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Abstract (max 200 words) 

Introduction: OSCEs are commonly conducted in multiple cycles (different circuits, times, and 

locations) yet the potential for students’ allocation to different OSCE cycles is rarely considered as a 

source of variance - perhaps in part because conventional psychometrics provide limited insight. 

Methods: We used Many Facet Rasch Modelling (MFRM) to estimate the influence of “examiner 

cohorts” (the combined influence of the examiners in the cycle to which each student was allocated) 

on students’ scores within a fully nested multi-cycle OSCE.  

Results: Observed average scores for examiners cycles varied by 8.6% but model adjusted estimates 

showed a smaller range of 4.4%. Most students’ scores were only slightly altered by the model; the 

greatest score increase was 5.3%, and greatest score decrease was -3.6%, with 2 students passing 

who would have failed.  

Discussion: Despite using 16 examiners per cycle, examiner variability did not completely counter-

balance, resulting in an influence of OSCE cycles on students’ scores. Assumptions were required for 

the MFRM analysis; innovative procedures to overcome these limitations and strengthen OSCEs are 

discussed.  

Conclusions: OSCE cycle allocation has the potential to exert a small but unfair influence on 

students’ OSCE scores; these little-considered influences should challenge our assumptions and 

design of OSCEs. 

 

Practice Points: 

OSCEs are often conducted in multiple-cycles, at different times or locations, yet the influence of 

different cycles on students’ scores is rarely considered. 
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Small differences occurred due to the effect of different OSCE cycles that had an important influence 

on some students’ scores. 

Modifications to OSCE procedures are needed to robustly estimate these effects. 

 

Glossary terms: 

Many Facet Rasch Modelling (MFRM): 

A form of psychometric analysis, derived from item response theory, which models the comparative 

influence of a number of “facets” (variables that can have an influence) on examinees’ scores. The 

modelling is then able to estimate the score each examinee would have received if they had 

encountered a completely neutral example of each facet (for example a completely neutral 

examiner), and provide an estimated “fair score”. 

Reference: Bond, T., & Fox, C. (2012). Applying the Rasch Model Fundamental Measurement in the 

Human Sciences (2nd Editio). New York & London: Routledge. 

Key words: 

Medical Education research < Management 

Assessment < OSCE 

Psychometrics < Assessment 
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Introduction  

Ensuring that assessments for healthcare professions students are conducted fairly is vital to the 

validity of assessment results (Kane, 2006) Additionally fairness in assessments is crucial  to 

maintaining trust between an institution and its students (Watling, 2014). Given an institution’s duty 

and responsibility to the public (Epstein & Hundert, 2002), the notion of fairness in assessment 

practices is imperative. Although “fairness” can be interpreted in numerous ways, in this article we 

consider one aspect of fairness: how the common practice of conducting Objective Structured 

Clinical Exams (OSCEs) in multiple circuits, at different times and locations (termed hereafter as 

multiple “cycles” of an OSCE), may influence the accuracy, or overall standard of judgement, by 

which students in different cycles are examined. Put differently, we aimed to consider whether the 

cycle of an OSCE that a student is allocated to substantially impacts their overall score. Describing a 

comparatively novel approach to understanding these influences, we highlight this important 

consideration and discuss modifications to the assessment process that could aid fairness in clinical 

assessments. 

Objective structured clinical exams (OSCEs) were developed in the 1970s in response to overt 

problems with examiner subjectivity and variable case mix in exams (Harden, Stevenson, Downie, & 

Wilson, 1975). Whilst OSCEs arguably comprise one of the more important innovations in medical 

education during the 20th century, it is clear that they only partly overcome the problem of examiner 

subjectivity. In a meta-analysis of studies that report on the reliability of OSCEs,  Brannick et al 

(2011) showed an average Cronbach’s alpha value of just 0.66, with lower results for 

communication-focused stations and less experienced examiners. Haraysm et al (2008) found that 

variance due to OSCE examiners (44.2%) was more than 4 times greater than variance due to 

students (10.3%). Moreover, adjusting for examiner variance altered the pass/fail decisions of 11% 

of students in their study. Other studies have suggested that examiners’ scores may be biased 

depending on the timing of OSCEs (Hope & Cameron, 2015; McLaughlin, Ainslie, Coderre, Wright, & 

Violato, 2009), the performance of other candidates (Yeates, Moreau, & Eva, 2015) or by different 
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geographical locations (Sebok, Roy, Klinger, & De Champlain, 2015). Consequently, it is not sufficient 

to simply conduct an OSCE, and believe that the resulting scores are a fair representation of 

students’ performance given the known influences of construct irrelevant variance.  

The most traditionally used psychometric analysis for OSCEs is generalisability theory (Crossley, 

Davies, Humphris, & Jolly, 2002). Generalisability analysis works best when examiners are fully 

“crossed” with students and stations (i.e., all examiners observe all students at all stations); 

however, the model can produce useful data when some partial crossing is available (Shavelson, 

Webb, & Rowley, 1989). With a fully nested design (as typically observed in most medical schools), 

generalizability is more limited, as it is not able to disentangle variance due to examiner variability 

from that due to students’ abilities (Raymond, Swygert, & Kahraman, 2012). Nesting occurs when, 

for example, students are examined at each station by just one examiner. Further nesting occurs 

when examiners are allocated to a particular location, at a specific time. This is problematic because 

nesting impacts our ability to directly compare the effect of different examiners on students’ scores 

given the lack of data on how other examiners would have scored that specific student. In this paper, 

we propose a design for investigating examiner variability and student ability by viewing individual 

examiners as part of a group of examiners (hereafter referred to as “examiner cohorts”) using the 

Many Facet Rasch Model (MFRM). 

Reliability is generally understood to increase more with greater numbers of stations than with more 

examiners at each station (Newblet & Swansons, 1988) and acceptable reliability is likely obtained 

with 2 to 4 hours of testing time (van der Vleuten & Schuwirth, 2005). Whilst these processes 

undoubtedly enhance the quality of OSCEs, we contend that the influence of examiner cohorts (i.e., 

the collective scoring of all examiners that assessed a particular student) is rarely considered. Some 

larger medical schools run a total of 16 OCSE cycles at 4 locations over 2 consecutive days. We argue 

that an important element of fairness is ensuring that whether a student passes or fails is not 

dependent on the cycle of the OSCE to which they are allocated. Perhaps more simplistically, 
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institutions often assume, based on theory (e.g., central limit theorem (Field, 2009, p42), that 

because examiners have been trained, and because there are 16 examiners in each OSCE cycle, 

examiners’ differences will simply even out, and the average influence of examiners in each cycle 

will be the same.  

We contend that there are a number of reasons why the aforementioned assumptions ought to be 

challenged: 1) examiners are typically not randomised into cycles, but are allocated chiefly based on 

geography and convenience; 2) examiners in different localities may develop different tacit 

performance norms, different shared expectations or hidden curricula (Hafferty & Franks, 1994); or 

different standards of practice (Weiner et al., 1995), which are known to inversely relate to 

assessors’ severity of judgements (Kogan, Hess, Conforti, & Holmboe, 2010); 3) timing of cycles may 

also influence the standard of judgement (Hope & Cameron, 2015; McLaughlin et al., 2009). 

Consequently we suggest that in order to understand fairness in OSCEs we should seek to determine 

whether the combined influence of examiners is trivial or cause for concern. In the remainder of this 

paper we present our research questions, describe the design for investigating examiner cohort 

effects, and suggest alterative solutions to the OSCE procedure that could improve our ability to 

assess students’ ability in the OSCE environment. 

Research Questions: 

1) What is the impact of examiner cohorts on students’ scores in a 16 station multi-cycle OSCE? 

“Examiner cohort” refers to the combined influence of the 16 individual examiners that 

students’ encountered in a given OSCE cycle.  

2) What insights can be gleaned about fairness in OSCE assessments when individual examiners 

are viewed as a collective cohort?   
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Methods: 

Data from a summative undergraduate OSCE in a UK medical school was examined to investigate the 

impact of examiner cohorts on students’ scores. This particular OSCE comprised 16 stations and was 

conducted at 4 different site locations, on 2 consecutive days, with morning and afternoon cycles on 

both days. The term “cycle” refers to an administration of the OSCE examination. See Figure 1 for a 

visual representation of the multi-cycle OSCE administration. Cycles varied in the number of 

students examined. Most were long, and examined approximately 16 students. Two sites ran short 

cycles in the afternoons of approximately 8 students. The precise numbers of students in each cycle 

were varied by local administrators by either adding additional rest stations or allowing gaps in the 

carousel. Students were quarantined between morning and afternoon cycles to enable the same 

stations to be re-used within the same day; analogous stations were used on successive days. 

Stations comprising a range of tasks were blueprinted against learning objectives for the students’ 

stage, and tested communication skills, procedural skills, physical examination skills and history 

taking skills. Most stations included supplementary tasks such as data interpretation or patient 

management questions. At each of the 16 stations, examiners scored the performances using 

domain rating scales. Desirable behaviours were listed for each domain, and examiners rated the 

extent to which these behaviours were successfully completed. Additionally, each examiner 

completed an overall judgement of the standard of the performance on a 7 point Likert scale that 

ranged from Clear Fail (points 1 & 2); Borderline (fail)(3); Satisfactory (4); Good (5); Excellent (6 & 7). 

Satisfactory was defined as an acceptable standard of performance in order to progress to the next 

stage of training. Summative judgements were made based on the overall judgement score that 

consisted of judgments provided by all 16 examiners that observed students’ during the OSCE; 

domain scores were supplied to students for feedback purposes. All examiners had undergone OSCE 

examiner training that involved explanation of the scoring format, and video review of cases with 

discussion. They also underwent a repeat briefing on their role and the scoring format immediately 

prior to commencing the OSCE. 
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We analysed the data using the MFRM. Rasch modelling is a variant of item response theory; its 

main benefit is that the model is able to examine the influence of multiple variables simultaneously. 

For example, it can simultaneously consider students’ ability, examiner severity/leniency, exam 

location, and station difficulty. As intended audience for this paper are those who are assessment 

minded (but not necessarily technical experts), this paper will not describe Rasch modelling in great 

detail. Interested readers may find either the text by Bond and Fox (2012), or (for a briefer 

explanation) the paper by Sebok, Luu, and Klinger (2014) approachable introductions. 

 As the 7-point overall performance score on each of the 16 stations was the variable on which 

assessment decision are based, we used it as our dependent variable. The model comprised 4 facets: 

students, stations and OSCE site locations as well as a novel facet that we termed “examiner 

cohorts.” Examiner cohorts described the combined influence of the 16 examiners that a particular 

student encountered during their assigned OSCE cycle, or put differently, the combined influence of 

a group of examiners operating within a specific time and location. Each examiner cohort 

represented a distinct group of examiners, without significant overlap with other examiner cohorts. 

The examiner cohort facet was created because we wanted to explore the combined impact of all 

the examiners each student encountered during the OSCE. Given that pass or fail decisions are made 

based upon the judgments provided by 16 different examiners, it seemed logical to investigate the 

examiners’ severity/leniency collectively. An examiner cohort was created based on 16 unique 

examiner identification numbers (i.e., 16 different examiners). The number of students that an 

examiner cohort observed varied depending upon whether they were examining a long or short 

cycle and fluctuations in student numbers as described above. All examiner cohorts were nested 

within a single cycle. As a result, the number of students any given examiner cohort observed varied 

from 8 to 16. The examiner cohort facet also provided a link, which allowed us to compare 

examiners within a single frame of reference. This is typically not feasible given the nested structure 

of examiners within OSCEs. In most OSCE situations, comparisons among individual examiners are 

not possible because one cannot compare different examiners observing different students at 
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different stations. However, the creation of the examiner cohort facet allows for comparisons given 

that each student was assessed on the same 16 stations by a cohort of 16 examiners. The nesting 

problem that exists with most OSCE assessments is prominent in most medical schools; thus, the 

examiner cohort facet provides a solution to allow for the use of traditional psychometrics to help 

disentangle variance between examiners, site locations, and students’ ability. 

We used a procedure within MFRM known as “anchoring” to anchor the stations according to the 

level of difficulty initially specified by the model. Anchoring is when a particular measure is fixed in 

order to equate (or compare) across groups using the same scale.  In this instance, anchoring 

allowed the model to use the stations as common items across the data set, because all students 

were examined within the same stations. We allowed the model to presume that average student 

ability was likely to be the same across all OSCE cycles. This assumption was made because students 

were essentially randomly assigned to a site location (unlike examiners who were allocated based on 

geography and convenience). Whilst average student ability was assumed to be even, the model is 

able to examine individual students’ abilities given that the stations were anchored, and thus, each 

student has a corresponding logit value (i.e., a measure of ability on the standardized Rasch scale) 

produced based on their scores on the 16 station OSCE.  Given this design, we were also able to 

estimate the relative influence of examiner cohorts and site locations.  

For this study, our principle measure of interest was observed averages (the raw mean of items 

within each facet) and “fair averages” (the model-derived estimate of the items within each facet 

once every other influence has been accounted for). We compared the maximal increase and 

decrease in student scores between student observed average scores and fair average scores, as 

well as the number of students for whom pass/fail decisions would have been altered. We also 

examined the reliability of separation for each facet. Notably, reliability of separation indices 

operate differently to conventional reliability parameters; in particular the reliability of separation 

for examiner cohorts describes the degree to which examiner cohorts differ from one another 
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(Sebok, et al., 2014). Consequently it is more akin to a “Hawk-Dove reliability” (Streiner & Norman 

2008, p182) than a conventional inter-rater reliability. As such it is desirable that this parameter 

should be low (rather than high) as low values indicate little difference among the items within the 

facet.  

Data analyses were conducted using Facets software version 3.68.1, available from Winsteps 

(Linacre 2011). All student data were anonymised before being passed to researchers. The university 

ethics committee confirmed that as the study performed secondary analysis of anonymous data and 

ethical review was not required.        

Results: 

Data from all 16 cycles of the exam, comprising a total of 235 students, and a further 21 “gaps” 

(available places in an OSCE cycle that were not filled) were analyzed. At any given site location, 57 

to 60 students were examined. Findings from the MFRM are summarised in Figure 2. This 

graphicalisation of the data is known as a Wright Map and is routinely provided by most MFRM 

software. The Wright Map is useful as it displays all items from each facet on a common scale 

(known as a logit scale, shown on the left of the image). This common scale allows for direct 

comparisons among every facet. Consequently more able students; more difficult stations; more 

stringent examiner cohorts; and sites with a more stringent influence on scores are all positioned 

towards the top of the chart. Whilst this logit scale is a useful means to compare relative influences 

of items within and between facets, it is less obvious what these influences would mean to student 

scores. Consequently the model also provides these data displayed in the assessment scale units 

(the 7 point overall global rating). These are shown on the right hand side of the graph, although 

(due to range restriction in the raw score data) they range from approximately 3 to 7. 

Fit of data to the model: 
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Mean square infit and outfit indices were between 0.5 and 1.5 for all stations, all sites and all 

examiner cohorts. This indicated that the extent to which the data fitted the model was good for all 

of these facets, and that the model was useful for both describing the data and for making 

adjustments to the data (Linacre, 1996). Importantly neither of the potential problems with fit 

(underfit, suggesting that a particular item is poorly described by the model; or overfit suggesting 

that a particular item was highly predictable or redundant) was indicated by our infit and outfit 

parameters for the facets of station, site or examiner cohort. 

Conversely, the mean square Infit and outfit parameters for students showed that 37 out of 235 

(15.7%) students showed either one or both mean square values outside the 0.5-1.5 mean square 

range. Of these, the majority 25 students or 10.6% of the sample showed underfit, suggesting that 

their performance was erratic in some way. An example of erratic behaviour would be when a 

student of high ability scores well on a difficult task but poorly on an easy task, as one would expect 

a student of high ability level to score well on an easy task.  In all but 1 case, this underfit was minor 

(MS 1.5-2.0). 12 students (5.1%) showed overfit, suggesting that their scores showed less random 

variation than might be expected. Whilst we might wonder if these students are unusually “test-

wise”(Case & Swanson, 1993), the model will still predict their performance well. Nonetheless these 

findings merely suggest that we would need to be cautious when adjusting the scores of students 

that did not fit the model. 

Examiner cohorts: 

Observed scores for different examiner cohorts ranged from 4.6 to 5.2 on the OSCEs 7 point scale, a 

difference of 8.6% in scores. These observed scores represent the simple unadjusted scores for the 

examiner cohorts. Model-derived “fair average” scores for these examiner cohorts show less 

variation, ranging from 4.80 to 5.11, or a difference of 4.4%.  Fair average scores are the average 

score for an item once all other facets have been adjusted to a value of zero logits. Essentially, this is 

the score that an average student would expect in a particular examiner cohort once all other 
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factors have been accounted for. The concept of the “fair averages” for examiner cohorts may be 

easier to conceptualise using the logit scale. This indicates that once the influences of other facets 

has been accounted for, the relative average influence of different examiner cohorts on students’ 

scores  ranged from a reduction of -0.20 (SE ±0.06) logits to an increase of 0.10 (SE ±0.06). The fair 

average scores illustrate the degree of this influence using the OSCEs scale. The reliability of 

separation for examiner cohorts was 0.31, indicating that differences in examiner groups were 

observed, but that the effect was minimal. To illustrate this, inter-rater reliability is akin to 1-

reliability of separation, so in this instance would be 1 - 0.31 = 0.69). Values below 0.80 are 

commonly viewed as desirable for judged events. These data are illustrated in Table 1.   

Stations: 

Station observed averages ranged from 4.0 to 5.5, with corresponding fair average values ranging 

from 4.03 to 5.48. Again, the fair average value is the score that an average student might expect at 

this station once other factors have been accounted for. Notably the differences between the fair 

averages and the observed averages for station are very small, because the stations were fully 

crossed with students and examiner cohorts. The same results examined via the logit scale show 

that stations ranged in difficulty from -0.88 (SE ±0.06) logits to 0.48 (SE±0.07), with stations with a 

lower logit score tending to reduce students overall scores and stations with a higher logit score 

tending to increase them. The common logit scale makes it easier to compare the influence of 

different facets when compared against each other. Therefore, it was observed that the influence of 

different stations (1.36 logits) was much greater than the influence of different examiner cohorts 

(0.30 logits). This finding is not surprising as this finding highlights “content specificity,” a well 

researched area in medical education that illustrates that the content from some OSCE stations is 

more difficult than other stations and that station difficulty is context specific.   

Sites: 
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Small differences were observed between OSCE sites in the observed scores (range 4.8 to 5.1). 

Similar to examiner cohorts, the fair average scores for sites showed less of a range (4.91-5.08), and 

therefore once again the model derived estimates show less influence due to different sites than 

might be inferred from the observed averages (4.3% difference for observed scores vs 2.4% 

difference for fair average scores. On the logit scale the influence of site ranged from -0.09 (SE 

±0.03) to 0.07 (SE ±0.03). For those who are unfamiliar with logit measures, this represents a very 

small degree of influence due to site location. 

Students: 

Students’ observed-scores ranged from 3.7 to 6.3. The pass mark was 4.0 or above and the 

maximum possible score was 7.0. Similar to the other facets, students’ fair average scores showed a 

slightly smaller range, from 3.98 to 6.17. The majority of students’ scores received only small 

adjustments between observed and fair average scores; 64% of students’ scores were adjusted by 

≤±1%. This suggests that although the model detected small statistical differences, the practical 

implications of these adjustments were trivial. A small subset of student’s observed average scores 

were adjusted by larger amounts, indicating instances where fairness may have been compromised. 

The largest upward adjustment was 5.3% from an observed average score of 4.1 to a fair average of 

4.47. The largest downward adjustment was -3.6% from an observed average of 4.8 to a fair average 

of 4.58. Notably neither of these students had infit or outfit parameters that were adverse, and 

neither were at the extremes of student ability. Overall, two students who would have minimally 

failed based on their observed scores would have passed based on their fair average scores, 

although both remained very close to the pass/fail threshold (3.70 increased to 4.06, and 3.90 to 

4.04 respectively). No students that passed based on observed scores would have failed based on 

fair average scores, possibly indicating a reluctance to fail students by some examiners. The 

reliability of separation for students was 0.64, indicating that the sample for analysis showed a fair 
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degree of heterogeneity in terms of student ability. Given the high baseline educational attainment 

of medical students, a reliability of separation of 0.64 is adequate. 

 

Discussion: 

Summary of findings: 

Analysis of the relative influence of different examiner cohorts on students’ scores in a multi-site, 

fully nested OSCE demonstrated that viewing examiners as a cohort can address some of the 

challenges associated with nested OSCE designs. Model-derived “fair average scores” showed 

apparent, albeit small, differences in the standard of judgment employed in different examiner 

cohorts, suggesting that examiner bias can still exist even when 16 examiners are utilized. These 

differences were smaller than those implied by students’ observed average scores, but they were 

observed nonetheless. This has important implications for medical schools that use 6, 8, 10, or 12 

station OSCEs as the variance associated with individual examiners could be more prevalent and 

could have greater consequences.  Different exam sites had a very small influence on scores. For 

most students, use of the model-derived fair average scores would have produced only a very small 

correction in their scores in this instance, but for a minority larger adjustments would have resulted. 

Consequently whilst this OSCE appears to have achieved good levels of fairness overall, it is notable 

that small effects did occur, that would have altered the pass/fail decisions for a very small number 

of students around the cut score. 

Implications for practice: 

These findings have a number of practical implications. Conventional approaches to OSCE 

assessment recommend that a number of indices are calculated for quality assurance. Examiner 

variability is usually considered by means of reliability, which, in turn is usually calculated using 

either Cronbach’s alpha or generalizability theory (Schuwirth & van der Vleuten, 2011). Whilst these 
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are useful parameters in developing an argument for the overall validity of the assessment 

(Downing, 2003), they are unlikely to provide an appreciation of the issues we have illustrated. 

Generalizability analysis relies on the assumption that error variance is randomly distributed 

(Streiner & Norman, 2008, p 301). Importantly, the effect we have described would produce a 

systemic (construct irrelevant) source of variance that is non-random, and would therefore not be 

seen as error within a generalizability analysis. We might expect that this would be (inappropriately) 

interpreted by the analysis as variation in students’ performance and might therefore be expected to 

increase the calculated reliability of the OSCE (See Bond & Fox 2012, p155-157 for a worked example 

of this phenomenon). Consequently, even when the overall reliability of an OSCE appears good, 

students could still potentially be unfairly exposed to differing standards of judgement in different 

cycles of the OSCE.  

Whilst the influence of examiner cohorts was small in this instance, there is no reason to presume 

that it could not be larger in other instances. Consequently, we believe institutions should consider 

monitoring the influence of these effects. This recommendation is consistent with the intent of prior 

authors; Pell et al (2010) recommended that the observed averages of students’ scores in each exam 

cycle should be compared using ANOVA. Whilst we agree with their intent, our data suggest that the 

simple observed averages of each cycle may over-estimate the differences between examiner 

cohorts. Further theoretical and empirical work is required to more fully understand the relative 

merits of these different approaches. It is important to create assessment designs that are 

consistent and reflective of the decision making that result from examiner judgments. At some 

medical schools, the judgment of one examiner from a single station is enough to justify the overall 

pass/fail decision. These institutions would benefit from a design where both examiner cycles and 

stations are anchored to account the possible variations in examiner behaviour.   

Strengths and Limitations: 



16 
 

Our study highlighted a previously unidentified area of construct irrelevant variance in OSCE 

assessments that warranted further examination. Our results indicate that even with an (apparently) 

optimal number of examiner judgments, variance can still exist within and between examiner 

groups. Because this effect may arise from a systematic rather than random effect, this suggests that 

increasing the number of OSCE stations or length of an OSCE examination may not necessarily 

equate to more accurate and reliable judgments regarding students’ ability. Furthermore, this study 

highlighted an important aspect that requires consideration in order to uphold the principles of 

fairness in OSCE assessments.  

Given that students were allocated to cycles through random assignment, we made the assumption 

that average student ability within each cycle was even. As a result, we suggest that the procedure in 

its current form should not be used to make summative adjustment to students’ scores. Ideally, 

baseline data on students’ prior performances would have been available and should be used in 

order to cross-validate this assumption. Without established baseline measures, one cannot state 

with 100% certainty if differences are due to examiner influence or student ability. Nonetheless we 

believe that this analysis is useful to inform discussions within institutions and highlight the potential 

for exploring examiner variance by investigating examiner cohorts.  As described in the results, the 

fit between the data and the model was not perfect in every instance. As previously stated, 12% of 

students showed poor fit to the model, which unfortunately suggests limited utility with respect to 

assessing those students’ ability.  

Recommendations for development: 

As stated in the methods section, using MFRM in this manner required an assumption that average 

student ability was likely to be even across OSCE circuits. A number of procedures are conceivable 

that would enable us to either test this assumption or to proceed without the need for it. Firstly, we 

could use formal randomization to allocate students to cycles of the OSCE (as recommended by Pell 

et al. (2010)). This would help to strengthen our assumption that average student ability was even 
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between cycles, but (as with all sampling distributions), some variation in average ability would still 

be expected. Secondly, it would be possible to obtain baseline data from other assessments to verify 

whether students’ ability did indeed appear to have been evenly distributed. Such data could be 

drawn from contemporaneous knowledge-based exams or prior OSCEs. Both of these approaches 

have limitations, in that students’ real abilities may have changed with time or differ between 

assessment modalities. Moreover, if students’ abilities were shown to be unevenly distributed across 

OSCE cycles, there would be little way to adjust the model accordingly. 

A better approach would be to find a means to make comparisons within the data set. As described 

earlier a fully crossed design is desirable, but almost never observed in practice. MFRM is capable of 

equating between items that are otherwise nested if there is a sufficient amount of cross-over 

material, for example by rotating examiners between locations (Bond & Fox, 2012). Therefore, if 4 

examiners from the morning cycle in each location moved to the afternoon cycle in a different 

location, then sufficient crossover would be available to link all the sites. If a different 4 examiners 

remained in each site for both the morning and the afternoon and a further subset of 4 examiners 

were persuaded to attend on both days, then all sites, days and parts of the day would be linked. As 

a consequence, there would be adequate linkage across the dataset to enable the model to directly 

compare the standard of judgement in each examiner cohort. This would remove the need for the 

assumption regarding average student ability, and make the model more dependable. An alternative 

approach to linkage could involve examiners rating a common pool of video performances in 

addition to the OSCE circuit that they examined. Regardless, some process to link the currently fully 

nested OSCE circuits would improve the ability of MFRM to equate between examiner cohorts. All of 

these suggestions require research in order to determine whether they are practical and to 

determine the extent to which they produce dependable results. Finally, these recommendations for 

development all stress the importance of having a good design in place for collecting assessment 

data from OSCEs. 
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Conclusions: 

In this study we have demonstrated the potential for multi-cycle OSCEs to be unfairly biased towards 

students examined in different cycles of the OSCE. Whilst this effect displayed minimal practical 

significance in the particular dataset, we have shown how common assumptions could lead to bias in 

OSCE settings. We have illustrated a procedure that enables the MFRM to provide insight into this 

potential, while also noting modifications to the exam process would be required for this form of 

modelling to be adequately robust to enable adjustment of students’ scores. Above all, we wish to 

draw attention to the potential for different standards of judgement to be employed in different 

cycles of OSCE exams and to stimulate debate around the assumptions and design of multi-cycle 

OSCE exams in order to enhance the fairness and defensibility of assessments for our students. 
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Tables and figures: 

Figure 1: Schematic of OSCE cycle design 
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Figure 2: Wright Map of the OSCE data showing relative influence of Students, Examiner cohorts, 
Sites and Stations 
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Table 1: Observed and model adjusted scores for examiner cohorts 

 
Scores Logits 

Examiner 
Cohort 

Observed 
Average 

Model-
derived Fair 

Average 

Difference 
(% max score) 

 Measure SE 
1 5 4.98 0.02 (0.4%) -0.02 0.06 
2 4.9 5 -0.1 (-2.0%) -0.01 0.06 
3 4.6 4.8 -0.2 (-4.3%) -0.2 0.06 
4 4.9 4.98 -0.08 (-1.6%) -0.02 0.07 
5 4.9 5.01 -0.11 (-2.2%) 0 0.07 
6 5 4.97 0.03 (0.6%) -0.04 0.08 
7 5.2 5.11 0.09 (1.7%) 0.1 0.08 
8 5.2 5.1 0.1 (1.9%) 0.09 0.06 
9 5 5.05 -0.05 (-1.0%) 0.04 0.07 

10 4.9 5.02 -0.12 (-2.4%) 0.02 0.07 
11 5.3 5.1 0.2 (3.8%) 0.09 0.06 
12 5 5.09 -0.09 (-1.8%) 0.08 0.06 
13 4.9 4.96 -0.06 (-1.2%) -0.05 0.06 
14 4.8 4.86 -0.06 (-1.3%) -0.14 0.08 
15 4.9 5 -0.1 (-2.0%) -0.01 0.06 
16 5.1 5.06 0.04 (0.8%) 0.05 0.08 

      Mean 5 5.01 
 

0 0.07 
S.D. (popn) 0.2 0.08 

 
0.08 0.01 

S.D. (sample) 0.2 0.09 
 

0.08 0.01 

Abbreviations: 
% dif = Percentage difference between observed score and model derived fair score, as a percentage 
of the observed score. 
SE = standard error 
MnSq = Mean Square 
 
 

 

 


