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Abstract 

Proglacial groundwater-fed features, such as seeps, substantially impact 

proglacial geomorphology, hydrology, and ecology. However, there is a 

paucity of research on the impacts of climate change and glacial retreat on 

the extent of these important features. This paper aims to investigate the 

impact of glacial retreat on proglacial groundwater levels and on the extent of 

groundwater-fed seeps. Research has taken place in western 

Skeiðarársandur, the large proglacial outwash plain of Skeiðarárjökull, a 

retreating temperate glacier in SE Iceland. Changes in the extent of proglacial 

groundwater seeps were mapped using historical aerial photographs from 

1978, 1997, and 2012. Proglacial groundwater levels were monitored in 

shallow boreholes between 2000 and 2012. The western margin of 

Skeiðarárjökull has retreated approximately 1 km from its position in 1978. 

However, this retreat was punctuated by short periods of readvance. The 

geomorphology and groundwater systems at the site were substantially 

impacted by the 1991 glacial surge and the November 1996 jökulhlaup, 

whose deposits altered approximately 18% of the area of groundwater seeps. 
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The surface areas of groundwater seeps and lakes in the study area have 

declined by ~97% between 1978 and 2012. Most of the decline took place 

after 1997, when there was a threefold increase in the mean rate of annual 

retreat. Groundwater levels also declined substantially between 2000 and 

2012, although this trend varies spatially. Changes in precipitation and 

groundwater flow, alongside glacio-isostatic uplift, are suggested as possible 

causes for the observed declines in groundwater levels and seep extent.  

 

Introduction 

Groundwater forms a key component of proglacial hydrology, with 

proglacial alluvial aquifers supporting geomorphic and ecologically-important 

groundwater-fed surface water bodies, such as seeps (Milner and Petts, 

1994; Malard et al., 1999; Brown et al., 2006; 2007a, b; Crossman et al., 

2011). For instance, groundwater upwellings covered ~40% of the total 

riverine habitat of the glacial floodplains at a field site in Alaska (Crossman et 

al., 2012).  However, despite their importance, proglacial groundwater 

systems still suffer from a paucity of research (Robinson et al., 2008). 

Previous research on glacial retreat and proglacial groundwater systems has 

investigated groundwater hydrochemistry (Cooper et al., 2002; Robinson et 

al., 2009a, b; Dragon and Marciniak, 2010), catchment water balance 

(Hodgkins et al, 2009; Cooper et al., 2011) and glacier-aquifer interactions 

(Roy and Hayashi 2008; 2009; Gremaud et al., 2009; Gremaud and 

Goldscheider, 2010; Langston et al., 2013; Magnusson et al., 2014). The 

importance of groundwater as a geomorphic agent has also been widely 

recognised (Tóth, 1999; 2009; Robinson et al., 2008). The importance of 



groundwater-fed streams to proglacial ecology has also been studied in many 

proglacial settings. These studies show that groundwater contributions 

increase the environmental stability of proglacial streams, which significantly 

enhances proglacial biodiversity (e.g. Milner and Petts,1994; Malard et al., 

1999; Ward et al., 1999; Brown et al., 2003;  2007a, b; Crossman et al., 

2011). However, in spite of their importance, there is a severe lack of 

research on the impacts of climate change and glacial retreat on the extent 

and distribution of proglacial groundwater-fed hydrological systems.  

This study aims to investigate the impact of glacial retreat on the extent of 

proglacial groundwater-fed hydrological systems. The study maps long term 

changes (between 1978 to 2012) in the spatial extent of proglacial 

groundwater seeps in an area of rapid glacial retreat in SE Iceland and 

describes changes in proglacial groundwater levels which were monitored 

between 2000 and 2012. This study also provides possible hypotheses for the 

observed changes in proglacial groundwater levels and in the extent of 

groundwater seeps.   

 

Study site  

This study focuses on Skeiðarársandur, the proglacial outwash plain of 

Skeiðarárjökull (latitude 63°57’ N, longitude 17°21’ W), a retreating temperate 

piedmont glacier in SE Iceland that is a southern outlet glacier of the 

Vatnajökull ice cap. Skeiðarársandur is reputed to be the world’s largest 

active sandur (~1,000 km2) (Marren, 2002). It extends across the ~23 km wide 

glacier margin of Skeiðarárjökull and ~20 km from the glacier margin to the 

Atlantic coast (Figure 1). Several active volcanic centres are located beneath 



Vatnajökull and are the source of periodic glacial outburst floods (jökulhlaups) 

which impact Skeiðarársandur. Skeiðarársandur is drained by three major 

meltwater rivers: The Skeiðará, Gígjukvísl and Sulá, located in the eastern, 

central and, western parts of Skeiðarársandur, respectively (Figure 1). 

Substantial changes in sandur drainage occurred in 2009 when ongoing 

glacier retreat led to a rerouting of the majority of meltwater from the Skeiðará 

into the Gígjukvísl river system.  

 

Geomorphic processes at Skeiðarársandur 

The Skeiðarárjökull geomorphic landsystem has been classified using the 

landsystem model of Evans and Twigg (2002) as a temperate, actively-

receding glacier margin that also experiences periodic surge events. The 

main depositional domains are marginal moraines, incised and terraced 

glaciofluvial forms, and subglacial landforms (Robinson et al., 2008). The 

geomorphology and hydrology of Skeiðarársandur are impacted by the 

interaction between high frequency, low magnitude processes and low 

frequency, high magnitude events. The former mainly relate to seasonal and 

annual accumulation and ablation processes while the latter include glacial 

surges and jökulhlaups (Marren, 2005). 

 

Glacial margin fluctuations  

The margin of western Skeiðarárjökull has been retreating since the 

end of the 19th Century, the LIA maxima in Iceland (Björnsson and Pálsson, 

2008). Western Skeiðarárjökull has retreated a net distance of approximately 

3.5 km beyond its position since monitoring began in 1932 (The Icelandic 



Glaciological Society [IGS], 2013). However, this distance excludes advances 

during the years 1946, 1965-6, 1973-5, and 1985-6 and the 1991 surge event 

(Figure 2, Table 1). The short duration of the advances of western 

Skeiðarárjökull contrast the dynamics observed in some of the smaller outlet 

glaciers of southern Vatnajökull, where periods of advance have lasted for 

several years (Bradwell et al., 2013).  

From 1978 to 2012, the glacier margin retreated ~2 km, at a mean rate 

of 30 m yr-1 (Table 1). However, this distance was offset by advances during 

the mid 1980s and the 1991 surge. Consequently, the net retreat of the glacial 

margin between 1978 and 2012 was approximately 1 km. Following the 1991 

surge, western Skeiðarárjökull has retreated continuously. The distance of 

retreat between 1997 and 2012 was approximately 1.5 km. The mean annual 

rate of retreat during this period has increased by a threefold (from 31 m yr-1 

to 95 m yr-1) (Table 1). The rates of retreat which were measured in western 

Skeiðarárjökull are 2-4 times higher than those reported from smaller 

retreating outlet glaciers of southern Vatnajökull (Bradwell et al., 2013; IGS, 

2013; Marren and Toomath, 2013). 

 

Glacial surges  

Glacial surging causes significant advances of the glacial margin which 

are coupled with a shift of the subglacial drainage from efficient, channelized 

system, into an inefficient, linked-cavity system (Kamb et al., 1985; Björnsson, 

1998). Such changes to the subglacial drainage system are likely to impact 

the spatial distribution and amount of water transmission into the glacial bed, 



which will impact subglacial groundwater recharge (Boulton et al., 2001; 

Boulton and Zatsepin, 2006). 

Skeiðarárjökull has experienced glacial surges in 1929 and 1991. 

During the 1991 surge, the western glacial margin advanced up to one km 

between September-November 1991, advancing at ~9.4 m day-1. The surge 

increased the glacier surface area by ~10 km2 (Pálsson et al., 1992; Waller et 

al., 2008). The extent of surging during the 1991 event varied across the 

Skeiðarárjökull margin, with a significant advance in the west (~1 km) and 

only minor advance in the east (Waller et al., 2008). This study focuses on the 

ice-marginal zone of the more dynamic western area of the glacier (Figure 1).  

 The geomorphic impacts of surges in western Skeiðarársandur include 

the formation of push moraines, deposition of outwash fans adjacent to the 

glacier and changes in the routing of meltwater drainage (Russell et al., 2001; 

Van Dijk and Sigurðsson, 2002; Waller et al., 2008). Surges also impact 

proglacial hydrology and hydrogeology by steepening the ice surface slope 

and the hydraulic gradient (Wiśniewski et al., 1997; Russell et al., 2001; 

Robinson et al., 2008). The steeper hydraulic gradient is expected to increase 

groundwater flow (Freeze and Cherry, 1979).   

 

Jökulhlaups  

The geomorphology and hydrology of Skeiðarársandur are 

substantially impacted by jökulhlaups, which originate from glacio-volcanic 

interactions with the subglacial volcanic centres beneath Vatnajökull. In 

addition to the small jökulhlaups which occur regularly, substantial jökulhlaups 



with peak discharges between 25,000-53,000 m3 s-1  took place in 1934, 1938, 

and November 1996 (Guðmundsson et al., 1995; Magilligan et al., 2002).  

Major jökulhlaup events are associated with substantial hydrogeological and 

geomorphic impacts. These include rearrangement of the subglacial and 

proglacial drainage; pressurisation of the groundwater system; and extensive 

sediment deposition and erosion. The latter processes can change the depth 

to the water table, which will also alter the groundwater response to 

precipitation. Jökulhlaup deposition and erosion also alters the distribution 

and extent of aquifer properties, which will also impact groundwater flow. The 

highest and most variable values of hydraulic conductivity in Skeiðarársandur 

were measured in the shallow subsurface zones that were inundated by the 

November 1996 jökulhlaup (Robinson et al., 2008). This event also resulted in 

an extensive formation of kettle holes, which originate from the melting of 

grounded ice blocks that were carried during jökulhlaups (Fay, 2002). Water-

filled kettle holes can provide important, yet transient, ecological niches 

(Robinson et al., 2009a).  

 

Study site topography and hydrogeology  

Study site topography   

This study focuses on the western section of Skeiðarársandur, which is 

bordered by the rivers Sulá and Gígjukvísl in the west and east, respectively. 

The topography of the study area is characterised by an assemblage of 

different landsystems (Figure 1). The western boundary of the study site is 

defined by an active braid plain of the River Sulá that drains from a lake that is 

forming at Skeiðarárjökull’s extreme western margin. The northern limit of the 



study area is characterised by a moraine ridge and associated outwash fans 

that formed at the limit of the 1991 surge event (Russell et al., 2001). The 

southern limit of the area is associated with a zone of high-relief moraines 

comprising part of a larger moraine system that is a distinctive feature of this 

part of Skeiðarársandur and which has been related to an earlier surge event 

(Russell et al., 2001). Whilst parts of this system feature clear moraine ridges, 

other parts, including the area located immediately south of the Twin Peaks 

Lake (TPL), are characterised by relict meltwater channels and pitted outwash 

surfaces indicating the influence of former jökulhlaups. The proximal boundary 

of the high-relief moraines is characterised by a prominent ice-contact slope.  

The TPL area is located at the foot of this slope and is characterised by a 

series of enclosed depressions that feature prominent cracks suggestive of 

the presence and gradual melt-out of buried ice. The presence of ice on the 

proximal side of the high-relief moraines is consistent with the observation of 

buried ice in a large moraine section exposed on the western bank of the 

River Gígjukvísl (Everest and Bradwell, 2003). To the north of TPL, the 

topography is characterised by a large area of low-relief moraines. The 

occurrence of small moraine ridges and possible crevasse-fill ridges suggest 

that this is a former subglacial surface. To the east of these moraines, the 

study area is characterised by a braid plain that was active following the 1991 

surge event and which was associated with a jökulhlaup outlet during the 

subsequent November 1996 outburst flood (e.g. Russell et al., 2006). 

Progressive glacier recession and down wasting has resulted in a decrease in 

fluvial activity in this area. The distal part of this braid plain forms one of the 

lowest parts of the study area and it contains the main area of seeps.  



Study site hydrogeology  

The wide variability of geomorphic processes (glacial, glaciofluvial, volcanic, 

and aeolian) which occur on Skeiðarársandur leads to significant 

heterogeneity in hydrogeological parameters (Robinson et al., 2008). The 

sandur stratigraphy forms an extensive unconfined aquifer whose thickness 

varies from 80-100 m near the glacial margin to ~250 m near the coast 

(Guðmundsson et al., 2002).  

The main sources of groundwater recharge are local precipitation and 

glacial melt, which originates from several different sources including basal 

melt; subglacially-routed, supraglacial, and englacial melt; and the melting of 

buried stagnant ice. Skeiðarársandur is locally underlain by buried ice 

(Everest and Bradwell, 2003), which can strongly impact groundwater 

recharge, dynamics and routing (Robinson et al., 2008). Exchange between 

meltwater rivers and the aquifer also provides groundwater recharge 

(Robinson et al., 2009b). 

The regional groundwater system generally flows from north to south. 

However, local, perched groundwater systems, which are imposed on the 

regional groundwater flow system (Tóth, 1963), were also identified. These 

perched groundwater systems were mainly found within moraine areas 

(Robinson et al., 2008). The groundwater table across most of the sandur is 

shallow, typically 2-3 m below ground level. The proximal sandur is generally 

dominated by groundwater recharge, while the distal sandur is dominated by 

groundwater discharge, with water table depths reducing to a few centimetres 

near the coast (Bahr, 1997; Robinson et al., 2008). The spring lines are 

generally parallel to the Skeiðarárjökull margin, which suggests that the 



position of the glacial margin, rather than the lateral rivers, controls their 

distribution. The calculated regional groundwater discharge is ~2.5 m3 s-1, 

with mean regional groundwater velocity of 0.15 m day-1 (Robinson et al., 

2008). High sediment mobility, strong winds, and the lack of fertile soils create 

harsh ecological conditions in Skeiðarársandur (Marteinsdóttir et al., 2013). 

Field observations report relatively high abundance of flora and fauna near 

groundwater-fed seeps, which possibly form important ecological microsites 

where these conditions are more favourable.  

 

Methods 

Mapping of changes in the extent of groundwater seeps 

Changes in the extent of groundwater seeps in western Skeiðarársandur were 

mapped using historical aerial imagery (dating from 1978, 1997, and 2012), 

using ArcMap© 9.3.1. The photographs were georectified using Ground 

Control Points as described by Bennett et al. (2010). Groundwater seeps and 

groundwater-fed streams were then mapped based on water colour and 

shading, similar to the approach that was successfully used by Drexler et al. 

(2013) to map changes in the extent of groundwater-fed fens following 

changes in snowmelt.  

Water colour, and hence black and white shading, is determined by the 

interaction between the upwelling light reflectance of suspended inorganic 

and organic compounds and the downwelling of solar irradiance. When black 

and white images are used, the high turbidity and reflectance of meltwater 

make them appear lighter than groundwater. When colour images are used, 

the high turbidity of meltwater streams makes them appear brown. 



Conversely, the low turbidity of groundwater-dominated bodies makes them 

appear green-brown (Jerome et al., 1994a, b). These differences were 

therefore used to map groundwater seeps and meltwater streams. The 

likelihood of the mapped areas to be impacted by groundwater has been 

ground-truthed. In order to verify the accuracy and precision of the digitization, 

a maximum value of 40 pixels was assigned for groundwater seeps. This 

figure is based on values obtained from ground-truthed areas.   

 

Measurement of groundwater levels 

Groundwater levels were monitored in shallow boreholes, whose depths vary 

between ~<1 m to >2 m below ground level. The boreholes were installed in 

2000, 2001 and 2011. The boreholes installed in 2000 and 2001 were made 

from either PVC or steel pipes of ~50 mm inner diameter. The length of the 

screened section was between 170-300 mm. The depth of the boreholes 

installed in 2011 was ~1.7 m below ground level. The internal diameter of the 

boreholes installed in 2011 was 28 mm, with a screened section length of 

~600 mm. These boreholes were levelled into the 2001 datum using a Leica 

Total Station™. Groundwater levels were monitored using a Solinst™ 

acoustic dip meter or a straight rod. Monitoring took place regularly over a ~6 

week period in the summers of 2000, 2001 and 2011. Additionally, spot 

measurements were taken in March 2001, October 2001, August 2009, April 

2011, and the summer of 2012. The full technical borehole details and 

monitoring procedures are described in Robinson et al. (2008).  

 

Meteorological data 



Temperature and precipitation 

Changes in water budget (precipitation - Potential Evaporation) can impact 

groundwater levels and the extent of groundwater seeps. The annual and 

seasonal water budgets in western Skeiðarársandur were therefore calculated 

in order to determine whether they have changed during the study period. 

Temperature and precipitation data were obtained from the Icelandic 

Meteorological Office (IMO) station at Kirkjubæjarklaustur, located ~35 km 

west of the site. This station was chosen because it is the closest one whose 

records span through the whole study period (1978-2012). The meteorological 

data was smoothed using Order 3 Moving Average (MA) (Makridakis et al., 

1998).  

 

Calculation of water budget 

Potential Evaporation (PE) was calculated using the Thornthwaite (1948) 

equation [eq. 1].  
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Eq. 1 

Where E is evaporation (mm day-1), Ta is the mean monthly air temperature 

(°C), and I is the Annual Heat Index (AHI), which is calculated as I=∑i, where i 

= (Ta/5)1.514, and d is the number of days in each month. Due to the sparse 

vegetation at the field site, transpiration was omitted from the calculations. 

Water budget was then calculated by subtracting PE from precipitation.  



 

Results 

Temporal changes in the extent of groundwater seeps  

1978 aerial photograph 

Figures 3-6 illustrate changes in the extent of groundwater seeps in western 

Skeiðarársandur from 1978 to 2012. Figure 3 shows the extent of 

groundwater seeps and lakes in 1978 (the Icelandic Geodetic Survey 

(Landmælinger Íslands [LMÍ]), 1978). The glacier margin retreated a net 

distance of ~2.5 km between the start of monitoring in 1932 and the time of 

this image. Groundwater seeps in this image have the largest areal extent, 

~2,767,200 m2 (Table 2). The main area of groundwater seeps is bordered to 

the north and east by a large meltwater and groundwater-fed braided channel 

(“the Gígjukvísl tributary”); to the west by an area of low-relief moraines and 

stagnant ice that is located to the north of Twin Peaks Lake (TPL); and to the 

south by the high-relief moraine belt (Figure 3). In 1978, groundwater seeps 

covered the entire area between the Gígjukvísl tributary and the eastern limit 

of the low-relief moraines. The main seeps area was connected to the seeps 

east of TPL by an active groundwater-fed channel. Additional areas of 

groundwater seeps existed east of the Gígjukvísl tributary and to the north of 

TPL and Lake A (Figure 3).  

 

1997 aerial photograph 

Figure 4 shows the extent of groundwater seeps in 1997 and the impacts of 

the November 1996 jökulhlaup (LMÍ, 1997). Following the advances during 

the mid 1980s and the 1991 surge, the glacier margin has advanced by ~ 420 



m relative to its position in 1978 (Figure 2, Table 1). The area of groundwater 

seeps has declined by ~20% since 1978 (Table 2). The main declines took 

place around the main jökulhlaup route, near jökulhlaup outlets at the glacier 

margin, and to the NW of TPL (Figure 4). Approximately 430,000 m2 (~18%) 

of the groundwater seeps that were mapped in 1978 were altered by 

jökulhlaup deposits. Following the jökulhlaup, the main seep area has shrunk 

and moved southwards, away from the margin. However, it has also 

expanded to the east, with seeps replacing areas that contained braided 

channels in 1978 (Figure 4).  

 

2012 aerial photograph 

The 2012 aerial photograph (Google Earth, 2013) illustrates the continued 

recession of western Skeiðarárjökull, which retreated 845 m beyond its 

position in 1997. The mean annual rate of glacial retreat has also substantially 

increased during this period (Figure 5, Table 1). This retreat was coupled with 

a substantial decline in the area of groundwater seeps and lakes (Figures 4-

6). The area of groundwater seeps has declined by ~97% between 1978 and 

2012, with only small springs remaining within the main groundwater seep 

area (Figures 3-6, Table 2). The surface area and perimeters of lakes also 

declined substantially between 1978 and 2012, with the areas of TPL and 

GW2 Lake declining by 95% and 44%, respectively. Many of the smaller lakes 

have substantially shrunk or completely dried out, including Lake A (Table 2, 

Figures 3-6).  

 

Changes in groundwater levels in western Skeiðarársandur 



Groundwater levels at the study site declined substantially between July 2000 

and 2012 (Figure 7). These declines were observed over both ~decadal 

(2000-2012) and annual (2011-2012) time scales, and have shown a 

considerable spatial variability (Table 3). Groundwater levels have fallen 

below the bottom of the borehole screened section (intake) in most boreholes 

at the site, meaning that only minimum amounts of water table decline can be 

measured. Such declines had already been observed at P4, P6 and WT A in 

August 2009 (Table 3). The largest measured declines between 2000 and 

2009 were >1.97 m near the glacial margin (borehole P6) and >1.77 m in an 

area of dried groundwater seeps north of TPL (borehole P3) (Table 3). 

Groundwater levels at P13, located near the remains of the main groundwater 

seep area (Figure 1) fell by ~1.55 m between 2000 and 2012. However, this 

area contained the only borehole in the 2000 network where groundwater 

levels have not fallen below the intake. Falling groundwater levels were also 

measured in most of the boreholes that were installed in 2011 (Table 3). 

   

Changes in water budget  

The mean annual temperature at the Kirkjubæjarklaustur meteorological 

station during the study period (1978 to 2012) was 4.82 ± 0.65 °C. The mean 

annual precipitation was 1711 ± 218 mm (Icelandic Meteorological Office, 

[IMO], 2013). Precipitation was approximately three times higher than PE 

during the study period, resulting in a constantly positive annual water budget 

which ranged between 1080 and 1590 mm (Figure 8). The annual and most of 

the seasonal mean air temperature and water budgets have increased during 

the study period. However, seasonal variability was observed, with the highest 



seasonal water budgets occurring in winter and autumn and the lowest in 

summer. During the study period, winter and autumn water budgets increased 

by 140 and 216 mm respectively. Conversely, the increases in spring and 

summer water balance were much smaller (Table 4).  

The changes in annual and seasonal water budget during the main 

period of decline in the extent of groundwater seeps (1997-2012) show a 

mixed trend. The annual and autumn water budgets have increased 

substantially (350-430 mm), while winter and spring water budgets have 

increased by ~100 mm. Conversely, summer water budget declined by 110 

mm. This is mainly due to lower summer precipitation rather than higher PE. 

However, despite these declines, the summer water budget still remained 

positive (Table 4).     

 

Interpretation and discussion  

The spatial distribution of changes in groundwater levels 

Groundwater levels in western Skeiðarársandur have generally declined 

between 2000 and 2012, with groundwater levels falling below the intake in 

most boreholes. However, these declines showed a considerable spatial 

variability (Table 3, Figure 7).   

 

Groundwater levels near the glacial margin 

The largest decline in groundwater levels between 2000 and 2009 was 

measured at P6, located near the Skeiðarárjökull margin, adjacent to an area 

of ice-cored moraines and stagnant ice (Table 3). This fall in groundwater 

levels is accompanied by a reduction in the extent of the main groundwater 



seeps area (Figures 3-6). The importance of ice melt as a source for 

groundwater recharge increases with proximity to the glacial margin, as 

evidenced by δ18O and δD compositions (Robinson et al., 2009b). Therefore, 

the fall in groundwater levels at P6 should provide a good indication for 

changes in recharge from glacial melt. Groundwater levels near the glacial 

margin previously showed large declines in autumn and early spring, seasons 

during which ablation is low (Robinson et al., 2008). This shows that only a 

small component of the groundwater at these sites originates from subglacial 

melt, as such melt should not be significantly impacted by seasonal ablation 

(Flowers et al., 2003; Robinson et al., 2008). This suggests that the zone of 

dead and stagnant ice near the margin is the likely source of groundwater 

recharge during the summer months. This hypothesis is also supported by 

comparing the extent of groundwater seeps and the position of the glacial 

margin in 1978 (Figure 3) with those in 1997 (Figure 4), which showed that 

the extent of groundwater seeps fell in 1997 despite the advance in the 

position of the glacier margin.    

 

Groundwater levels in areas of groundwater seeps  

The only location from the 2000 monitoring network where groundwater levels 

did not fall below the borehole intake is located near the remains of the main 

groundwater seep area (Figure 1, Table 3). The smallest annual (Figure 7) 

and seasonal variability in groundwater levels were also measured in this 

environment (Robinson, 2003). The relatively small variability is also 

supported by observations of groundwater discharge, which suggest that the 

seeps are fed by a local groundwater flow system that is imposed on the 



regional one (Tóth, 1963; Robinson et al., 2008). This small variability 

illustrates the relatively consistent water supply which groundwater-fed 

systems provide (Tague and Grant, 2009; Muir et al., 2011).  

 

Groundwater levels near moraine lakes  

Groundwater levels near lakes have generally declined, with levels falling 

below the borehole intake in many locations. These falls were coupled with 

substantial declines in lakes’ surface areas (Figures 3-6, Table 2). The decline 

of groundwater levels near lakes has also shown considerable spatial 

variability (Table 3).  

Lake A shrank continuously during the study period, and then completely 

dried out after 2007 (Figure 6). Groundwater levels near Lake A also declined 

substantially (Table 3). Observations suggest that the area of Lake A consists 

of either a perched aquifer or an impermeable lake bed, underlain by either 

clay or buried ice (Robinson et al., 2008). This hypothesis is supported by 

observations of buried ice in Skeiðarársandur (Everest and Bradwell, 2003) 

and the complex and heterogeneous internal hydrology of moraines (Roy and 

Hayashi, 2009; Langston et al., 2011). It is suggested that the lake may have 

drained due to a catastrophic failure of the underlying ice layer (Robinson et 

al., 2008).  

Groundwater levels near GW2 Lake have shown different dynamics. The area 

of this lake declined by 44% since 1978 (Table 2). However, there is a much 

smaller fall in groundwater levels, with only a 0.1 m decline between August 

2011 and 2012 (Table 3). These differences illustrate the substantial 



variability in the patterns of decline in groundwater levels around lakes in 

western Skeiðarársandur.  

 

Possible controls for the observed declines in groundwater 
levels and seeps 
 
This section suggests various hypotheses for the substantial declines in 

groundwater levels and in the extent of groundwater seeps in western 

Skeiðarársandur.  

 

Changes in water budget 

Lower water budgets could possibly explain the observed declines in 

groundwater seeps and levels. Figure 8 and Table 4 show that the annual and 

most of the seasonal water budgets have increased over the study period, 

especially during winter and autumn. Conversely, summer water budget has 

fallen by ~100 mm since 1997. Air temperature has also generally increased 

(Table 4).  

The fall in summer water budget can partially explain the declines in 

groundwater seeps and levels. However, this fall is expected to be offset by 

the increases in winter and autumn precipitation. Higher rainfall can also 

increase groundwater recharge indirectly by enhancing glacial ablation (Wolfe 

and English, 1995), with rainfall becoming especially effective in debris-

covered glaciers such as Skeiðarárjökull (Kellerer-Pirkblauer et al., 2008; 

Nield et al., 2013). The rise in autumn and winter precipitation is therefore 

expected to increase groundwater recharge and storage. Conversely, higher 

cold season temperature can reduce groundwater recharge and storage by 

increasing evaporation and the rain/snow ratio and by altering the timing of 



melting (Okkonen et al., 2009; Stewart, 2009; Crochet, 2013). These mixed 

trends suggest that, despite their possible contrasting outcomes, changes in 

water budget are important factors in the decline of groundwater levels and 

groundwater seeps.   

 

Changes in glacial melt  

δ18O and δD isotopic evidence has shown that the contribution of glacial melt 

to groundwater recharge increases with proximity to the glacier margin, 

highlighting the important role for groundwater recharge (Robinson et al., 

2008; 2009b). Falls in groundwater levels during periods of low ablation 

suggest that changes in melt from buried ice and ice-cored moraines, rather 

than changes in the position of the glacial margin, are probably the main 

reason for the decline in groundwater levels at this area. However, the role of 

changes in glacial melt is difficult to infer, as this parameter was not measured 

directly in this study.  

 

Changes in proglacial groundwater flow  

Changes in the hydraulic gradient  

Glacial retreat is projected to substantially alter the hydrology of 

Vatnajökull, reducing runoff and diverting river routes. Such changes are also 

projected to impact subglacial groundwater systems (Flowers et al., 2003; 

2005). Glacial retreat can lower the ice overburden pressure and hydraulic 

gradient, which will reduce groundwater flow (Haldorsen and Heim, 1999; 

Piotrowski, 2007). Such changes could be an important cause for the declines 



depicted in Figures 3-7. However, at present the effect of the glacially-induced 

hydraulic gradient on the proglacial zone is not fully understood.   

 

Lowering of the glacier bed 

Changes in proglacial groundwater flow can also be caused by the 

lowering of the glacier bed and river outlets. Sandur development models 

suggest that glacial retreat leads to an upstream lowering of river equilibrium 

profile, which encourages fluvial incision and alluvial terraces (Thompson and 

Jones, 1986; Thompson, 1988). The lowering of the equilibrium profile would 

then direct flow unto the lowest channel (Thompson 1988, Marren 2002; 

Marren and Toomath 2013). The impact of the lowering of the equilibrium 

profile can be augmented when glaciers retreat into subglacial 

overdeepenings. Such retreat can increase the sensitivity of the proglacial 

zone to glacial margin fluctuations, where relatively small fluctuations in the 

position of the glacier margin cause fairly large changes in the upstream long 

profile of proglacial rivers (Marren and Toomath, 2013).  

The lowering of river outlets due to an overdeepening is a possible 

cause for the observed declines in groundwater seep extent and levels. Radio 

echo soundings have identified two principal overdeepenings associated with 

Skeiðarárjökull (Figure 1B). The larger overdeepening extends from the 

glacier’s centreline to the eastern margin. The second one is located in the 

western margin, associated with the drainage of the river Sulá (Björnsson et 

al., 1999). However, neither of these overdeepening impacts the study area. 

The emergent ice-marginal geomorphology from this part of the 

Skeiðarárjökull margin also refutes the role of an overdeepning, as this area is 



characterised by dead ice topography, which is associated with the melt-out of 

a surge-related basal ice layer and streamlined subglacial topography (Waller 

et al., 2008). This is in marked contrast with the geomorphology of ice-

marginal areas associated with overdeepenings, whose retreat is associated 

with the development of large proglacial lakes (Cook and Swift, 2012). 

Therefore, whilst over deepened basins are clearly influential in some parts of 

the glacier margin, the authors do not believe that this specific part of the 

margin is significantly impacted by an overdeepening.  

 

Changes in river-aquifer exchange 

Groundwater recharge from meltwater rivers, through river-aquifer exchange, 

is an important control on proglacial groundwater levels (Cooper et al., 2002; 

Magnusson et al., 2014). The location of meltwater rivers exerts an important 

control on such exchange, hence a reduction in river-aquifer exchange, due to 

changes in the position of meltwater rivers, provides another possible 

explanation for the observed changes in the proglacial groundwater systems. 

However, the location of the main Gígjukvísl and Sulá river channels did not 

change considerably during the study period, which suggests that river-aquifer 

exchange should not have decreased. Additionally, the recent drainage 

changes in Skeiðarársandur have substantially increased the discharge in the 

Gígjukvísl. These changes are expected to augment, rather than reduce  

groundwater recharge from meltwater through river-aquifer exchange. 

Therefore, although river-aquifer exchange has not been measured directly, 

its decrease is probably not the main cause for the declines depicted in 

Figures 3-7.   



 

Glacio-Isostatic uplift 

Deglaciation and isostatic uplift have been previously shown to impact 

topography, hydrology, hydrogeology, and ecology (Glaser et al., 2004; 

Solberg et al., 2008). The rates of vertical glacio-isostatic uplift in response to 

glacial retreat around southern Vatnajökull range between 9-25 mm yr-1 (Pagli 

et al, 2007). These rates suggest that the study area has risen by 0.31 to 0.85 

m during the study period (1978-2012) and between ~0.14 m to 0.38 m during 

the main decline in groundwater seeps and levels (1997 to 2012). Even when 

the higher rates of these estimations are used, the uplift rates remain below 

the observed decline in most boreholes (Table 3). Hence, although glacio-

isostatic uplift may have contributed to the decline in groundwater levels and 

seeps, it is probably not its main cause.   

 

Deposition of volcanic tephra 

The deposition of volcanic tephra buries groundwater seeps and deepens the 

distance between the water table and the surface, which reduces the aquifer’s 

responsiveness to precipitation. These processes may also explain some of 

the declines in groundwater levels and seeps in western Skeiðarársandur. 

Grímsvötn, situated under the Vatnajökull ice cap, ~ 40 km north of the site, is 

Iceland’s most active volcanic system in historical times (Thordarson and 

Larsen, 2007). During the study period, it has erupted in 1996, 1998, 2004, 

and May 2011 (Jude-Eton et al., 2012). The eruption in May 2011 released 

0.6-0.8 km3 of tephra (Guðmundsson et al., 2012). Tephra deposits buried 

many groundwater-fed channels and seeps. Measurements taken at western 



Skeiðarársandur in August 2011 showed a wide spatial variability in the 

depths of tephra deposits. The mean depth of tephra deposits near boreholes 

was 0.055 (±0.031) m. The depth of tephra deposits near groundwater-fed 

channels and seeps exceeded 0.40 m. However, these measurements were 

obtained three months after the eruption; hence, the tephra had been 

subjected to extensive fluvial and aeolian entrainment and deposition. In 

addition to the fairly transient nature of tephra deposition, groundwater levels 

have declined between August 2011 and August 2012 (Table 3), during which 

there was no volcanic activity. Therefore, burial by tephra deposits was not a 

major cause for the declines depicted in Figures 3-7.   

 

Implications of the declines in groundwater seeps and levels  

This study observes major declines in proglacial groundwater levels 

and groundwater seeps in an area of rapid glacial retreat. It is suggested that 

these declines substantially impact sandur aquatic ecology as groundwater 

significantly enhances proglacial biodiversity by increasing the thermal and 

channel stability, temperature, and nutrient levels of proglacial streams (e.g. 

Milner and Petts, 1994; Crossman et al., 2011). Additionally, field 

observations have shown relatively high abundance of flora and fauna near 

groundwater seeps in Skeiðarársandur. This suggests that groundwater 

seeps form important microsites, which enhance terrestrial ecological 

establishment and provide ameliorated conditions from the frequent high 

sediment mobility, strong winds, and lack of fertile soils which often prevail in 

recently-deglaciated areas (Jumpponen et al., 1999; Marteinsdóttir et al., 

2010; 2013).  



However, proglacial ecology is vulnerable to glacial retreat and climate 

change, with projected impacts of decreasing meltwater contributions and 

increasing contributions from rainfall, snowmelt and groundwater (Brown et 

al., 2006; 2007a, b; Blaen et al., 2013; 2014). Proglacial groundwater flow, 

spring discharge, and groundwater contributions to runoff and storage are 

also projected to alter due to glacial retreat (Haldorsen et al., 2010; Rutter et 

al., 2011; Finger et al., 2013). These changes are projected to adversely 

impact proglacial ecosystems and possibly lead to the redistribution and 

extinction of endemic species (Brown et al., 2007b; Milner et al., 2009; 

Jacobsen et al., 2012). Therefore, due to the importance of groundwater to 

proglacial ecology, it is suggested that further decline in groundwater levels 

and in the extent of groundwater seeps in Skeiðarársandur will adversely 

impact sandur ecology.   

 

Conclusions  

Western Skeiðarárjökull has retreated approximately 1 km during the 

study period (1978-2012). This retreat was coupled with a decline of ~95% in 

the areas of groundwater seeps and many of the lakes at the site. Most of 

these declines took place after 1997, when the rate of glacial retreat has 

increased by a threefold. Groundwater levels at the study area have also 

fallen substantially between 2000 and 2012, although the extent of these 

declines varies spatially. The largest declines were observed near the glacial 

margin. The smallest declines in groundwater levels were observed near 

current groundwater seeps. The annual water budget has increased 



substantially between 1978 and 2012. Seasonal water budgets have also 

increased in every season except summer, where it has declined.  

The geomorphology, hydrology and groundwater systems of Skeiðarársandur 

are substantially impacted by glacial fluctuations, surges, and jökulhlaups. 

The 1991 surge steepened the topography and transformed surface and 

subsurface drainage at Skeiðarársandur. The November 1996 jökulhlaup 

resulted in a likely pressurization of the groundwater system, kettle hole 

formation, and extensive sediment erosion and deposition. Jökulhlaup 

deposits buried ~18% of the area of groundwater seeps that were mapped in 

1978.   

It is suggested that the combination of rapid geomorphological 

changes, changes in water budget and groundwater flow, alongside vertical 

glacio-isostatic uplift is probably the cause for the observed declines in 

groundwater seeps and levels. However, further research is needed in order 

to verify and quantify the contribution of each factor. Groundwater seeps 

support important ecological microsites in this harsh proglacial environment. A 

continuous decline in groundwater levels and seeps is therefore suggested to 

adversely impact Skeiðarársandur’s proglacial ecology. This research will 

benefit further from numerical modelling of the impact of future glacial retreat 

and climate change on proglacial groundwater levels and on the extent of 

groundwater-fed systems.  
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Figure 1. A. Location map of Skeiðarárjökull in Iceland. B. The 
Skeiðarársandur outwash plain and the study area (denoted in solid white 
line) in western Skeiðarársandur (from Google Earth, 2013). OD1 and OD2 
show the locations of the overdeepenings in eastern/central and western 
Skeiðarárjökull, respectively. These locations are based on Björnsson et al.    
(1999). C. The field site in western Skeiðarársandur (the Icelandic Geodetic 
Service, Landmælinger Íslands [LMÍ], 1997). The study area is denoted by the 
dashed white line.  Shallow boreholes are denoted in white with the different 
shapes denoting the different hydrogeological environments in which the 
boreholes were installed (see legend). The solid white line denotes the main 
area of groundwater seeps.   



 
 
Figure 2A. The cumulative retreat distance of western Skeiðarárjökull from 
1932 to 2012. The arrows show the years of the aerial images. The data was 
obtained from the database of the Icelandic Glaciological Society (IGS), 2013.  
2B. Annual changes in the position of the glacial margin of Western 
Skeiðarárjökull (1932-2012). The figure also shows the full length of this study 
and the period of groundwater monitoring. The data was obtained from the 
database of the IGS, 2013. 
 

 
 
Figure 3. The extent of groundwater seeps in western Skeiðarársandur in 
1978 (LMÍ, 1978). Groundwater seeps are denoted in white with black outline. 
Lakes are denoted in grey. The position of the glacial margin is only an 
approximation, due to the extensive amounts of buried ice in this area.  
  
Figure 4. The extent of groundwater seeps in western Skeiðarársandur in 
1997 (LMÍ, 1997). Groundwater seeps are outlined in white. Lakes are 
denoted in grey. The figure also shows the main route (denoted by the black 
arrow) and outlets of the November 1996 jökulhlaup. The position of the 
glacial margin is only an approximation, due to the extensive amounts of 
buried ice in this area.  
 
Figure 5. The extent of groundwater seeps in western Skeiðarársandur in 
2012 (Google Earth, 2013). Groundwater seeps are outlined in white. The 
lakes are marked in grey. The position of the glacial margin is only an 
approximation, due to the extensive amounts of buried ice in this area.  
 
Figure 6. The decline in the extent of groundwater seeps in western 
Skeiðarársandur (1978-2012). The figure shows the extent of groundwater 
seeps in 1978 (red), 1997 (blue) and 2012 (green). The position of the glacial 
margin is shown by the solid lines of the respective colours.  Changes in the 
area of Twin Peak Lake are also illustrated for the following years: 1978 
(turquoise), 2012 (orange). The 1997 extent was very similar to that in 1978. 
Hence, it was omitted for clarity. 
 
Figure 7. A time series of changes in groundwater levels in western 
Skeiðarársandur between August 2000 and August 2012. Open shapes 
denote boreholes where groundwater levels have fallen below the intake. For 
the location of the boreholes see Figure 1.  
 
Figure 8. Moving Average (MA) of annual and seasonal water budget at the 
study area. The data was obtained from the IMO (2013). 
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Table 1. Glacial margin fluctuations for western Skeiðarárjökull (1932-2012). 
The table shows the main periods of retreat and advance (IGS, 2013).  
Positive values for the minimum retreat column denote the maximum 
advances during the period. The data below the grey row summarizes the 
data for the total monitoring period, the study period and the period of 
observed declines in groundwater seeps (1997-2012).  
 
 
 
 
 
 
        

Period Retreat/ 
Advance 

Distance 
of 
retreat/ 
Advance 
 (m) 

Mean 
rate of 
annual 
retreat 
(m yr-1) 

Min. 
annual 
retreat 
(m) 

Max. 
annual 
retreat 
(m)  

Cumulative 
distance 
(m) 

1932-1945 Retreat -1680 129 -3 -336 -1680 
1946 Advance +84    -1596 
1947-1984 Retreat -968 25 (+40) -199 -2564 
1985-1986 Advance +441    -2123 
1987-1990 Retreat -335 84 -20 -114 -2458 
1991-1992 Advance 

(1991 
surge) 

+515    -1943 

1993-2012 Retreat -1603 80 -10 -200 -3546 
 
 Total 

retreat 
(m) 

Total 
advance 
(m) 

Net 
retreat 
(m) 

Mean 
annual 
retreat 
(m yr-1) 

Min. 
annual 
retreat 
(m) 
(year)  

Max. annual 
retreat (year) 

Total 
monitoring 
period (1932-
2012) 

-4755 1209 -3546 44 +429 
(1991) 

-336 (1940) 

Period 
covered in this 
study (1978-
2012) 

-2030 +962 -1068 31 +429 
(1991) 

-200 (2006) 

Period of 
observed 
decline in 
groundwater 
seeps (1997-
2012) 

-1513 0 -1513 95 -10 
(2005) 

-200 (2006) 



 
 
 
 1978 1997 2012 % 

change 
(1978-
1997) 

% 
change 
(1978-
2012) 

Area (m2) 
Seeps  2,767,200 2,195,800  90,600 -21 -97 
TPL 119,000 106,500 5,900 -10 -95 
Lake A 15600 12800  0 -18 -100 
GW2 lake 16600 18800  9,200 13 -44 

Perimeter (m) 
Seeps  110200 121000  9,300 -10 -91 
TPL 2900 2400 300 -18 -88 
Lake A 650 525  0 -19 -100 
GW2 lake 740 746  500 -1 -33 
 
 
Table 2. Changes in the areas and perimeters of groundwater seeps and 
lakes in western Skeiðarársandur (1978, 1997, 2012).  
  



 

Borehole  
August 
2000 

August 
2001 

August 
2009 April 2011 

August 
2011 

August 
2012 

Change 
(m)  

Water table elevation (m)  
Groundwater seeps 

  
P132m 78.577 78.385 76.890   77.025 -1.552 
P42m 85.993 85.828 <84.975 <84.975   ->1.063 
P32m 82.283 82.227 81.270 81.275  <80.510 ->1.773 
GW3     77.771 77.506 -0.265 

Near margin 
P62m 91.486 91.178 <89.820 <89.820   ->1.971 

Moraine lakes 
WT A 81.1605 80.951 <80.235    ->0.926 
GW1     78.948 <78.575 ->0.373 
GW2     75.582 75.592 -0.100 
P5     76.317 <75.71 ->0.606 
GW13     78.662 <78.147 >0.515 

Meltwater channels 
GW7 (5 
m from 
the 
channel) 

    

69.680 69.610 -0.070 
PTA (40 
m from 
the 
channel)     69.923 68.777 -1.146 
PTC (70 
m away 
from 
channel) 

    

70.139 68.847 -1.292 
 
Table 3. The spatial variability of changes in groundwater levels for different 
hydrogeological settings (July 2000-August 2012). Boreholes in italics were 
installed in July 2011. Water table elevation with < show the elevation of the 
bottom of the borehole, meaning that groundwater fell below this level. Values 
of change with > means that groundwater levels have dropped below the 
borehole intake, hence only the minimum levels of decline are shown.  
  



 
1978-2012 1997-2012 

 start of 
period 

end of 
period 

change start of 
period 

end of 
period 

change 

 Temperature (°C) Temperature (°C) 
Annual  4.15 5.83 1.68 5.04 5.62 0.58 
Winter 
(Dec.-
Feb.) -0.59 1.12 1.71 0.486 1.05 0.57 
Spring 
(March-
May) 2.76 4.59 1.83 4.02 4.77 0.75 
Summer 
(June-
August) 10.44 11.63 1.19 10.83 11.40 0.57 
Autumn 
(Sept.-
Nov.) 4.00 6.09 2.09 4.83 5.66 0.83 
 Precipitation (mm) Precipitation (mm) 
Annual  1490 1958 468 1667 2126 460 
Winter 316 542 226 468 714 246 
Spring 333 385 53 314 397 83 
Summer 336 338 2 453 346 -106 
Autumn 505 740 235 432 743 311 
 PE (mm) PE (mm) 
Annual  396 454 59 422 446 24 
Winter 7 23 17 15 21 6 
Spring 83 105 23 92 111 19 
Summer 209 209 0 205 207 2 
Autumn 97 117 20 110 107 -3 
 Water budget (mm) Water budget (mm) 
Annual  1197 1592 396 1221 1654 433 
Winter 311 451 140 458 575 117 
Spring 240 282 42 229 332 102 
Summer 130 138 8 245 135 -110 
Autumn 399 615 216 320 672 351 

 
Table 4. Changes in the MA of annual and seasonal temperature, 
precipitation, Potential Evaporation (PE), and water budget in the study area 
from 1978-2012 and 1997-2012. The data was obtained from the IMO (2013).  
 
 

  



 
 
 
 
 
 


