asymptotic homogenization method.

Explicit  analytical  solutions  for  stationary  nonlinear  strain  waves  are  obtained.

This type of nonlinearity has a crucial influence on the wave propagation mode: for

soft  nonlinearity,  localised  shock  (kink)  waves  are  developed,  while  for  hard

nonlinearity localised bell-shaped waves appear. Numerical results are presented

and  the areas of practical applicability of linear and nonlinear, long- and short-

wave approaches discussed.

Key words: nonlinear  wave;  solitary  wave;  composite  material;  imperfect

bonding; asymptotic homogenization.

1.  Introduction. Elastic  waves  propagating  in  heterogeneous  solids  can

undergo the effects of nonlinearity and dispersion. Nonlinearity may arise through

geometrical,  physical  or  structural  mechanisms (e.g.,  Lur'e,  1990).  We study  a

problem for  which  the  nonlinear  behaviour  of  a  composite  is  associated  with
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imperfect  bonding conditions at  the interface  between constitutive components.

This is an example of structural nonlinearity, with the nonlinearity directly related

to the presence of a microstructure. Dispersion on the other hand can be classified

as geometrical or structural. Geometrical dispersion is typical for wave-guides and

finite-size bodies (e.g., waves in beams and plates). Structural dispersion may be

caused by the heterogeneity of a composite solid, with successive reflections and

refractions of local waves at the matrix-inclusion interfaces leading to scattering of

the overall wave field.

Nonlinearity induces a pumping of energy form the low- to the high-frequency

part  of  the  spectrum,  with  higher-order  modes  generated  and  continuous

localization  of  energy  occurring,  making  the  wave  front  steeper.  In  contrast,

dispersion provides scattering of energy and decreases the slope of the wave front.

When nonlinearity and dispersion act together, they may balance the influence of

each other (Kunin, 1982). In such a case, stationary nonlinear waves of permanent

shape and velocity can propagate. Nonlinear strain waves play an important role in

the mechanical behaviour of composite materials and structures.  An increase in

nonlinearity  leads  to  the  formation of  localized  solitary waves.  This  process  is

accompanied  by  essential  strain  amplitude  growth,  possibly  resulting  in  the

development of local plastic zones and/or cracks.  Therefore, nonlinear dynamic

effects can become a crucial factor affecting strength and durability of engineering

structures.

In  many  cases,  nonlinear  elastic  moduli  of  heterogeneous  solids  are  very

sensitive to the properties of microstructure (see, for example, Zaitsev et al. (2006).

Measuring the characteristics of nonlinear waves enables detection of very small

variations of the internal texture of the medium at a level not possible within a

linear  framework  (Zumpano  and  Meo,  2008;  Polimeno  and  Meo,  2008).  This

provides the possibility of developing new, more precise, methods of the acoustic

diagnostic and non-destructive testing in engineering, geophysics,  biomechanics

and other areas dealing with heterogeneous materials and structures.
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The propagation of nonlinear strain waves in elastic solids has been intensively

studied. For a comprehensive review of the subject we refer to the books by Jeffrey

and Engelbrecht (1994), Maugin (1999), Samsonov (2001), Erofeev (2003), and

Porubov (2003). Many authors considered homogeneous systems, with dispersive

properties mainly determined by geometrical factors. At the same time, the effect

of  structural  dispersion,  related  to  the  scattering  of  nonlinear  waves  by  the

microstructure, were not studied in great detail.

The influence of the microstructure can be modelled by allowing  the elastic

medium additional internal degrees of freedom, an idea originally proposed over

100 years ago by Cosserat (1909) and Le Roux (1911). Following Cosserat theory,

a number of higher-order continuum models were developed by Mindlin (1964),

Sun  et  al.  (1968),  Herrmann  and  Achenbach  (1968).  More  recently,  similar

approaches were adopted to describe the propagation of nonlinear strain waves in

miscrostructured solids (Engelbrecht et al., 2007, 2011; Porubov et al., 2004, 2009;

Randrüüt and Braun, 2010). A recent review of the modelling of heterogeneous

media in terms of internal variables was presented by Berezovski et al. (2011a, b).

From a mathematical viewpoint, the aforementioned approaches supplement

the constitutive equations of  motion with some additional  higher-order gradient

terms accounting for the effects of dispersion. The coefficients at the dispersive

terms  represent  what  might  be  thought  of  as  phenomenological  parameters.  In

some cases these may be determined experimentally; however, for most industrial

materials  their  magnitudes remain  unknown.  An alternative  way  to  predict  the

influence of microstructures is provided by the asymptotic homogenization method

(AHM).  According  to  this  approach,  physical  fields  in  a  spatially  periodic

heterogeneous medium are represented by a two-scale  asymptotic  expansion in

powers of a small parameter η=l /L , where l  is the size of the unit cell and L  is

the typical wavelength. This leads to a decomposition of the final solution into

global and local components; the latter are evaluated from a recurrent sequence of

cell  boundary  value  problems  (BVPs).  Application  of  the  volume-integral
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homogenizing operator allows us to obtain a homogenized constitutive equation

that describes the macroscopic behaviour of the medium. It is important to note

that the coefficients of the homogenized equation (so-called effective moduli) are

evaluated based on information about the properties of the components and the

geometry of the microstructure. Thus, in contrast to Cosserat-type approaches, the

homogenized  model  incorporates  data  about  the  internal  composition  of  the

material.

From its conception, the AHM was intended for the determination of quasi-

static  properties  of  heterogeneous media and structures (e.g.,  Bensoussan et  al.

(1978), Sanchez-Palencia (1980), Bakhvalov and Panasenko (1989); Kalamkarov

et al. (2009)). Taking into account higher-order terms, with respect to η , extended

the area of applicability of the homogenized models and provided a mechanism to

predict the effect of structural dispersion (Boutin and Auriault, 1993; Chen and

Fish, 2001; Fish and Chen, 2004; Andrianov et al., 2008;  Soubestre and Boutin,

2012;  Auriault  and  Boutin,  2012).  Non-local  effects  resulting  both  from high-

anisotropy  and  high-contrast  of  composite  structures  were  studied  by

Cherednichenko et al. (2006),  Smyshlyaev (2009), Soubestre and Boutin (2012). It

should be noted that macroscopic dynamic equations obtained by the AHM are

valid only in the long-wave case, when l≪L . Recently, Craster et al. (2014) have

shown a subtle analogue between the long-wave asymptotic procedures underlying

approximate formulations for periodic media and for functionally graded wave-

guides. The conventional AHM seems to be a counterpart of the classical theories

for thin plates, shells and rods. A theoretical framework for the asymptotic theories

of long wave motion in plates and layered media was developed by Rogerson et al.

(2006,  2007,  2009),   Lutianov  and  Rogerson  (2010),  Mukhomodyarov  and

Rogerson (2012). Homogenization of nonlinear dynamic problems was considered

by Andrianov et al. (2011, 2013).

When the wavelength of a travelling signal decreases and becomes comparable

to  the  size  of  the  microstructure,  a  heterogeneous  elastic  solid exhibits  a

– 4 –



complicated sequence of pass and stop frequency bands. In the literature, they are

also referred to as phononic bands (by analogy with the photonic bands arising for

electromagnetic and optical waves in heterogeneous dielectric media). Thus, the

composite plays the role of a discrete wave filter. If the frequency falls within a

stop  band,  a  stationary  wave  is  excited  and  neighbouring  heterogeneities  (e.g.

particles)  vibrate  in  alternate  directions.  At  a  macrolevel,  the  amplitude  of  the

global  wave  attenuates  exponentially,  so  no  propagation  is  possible. Phononic

bands  can  be  theoretically  predicted  using the  Floquet-Bloch approach  (Bloch,

1928). This approach has been documented in the book by Brillouin (2003, 2nd

edn.) and utilized by many authors (see, for example, Movchan et al. (2002, 2006,

2007), McPhedran et al. (2009) and references therein).

Craster  et  al.  (2010a,  2010b,  2012)  and  Nolde  et  al.  (2011)  proposed  a

generalization of the AHM making it suitable for the analysis of high-frequency

waves. The key point was to choose a zero-order approximation, not at the quasi-

static limit ( η→0 ), but at the edges of the high-frequency phononic bands.

In this present paper, we apply the AHM to the modelling of anti-plane shear

waves  propagating  in  a  fibre-reinforced  composite  material  with  imperfect

interface bonding between the matrix and fibres.  For engineering materials,  the

properties of the interface may be subjected to various factors, such as the presence

of  thin  coating  layers,  chemical  reactions  or  mechanical  damages.  From  the

mathematical  viewpoint,  the  effect  of  imperfect  bonding  can  be  predicted  by

assuming  that  the  displacement  jump  across  the  interface  is  related  to  the

interfacial stress by a certain cohesion function. This approach is general and can

describe different types of interfaces independently of the physical reasons of the

debonding.

In the simplest case, the cohesion function is assumed linear, the interface then

acting  like  an  elastic  spring.  The  spring-type  interface  model  was  originally

proposed by Goland and Reissner (1944). In the theory of composites, it was first

introduced by Mal and Bose (1975) and later employed by a number of authors.

– 5 –



Variational formulations for the imperfect bonding conditions were presented by

Hashin (1992), Lipton and Vernescu (1995). Limiting cases of very soft and very

stiff interfaces were analysed by Benveniste and Miloh (2001). Needleman (1990,

1992),  Tvergaard (1990, 1995),  Espinosa et al. (1998, 2000) considered more

sophisticated cohesion functions and simulated various scenarios of the debonding

process. While reducing the cohesion, the stress field (supported by the interface)

increases in magnitude, achieves a maximum, and ultimately falls to zero when

complete separation occurs. It is therefore possible to track the evolution of the

debonding process from its initial  onset  to complete  separation and subsequent

formation  of  voids.  Nonlinear  interfaces  were  considered  by  Levy  and  Dong

(1988), Levy (2000), Nguyen and Levy (2009). An asymptotic simulation of the

imperfect bonding was presented by Andrianov et al. (2007, 2010).

It  should  be  noted  that  most  of  the  interface  models  include  a  number  of

phenomenological  parameters:  the  maximal  interfacial  traction,  characteristic

lengths of the interfacial displacements, interface shear-to-normal strength ratio,

etc. Such quantities can not usually be identified a priori. At the same time, due to

evident experimental difficulties. there is still very little effort to measure cohesive

laws in real materials. As a successful example, we refer to Tan et al. (2005) who

developed an experimental approach to determine the microscopic cohesive law in

composite high explosives.

In our present contribution we specifically study a weakly nonlinear interface,

with a cohesion function represented by a power series expansion in terms of non-

dimensional displacement jumps. The paper is organized as follows. In Section 2,

an asymptotic  model  of  the  imperfect  bonding is  proposed and the input  BVP

introduced. In Section 3, the higher-order asymptotic homogenization procedure is

developed and the macroscopic nonlinear wave equation obtained. In Section 4, the

analytical  solution  for  stationary  nonlinear  strain  waves  is  derived  in  terms  of

elliptic functions. The analysis of the obtained results and numerical examples are

presented in Section 5. Section 6 is devoted to the conclusions.
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2. Asymptotic model of the imperfect bonding and input BVP problem.

Let us consider a unidirectional fibre-reinforced composite consisting of an infinite

matrix Ω(1) and a periodic square array of cylindrical inclusions Ω(2), see Fig. 1. It

is supposed that geometrical and physical nonlinearity can be neglected, with the

nonlinear behaviour of the composite caused by imperfect bonding at the matrix-

fibres interface ∂Ω.

Fig 1. Fibre-reinforce composite under consideration.

We study elastic waves propagating in the plane x1 x2. The parameters of the

stress-strain state depend only on two spatial coordinates  x1,  x2. Generally, three

type of waves can be realised: (i) in-plane longitudinal tensile/compression wave;

(ii) in-plane transverse shear wave; and (iii) anti-plane transverse shear wave. The

in-plane waves are coupled, whilst the anti-plane wave is uncoupled and, therefore,

can be considered separately.

In this paper, we study anti-plane shear waves. The deformations occur under

tangential  stresses  σ13 ,  σ23 .  Normal  stresses  σ11 ,  σ22 ,  σ33  as  well  as  the

tangential stress σ12  are zero. The governing wave equation is as follows:

μ(n )∇ x
2 u(n)=ρ(n) ∂

2 u(n)

∂ t 2 , (1)
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where μ(n ) is the shear modulus; ρ(n ) is the density; u(n) is the displacement in the x3

direction; ∇ x=(∂/∂ x1)e1+(∂/∂ x2)e2; e1 , e2  are the Cartesian unit vectors. Here,

and throughout this paper, the upper index (n) refers to different components of the

composite structure, n=1,2.

 Let  us  consider  the  case  of  imperfect  bonding  at  the  interface  ∂Ω.  The

equilibrium state implies the equality of tangential stresses, thus:

σ
*
=σ

(1)
=σ

(2)   at   ∂Ω, (2)

where  σ(n )=μ(n)(∂u(n)/∂ n);  ∂ /∂ n is the normal derivative to  ∂Ω. Weakening the

bonding between the matrix and fibres leads to a jump in the displacement field

across  the  interface.  We suppose  that  the  displacement  jump  Δ u*=u(1)−u(2) is

related to the interfacial stress σ* as follows:

σ*= f (Δu*)   at   ∂Ω, (3)

where f (Δu*) is the so-called cohesion function. A phenomenological framework

for describing the process of interfacial decohesion was presented by Needleman

(1990, 1992) and  Tvergaard (1990, 1995). Different types of cohesion functions

were considered by Espinosa et al. (1998, 2000). 

If the interface exhibits weakly nonlinear behaviour, the cohesion function can

be assumed in the following form:

σ*=μ1
* Δu*

h
+μ3

*( Δu*

h )
3

   at   ∂Ω, (4)

where  h is the thickness of the interface. From the mathematical point of view,
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expression (4) can be considered as the first terms of Taylor series expansion of

f (Δu*) in  powers  of  Δu*/h .  The  shear  deformation  is  always  symmetric,

therefore,  in  the  problem  under  consideration  the  cohesion  function  is  odd,

f (Δu*)=− f (−Δu*), and expansion (4) includes only terms of odd powers. The

coefficients  μ1
*, μ3

* can be interpreted, respectively, as the linear and the nonlinear

shear modulus of the interface. Inversion of series (4) yields:

Δ u*

h
=σ

*

μ1
*−
μ3

*

μ1
* (σ

*

μ1
* )

3

+O [( σ
*

μ1
* )

5

]   at   ∂Ω. (5)

Let us introduce non-dimensional bonding parameters:

α=
hμ(1)

lμ1
* ,   β=

μ3
*

μ1
* (μ

(1)

μ1
* )

2

,

where the thickness h of the interface is normalised with respect to the size l  of the

unit cell, and the elastic constants μ1
*, μ3

* are normalised with the shear modulus μ(1)

of  the matrix.  Letting  h→0,  μ1
*→0,  μ3

*→0,  in  the asymptotic  limit  it  becomes

possible to describe different rates of debonding depending on the magnitudes of

the parameters α  and β . Then, expression (5) reads

u(1)−u(2)=α l σ
*

μ(1)
−αβ l ( σ

*

μ(1) )
3

   at   ∂Ω. (6)

The case α=0 corresponds to perfect bonding, α→∞ – to complete separation

of the components. At β=0 the interface is purely linear, whilst any increase in ∣β∣

increases nonlinear effects. The nonlinearity is soft for β <0 and hard for β >0.
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The input BVP includes equations (1), (2), and (6). The proposed model of

imperfect  bonding  is  valid  in  the  case  of  weakly-nonlinear  properties  at  the

interface. Equation (6) has an asymptotic nature and can be applied if, on its right-

hand side,  the ratio of  the second-to-first  terms is  of  the order  10−1.  The ratio

σ
*
/μ
(1)  is equal to the elastic strain ε . In consequence, the following estimation for

the admissible values of  β  is obtained:  ∣β∣≤(10ε 2)−1. In most solids, the elastic

strains do not exceed 10−3, which implies |β|≤105.

It  should  be  noted  that  BVP  (1),  (2),  (6)  allows  different  physical

interpretations.  Here  we  consider  it  in  terms  of  the  anti-plane  shear  waves,

however, all the following mathematical results are also valid for electromagnetic

waves in composites with dielectric inclusions.

3.  Higher-order  asymptotic  homogenization. Let  us  introduce  non-

dimensional  variables  ū=u /U ,  n̄=n /L,  x̄k=x k /L,  k=1,2,  where  U  is  the

displacement  amplitude  and  L is  the  wavelength.  Taking  into  account  that

σ
*
=μ

(1)
(∂u(1)/∂n) at ∂Ω, the input BVP (1), (2), (6) reads

μ(n )∇ x̄
2 ū(n)=ρ (n )L2 ∂

2 ū(n)

∂ t2 , (7)

μ(1)
∂ ū(1)

∂ n̄
=μ(2)

∂ ū(2)

∂ n̄
   at   ∂Ω, (8)

ū(1)−ū(2)=αη
∂ ū(1)

∂ n̄
−αηδ (∂ ū(1)

∂ n̄ )
3

   at   ∂Ω, (9)

where η=l /L, δ=β (U /L)2, ∇ x̄=L−1∇ x.

The ratio U /L indicates the magnitude of the elastic strains. We suppose that

the  size  l  of  the  unit  cell  is  smaller  than the  wavelength  L .  Hence,  the  non-

dimensional  variables  η and  δ  may be  considered as  natural  small  parameters

characterising, accordingly, the rate of dispersion and the rate of nonlinearity.
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The obtained BVP (7)–(9) implies that both the matrix and the fibres exhibits

linear  elastic  behaviour,  while  the  nonlinearity  is  induced  particularly  by  the

imperfect bonding conditions at the interface. This model is valid, if the gradients

of  displacement  are  small  enough  (so  that  the  geometrical  and  the  physical

nonlinearity of  the material  can be neglected).  However, at  the same time,  the

interface response is essentially nonlinear (thus, the parameter  β  is  sufficiently

large). Such a statement of the problem give us a possibility to distinguish and to

investigate,  how the nonlinear bonding conditions between the components can

affect the overall mechanical properties of the composite material. For the study of

geometrical  and  physical  nonlinearity  we  refer  to  Samsonov  (2001),  Porubov

(2003), Andrianov et al. (2013, 2014).

In order to derive a macroscopic wave equation,  the method of asymptotic

homogenization  is  applied.  Let  us  introduce  so-called  fast  y k=η
−1 x̄ k and  slow

x̄k=x̄ k coordinate variables. The spatial derivatives are then given by 

∇ x̄=∇ x̄+η
−1∇ y ,

where ∇ y=(∂/∂ y1)e1+(∂/∂ y 2)e2.

The solution is sought as the asymptotic expansion:

ū(n)=u0( x̄ k )+ηu1
(n )
( x̄k , y k )+η

2 u2
(n)
( x̄k , y k)+…. (10)

Here the first term u0 represents the homogenized part of the displacement field; it

varies “slowly” on the macrolevel and does not depend on the fast coordinates. The

next  terms   ui
(n),  i=1,2,3 ,…,  provide  order  η i corrections  and  describe  local

oscillations  of  the  displacements  within  each  unit  cell.  Since  the  composite

structure is periodic, the functions ui
(n) satisfy the periodicity condition:
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ui
(n)
( x̄k , y k)=ui

(n)
( x̄ k , yk±1),   i=1,2 ,3 ,… . (11)

Splitting the BVP (7)–(9) with respect to η, we obtain the recurrent sequence

of local BVPs:

μ(n )(∇ x̄
2 ui−2

(n ) +2∇ x̄⋅∇ y ui−1
(n) +∇ y

2 ui
(n))=ρ (n )L2 ∂

2 ui−2
(n)

∂ t 2 , (12)

μ
(1)(∂ui−1

(1)

∂ n̄
+
∂ ui

(1)

∂m )=μ(2)(∂ ui−1
(2)

∂ n̄
+
∂ui

(2)

∂m )   at   ∂Ω, (13)

ui
(1)
−ui

(2)
=α(∂ui−1

(1)

∂ n̄
+
∂ ui

(1)

∂m )−αδ (∂ui−1
(1)

∂ n̄
+
∂ ui

(1)

∂m )
3

   at   ∂Ω, (14)

where i=1,2 ,3 ,…; u−1
(n)
=0; ∂ /∂m is the normal derivative to ∂Ω written in terms

of fast variables.

The periodicity condition (11) can be equivalently replaced by the condition of

zero mean value over the unit cell domain (Bakhvalov and Panasenko, 1989):

∬
Ω0
(1)

ui
(1)dy1 dy2+∬

Ω0
(2)

ui
(2)dy1 dy2=0. (15)

The local problems (12) –(15) are considered within a specific unit cell of the

composite structure (Fig. 2). In terms of the fast coordinates y k , the size of the unit

cell  is  unity with the radius of  the inclusion  √c(2)/ π ,  where c(2) is  the volume

fraction of the fibres and 0≤c(2)≤π/4.
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Fig.2. The unit cell. Fig. 3. Simplification of the geometrical

shape of the unit cell.

Solution of the local problems may be obtained by different methods. Among

them, we would like to point out the method of Rayleigh multipole-expansions,

which was efficiently used for the determination of effective properties as well as

for study of the wave propagation in periodic composite structures (Movchan et al.,

2002; Parnell and Abrahams, 2006; William and Parnell, 2014). In this paper, we

derive an approximate analytical solution of the local problem (12)–(15). Let us

replace the outer square contour of the unit cell by a circle of the same area (Fig.

3). This simplification is well known in the theory of composites. In particular, it

was used for the evaluation of effective properties by the method of composite

cylinders assemblage and within generalised self consistent scheme (Christensen,

2005). The accuracy of such an approach is known to be good, when the volume

fraction  of  the  inclusions  is  relatively  small.  A numerical  verification  will  be

presented below.

Solutions of  the nonlinear local  problems (12)–(15) are sought  through the

following asymptotic expansion:
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ui
(n)
=ui0

(n)
+δui1

(n)
+O (δ 2

). (16)

The coefficients within (16) are determined explicitly using the computer algebra

system “Maple”. The term u1
(n) is evaluated with accuracy O (δ), the terms u2

(n), u3
(n)

– with accuracy O (δ 0).

Next,  we  apply  to  equation  (12)  at  i=4 the  homogenizing  operator

∬(⋅)dy1 dy2 over the unit cell domain. The term u 4
(n) is eliminated by use of Green's

theorem and taking into account conditions (11), (13) (Bakhvalov and Panasenko,

1989). As a result,  the macroscopic nonlinear wave equation is obtained in the

form:

μ1∇ x̄
2 u0+

1
3
δμ2∇ x̄⋅(∇ x̄ u0)

3
+η

2
μ3∇ x̄

4 u0+O (δ 2
+η

4
)=ρ L2 ∂

2 u0

∂ t 2
. (17)

Reverting back to the dimension variables  u=u0 U ,  xk=x̄ k L,  equation (17)

reads

μ1∇ x
2 u+

1
3
βμ2∇ x⋅(∇ x u)3+η 2 L2μ3∇ x

4 u+O(δ 2+η 4)=ρ
∂2 u

∂ t2 , (18)

where μ1, μ2, μ3 are the effective coefficients. The parameter μ1 is the linear shear

modulus; the parameters  μ2 and μ3 account, respectively, for nonlinearity and for

dispersive properties. 

For the effective coefficients μ1 and μ2, explicit analytical formulas have been

derived (see Appendix). The coefficient μ3 was evaluated by numerical integration

over the unit cell.  All calculations were performed using “Maple”. It  should be

noted that μ1, μ2, μ3 are always positive.

The presence of the microstructure leads to the appearance in the macroscopic
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wave equation (18) of the higher-order gradient term η 2 L2μ3∇ x
4 u. This term not

only refines the  low-frequency (acoustic) mode of interest but also generates a

spurious  high-frequency  mode.  The  latter  doesn’t  appear  in  the  asymptotically

identical  equation

μ1∇ x
2 u+

1
3
βμ2∇ x⋅(∇ x u)3+η 2 L2 μ3

μ1
ρ ∇ x

2 ∂
2 u

∂ t 2 +O(δ 2+η 4)=ρ
∂2 u

∂ t2

 

derived from (18) by the substitution ∇ x
4 u=(ρ /μ1)∇ x

2 (∂2u /∂ t2).

The spurious high-frequency modes arising in refined long wave theories have

been thoroughly investigated within the context of thin elastic structures, e.g. see

Goldenveizer et al., 1993; Kaplunov et al., 1998, 2000;  Pichugin et al., 2008 and

references  therein.  The  results  of  the  aforementioned  publications  can  be  also

extended to the long-wave models of periodic media (e.g., see Boutin and Auriault,

1993; Chen and Fish, 2001; Fish and Chen, 2004; Andrianov et al., 2008; Auriault

and Boutin, 2012; Soubestre and Boutin, 2012) having a lot in common with those

for thin structures, see also Craster et al., 2014.

The solution obtained in this paper is based on a geometrical simplification of

the  shape  of  the  unit  cell.  In  order  to  estimate  the  numerical  accuracy  of  this

approach, we consider the linear effective shear modulus μ1 in the case of perfect

bonding (α=0). The expression obtained for μ1 reads

μ1=μ
(1) (1−c(2))μ(1)+(1+c(2))μ(2)

(1+c(2))μ(1)+(1−c(2))μ(2)
. (19)

Formula  (19)  may  be  obtained  through  a  generalised  self-consistent  scheme

(Christensen, 2005). It also coincides with the lower variational bound obtained by

Hashin (1965).
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Table 1. The effective shear modulus μ1/μ
(1) of a composite with perfectly bonded,

perfectly rigid fibres (α=0, μ(2)/μ(1)→∞).

c(2) Approximate

solution (19)

Data by Perrins et

al. (1979)

Approximation

error, %

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.74

0.76

0.77

0.78

1.222

1.500

1.857

2.333

3.000

4.000

5.667

6.692

7.333

––

––

1.222

1.500

1.860

2.351

3.080

4.342

7.433

11.01

15.44

20.43

35.93

0.0

0.0

0.2

0.8

2.6

7.9

24.8

39.2

52.5

––

––

In Table 1, the analytical  solution (19) is compared with theoretical results

obtained by Perrins et al. (1979) for a composite material with perfectly rigid fibres

(μ(2 )/μ(1)→∞).  These  results  are  known to  converge.  This  example  exhibits  the

highest concentrations of local stress, the error of formula (19) then reaching a

maximum.  We remark that a decrease in the rigidity of fibres will improve the

accuracy of the approximation.

It can be seen that expression (19) provides a good accuracy for c(2)<0.5...0.6.

However, the error grows rapidly at c(2 )>0.7, when the gaps between neighbouring

fibres narrow and high gradients of the local fields are induced. In the latter case,

the shape of the unit cell can no longer be neglected and the spacial arrangement of

the fibres must be taken into account. However, it should be noted that for most
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real composite materials the volume fraction of the fibres does not exceed 0.4...0.5.

The  approximate  solutions  obtained  in  the  present  paper  can  therefore  be

successfully and confidently applied.

The  macroscopic  wave  equation  (18)  is  valid  for  long  waves,  i.e.  when

η=l /L<1. Below, a dispersion relation evaluated from equation (18) is compared

with the exact solution obtained by the Floquet-Bloch theory.

Let us consider the linear case (μ2=0) and the harmonic wave

u=U exp( i k⋅x)exp (−i ω t), (20)

where U  is the amplitude; ω  is the frequency; k  is the wave vector, k=k 1 e1+k 2 e2;

x=x1e1+x 2e2;  k 1 ,  k 2  projections of the wave vector k  onto the coordinate axes,

k 1=k cosϕ ,  k 2=k sinϕ ,  where  k=∣k∣=√(k 1
2+k 2

2)=2π /L;  with  ϕ  the  angel

between the axis x1 and the wave vector k .

Substituting  expression  (20)  into  equation  (18),  we  obtain  the  dispersion

relation:

ω2=ω0
2 [1−4π 2 μ3

μ1
η 2+O (η 4)], (21)

where  ω0=v 0 k ;  v 0 is the effective phase velocity in the linear long-wave limit,

v 0=√μ1/ρ .  The  parameter  η  is  related  to  the  modulus  k  of  the  wave  vector

through η=l /L=k l /(2π).

For the composite structure under consideration (Fig. 1), the anti-plane shear

problem  is  transversely  isotropic.  However,  this  is  true  only  for  the  static

deformation. In the dynamic case, the isotropic behaviour occurs only in the long-

wave  limit,  when  the  wavelength  is  essentially  larger  than  the  size  of  the

microstructure, l /L→0  and ω→0 . If the wavelength decreases (i.e., the frequency
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increases), the composite material exhibits anisotropic properties. The parameters

of high-frequency elastic waves depend on the direction of the wave vector, which

is  governed  by the  angel  ϕ .  Generally, this  effect  is  well  known and  can  be

observed from the dispersion diagrams for anti-plane shear waves derived by the

Floquet-Bloch method (Andrianov et  al.,  2008;  Kushwaha et al.,  1994). In this

paper, the  simplification  of  the  geometrical  shape  of  the unit  cell  presented  in

Fig. 3 implies the axial symmetry of the local problems. Therefore, the derived

approximate solution is transversely isotropic and the macroscopic wave equation

(18) is invariant to the direction of the wave propagation.

In Fig. 4, the asymptotic solution (21) (dashed curves) is compared with the

exact  dispersion relation (solid  curves)  evaluated  by the Floquet-Bloch method

(Andrianov et al.,  2008) for different directions of the wave vector: orthogonal

( ϕ =0 ) and diagonal (ϕ =π /4) with respect to the unit cell. Numerical results

are  presented  for  a  composite  material  consisting  of  an  aluminium  matrix  (

μ
(1)
=27.9GPa,  ρ(1)=2700kg/m3)  and  nickel  fibres  (μ(2 )=75.4GPa,  ρ(2)=8940

kg/m3),  with  fibre  volume  fraction  c(2 )=0.4.  It  can  be  observed  that  the

homogenized wave equation (18) provides good accuracy at η <0.4.

Fig. 4. Acoustic branches of the dispersion curves in the linear case.
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4. Analytical solution for stationary waves. We consider a stationary plane

wave propagating with permanent shape and velocity in the direction of the wave

vector k . In such a case the solution meets the following condition:

u(x ,t )=u(ξ), (22)

where ξ is the propagation coordinate, ξ =ek⋅x−v t; v is the phase velocity and ek

is the unit wave vector, given by ek=e1 cosϕ +e 2sinϕ .

Let us define the strain of the wave profile as follows

f = d u
d ξ

(23)

and  introduce  non-dimensional  variables  f̄ = f /F ,  ζ=ξ /L.  Here  F  is  the

amplitude of the strain wave and  L  is the wavelength. Substituting expressions

(22), (23) into equation (18) and integrating with respect to ξ , one obtains the non-

dimensional equation of a cubically nonlinear anharmonic oscillator:

d 2 f̄

d ζ 2+a f̄ +b f̄ 3+с=0, (24)

where  a=μ1(1−v2 /v0
2)/(μ3η

2),  b=β F 2μ2/(3μ3η
2),  c is  the  constant  of

integration.

The natural assumption that the displacement u remains bounded imposes the

condition of a zero mean strain over the wave period, thus

∫
0

1

f̄ (ζ)d ζ =0. (25)
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Condition  (25)  allows  evaluation  of  the  constant  c.  In  the  problem  under

consideration we obtain c=0.

Equation  (24)  represents  a  well-known  reduction  of  the  famous  modified

Korteweg-de Vries equation (e.g., see Drazin and Jonson, 1989;  Christov et al.,

1996; Maugin,  1999; Porubov,  2003).  In  this  case  propagation  of  stationary

nonlinear waves is possible in the case of a balance state between the effects of

nonlinearity and dispersion. This means that all the terms of equation (24) have to

be of the same asymptotic order. Let us establish the underlying scaling.

The first term in equation (24) is of the order  O (1), whereas the asymptotic

order of the second term is given by (1−v2/v 0
2)η −2. Then

|1−v2/v 0
2|∼η 2,

implying that the studied wave speed  v  has to be close to the shear speed  v 0

predicted by the associated linear theory. Therefore we get for a typical wavelength

L∼ l

√|1−v 2
/v0

2|
≫ l. (26)

Formula (26)  means that  we deal  with long wave phenomena in line with the

classical KdV setup originating from nonlinear analysis of shallow water waves.

The asymptotic order of the third term in (24) depends on βF 2/ η 2. Taking into

account F∼U /L, and δ=β (U /L)2 (see Section 2), we obtain that the third term of

equation  (24)  is  also  O (1).  The  typical  magnitudes  of  the  parameters  are  as

follows: η 2∼10−1, δ ∼10−1, |β|∼105, F∼10−3.

The exact  analytical  solutions of  equation (24)  can  be derived in  terms of

elliptic functions (see, for example, Erofeev (2003)).The type of solution depends

upon the signs of the coefficients  a and b, so we obtain different results for soft
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and for hard nonlinearity.

In the case of soft nonlinearity (β <0,  b<0), the exact periodical solution of

Eq. (24) is:

f̄ = 1
2

sn (κζ , s), (27)

where κ  is the propagation variable, κ =4 K (s),  sn (⋅) is the elliptic sine, K (s) is

the complete elliptic integral of the first kind (Abramowitz and Stegun, 1965), s  is

the modulus of the elliptic functions that is determined form the transcendental

equation

s2 K (s)2=−
β F 2μ2

384η 2μ3

. (28)

For the phase velocity v  we obtain:

v 2

v 0
2=1−16(1+ s2)K (s)2

μ3
μ1
η 2. (29)

In the case of hard nonlinearity (β >0,  b>0), the solution takes the following

form:

f̄ = 1
2

cn (κ ζ , s). (30)

s2 K (s)2=
βF 2μ2

384η 2μ3

, (31)

v 2

v 0
2=1−16(1−2 s2)K (s)2

μ3
μ1
η 2. (32)
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We remark that equations (28) and (31) transform into each other, if the sign of the

parameter β  changes.

5. Analysis of the solution and numerical results

In the problem under consideration, the type of nonlinearity (soft at  β <0 or

hard at  β >0) has a crucial influence upon the propagation mode of elastic strain

waves.  The  shapes  of  the  wave  profile  are  displayed  in  Fig.  5  employing

expressions  (27)  and  (30).  The  magnitude  of  the  modulus  s determines  the

intensity of nonlinear effects.

The limit  s=0 corresponds to the purely linear case:

f̄ = 1
2

sin (2π ζ) at β <0;   f̄ = 1
2

cos (2πζ) at β >0;   
v 2

v 0
2 = 1−4π 2 μ3

μ1
η 2.

At  the  opposite  limit,  s=1,  solutions  (27)–(29)  and  (30)–(32)  describe

localised solitary waves. In the case of soft nonlinearity, a shock (so-called kink)

strain wave appears (Fig. 6, a):

f̄ = 1
2

th ( ζΔ ),   Δ
2
=−

24μ3η
2

F2β μ2

,   
v 2

v 0
2 =1−

2μ3η
2

μ1Δ
2

,   β <0.

Here the parameter Δ  can be treated as the width of the localised wave.

The kink wave propagates with a velocity lower than v 0  associated with  the

linear long-wave limit: v<v0. This is the so-called subsonic mode. The increase in

the amplitude F  leads to a decrease in the width Δ and the velocity v  of the wave.
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a

b

Fig. 5. Periodic nonlinear elastic strain waves;

a – soft nonlinearity (β <0), b – hard nonlinearity (β >0).
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a b

Fig. 6. Localised nonlinear elastic strain waves;

a – soft nonlinearity (β <0), b – hard nonlinearity (β >0).

If nonlinearity is hard, the localised solution takes the form of a bell-shaped

wave (Fig. 6, b):

f̄ = 1
2 ch(ζ /Δ)

,   Δ2
=

24μ3η
2

F 2β μ2

,   
v 2

v 0
2 =1+

μ3η
2

μ1Δ
2 ,   β >0.

In  this  case  a  supersonic propagation  mode  is  realised,  i.e.  v>v0.  When  the

amplitude F  grows, the width Δ decreases and the velocity v  increases.

As an illustrative example, let us consider numerical results for a composite

material consisting of the aluminium matrix (μ(1)=27.9GPa, ρ(1)=2700kg/m3) and

nickel fibres (μ(2 )=75.4GPa, ρ(2)=8940kg/m3). The volume fraction of the fibres is

c(2 )=0.4.  The  following  magnitudes  of  the  bonding  parameters  are  assumed:

α=0.1,  ∣β∣=105.  Basing on the  solutions  presented  in  Section  3,  the  effective

elastic coefficients are evaluated: μ1=33.1GPa, μ2=21.6 GPa, μ3=0.119GPa.

The dependence of  the phase velocity  upon the modulus  s is  presented in

Fig. 7.  In  the case  of  soft  nonlinearity  (β <0),  a  subsonic  propagating mode is
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realised: v<v0. For hard nonlinearity (β >0), the subsonic mode (v<v0) occurs  at

s2<1/2,  while  the  supersonic  mode  (v>v0)  is  observed  at  s2>1/2.  Here  the

threshold value s0
2=1 /2 is determined by considering qualitative properties of the

analytical  solution (31)  and is  independent  from physical  characteristics  of  the

material and direction of propagation.

Fig. 8 displays the parametric dependence of the modulus s on the amplitude

F  and  the  dispersion  parameter  η.  These  results  have  been  obtained  through

numerical solution of equations (28), (31) using “Maple”. The domain of elastic

strains is restricted by F≤10−3 , a regime typical for most engineering materials.

The presented results show how the phenomena of nonlinearity and dispersion

compensate each other. The increase of the amplitude  F  (at a fixed value of  η)

leads to the growing of the modulus  s and, therefore, the intensity of nonlinear

effects increases. In contrary, the decrease of the wavelength and the increase in η

(at a fixed  F ) is followed by the decrease of the modulus  s, so the influence of

nonlinearity is reduced.

As may be observed from Figs. 5, 7, if  s>0.6  nonlinearity has a critical and

fundamental influence on both the wave shape and velocity. In this case,  η <0.2

and, consequently, the solution can be evaluated utilising long-wave approach. On

the other hand, the homogenized equation (18) lacks accuracy for η >0.4 (see Fig.

4). However, in this case  s<0.34, which means that the wave shape and velocity

are very close to the linear case and, consequently, an approximate solution may be

found utilising the linear theory. This analysis is particularly important, helping to

estimate the domain of practical applicability of linear and nonlinear approaches.
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a

b

Fig. 7. Phase velocity of nonlinear elastic strain waves;

a – soft nonlinearity (β <0), b – hard nonlinearity (β >0).
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Fig. 8. The modulus s characterising the intensity of nonlinear effects.

6. Conclusions. The  paper  presents  analytical  solutions  that  describe  the

propagation of nonlinear elastic anti-plane shear waves in a unidirectional fibre-

reinforced  composite  material  with  imperfect  bonding  between  constitutive

components.  It  should  be  emphasised  that  this  type  of  nonlinearity  has  a

particularly strong influence upon the propagation mode and the shape of the strain

waves. In the case of soft nonlinearity, localised shock (kink) waves appear, while

in respect of materials with hard nonlinearity the localised solution takes the form

of bell-shaped waves.

The analysis allowed us to estimate the domain of applicability of the different

approximate theories  used for  the modelling of  elastic  waves in  heterogeneous

solids. It is shown that nonlinear waves can be adequately described within the

long-wave  framework  (such  as  the  asymptotic  homogenization  method  or

Cosserat-type higher-order continuum models). When dealing with the propagation

of  short  waves,  with  wave  length  commensurable  with  the  scale  of  the

microstructure,  nonlinear  effects  become  very  small.  In  such  a  case,  an

approximate solution may be obtained using the linear Floquet-Bloch theory.
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The conclusion presented above is true, if the strain amplitude  F  does not

exceed 10−3 , which is typical for solids. However, some materials and structures

(e.g.,  elastometers,  DNA  molecules,  nanotubes,  atomic  chains)  can  allow

enormously high elastic strains ( F=10−2…10−1  or even higher). In such a case,

short waves can not be considered in the framework of the linear elasticity, so both

the  effects  of  nonlinearity  and  high-dispersion  (including phononic  band  gaps)

must be taken into account simultaneously.

The results presented in the paper can be applied to facilitate the development

of  new efficient  methods  of  acoustic  diagnostic  and  non-destructive  testing  in

various branches of engineering. Measuring the characteristics of nonlinear waves

allows us to receive much more precise information about the internal structure

and defects of solids. This is sometimes that may be not possible within a linear

framework.

Finally,  we  remark  that  the  propagation  of  localised  nonlinear  waves  is

accompanied by an essential  concentration of  mechanical  energy. The obtained

solutions for solitary strain waves can help in the development of new criteria for

the dynamic failure of heterogeneous materials and structures.
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Appendix. Formulas for the effective coefficients μ1 and μ2

μ1=[μ(1)(c(2))2π3/ 2(μ(2))2+2(c(2))2π3 /2μ(2 )(μ(1))2−μ(1)(c(2))4 π3 /2(μ(2))2+

2(c(2))4π(3/2)μ(2)(μ(1))2−(c(2))4π3/ 2(μ(1))3+(c(2))2π3/2(μ(1))3+

2μ(1)α(μ(2 ))2π2(c(2))3 /2+2αμ(2)π 2(c(2))3/ 2(μ(1))2−μ(1)α2(μ(2))2π5 /2(c(2))3+

μ(1)α2(μ(2))2 c(2 )π5 /2+2μ(1)α(μ(2))2π2(c(2))7/2−2αμ(2)(c(2))7 /2π2(μ(1))2 ] /
[2αμ(2)π2(c(2))3 /2μ(1)+2αμ(2)(c(2))7/ 2π2μ(1)−2(μ(2))2(c(2))3π3/2+

2(c(2))2π3/2μ(2)μ(1)−2(c(2))4π3 /2μ(2)μ(1)+2α(μ(2))2π2(c(2))3/ 2+

α2(μ(2))2π5/2(c(2))3+α2(μ(2))2 c(2)π5/ 2−2α(μ(2))2π2(c(2))7 /2+2(μ(1))2(c(2))3π3/ 2+

(c(2))2π3/ 2
(μ
(2)
)

2
+(c(2))4 π3/2

(μ
(2)
)

2
+(c(2))4π3/ 2

(μ
(1)
)

2
+(c(2))2π3/ 2

(μ
(1)
)

2
+

4αμ(2)π2
(c(2))5 /2μ(1)+2α2

(μ
(2)
)

2
π

5/ 2
(c(2))2 ] ,

,

μ2=36αμ(1)π(c(2))5 /2(μ(2))4 /

[−4(c(2))5π1 /2(μ(2))4+(c(2))6π1/2(μ(1))4+

6(c(2))4π1/2(μ(1))4−4(c(2))3π1 /2(μ(2))4+(c(2))2π1/ 2(μ(1))4+

(c(2))6π1 /2(μ(2))4+12c(2)(μ(2))3α2π3/2μ(1)+6 c(2)(μ(2 ))2α2π3/ 2(μ(1))2+

24 (c(2))2(μ(2))2α2
π

3/ 2
(μ

(1)
)

2
+36(c(2))3(μ(2))2α2

π
3/ 2
(μ

(1)
)

2
+24(c(2))2(μ(2))3α2

π
3 /2
μ
(1)
−

24(c(2))4(μ(2))3α2π3/ 2μ(1)+4(c(2))5π1/2(μ(1))4+6(c(2))4π1 /2(μ(2))4−

12 (c(2))4 π1 /2(μ(1)μ(2))2−8(c(2 ))5π1 /2(μ(1))3μ(2)+8(c(2))3π1/ 2μ(2)(μ(1))3−

4(c(2))6π1/ 2(μ(2))3μ(1)−4(c(2))6π1/2μ(2)(μ(1))3+(c(2 ))2π1/2(μ(2))4+

α
4
(μ
(2)
)

4
π

5 /2
+6(c(2))2π1/ 2

(μ
(1)
μ
(2)
)

2
+24(c(2))4(μ(2))2α2

π
3 /2
(μ
(1)
)

2
−

12(c(2))5(μ(2))3α2π3/ 2μ(1)+6(c(2 ))5(μ(2))2α2π3/2(μ(1))2+12(μ(2))3πα(c(2))3/2μ(1)+

16(μ(2))3π2α3(c(2))3/2μ(1)+12(μ(2))2πα(c(2))3/ 2(μ(1))2+4μ(2)πα(c(2))3/2(μ(1))3+

4(μ(2))3π2α3(c(2))9 /2μ(1)−24(μ(2))2πα(c(2))9/ 2(μ(1))2+16μ(2)πα(c(2))9 /2(μ(1))3+

24(μ(2))3π2α3(c(2))5 /2μ(1)+16μ(2)πα(c(2))5/2(μ(1))3+24(μ(2))2πα(c(2))5/ 2(μ(1))2+

4πμ(2)α(c(2))11/2
(μ

(1)
)

3
−12π(μ(2))2α(c(2))11/2

(μ
(1)
)

2
+12π(μ(2))3α(c(2))11/ 2

μ
(1)
+

16(μ(2))3π2α3(c(2))7/ 2μ(1)−24(μ(2 ))3 πα(c(2))7 /2μ(1)+24μ(2)πα(c(2))7 /2(μ(1))3+

8(c(2))5π1 /2μ(1)(μ(2))3+6(c(2))6π1/2(μ(1)μ(2))2+4(c(2))3π1/2(μ(1))4+

6(c(2))(μ(2))4α2π3/2−12(c(2))3(μ(2))4α2π3/2+6(c(2))5(μ(2))4α2π3/2+

8(μ(2))4 π2
α

3
(c(2))3/ 2+4(μ(2))4πα(c(2))3/ 2−4(μ(2 ))4π2

α
3
(c(2))9 /2+

8(μ(2))4πα(c(2))9 /2+4α4(μ(2))4π5/2 c(2)+6α4(μ(2))4π5 /2(c(2))2+

4α4(μ(2))4π5 /2(c(2))3+α4(μ(2 ))4π5/2(c(2))4−8(μ(2))4 πα(c(2))5 /2−

4π(μ(2))4α(c(2))11/2−8(μ(2))4π2α3(c(2))7/ 2+4(c(2))2π1 /2(μ(2))3μ(1)+

4(c(2 ))2π1/2μ(2)(μ(1))3−8(c(2 ))3π1 /2μ(1)(μ(2))3+4π2(μ(2))4α3(c(2))1/2+

4π2(μ(2))3α3(c(2))1/2μ(1)] .
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