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Background Autologous chondrocyte implantation (ACI) has been used to 

treat cartilage defects in thousands of patients worldwide with good clinical 

effectiveness 10-20 years after implantation. Information concerning the 

quality of the repair cartilage is still limited because biopsies are small and 

rare. Glycosaminoglycan structure influences physiological function  and  is  

likely  to  be  important  in  the  long  term  stability  of  the  repair  tissue. The 

aim of this study was to assess glycosaminoglycans in ACI tissue over a 2 

year period.  

Methods Biopsies were taken from one patient (25 years old) at 12 months 

and 20 months post ACI-treatment and from three normal cadavers (21, 22 

and 25 years old). Fluorophore-assisted carbohydrate electrophoresis (FACE) 

was used to quantitatively assess the individual glycosaminoglycans.  

Results At 12 months the ACI biopsy had 40% less hyaluronan than the age-

matched cadaveric biopsies but by 20 months the ACI biopsy had the same 

amount of hyaluronan as the controls. Both the 12 and 20 month ACI biopsies 

had less chondroitin sulphate disaccharides and shorter chondroitin sulphate 

chains than the age-matched cadaveric biopsies. However, chondroitin 

sulphate chain length doubled as the ACI repair tissue matured at 12 months 

(3913Da±464) and 20 months (6923Da±711) and there was less keratan 

sulphate as compared to the controls.  

Conclusions Although the glycosaminoglycan composition of the repair 

tissue is not identical to mature articular cartilage its quality continues to 

improve with time.   

  



3 
 

Keywords autologous chondrocyte implantation, glycosaminoglycans, 

cartilage, Fluorophore assisted carbohydrate electrophoresis (FACE), 

hyaluronan 

 

 



4 
 

Introduction 

Autologous chondrocyte implantation (ACI) was first introduced as a biological 

cell therapy approach to treat small focal defects of articular cartilage1. To 

date, ACI has been used to treat cartilage defects in thousands of patients 

worldwide with good clinical effectiveness several years after implantation2,3. 

Many centres report a high percentage of good to excellent clinical results 

with a failure rate of ~15%4,5. The majority of failures occur within the first 

year. Only a small number of centres, including our own, have investigated 

the long-term stability of the repair tissue using outcome measures such as 

mechanical testing, clinical scores, MRI and histology6-8.  

Previous studies of patient knee function scores following ACI have indicated 

the importance of a two-year post-operative status as an indication of the long 

term success of this treatment2,9,10. One study, which tracked patients for two 

to nine years post ACI2, showed that the percentage of good to excellent 

results was 92% in patients with isolated femoral condyle lesions. Another 

study found improved joint function and a better quality of life in 72% of 

patients 12 months post ACI and improved joint function in 84% of patients 3 

years post operatively9. These results are encouraging but there are still 

concerns about the quality of the cartilage formed at the site of the defect. 

Detailed assessment of the repair tissue has been restricted by the size and 

availability of ACI biopsies. Basic histological studies of ACI biopsies indicate 

that repair tissue matures slowly11-13. Further detailed studies are necessary 

to fully assess the molecular characteristics of the tissue as it matures over 

time. 
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The unique properties of articular cartilage depend on the interactions 

between the chondrocytes with their extracellular matrix14. 

Glycosaminoglycans (GAGs) surround the chondrocyte linking them to other 

chondrocytes and to the rest of the extracellular matrix. Chondroitin sulphate 

(CS), keratan sulphate (KS) and hyaluronan (HA) are GAGs found in articular 

cartilage where they provide both physiological and biological functions15. 

Each GAG has a distinctive molecular composition, which typically comprises 

a repeating disaccharide unit of an amino sugar and a uronic acid. GAGs 

acquire a considerable degree of complexity through their extensive 

modifications which involve sulphation and epimerisation. Due to these 

complexities, it has always been difficult to demonstrate clear structure-

function relationships of GAGs. Studies, including our own, have shown that 

GAGs in articular cartilage change as a function of development, age and 

disease16-23. In adult cartilage, 50-80% of GAGs are CS chains which are 

composed of glucuronic acid and N-acetylgalactosamine monosaccharides. 

N-acetylgalactosamine monosaccharides are sulphated on carbon positions 4 

(C4S) and/or 6 (C6S), and the CS chain is terminated with a N-

acetylgalactosamine sugar that can be sulphated16. During development, 

chondroitin sulphation is thought to be tightly controlled both spatially and 

temporally17. During embryogenesis CS chains are exclusively C6S. From 

foetal development to adolescence, CS chains tend to be equally C4S and 

C6S. In this age range, CS chains are ~25kD and almost entirely terminated 

with a 4-sulphated N-acetylgalactosamine18. During adulthood, CS chains 

tend to have more C6S than C4S, the chains are shorter at ~16kD, and they 

are terminated with a 4- or 6-sulphated N-acetylgalactosamine8,22, or a 4,6-
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sulphated N-acetylgalactosamine18. KS represents 20-50% of the GAG chains 

in adult cartilage. KS chains are more complex than CS chains because they 

can have a branched structure. This makes it difficult to determine their chain 

length and termination sugars. KS is composed of galactose and N-

acetylglucosamine. KS chains can be modified by O-sulphation of the 

hydroxyl groups, but in a much more restricted pattern when compared with 

CS. O-sulphation of the hydroxyl groups at C6 of both the galactose and/or 

the N-acetylglucosamine, results in un-, mono- or disulphated repeat 

disaccharides. The sulphation  levels  of KS  chains  isolated  from young 

cartilage  (5-11 yr-old) have been shown  to  increase  from 30-50%  to 80-

95% with advancing  age19. KS chains also demonstrate an age-related 

increase in chain length20. HA has been reported to account for 1-10% of 

GAGs in articular cartilage although higher values have been reported8,21-23. 

HA is composed of unsulphated glucuronic acid and unsulphated N-

acetylglucosamine monosaccharides. The exact composition of the terminal 

sugar is currently unknown. High concentrations of HA are generally found 

during aging and development.  

To date, the GAG properties in ACI repair tissue are largely unknown. 

Defining the molecular composition of GAGs in repair cartilage over time may 

help us to understand how the tissue matures. Immunological assessment of 

ACI biopsies20,24 have defined the distribution of GAGs but these approaches 

are limited in characterising sulphation pattern or the real quantitation of 

GAGs. Fluorophore-Assisted Carbohydrate  Electrophoresis  (FACE)  has  

evolved  over the last decade  to  be  a  highly  sensitive technique for 

profiling GAGs8,22,25-27. Our lab has used FACE in a range of applications 
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including describing age-related changes in GAGs in a limited number of ACI 

biopsies8 and through the zones of normal, healthy cartilage22. Herein we 

have used FACE to quantify the specific GAGs in ACI biopsies removed at 12 

and 20 months post-surgery in order to provide some insight into the changes 

in GAGs within maturing tissue. 
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Materials and Methods. 

Autologous chondrocyte implantation (ACI) biopsies: A 25 year old with an 

isolated femoral condyle lesion underwent ACI and had a biopsy (1.8 mm in 

diameter, ~5 mm in length) removed during a follow up arthroscopy at 12 

months. The biopsy was taken perpendicularly from the articulating surface 

through the full depth of cartilage and subchondral bone. A further biopsy was 

removed during a second follow up arthroscopy at 20 months. The removal of 

the two biopsies was given ethical approval by the Shropshire Research and 

Ethics Committee (UK) and the patient was consented at the time of each 

surgery.  

Cadaveric tissue: An age-range (21, 22 and 25 years) of cadaveric knees was 

obtained from the UK Human Tissue Bank with full approval by Trent 

Research Ethics Committee. All of the cadavers had been involved in road 

traffic accidents. Prosected knees were obtained within 24h of death. All 

articular cartilage appeared healthy and macroscopically normal. 

Histology: Core biopsies of the cadaveric and repair tissue formed were 

obtained and processed as previously described8. These were snap-frozen in 

liquid nitrogen–cooled hexane prior to sectioning and 7-µm thick cryosections 

were collected onto poly-L-lysine–coated slides. Sections were stained with 

toluidine blue and viewed with bright light microscopy to assess the 

glycosaminoglycan content of the tissue and polarised light to show the 

arrangement of the collagen fibrils. 

Glycosaminoglycan (GAG) analysis: GAGs were extracted using an 

adaptation as previously described8,22. Briefly, the biopsies (full depth of 

cartilage, ~250 µg) were digested at 60°C with 125 µg proteinase K in 100 µl 
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of 100 mM ammonium acetate buffer, pH 7.0 for 4 h. GAGs were ethanol 

precipitated (final concentration of 80% v/v) from the proteinase K digests and 

aliquots of each biopsy were further enzymatically processed. All GAG-

specific enzymes and standards were purchased from Seikagaku. HA was 

digested with 100 mU/ml of hyaluronidase SD (Hyase SD) for 1 h at 37 °C. 

CS was digested with 100 mU/ml of chondroitinase ABC (cABC) for 3 h at 

37°C.  The sulphation pattern of CS was confirmed by incubation of cABC-

digested samples with 100 mU/ml of chondroitin-4ase and/or chondroitin-6ase 

for 12 h at 37 °C.  Non-reducing termini of CS were identified by mercuric ion 

treatment. For KS analysis, samples were incubated with 100 mU/ml of 

keratanase II for 3h at 37 °C or 100 mU/ml of endo-β-galactosidase for 14 h.  

KS digestion was confirmed by sequential digestion with 100 mU/ml of 

keratanase II for 3 h and 100 mU/ml of endo-β-galactosidase for 14 h and 

conversely with 100 mU/ml of endo-β-galactosidase for 14 h and 100 mU/ml 

of keratanase II for 3 h.   

Lyophilised enzyme-digested samples and standards were fluorescently 

labelled for 16 h at 37 °C for 16 h with 5 µl 12.5 mM 2-aminoacridone and 5 µl 

of 1.25 M sodium cyanoborohydride. Following fluorescent tagging, 10 µl of 

25% glycerol (20% v/v final concentration) was used to quench excess 

sodium cyanoborohydride. Portions (5µl) of these samples were 

electrophoretically separated using a T25 %/C3.75 % acrylamide resolving gel 

in 187.5 mM Tris-borate and 187.5 mM Tris-HCl  buffer and T5 %/C1.5 % 

acrylamide stacking gel in 360 mM Tris-HCl buffer.   

Gels were placed on a transilluminator light box fitted with a 312-nm light 

source. Fluorescent images were captured using a High CCD Camera (UVP, 
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Cambridge, UK) and the mean pixel density for each product band was 

quantified using LAB WORKS Software (UVP). For each gel, FACE product 

bands were identified by their co-electrophoresis with a range of pre-defined 

fluorotagged saccharide standards as previously described8,22. Accurate 

quantitation was achieved between 10 and 400 pmol of product. 

 

Statistical analysis: Each biopsy was analysed 8 times and results are 

represented as the mean ± standard error of the mean (SEM). All analyses 

were performed using GraphPad Prism 7 (GraphPad Software Inc., San 

Diego, California).  
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Results  

Histology: Representative toluidine blue stained sections from knee cartilage 

obtained from a 22 year old cadaver and the 25 year old patient at 12 months 

and 20 months post-ACI are shown in Figure 1. Tissue obtained from the 22 

year old cadaver (A) shows good homogenous metachromasia and good 

integration with the underlying subchondral bone. For the patient at 12 months 

post-ACI (B), metachromasia is more intense nearer to the subchondral bone 

and there appears to be reasonable integration with the bone. Less 

metachromasia towards the top of the tissue could represent the remnants of 

the periosteal patch. Polarising light (C) shows random arrangement of 

collagen fibrils within the tissue at low and high power (insert). This is in 

agreement with our previously published work which showed that at 12 

months most biopsy tissue was either fibrocartilaginous or mixed 

morphology24,28,29. For the patient at 22 months post-ACI (D), there is clearly 

more metachromasia throughout the tissue than at 12 months post-ACI. The 

intact surface of the cartilage has the strongest staining. There is also good 

integration with the underlying bone. Neither of the post-ACI biopsies are as 

strongly stained as the cadaveric tissue which suggests that there is less 

GAG post-ACI. For the patient at 22 months post-ACI (E), polarising light still 

shows a random arrangement of collagen fibrils within the tissue but at high 

power (insert) there are clearly more closely packed collagen fibrils compared 

with the 12 month post-ACI biopsy.  

Proportion of CS, HA and KS in the biopsies: FACE analysis revealed the 

differences in the proportions of HA, CS and KS between ACI biopsies and 

age-matched cadaveric biopsies (Figure 2). Each GAG, with its constituent 
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saccharide component, was expressed as a total percentage of GAGs 

analysed. There was more CS in both of the ACI biopsies than there was in 

the age-matched controls. Conversely, there was less KS in both of the ACI 

biopsies in comparison with the age-matched controls. In the 12 month ACI 

biopsy, HA accounted for 13.72±0.39% of the total GAG (Figure 2). This was 

much lower than the 20 month ACI biopsy and the cadaver controls (Figure 2, 

6.46±0.26% and 6.09±1.31%).  

FACE analysis of chondroitinase and hyaluronidase digestion products: 

Figure 3A shows the concentration of CS (∆DiOS, ∆Di6S and ∆Di4S) and HA 

disaccharides in the biopsies. FACE revealed that the concentration of CS 

disaccharides was consistent within the age-matched controls; ∆Di6S 

(1.28±0.17µg/mg, 62%), ∆Di4S (0.56±0.09µg/mg, 27%) and ∆Di0S 

(0.24±0.08µg/mg, 11%). The 12 month and the 20 month ACI biopsies had 

less CS disaccharides than the age-matched controls (Figure 3A). The CS 

disaccharide compositions for 12 month and 20 month ACI biopsies were 

∆Di6S (32%), ∆Di4S (37%), and ∆Di0S (31%); and ∆Di6S (47%), ∆Di4S 

(20%), and ∆Di0S (33%), respectively. 

At 12 months the ACI biopsy had 0.24µg/mg HA (Figure 3A) but as the ACI 

repair tissue matured the HA concentration increased to the same level as the 

controls.  At 20 months the ACI biopsy had 0.37±0.1µg/mg and the cadaveric 

biopsies had 0.36±0.09µg/mg. These data compare well with previously 

published data for adult articular cartilage8,17,22. 

Analysis of the terminal sugars of CS: Adult CS chains are predominantly 

terminated with GalNAc4S, GalNAc6S or GalNAc4,6S. For both the ACI 

repair tissue and control tissues, analysis of the terminal sugars of CS 
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identified low levels of GalNAc and GalNAc6S but no GalNAc4,6S (Figure 

3B). Previous studies, including our own, have not detected GalNAc4,6S8,17,22. 

The concentration of terminal sugars increased as the repair tissue matured.   

FACE analysis of keratanase II and endo-β-galactosidase digestion 

products: Within the ACI repair tissue there was a lower concentration of KS 

compared the cadaveric tissue (Figure 3C). We did not detect any 

unsulphated disaccharides in either the ACI or cadaveric biopsies which is 

consistent with the literature19,20,22. The profile within the cadaveric tissue was 

similar to our previously published data8,22, in that a range of sulphated 

disaccharides and a terminal capping residue were detected. In the control 

biopsies we detected two monosulphated disaccharides (Gal-GlcNAc6S, 

GlcNAc6S-Gal) and a disulphated disaccharide (Gal6S-GlcNAc6S) from the 

KS chain interior, and a non-reducing terminal sialic acid trisaccharide (Neu-

Gal-GlcNAc6S). Gal6S-GlcNAc6S was present in the highest concentration in 

all controls (1.51±0.06µg/mg) and it doubled in concentration as the ACI 

tissue matured (12 months 0.14±0.01µg/mg, 20 months 0.29±0.07µg/mg). 

The ratio of GAGs: During cartilage maturation, CS undergoes major 

changes in sulphation up to the age of 20 years; ∆Di6S content increases 

whilst ∆Di4S content decreases. All three cadaveric biopsies had more ∆Di6S 

than ∆Di4S and this was reflected in the ratios of ∆Di6S:∆Di4S (Figure 4A). At 

12 months post ACI, the ratio of ∆Di6S:Di4S was significantly lower than the 

control data. At 20 month post ACI, the ratio increased and approached the 

levels of the age-matched controls. The ratio of CS:KS was significantly lower 

in all controls than in the ACI biopsies (Figure 4B). 
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Determination  of  the  average  CS  chain  size:  The  value  for  the 

average CS chain length was determined by dividing the total fluorescence of 

the internal disaccharides by the total fluorescence of the non-reducing 

termini as previously described8,25. In the control group the chain length was 

18.21±0.16 kDa (Figure 4C). By contrast, CS chains in the repair tissue were 

significantly shorter (12 months 3.91±0.46 kDa, 20 months 6.92±0.71 kDa). 

The CS chain length doubled as the ACI repair tissue matured but this 

increase was not significant.  
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Discussion.    

Previous studies of patient knee function scores following ACI have indicated 

the importance of a two-year post-operative status as an indicator of the long 

term success of this treatment2,3,9,10. Whilst these results are reassuring there 

remains concern about the quality of the cartilage formed within the defect. 

For cartilage repair tissue, there have been many studies assessing the 

collagen28-30 but a very limited number of studies assessing proteoglycans 

and GAGs. Proteoglycans, with their associated highly anionic GAGs, are key 

players in a range of cartilage functions including tissue compressibility, tissue 

remodelling, up-take of proteins, intracellular signalling and cell movement31. 

In our previous work22, applying FACE to analyse normal, healthy articular 

cartilage, we have shown that the middle zone has a higher concentration of 

HA than the superficial and deep zones. HA interacts with aggrecan to retain 

water in cartilage giving the tissue its compressibility. Thus the HA-rich middle 

zone might be very important in influencing the swelling behaviour of the 

cartilage, and in turn the associated compressibility. We demonstrated an 

increased ∆Di6S to ∆Di4S in the deep and middle zones compared to the 

superficial zones22 and we noted that the sulphation levels of KS increased 

from around 50-80% with advancing age22. All of this information is providing 

us with clues to further understand the importance of cartilage GAGs. 

Previously, also utilising FACE, we have shown that 12 month ACI repair 

tissue contains less CS and KS but more HA when compared to age-matched 

control cartilage8. Furthermore, CS chains were significantly shorter in 12 

month ACI repair tissue8. Many studies have reported on maturation of 

chondrocytes in pellets31 and cartilage like tissue in scaffolds32 but very few 
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studies have reported on tissue maturation within a cartilage defect11,12,29. 

From our limited knowledge, we do know that the maturation of the tissue as a 

whole is very slow. Therefore in this study we have carried out a detailed 

analysis of the GAGs to assess how they behave in the repair tissue as it 

matures over time. Clearly the limitation of our study is that we have only 

presented the results from a single patient. This is because the ACI biopsies 

are rare. Despite this, our work has given us a preliminary handle on the 

difference between the chemistries and concentrations of GAGs in the ACI 

repair tissue. ACI biopsies removed at 12 and 20 months contained fewer 

GAGs than the age-matched controls. HA and CS levels increased as the 

repair tissue matured but KS levels remained low. 

Reduced GAG levels in ACI repair tissue could simply be due to the 

expansion of the chondrocytes prior to implantation. Articular chondrocytes in 

vivo synthesise and secrete an extracellular matrix that is rich in collagens, 

proteoglycans, GAGs and non-collagenous proteins. Freshly isolated articular 

chondrocytes that are cultured in monolayer are known to undergo de-

differentiation34 and subsequently produce different proteoglycans35. After 

extensive monolayer culture, de-differentiated chondrocytes will irreversibly 

lose their chondrogenic potential35. At our centre, freshly isolated 

chondrocytes for ACI are cultured in monolayer for a short period of time to 

avoid the loss of their chondrogenic potential36. The effect of in vitro 

expansion on implanted cells has yet to be investigated in full. Liu et al. 

measured the amount of newly synthesised GAGs and the patterns of 

sulphation by serially subcultured monolayer articular chondrocytes following 

their re-differentiation in 3-dimensional culture37. The ∆Di6S:Di4S ratio of the 
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articular chondrocytes decreased when the cells were cultured in monolayer 

and then increased dramatically when the cells were placed in 3-dimensional 

culture37. The production of proteoglycans and their associated GAGs 

returned to near normal levels but only after several weeks in 3-dimensional 

culture. Liu et al. demonstrated that the reversal of gene expression of 

articular chondrocytes after monolayer culture and then re-differentiation is 

time dependent. In our study, the cells for ACI clearly need a long period in 

vivo to regain their phenotype but we have no direct comparison to estimate 

just how long this recovery takes.  

Even though ACI remains a successful technique especially in articular 

cartilage restoration, there is on-going research to improve the technique5. A 

modification of the ACI technique has been achieved with matrix-induced 

autologous chondrocyte implantation (MACI), in which autologous 

chondrocytes are seeded and cultured on collagen membranes before 

implantation. This approach provides the cells with a 3-dimensional 

environment prior to implantation which is lacking in the original ACI 

technique. It is widely accepted that cartilage remodelling following 

chondrocyte expansion is notoriously slow21,38. Freshly synthesised 

proteoglycans do not form aggregates and quickly diffuses out of the 

cartilage38. Thus the lack of a 3-dimensional environment and the lack of 

ability to form aggregates may result in the GAGs and their associated 

proteoglycans being lost from the tissue for a period of time after cell 

implantation. Furthermore, re-differentiated chondrocytes in a 3 dimensional 

environment will synthesise less GAGs if they are too closely packed together 

or even too far apart39.  Taken together, this may explain why the 12 month 
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ACI biopsy assessed in our study contained fewer GAGs than the 20 month 

and the age-matched controls. 

A large body of work has described the relevance of mechanical loading of 

articular cartilage39-41. Mechanical loading maintains the integrity of articular 

cartilage; however, both disuse and overuse can result in cartilage changes39. 

At the molecular level, chondrocytes are known to respond to mechanical load 

by altering their gene expression40. At the cellular level, mechanical load is 

known to produce changes in CS chain length, sulphation patterns and their 

concentrations41. For example, in horses, CS chain length can be increased 

by exercise42. At our centre, ACI patients are given a detailed post-operative 

rehabilitation protocol which includes exercises designed to improve weight 

bearing, range of motion and strength43. In our previously published work8, the 

CS chains were considerably shorter in the age-range of ACI biopsies that we 

examined. In this new study, CS chain length doubled from 12 months 

(3.91±0.46kDa) to 20 months post ACI (6.92±0.71kDa).  Despite this finding, 

CS chain length was still considerably less than age-matched controls. 

Previous work has shown that the presence of GalNAc or GalNAc6S can 

facilitate elongation of the CS chain and the presence of GalNAc4S can 

prevent elongation of the CS chain44. In our study, both the ACI repair tissue 

and the control tissues had no GalNAc4S but did have low levels of GalNAc 

and GalNAc6S at the end of their CS chains. Thus one would expect the CS 

chain length to be longer. It is possible that there was insufficient mechanical 

load applied to the repair site by the ACI patient as he recovered and that this 

resulted in the shorter CS chains. 



19 
 

In our previous work, there was less KS in the 12 month ACI repair tissue and 

it was more sulphated when compared to the control tissue8. In our present 

study, the patients KS levels were initially low and only showed a slight 

improvement over time. Gal6S-GlcNAc6S was present in the highest 

concentration in all controls and it doubled in concentration as the ACI tissue 

matured. In general, all cultured cells tend to produce KS at a reduced rate 

with less sulphation because KS-specific sulfotransferases are generally 

down-regulated45. All sulphated GAGs are known to interact with collagens to 

mediate the organisation of the extracellular matrix. In culture, the KS levels 

may initially be low because there is insufficient collagen. This may also be 

true for KS levels within the ACI repair tissue. 

Following ACI, maturation of the cartilage is known to occur through several 

steps. Our results agree with other published studies which have shown that 

ACI tissue needs time to remodel and continues to improve in quality with 

time3. However, even after 20 months the ACI repair tissue has fewer GAGs 

with different sulphation patterns than controls. Little is known about the 

mechanisms regulating the biosynthesis of GAG fine structure. Thus there is 

still a short fall in our biochemical understanding of both GAGs and their role 

in maturing ACI repair tissue.  
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Figure 1: Representative histological images of full depth biopsies from the 

medial femoral condyles of a 22 year old cadaveric sample and a 25 year old 

post implantation autologous chondrocyte implantation (ACI) patient. Tissue is 

stained with toluidine blue. Histological analysis of (A) the 22 year old 

cadaveric control, (B) the 25 year old patient at 12 months post ACI, (C) 

polarised light image of the tissue at 12 month including a high power image, 

(D) the 25 year old patient at 20 months post ACI, and (E) polarised light 

image of the tissue at 20 months including a high power image. Scale bars 

are 500μm for the full length biopsies and 50μm for the insert images.  
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Figure 2: The percentage of HA, CS, and KS in cartilage biopsies taken from 

an ACI patient and three age matched cadaveric knees (aged 21-25 years). 

Data are expressed as a percentage of the total GAG. The data are 

represented as the mean ± SEM (n=8).  
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Figure 3: Quantitation of levels of (A) HA and CS disaccharides, (B) CS 

nonreducing termini, and (C) KS disaccharides in both ACI repair and 

cadaveric tissues. Data are expressed as micrograms of disaccharide per 

milligram of dry weight of cartilage tissue. The data are represented as the 

mean ± SEM (n=8).  
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Figure 4: Comparison of the (A) ∆Di6S:∆Di4S ratios, (B) CS:KS ratios, and 

(C) CS chain length in ACI repair and cadaveric tissues. The data are 

represented as the mean ± SEM (n=8). 
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