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Abstract

The paper deals with surface wave propagation in an orthorhombic elastic half-plane. The
general profile of the wave is considered, incorporating the anisotropy effects within the
known representation in terms of a single plane harmonic function.
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1. Introduction and governing equations

Surface wave propagation in anisotropic media is well-studied, see e.g. Destrade (2001)
and references therein. However, the majority of the contributions deal with harmonic
travelling waves of the form eik(x1−vt). Chadwick (1976), inspired by the work of Friedlan-
der (1948), has presented a more general solution for the Rayleigh wave field in terms of
a single harmonic function in case of a linearly isotropic elastic half-plane. This approach
was later extended to interfacial waves and surface waves with general lateral dependence,
see Kiselev and Parker (2010), and Kiselev and Rogerson (2009). Achenbach (1998) has
shown for time-harmonic disturbances that in case of a transversely isotropic half-space
the solution for surface waves at any depth is governed by a membrane equation.

The aim of this note is to investigate further surface waves of arbitrary profile in case
of anisotropic media. In particular, the problem is considered for an orthorhombic elastic
half-plane (−∞ < x1 < ∞, 0 ≤ x2 < ∞). Following Chadwick (1976), a general repre-
sentation for the free surface wave field is obtained through an arbitrary plane harmonic
function.

The equations of motion of linear elasticity are given by

σjm,m = ρüj, (1)

where ρ is volume density, uj and σjm (j,m = 1, 2) are the displacement and traction
components, respectively, a dot conventionally denotes differentiation with respect to
time t, a comma indicates differentiation along the corresponding spatial variable, and
summation over repeated indices is assumed.

The constitutive relations for the orthorhombic elastic solid are written explicitly as

σ11 = c11u1,1 + c12u2,2, σ22 = c12u1,1 + c22u2,2, σ12 = c66 (u1,2 + u2,1), (2)

where c11, c12, c22 and c66 are stiffness components, satisfying the conditions

c11 > 0, c11c22 − c212 > 0, c66 > 0, (3)

required for the positive definiteness of the strain-energy density, see Ting (1996).
Substituting (2) into (1), one arrives at

c11u1,11 + c66u1,22 + βu2,12 = ρü1,

βu1,12 + c66u2,11 + c22u2,22 = ρü2,
(4)

with β = c12 + c66.
The free boundary conditions are imposed at the surface x2 = 0 of the half-plane

σj2 = 0, (j = 1, 2). (5)

2. Surface waves of arbitrary profile

Similarly to Chadwick (1976), we start from the ansatz in the form of a travelling
wave, namely (j = 1, 2)

uj = Uj(x1 − vt, x2). (6)
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Substitution of the latter into the equations of motion (4) gives(
c11 − v̄2

)
U1,11 + c66U1,22 + βU2,12 = 0,

βU1,12 +
(
c66 − v̄2

)
U2,11 + c22U2,22 = 0,

(7)

with v̄2 = ρv2.
Equations (7) may be transformed to a fourth order PDE in respect of one of the

sought for displacements. For example, in terms of U1 we obtain

U1,1111 + a1U1,1122 + a2U1,2222 = 0, (8)

where

a1 =
c266 + c11c22 − β2 − (c22 + c66)v̄

2

c22c66
, a2 =

(c11 − v̄2) (c66 − v̄2)

c22c66
. (9)

It may be shown that the obtained fourth order equation (8) is elliptic, with the coefficients
a1 and a2 coinciding with that of the traditional characteristic equation for attenuation
orders, see e.g. Royer and Dieulesaint (1996). It may therefore be presented in operator
form as [

∂2
2 + λ2

1∂
2
1

] [
∂2
2 + λ2

2∂
2
1

]
U1 = 0, (10)

where
λ2
1 + λ2

2 = a1, λ2
1λ

2
2 = a2. (11)

Hence, the solution of (10) may be expressed as

U1 =
2∑

j=1

ϕj (x1 − vt, λjx2) , (12)

where ϕj are arbitrary plane harmonic functions, decaying as x2 → ∞. Bearing in mind
the obtained solution (12) and using the Cauchy-Riemann identities for plane harmonic
function in the form

∂ϕ

∂x2

= −λ
∂ϕ∗

∂x1

,
∂ϕ

∂x1

=
1

λ

∂ϕ∗

∂x2

, ϕ = ϕ(x1, λx2), (13)

it is possible to express another displacement from (7)1 as

U2 =
2∑

j=1

f(λj, v̄
2)ϕ∗

j (x1 − vt, λjx2) , (14)

with the asterisk denoting the harmonic conjugate and

f(λ, v̄2) =
c66λ

2 − c11 + v̄2

βλ
. (15)
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The solutions (12), (14) may now be substituted into the free surface boundary conditions
(5). Using the Cauchy-Riemann identities, we arrive at

2∑
j=1

(
f
(
λj, v̄

2
)
− λj

)
ϕj,1 (x1 − vt, 0) = 0,

2∑
j=1

(
c12 + c22λjf(λj, v̄

2)
)
ϕj,1 (x1 − vt, 0) = 0,

(16)

which possesses non-trivial solutions provided the associate determinant is non-zero. After
some small algebraic manipulations the latter may be rewritten as a well-known bi-cubic

c22c66v̄
4
(
c11 − v̄2

)
−
(
c66 − v̄2

) [
c22

(
c11 − v̄2

)
− c 212

]2
= 0, (17)

see e.g. Royer and Dieulesaint (1996). Then, similarly to Chadwick (1976), it is possible
to express the displacement components in terms of a single harmonic function. Indeed,
using (16)1 and the properties of harmonic functions, ϕ1 and ϕ2 may be related as

ϕ2(ξ, λ2x2) = −h(v̄2R)ϕ1(ξ, λ2x2), (18)

where v = vR is the surface wave speed being the root of (17), and

ξ = x1 − vRt, v̄2R = ρv2R, h(v̄2R) =
f(λ1, v̄

2
R)− λ1

f(λ2, v̄2R)− λ2

.

Therefore, in terms of ϕ1 we have

U1(ξ, x2) = ϕ1(ξ, λ1x2)− h(v̄2R)ϕ1(ξ, λ2x2),

U2(ξ, x2) = f(λ1, v̄
2
R)ϕ

∗
1 (ξ, λ1x2)− f (λ2, v̄

2
R)h(v̄

2
R)ϕ

∗
1 (ξ, λ2x2) .

(19)

3. Examples

In this section we present several examples illustrating the proposed representation
(19).

3.1. Sinusoidal profile

Let us begin with the well-known sinusoidal profile, being a particular case of the
obtained representation. In this case the harmonic function ϕ1 in (12) may be specified
as

ϕ1(ξ, λx2) = sin ξ eλx2 , Re(λ) < 0, (20)

therefore the expressions for the displacement field (19) are given by

U1(ξ, x2) =
[
eλ1x2 − h(v̄2R) e

λ2x2
]
sin ξ,

U2(ξ, x2) =
[
f(λ1, v

2
R)e

λ1x2 − f (λ2, v
2
R)h(v̄

2
R) e

λ2x2
]
cos ξ,

(21)
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where Re(λj) < 0, (j = 1, 2) ensure the decay conditions. It follows from (11), that the
attenuation coefficients λ1 and λ2 could be either real or complex conjugates. In the latter
case (λ1,2 = −a± ib, a, b > 0) the expressions (21) may be rewritten as

Ũ1 = F1(x2) sin ξ, Ũ2 = F2(x2) cos ξ, (22)

where
Ũj = i

(
λ2 − f(λ2, v

2
R)
)
Uj(ξ, x2) (j = 1, 2) (23)

and

F1(x2) =
2

β

(
v̄2R − c11
a2 + b2

+ c12

)
e−ax2 [b cos(bx2) + a sin(bx2)] ,

F2(x2) =
2e−ax2

β(a2 + b2)

{[
(c11− v̄2R)

2
+(c11− v̄2R) (c12−c66)(a

2−b2)

− c12c66 (a
2 + b2)

2
]
sin(bx2) + 2abβ (c11 − v̄2R) cos(bx2)

}
.

(24)

It may be shown that the eigenfunctions Ũj are real.
A typical illustration of this case is presented in 1, showing the decay of the functions

Fj (j = 1, 2) with depth. The numerical computations within this section are performed
for the α-iodic acid (HIO3) with the material parameters given by c11 = 30.1, c12 = 16.1,
c22 = 58, c66 = 15.8 (GPa), and density ρ = 4640 (kg/m3), see Royer and Dieulesaint
(1996).
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Figure 1: Decaying components for the (a) horizontal and (b) vertical displacements of sinusoidal profile.

3.2. Localized profile

Let us now consider the surface wave field corresponding to the decaying harmonic
function in (12) specified as

ϕ1(ξ, λx2) =
ξ

ξ2 + (λx2 + δ)2
,

implying the conjugate function

ϕ∗
1(ξ, λx2) = − λx2 + δ

ξ2 + (λx2 + δ)2
,
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where δ > 0 is a constant. The displacement field (19) is then written as

U1(ξ, x2) =
ξ

ξ2 + (λ1x2 + δ)2
− h(v̄2R) ξ

ξ2 + (λ2x2 + δ)2
,

U2(ξ, x2) =
h(v̄2R) f (λ2, v̄

2
R) (λ2x2 + δ)

ξ2 + (λ2x2 + δ)2
− f(λ1, v̄

2
R)(λ1x2 + δ)

ξ2 + (λ1x2 + δ)2
.

(25)

Similarly to the previous example, it may be shown that the scaled displacements Ũj

defined in (23), are real.
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Figure 2: Localized horizontal and vertical displacements (δ = 1).

Finally, we present numerical illustrations of the obtained solutions, see Figure 2. The
decay of the horizontal displacement Ũ1 along the transverse variable x2 is presented in
Figure 2a for several values of ξ, while the variation along ξ at several depths is shown
in Figure 2b. Similar graphs for the vertical displacement Ũ2 are given in Figures 2c and
2d, respectively.

4. Concluding remarks

The main outcome of this note is the formulation (19) for surface wave field in terms
of a single harmonic function in case of an orthorhombic elastic half-plane, which extends
the previously known results for linearly isotropic media.
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As shown in Royer and Dieulesaint (1996), due to the general nature of the surface
wave equation (17), the obtained results are also valid for the cases of tetragonal, hexag-
onal and cubic crystals. It should also be possible to generalize the presented approach
for pre-stressed elastic media (Dowaikh and Ogden , 1991), 3D case, see also Destrade
(2004), and interfacial waves (Parker , 2012).

A similar treatment may also be performed for the flexural edge wave in anisotropic
plate, however, the travelling wave ansatz should be replaced by the beam-like assumption,
for more details see Kaplunov et al. (2013) and references therein.

Another issue is concerned with the specialized hyperbolic-elliptic formulations for
surface dynamics in case of the forced boundary value problems, see e.g. Kaplunov et al.
(2006). The results established in the present note for free surface waves provide a path
to development of the asymptotic models for surface waves in anisotropic media including
the cases of coated half-space (Dai et al. , 2010), and mixed problems (Erbaş et al. ,
2012). The obtained asymptotic formulations may also be applied to various moving load
problems, see Kaplunov et al. (2010) and references therein.
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