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Abstract

In this paper, the bending waves propagating along the edge of
a semi-infinite Kirchhoff plate resting on a two-parameter Pasternak
elastic foundation are studied. Two geometries of the foundation are
considered: either it is infinite or it is semi-infinite with the edges of the
plate and of the foundation coinciding. Dispersion relations along with
phase and group velocity expressions are obtained. It is shown that
the semi-infinite foundation setup exhibits a cut-off frequency which is

the same as for a Winkler foundation. The phase velocity possesses a
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minimum which corresponds to the critical velocity of a moving load.
The infinite foundation exhibits a cut-off frequency which depends
on its relative stiffness and occurs at a nonzero wavenumber, which
fact is hardly observed in elastodynamics. As a result, the associated
phase velocity minimum is admissible only up to a limiting value of
the stiffness. In the case of a foundation with small stiffness, asymp-
totic expansions are derived and beam-like one-dimensional equivalent
models are deduced accordingly. It is demonstrated that for the infi-
nite foundation the related non-classical beam-like model comprises a

pseudo-differential operator.

Keywords: Edge wave; Kirchhoff plate; Pasternak foundation; Moving

load; Dispersion

1 Introduction

Elastic waves localized at the edge of thin-walled structures, commonly named
edge waves, may be regarded as a generalization of the classical Rayleigh
waves. Edge waves belong to the realm of Surface Acoustic Waves (SAW)
which has stimulated a great deal of interest in light of its applications in the
context of signal processing devices, nondestructive evaluation (NE), seismol-
ogy (Biryukov et al., 1995). White and Voltmer (1965) have been success-
fully employing surface waves through direct piezoelectric coupling in several
microelectronic applications, ranging from sensing and actuation to telecom-

munications and biosensors (White, 1970). SAW appear to play a pivotal



role in a wide array of natural phenomena such as the excitation the outer
hair cells of the cochlea (Bell, 2006) or in beach cusps pattern formation
(Sallenger Jr, 1979).

Edge waves were first shown to exist theoretically by Konenkov (1960) and
several time independently rediscovered afterward (Norris et al., 2000). It is
remarkable that a similar problem dealing with localized stability of a semi-
infinite elastic plate was considered even earlier by Ishlinskii (1954). Elastic
waves at the edge of plates and shells were intensively studied under fairly
broad assumptions taking into account the effects of pre-stress, anisotropy,
curvature and transverse inhomogeneity, e.g. see an overview by Lawrie and
Kaplunov (2012) and references therein. However, until the recent note by
Kaplunov et al. (2014), elastically supported structures were not tackled. The
edge bending wave on a semi-infinite Kirchhoff plate resting on a Winkler
foundation, considered in Kaplunov et al. (2014), exhibits a cut-off frequency
along with a minimum for the phase velocity which corresponds to the critical
speed of a moving load, in a similar manner as for the classical problem for
a beam supported by an elastic foundation, e.g. see Timoshenko (1926).

In this paper we extend the considerations of Kaplunov et al. (2014) to a
more general two parameter elastic foundation model, known as the Paster-
nak foundation (Selvadurai, 1979). The Pasternak foundation is often termed
“weakly non-local” because it takes into account the effect of an infinitesi-
mally small neighborhood of the material when expressing the foundation
response at a point (Nobili, 2012a). This in contrast to the purely local

foundation models, such as Winkler’s, on the one hand, and to the fully non-



local models, such as Wieghardt (1922)’s, on the other hand. In fact, the
latter expresses the foundation response through an integral of the overall
soil behavior. Introducing a non-local soil response has a threefold purpose.
First of all, it is more realistic and better approximates the sophisticated
behavior of a substrate. Besides, it addresses the question whether the re-
duction to a one dimensional problem is in fact due to the very special nature
of the foundation. In addition, the effect of plate boundary conditions (BCs)
other than those for a free edge is brought into evidence.

Here, two layouts and accordingly two sets of BCs are analyzed. A first
set of BCs corresponds to a semi-infinite Pasternak foundation whose edge
coincides with the edge of the plate. A second set of BCs is concerned with
an infinite foundation and is analogous in a sense to the sophisticated three-
dimensional problem for a plate lying on an acoustic half-space. The two
sets of BCs are determined via variational arguments in Nobili (2012b). The
dispersion relations are derived and investigated for both aforementioned
cases. The main focus is on the qualitative and quantitative analysis of the
cut-off frequencies and of the minima of the phase velocity.

Asymptotic expansions are obtained in terms of a dimensionless small
parameter 1 expressing a ratio of foundation and plate stiffnesses. The prac-
tically important situation in which 7 tends to zero represents, for instance,
a small deviation from a local (Winkler) foundation. In the case of a semi-
infinite soil, such expansions are shown to correspond to a one-dimensional
equivalent formulation for a beam resting on a Pasternak elastic founda-

tion with certain effective properties, see Kaplunov and Prikazchikov (2013)



for more detail. Besides, a cut-off occurs at the same frequency as for the
Winkler foundation. The infinite foundation scenario appears to be more
involved. Indeed, the cut-off frequency of the edge wave depends on 7 and
it corresponds to a non-zero wavenumber. As a result, the phase velocity
minimum is admissible only up to a limiting value of 1. More surprisingly,
already at the first order deviation from the Winkler foundation, the system
exhibits a non-local character in the form of a pseudo-differential operator,
which admits no equivalence to a beam-like system supported by any classical
two-parameter elastic foundation. The paper is organized as follows: Sec.2
presents the equations of motion and the feature of an edge wave traveling
solution. In Sec.3, the two sets of BCs are introduced and the correspond-
ing dispersion relations obtained, together with the expressions for the phase
and group velocity and the cut-off curve. An asymptotic analysis for a small
deviation from the Winkler model is carried out in Sec.4 and an equivalent
beam-like system is introduced in Sec.5. Finally, conclusions are drawn in

Sec.6.

2 Statement of the problem and traveling wave
solution

Let us consider a semi-infinite Kirchhoff plate with thickness 2h, bilaterally
supported by a Pasternak two parameter elastic foundation. We investigate

two cases corresponding to either a semi-infinite or an infinite foundation
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Figure 1: Semi-infinite Kirchhoff plate resting on a semi-infinite (a) or infinite

(b) Pasternak elastic foundation

(Fig.1). The governing equation for the transverse displacement of the plate
w reads as

DAAw — cAw + pw + 2phdyw = 0, (1)

being A = 0., + 0,, the Laplace operator in two dimensions, D the plate
bending stiffness and p the mass density; the parameters ¢ and [ are usually
named the Pasternak and the elastic modulus of the foundation. Egs.(1)

may be rewritten as
ALw —2x 2 Aw + A4 (w + 1) = 0, (2)

having let characteristic lengths

D 2D
A= (/= and x=4/—.
15} c



Here, dot denotes time differentiation with respect to the dimensionless time

T =1/y/2ph/B. Letting the positive dimensionless ratio

together with dimensionless co-ordinates

T = /\_1x, Y = )\_ly,

Eq.(2) becomes
AAw — 202 Aw + w + 10 = 0, (3)

being A the 2D Laplace operator in z; and y;. Likewise, the governing
equation for the soil transversal displacement wu, in the absence of the plate
(see Fig.1b), is given by

—2n?Au +u = 0. (4)

Consider a traveling edge-wave solution
w(x1,y1,7) = Aexp [i( Kz — Q1) — pKuy]. (5)

Such edge-wave is propagating along the zi-axis and it is exponentially de-
caying over the interior of the plate, i.e. for y; > 0, provided that R(u) > 0.
Here, p is the attenuation index, K = Ak where k € RT is the wave number
and ) = W\/W where w is the angular frequency. Plugging the traveling

wave solution (5) into Eq.(2), we get the equation

P K (- 1) 1 - 22K (1P 1) = 0, (6)



which gives two possible solutions for p, namely

2 QQ+ 4_1
S VA /S (7)

:ui2 = K2

The decay condition $(u;) > 0 is satisfied provided that the parameters K

and Q) are such that the point (K, Q) lies outside the region R, being

R:{(K,Q):Qz—1+n4ZOandK2+n2—\/QQ—1+n4§0}. 8)

Let us define

2= [y fla. (9)
When (K,) € R, pu; and z are both either purely imaginary or zero. It is
easy to prove that the converse holds true, which means that enforcing the

decay condition $(u1) > 0 amounts to looking for z to be real and positive.

Let us now consider an edge-wave solution for the soil in the form
u(z,y1,7) = Bexp [i( Kz, — Q1) + 7Ky, (10)
which decays as y; — —oo provided that R(v) > 0. Plugging the solution

(10) into Eq.(4), we have

1

3 Dispersion relations

We now discuss separately the two set of BCs relating to a semi-infinite and

infinite foundation (Fig.1).



3.1 Semi-infinite foundation

The BCs on the free plate edge y = 0 need take into account the presence
of the a line loading arising from the foundation (Nobili, 2012b; Selvadurai,
1979), namely
my =0, v, +cow =0,
being
my = =D (Oyy + vO0p) w, vy = =D [Oyyy + (2 — V) Oy w

respectively the bending moment and the Kirchhoff equivalent shearing force.
Here, v is the Poisson ratio. In dimensionless co-ordinates, the second BC

yields
—b, + 2n*0,w = 0, (12)

holding at y; = 0. Here, we let 9y = [Oy,y19 + (2 = V) 0pya1y | W.
We satisfy the BCs using a linear combination of two traveling waves,

namely
w=Ayexp[i(Kxy — Q) — Ky + Asexp [i(Kxy — Q1) — o Ky}, (13)
whence we require
AR (1 — v) + A K2 (g — v) = 0,
K2 [Avpn (] 4 v = 2) + Aopo (i + v — 2)] = 207 (A + Aspa)

This homogeneous system of linear equations in Ay, A> has solutions other

than the trivial one provided that

2
z2—|—2(1—u+%>z—y2:0. (14)

9



Clearly, Eq.(14) possesses two roots z; < 0 < 29, the second of which is
always admissible. Substituting for z via Eqs.(7,9), we find the dispersion

relation in terms of K and (2
f(K,Q) =0,

where

PO, Q) = 1=+ K (1=1) 2K +2 [(1 = 1) K2 + 0°] /1 + K% + 2K = Q2,
(15)
which, upon solving for the square root and squaring, can be presented in

explicit form
02 = 1-K*(1-v)(1-3v)+2K [(1 — v)R — *(1 — 2v)] +20*(R—7?), (16)

where

vw=vV22?-2v+1, R= \/U§K4+2(1 —v)n?K? +nt.

When 1 = 0, Eq.(16) reduces to (19) of Kaplunov et al. (2014) which corre-

sponds to the Winkler foundation, i.e.
VKt =07 -1, (17)

where

Ye = /(1= v)(3v — 1+ 2up)

is a known edge-wave constant, cf. Lawrie and Kaplunov (2012). Fig.2 plots

) as a function of K according to Eq.(16) for n = 0,0.5,1 at v = 0.4. Tt is

10



easy to see that all curves converge to the cut-off frequency €2y = 1 for the

Winkler case, for at the long wave regime
O =1+20°K*>+ O(K").

The phase velocity VP" = Q/K is easily obtained from (16), namely

_ V1- K41 —v)(1—-3v)+2K2[(1 —v)R—n2(1 — 2v)] + 2n%(R — n?).

veh
K
(18)
The group velocity is given by
ds2 2 2 [V 2 hy—1
Vie—=2en"2v—-1)—-2(v—1)s+ K |—n" = 3v " +4v — 1| » (V?")
dK s
(19)

Fig.3 plots the phase and group velocity curves for n = 0,0.5,1 at v = 0.4.
Phase velocity V" exhibits a minimum point where it intersects the group
velocity curve. Indeed, V" ~ K~! as K — 07 and VP" ~ 42K as K — +o0

(cfr. Eq.(26)).

3.2 Infinite foundation

The BCs on the plate free edge y = 0 are given in Nobili (2012)
w=u, my=0, v,+c(Ow—0yu)=0, (20)

where u is the displacement field for the infinite foundation. The BC on the

shearing force may be rewritten as
—by, + 2n* (9w — ,u) = 0.

11
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Figure 2: Dispersion curves for edge-waves of a plate resting on a semi-infinite

Pasternak foundation (v = 0.4)
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Figure 3: Phase and group velocity curves of a plate resting on a semi-infinite

foundation (v = 0.4)

12



We satisfy the BCs using a linear combination of three waves, namely Eq.(13)
for the plate and Eq.(10) for the soil. Enforcing the conditions (20) yields

a homogeneous system of linear equations in A;, As, B whose non-trivial

n?
z 47y 2(1+ﬁ>+22

Here we have used Eq.(7) to get pu2+pu3 = 2 (1 + n*/K?). Plugging in Eq.(11)

solutions exist provided that

K? [ +2(1—v)z —v?] +21° = 0.

for v, we arrive at the dispersion relation for z and K

2
K? {Z2+2(1—V+%)Z—V2]+

+ 25/ K2+ 1) (P + K2(z + 1) = 0. (21)

It is observed that the term in square brackets corresponds to the dispersion
relation given in Eq.(14) so that the infinite nature of the foundation con-
tributes only with the last term. This equation admits one positive root for

z given that

2
p(m) = 4m2(1 +m) (2 + 17*4m) A 0, m= % > 0. (22)

The inequality (22) follows from inspection of Eq.(21) at z = 0. In the
limiting case n = 0, this inequality is always satisfied for any K > 0. Let my

be the single positive root of the equation

p(m()) = 07 (23>

then

=

K> Ky,=

g

13



and

Q> Q= ,|1+n!

1\2
<1+—) —1] >1,
mo

equality holding only in the case n = 0. Substituting for z through Eqs.(7,9),

we get the dispersion relation in terms of K and )

FK,Q) + 2n\/(2n2k2 +1) (772 + K24 /K 22K — Q2 + 1) =0, (24)

where f(K,€Q) is defined in (15). Fig.4 plots the dispersion curve (24) to-
gether with the cut-off points (2, Ky), for n = 0, 0.05, 0.1 and v = 0.4.
Note that {29 > 1 and the equality holds in the case n = 0, that is for the
Winkler foundation, in which case Ky = 0. Already at fairly small values
of n, my < 1. Eq.(21) reduces to (13) of Kaplunov et al. (2014) whenever
n = 0. Conversely, the corresponding dispersion relation (14), valid for the
semi-infinite foundation, cannot be retrieved as a limiting case of Eq.(21).

Fig.5 plots the phase velocity V?" again for n = 0, 0.05, 0.1 and v = 0.4.

4 Asymptotic expansions

In the case n < 1, i.e. the near-Winkler regime, the dispersion relation may

be given an asymptotic expansion in 7).

4.1 Semi-infinite foundation
Eq.(16) may be expanded up to second order terms in 7 as
O =1+ K + 200K%9° + O(n'), (25)

14
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Figure 4: Dispersion curves and cut-off points (K, §2y) for edge-waves of a

plate resting on an infinite Pasternak foundation (v = 0.4)
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Figure 5: Phase velocity and cut-off points (Ko, Vg h) for edge-waves of a

plate resting on an infinite Pasternak foundation (v = 0.4)
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where ¢, = —1 4 2v + %. Consequently, the phase velocity is simply

V1+ K Y
VPt = I +— +174K4 Kn*+ O0(nh). (26)

It can be easily shown that the position of the phase velocity minimum occurs

at
K* - ,y(,_l + O<772)a

which supports a weak dependance of this value on 7, as shown in Fig.3.

The corresponding minimal phase velocity is given by
V. = V27, + O(n?).

It follows that within the truncation error, K, and V, coincide with their

counterparts given in Kaplunov et al. (2014) for the Winkler foundation.

4.2 Infinite foundation

Eq.(24) cannot be easily solved explicitly for Q. However, up to first order

terms in 7, it can be replaced by

K*' (v = D) +2K*(v—-1)VK*' — Q? + 1+QQ—1—277\/\/K4 — MW+ 1+ K24+0(n*) =0

and when dealing with a first order approximation in 7, the n term can be

taken at the leading order approximation (17), namely

K' (v = 1) 2K (v=1)VEK = Q@ + 1+0°=1-29 K/ 1 + /1 = 7}4+-0(") = 0.

Now eliminating the square root and solving for Q2 as for the semi-infinite

setup dealt with in Sec.3.1, we can rewrite the previous dispersion relation

16



in an explicit form
Q% =1+ K'Y + 20, K+ O(1?), (27)

where 1)y = (1 — 1;—()“) \/1+4 +/1 —~2. The corresponding phase velocity is

given by
V= Lt ek + v n+ 0% (28)
K V1t K

and its minimum is

I Vph:‘/;:\/ﬁe_’_ﬁ +O 2a
min tet 5 (n°)

which is attained at

T 1y
K, =— 4+ 2
Ye * 47277

3o
2v/27.

Figs.6 plots the cut-off curves in the n, K plane for three different values of

+0(n*) and Q,=V2+

n+0(r").  (29)

v and the corresponding asymptotic expansions for n small, namely

LA
mg ~ 3777, n <1, (30)

2
Ky ~ WV—Z, O ~ 1. (31)

From Egs.(29,31), a limiting value for  may be defined, namely

leading to

1/2

- 73 (32)

Mo

for which Ky = ~,'. For n > 1y, the minimum of the phase velocity is
attained outside the admissibility region for K. It is observed that, strictly

speaking, from the standpoint of asymptotic theory, the reasoning leading

17
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Figure 6: Cut-off wavenumber Ky vs. 7 and its approximation (dotted

curves) as given by Eq.(31)

to ng is formally incorrect, for the asymptotic expansions are obtained in
the assumption that n is small, in particular n < 79. Nonetheless, 7, is
a valid numerical approximation for the validity region for K. Fig.7 plots
the wavenumber cut-off K as well as the value K, corresponding to the

phase velocity minimum vs. the parameter n at v = 0.4. In this Figure,

the asymptotic formula (31) is compared to the “exact” value K, = \/ZTO
obtained through a numerical solution of Eq.(23). Similarly, the leading order
approximation K, = v, (cf.(29)) is plotted against the curve computed via

the dispersion relation (24). The intersection between the asymptotic curves

for Ky and K, yields nj.

18
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Figure 7: Asymptotics vs. numerics for the cut-offs and phase velocity min-

ima of a plate resting on an infinite Pasternak foundation

5 Beam-like models for edge waves

Following Kaplunov et al. (2014), the asymptotic dispersion relations (25,
27) may be interpreted in terms of a beam resting on an elastic soil. For
a semi-infinite foundation, the soil behaves like a Pasternak foundation and

the equation of motion of such a system becomes
Dbaarxwa:w + 2/Ohatt,w - Cbawxw + Bbw = Oa

where D, is the effective beam flexural rigidity, ¢, and S, the effective Paster-

nak and Winkler moduli, respectively. Dynamic equivalence demands

Db:D’y;L) Cb:C@ZJl, Bb:ﬁ (33)

This equation supports a critical velocity of a moving load which coincides
with the minimal phase velocity Vi, e.g. Timoshenko (1926). It is worth men-
tioning that a critical velocity is also characteristic of edge moving pertur-
bances acting on a plate supported by a foundation with non-small Pasternak

coefficient for which reduction to a beam-like system is impossible. It can be
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verified that the last identity in Eqgs.(33) is refined at the next asymptotic or-
der for the expansion (25). Also, the high-order expansions of the latter bring
in inverse powers of the wavenumber K, which hints that a non-local foun-
dation model is dealt with. Such non-local feature is even more pronounced
in the infinite foundation model. In this case, the two term expansion (27)

corresponds to the following equation of motion:

Dy0,pzzw + 2ph0yw + ppy/ —Opzw + Bpw = 0, (34)

where \/—0,, is a pseudo-differential operator associated with the non-local

feature of the foundation (Dai et al., 2010). Here,

=/ 2¢P.

Thus, the two-parameter elastic foundation is no longer of the Pasternak
type. Furthermore, the range of validity of the beam like system underlying
Eq.(34) is restricted to the wavenumbers above the nonzero cut-off K, as

discussed in the previous Section.

6 Conclusions

The dispersion relations for edge bending waves on a semi-infinite Kirchhoff
plate supported by a two parameter Pasternak foundation are derived. Two
layouts are considered for the foundation: either it is infinite or it is semi-
infinite and its edge coincides with the edge of the plate. The phase and group

velocity are expressed in terms of a single dimensionless parameter expressing

20



the relative stiffness of the foundation. The main focus is set on the cut-off
frequencies and on the minima of the phase velocity, the latter corresponding
to the critical velocities of a moving load. Asymptotic expansions for a
nearly local (Winkler) foundation are presented. As a physical consequence,
similarity of edge plate waves and bending waves on elastically supported
beams is established.

Treatment of the infinite Pasternak foundation reveals several unexpected
features, including a sophisticated dependence of the cut-off frequency and
of the minimum of the phase velocity on the relative soil stiffness. It is also
remarkable that the cut-off frequency is observed at a nonzero wavenumber,
which is a rather rare occurrence in elastodynamics. As an example, we
mention the first symmetric Lamb harmonics in an elastic layer, e.g. see
Achenbach (1984). Furthermore, the edge wave on a plate resting on a infinite
foundation may be only interpreted in terms of a beam laying on a non-
classical foundation modeled by a pseudo-differential operator.

The obtained results may be extended to anisotropic and pre-stressed
structures and also adapted to refined plate models. In addition, analysis
of a plate supported by more general types of infinite foundation, possibly
including an elastic half-space, seems to be of obvious theoretical and prac-

tical interest. A similar problem for an acoustic half space was addressed in

Abrahams and Norris (2000).
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