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Abstract. Let L/K be a finite Galois extension of local or global

fields in any characteristic with nonabelian Galois group G, and

let B be an ambiguous ideal of L. We show that B is free over its

associated order in K[G] if and only if it is free over its associated

order in the Hopf algebra giving the canonical nonclassical Hopf-

Galois structure on the extension.

1. Introduction and Statement of Results

Hopf-Galois module theory is a generalization of the classical Galois

module theory of algebraic integers. Classically, we consider a finite

Galois extension of local or global fields L/K with Galois group G.

The group algebra K[G] acts on L by

(1)

(∑
g∈G

cgg

)
· x =

∑
g∈G

cgg[x] (cg ∈ K, x ∈ L),

and the Normal Basis Theorem states that L is a free K[G]-module

of rank 1. Motivated by this, we study the structure of the ring of

algebraic integers (or valuation ring) OL as a module over its associated

order in K[G]:

AK[G] = {α ∈ K[G] | α(x) ∈ OL for all x ∈ OL}.

More generally, given any ambiguous ideal B of L (i.e. a G-stable frac-

tional ideal of L) we can define its associated order in K[G] and study
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the structure of B as a module over its associated order. A survey of

this topic can be found in [8].

The group algebra K[G] is a Hopf algebra, and the action of K[G] on

L/K is an example of a so-called Hopf-Galois structure on the exten-

sion. If H is a K-Hopf algebra, then we say that H gives a Hopf-Galois

structure on the extension L/K if L is an H-module algebra (see [3,

§2]) and the K-linear map

j : L⊗K H → EndKL

defined by

j(s⊗ h)(t) = s(h · t)

is a bijection. We call the Hopf-Galois structure given by K[G] the

classical structure. There may be a number of other K-Hopf algebras

that give Hopf-Galois structures on L/K, and we call these nonclassical

structures. Each of these Hopf-Galois structures provides a different

context in which we can study the extension and its ambiguous ideals.

A survey of this topic, focussing mainly on the consequences for OL, can

be found in [3]. If H is a Hopf algebra giving a Hopf-Galois structure

on L/K then L is a free H-module of rank one [3, Theorem 2.15]; this

a generalization of the classical Normal Basis Theorem and motivates

us to ask analogous questions at integral level. Given an ambiguous

ideal B of L we can define within H the associated order of B:

AH(B) = {h ∈ H | h · x ∈ B for all x ∈ B},

and study the structure of B as a module over this associated order.

If the extension L/K admits a number of Hopf-Galois structures then

we can compare the structure of B as a module over its associated

orders in the various Hopf algebras, and it is possible that we may

achieve a more satisfactory description of B as a module over some of

these associated orders than over others. The most striking results in

this direction are due to Byott [1], who exhibited examples of wildly
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ramified Galois extensions L/K of p-adic fields for which OL is not free

over its associated order in K[G] but is free over its associated order in

some Hopf algebra giving a nonclassical Hopf-Galois structure on the

extension.

On the other hand, there are examples of extensions L/K of p-adic

fields for which OL is free over its associated order in each of the Hopf-

Galois structures admitted by the extension, or at least in certain fami-

lies of these. For example, if L/K is unramified then OL is free over its

associated order in each of the Hopf-Galois structures admitted by the

extension [9, Theorem 1.1]. If the residue characteristic of K does not

divide [L : K] then L is free over its associated order in any commuta-

tive Hopf algebra giving a Hopf-Galois structure on L/K [9, Theorem

1.2]. If L/K is tamely ramified then OL is free over its associated order

in any Hopf-Galois structure satisfying an additional technical hypoth-

esis [11, Theorem 1.2]. Indeed, we are not aware of an example of a

tamely ramified Galois extension of local fields L/K for which OL is

not free over its associated order in each of the Hopf-Galois structures

admitted by the extension.

Less is known concerning extensions of global fields, but in [10] we

gave examples of tame abelian extensions L/Q for which OL is locally,

but not globally, free over its associated order in some of the nonclas-

sical Hopf-Galois structures admitted by the extension, demonstrating

that the näıve generalization of the Hilbert-Speiser Theorem to non-

classical Hopf-Galois structures does not hold.

A theorem of Greither and Pareigis [3, Theorem 6.8] allows for the

enumeration and description of all the Hopf-Galois structures admit-

ted by a given Galois extension of fields. In fact, their theorem applies

to field extensions which are separable but not necessarily normal, but

in this paper we shall only consider Galois extensions. Let L/K be such
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an extension, with Galois group G. Let Perm(G) denote the group of

permutations of G, and let λ : G ↪→ Perm(G) be the left regular em-

bedding. Then the theorem of Greither and Pareigis asserts that the

Hopf-Galois structures on L/K are in bijective correspondence with

the regular subgroups of Perm(G) normalized by λ(G), that the Hopf

algebra corresponding to a regular subgroup N is H = L[N ]G, where

G acts on L as Galois automorphisms and on N by conjugation via the

image of the embedding λ into Perm(G), and that such a Hopf algebra

acts on L by

(2)

(∑
η∈N

cηη

)
· x =

∑
η∈N

cηη
−1(1G)[x] (cη ∈ L, x ∈ L).

In general, the extension L/K may admit a number of nonclassical

Hopf-Galois structures, and the corresponding regular subgroups N of

Perm(G) need not all be isomorphic to G. Two examples of regular

subgroups that are isomorphic to G are λ(G) itself and ρ(G), the image

of G under the right regular embedding. The action of G on ρ(G) by

conjugation via the image of the embedding λ into Perm(G) is trivial,

so L[ρ(G)]G ∼= K[G], and from Equation (2) we recover the usual ac-

tion of K[G] on L, as described in (1) (see [3, Proposition 6.10]). If G

is abelian then λ(G) coincides with ρ(G), but if G is nonabelian then

these subgroups of Perm(G) are distinct and λ(G) corresponds to non-

classical Hopf-Galois structure on L/K. We will call this the Canonical

Nonclassical Structure and denote the corresponding Hopf algebra by

Hλ. Since every nonabelian Galois extension admits a canonical non-

classical structure, and such a structure has close relationship with G,

they are natural objects to study.

In this paper we will consider finite nonabelian Galois extensions of

local and global fields and compare the descriptions provided by the

classical structure and the canonical nonclassical structure. Our main

result is the following:



CANONICAL NONCLASSICAL HOPF-GALOIS MODULE STRUCTURE 5

Theorem 1.1. Let L/K be a finite nonabelian Galois extension of

local fields or global fields in any characteristic with group G, and let

B be an ambiguous ideal of L. Then B is free over its associated order

in K[G] if and only if it is free over its associated order in Hλ.

Retaining the hypotheses and notation of the theorem, we can state

and prove the following corollaries:

Corollary 1.2. Suppose that L/K is an extension of local fields and

is at most tamely ramified. Then OL is free over its associated order

in Hλ.

Proof. In this case OL is a free OK [G]-module by Noether’s Theorem

[5, Theorem 3], so AK[G] = OK [G] and Theorem 1.1 applies. �

Corollary 1.3. Suppose that L/K is an extension of global fields and

is at most tamely ramified. Then OL is locally free over its associated

order in Hλ.

Proof. The proof of Theorem 1.1 does not depend on the fact that L

is a field, so we may replace L with its completion at some prime p of

OK (a Galois algebra). In this case, for each prime p of OK we have

that OL,p is a free OK,p[G]-module by Noether’s Theorem, so as above

AK[G],p = OK,p[G] for each prime. Hence Theorem 1.1 applies at each

prime, and so OL is locally free over its associated order in Hλ. �

Corollary 1.4. Suppose that K = Q, that L/Q is tamely ramified and

that [L : Q] is not divisible by 4. Then OL is free over its associated

order in Hλ.

Proof. In this case OL is a free Z[G]-module by Taylor’s Theorem [7],

so AK[G] = Z[G] and Theorem 1.1 applies. �

Corollary 1.5. Suppose that L/K is an extension of p-adic fields which

is weakly ramified. Then OL is free over its associated order in Hλ.

Proof. In this case OL is free over its associated order in K[G] by a

Theorem of Johnston [6], so Theorem 1.1 applies. �
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We will prove Theorem 1.1 in section 4, using properties of the canon-

ical nonclassical Hopf-Galois structure Hλ that will be developed in

sections 2 and 3. In section 2 we show that an element x ∈ L generates

L as a K[G]-module if and only if it generates L as an Hλ-module. In

section 3 we study the relationship between the action of Hλ on L and

the action of G on L, and in particular connections with the trace form

on L/K.

2. Normal Basis Generators

In this section we continue to assume that L/K is a finite Galois

extension of fields with Galois group G, but we do not assume that

the extension is of local or global fields. Although we will be primar-

ily interested in the canonical nonclassical Hopf-Galois structure on a

nonabelian extension, many of the results in this section are valid more

generally, and so we will only assume that G is nonabelian when it is

necessary to do so. If H is a Hopf algebra giving a Hopf-Galois struc-

ture on L/K then, as noted in the introduction, L is a free H-module

of rank one. However, to our knowledge the only results comparing ex-

plicit generators of L as a module over the various Hopf algebras giving

Hopf-Galois structures on L/K are those appearing in [2], which are

concerned with the valuation criterion for normal basis generators in

characteristic p. We shall prove the following theorem:

Theorem 2.1. Suppose that G is nonabelian and let x ∈ L. Then x

is a K[G]-generator of L if and only if x is an Hλ-generator of L.

To do this, we recall some elements of the proof of the theorem of

Greither and Pareigis, as detailed in [3, §6]. Let M = Map(G,L), and

let {ug | g ∈ G} be an L-basis of mutually orthogonal idempotents.

That is:

ug(σ) = δg,σ for all g, σ ∈ G.

It can be shown [3, Theorem 6.3] that the L-Hopf algebras giving Hopf-

Galois structures on the extension of rings M/L are precisely the group
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algebras LN of regular subgroups N of Perm(G), where the group N

acts on M by permuting the subscripts of the idempotents ug:

η · ug = uη(g) for any η ∈ N and g ∈ G.

If in addition N is normalized by λ(G) then the group G acts on L[N ]

by acting on L as Galois automorphisms and on N by conjugation via

the image of the embedding λ into Perm(G). It also acts on M by

acting on L as Galois automorphisms and on the idempotents ug by

left translation of the subscripts. Now by Galois descent we obtain

that the K-Hopf algebra L[N ]G gives a Hopf-Galois structure on the

extension of rings MG/K. Note also that L ⊗K L[N ]G = L[N ] and

L⊗KMG = M . Finally, we may identify L with the fixed ring MG via

the K-algebra isomorphism L
∼−→MG defined by

x 7→ fx =
∑
g∈G

g(x)ug for all x ∈ L,

and so L[N ]G gives a Hopf-Galois structure on L/K, with the action

of L[N ]G on L as given in equation (2). The theorem of Greither and

Pareigis asserts that all the Hopf-Galois structures admitted by L/K

occur in this way and, as we have already remarked, provides a similar

classification of Hopf-Galois structures on separable but non-normal

extensions.

With this notation to hand, we establish two lemmas concerning nor-

mal basis generators and then prove Theorem 2.1.

Lemma 2.2. Let N be a regular subgroup of Perm(G), so that L[N ]G

is a K-Hopf algebra giving a Hopf-Galois structure on MG/K. An

element fx ∈ MG is an L[N ]G-generator of MG if and only if it is an

L[N ]-generator of M .

Proof. Let {h1, . . . , hn} be a K-basis of L[N ]G, and note that since

L[N ] = L ⊗K L[N ]G, it is also an L-basis of L[N ]. Suppose first that

fx is an L[N ]G generator of MG. Then the K-span of the elements

h1 ·fx, . . . , hn ·fx is MG, so the L-span of these elements is L⊗KMG =
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M . By considering dimensions we see that they must form an L-basis

of M . Conversely, suppose that fx is an L[N ]-generator of M . Then

the elements h1 · fx, . . . , hn · fx are linearly independent over L, so they

are linearly independent over K, and since MG is an L[N ]G-module

they all lie in MG. Considering dimensions again, we conclude that

they must form a K-basis of MG. �

Lemma 2.3. Fix orderings of the groups G and N . For x ∈ L, the

element fx is an L[N ]-generator of M if and only if the matrix

TN(x) = (η(g)[x])η∈N, g∈G

is nonsingular.

We note that the definition of the matrix TN(x) depends on the

orderings of G and N , but the question of whether it is nonsingular

does not.

Proof. The set {ug | g ∈ G} is an L-basis of M . For x ∈ L and η ∈ N ,

we have

η · fx = η ·

(∑
g∈G

g(x)ug

)
=

∑
g∈G

g(x)uη(g)

=
∑
g∈G

η−1(g)[x]ug.

Therefore the transition matrix from the set {ug | g ∈ G} to the

set {η · fx | η ∈ N} is row equivalent to the matrix TN(x) defined

above, and so fx is an L[N ]-generator of M if and only if this matrix

is nonsingular. �

Proof of Theorem 2.1. Recall that G is assumed to be nonabelian. By

the theorem of Greither and Pareigis the classical Hopf-Galois structure

on L/K corresponds to the regular subgroup ρ(G) of Perm(G) and the

canonical nonclassical Hopf-Galois structure corresponds to the regular

subgroup λ(G). By Lemma 2.2, it is sufficient to show that for a fixed
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x ∈ L, the element fx is an L[λ(G)]-generator of M if and only if it

is an L[ρ(G)]-generator of M . For any σ, τ ∈ G we have λ(σ)τ = στ

and ρ(σ)τ = τσ−1. Therefore for any x ∈ L, the matrix Tλ(G)(x) is row

equivalent to the transpose of the matrix Tρ(G)(x), so the result follows

by Lemma 2.3. �

3. The action of Hλ on L

In this section we assume that L/K is a nonabelian Galois extension

of fields with group G, and let Hλ denote the Hopf algebra giving

the canonical nonclassical Hopf-Galois structure on L/K, acting via

equation (2). Henceforth, we reserve the symbol · for the action of an

element h ∈ Hλ on an element x ∈ L, viz. h ·x, and use parentheses for

Galois actions and the action of an element z ∈ K[G] on an element x ∈
L, viz. z(x). Recall that the trace from L to K induces a nondegenerate

associative symmetric K-bilinear form on L, and so given any K-basis

of L we may form a dual basis with respect to the trace form. Identities

involving the trace form will play an important part in the proof of

Theorem 1.1 in section 4. The first two lemmas of this section concern

the dual basis of a normal basis with respect to the trace form.

Lemma 3.1. Let x be a K[G]-generator of L, so that {σ(x) | σ ∈ G}
is a K-basis of L, and let {σ̂(x) | σ ∈ G} be the dual basis with respect

to the trace form on L/K. Then, for each σ ∈ G, we have σ̂(x) = σ(x̂).
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Proof. For σ, τ ∈ G we have:

TrL/K(σ(x̂)τ(x)) =
∑
g∈G

g(σ(x̂)τ(x))

=
∑
g∈G

gσ(x̂)gτ(x)

=
∑
g∈G

(gσ)(x̂)(gσ)σ−1τ(x)

=
∑
g∈G

(gσ)(x̂σ−1τ(x))

=
∑
g∈G

g(x̂σ−1τ(x))

= TrL/K(x̂σ−1τ(x))

= δ1,σ−1τ

= δσ,τ .

Since the elements of the dual basis are uniquely determined by the

equations

TrL/K(σ̂(x)τ(x)) = δσ,τ ,

we must have σ̂(x) = σ(x̂). This completes the proof. �

We might view the second lemma as an “inside out” version of the

first:

Lemma 3.2. Retain the notation of Lemma 3.1. Then for any σ, τ ∈ G
we have ∑

g∈G

σg(x̂)τg(x) = δσ,τ .

Proof. Enumerate the elements of G as g1, . . . , gn, let X be the matrix

with (i, j) entry gigj(x), and let X̂ be the matrix with (i, j) entry

gjgi(x̂). Using Lemma 3.1 we have

n∑
k=1

gkgi(x̂)gkgj(x) = δi,j,
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so X̂X = I. But this implies that XX̂ = I, and the (i, j) entry of this

product is given by

n∑
k=1

gigk(x)gjgk(x̂),

so this must also equal δi,j. The result follows on setting σ = gi,

τ = gj. �

The final lemma in this section concerns the relationship between

the action of Hλ on L and the action of K[G]. Recall that λ(G) is

the image in Perm(G) of G under the left regular embedding and that

Hopf algebra Hλ = L[λ(G)]G acts on L via equation (2). Therefore if

h =
∑

g∈G cgλ(g) ∈ Hλ and t ∈ L then

h · t =

(∑
g∈G

cgλ(g)

)
· t

=
∑
g∈G

cgλ(g)−1(1G)[t]

=
∑
g∈G

cgg
−1[t].(3)

Lemma 3.3. Let t ∈ L, z ∈ K[G] and h ∈ Hλ. Then

h · z(t) = z(h · t).

Proof. Recall that G acts on L[λ(G)] by acting on L as Galois auto-

morphisms and on λ(G) by conjugation via the image of the embedding

λ into Perm(G). The map T : L[λ(G)]→ L[λ(G)]G = Hλ defined by

z 7→
∑
g∈G

gz

is K-linear and surjective, so it is sufficient to consider the case in

which h = T (yλ(τ)) for some y ∈ L and τ ∈ G, and z = σ ∈ G. In
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this case we have:

σ(T (yλ(τ)) · t) = σ

(∑
g∈G

g(y) gλ(τ) · t

)

= σ

(∑
g∈G

g(y)λ(gτg−1) · t

)

= σ

(∑
g∈G

g(y)gτ−1g−1(t)

)
by Equation (3)

=
∑
g∈G

σg(y)σgτ−1g−1(t)

=
∑
g∈G

σg(y)σgτ−1g−1σ−1σ(t)

=
∑
g∈G

σg(y) (σg)λ(τ) · σ(t) by Equation (3)

=
∑
g∈G

g(y) gλ(τ) · σ(t)

= T (yλ(τ)) · σ(t),

as claimed. �

4. Proof of the Main Theorem

In this section we assume that L/K is a nonabelian Galois extension

of local or global fields with group G. Note, however, that we make no

restriction on the characteristic of K. Let B be an ambiguous ideal

of L. Write AK[G] for the associated order of B in K[G] and Aλ for

the associated order of B in Hλ. We shall split the “if” and “only if”

implications of Theorem 1.1 into two separate propositions.

Proposition 4.1. Suppose that x ∈ B generates B as an AK[G]-

module. Then x generates B as a Aλ-module.

Proof. Since x generates B as an AK[G]-module, it generates L as a

K[G]-module, so {σ(x) | σ ∈ G} is a K-basis of L. By Lemma 3.1,

there exists x̂ ∈ L such that {σ(x̂) | σ ∈ G} is the dual basis to
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{σ(x) | σ ∈ G} with respect to the trace form. That is:

∑
g∈G

gσ(x̂)gτ(x) = δσ,τ for all σ, τ ∈ G.

Also, there exist a1, . . . , an ∈ AK[G] such that {a1(x), . . . , an(x)} is an

OK-basis of B. For each i = 1, . . . , n, write xi = ai(x) and define an

element hi ∈ L[λ(G)] by

hi =
∑
g∈G

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
λ(g).

For each i = 1, . . . , n we make three claims about the element hi:

(a) hi ∈ L[λ(G)]G = Hλ, and so we may let hi act on elements of L

according to equation (2),

(b) hi · x = xi,

(c) hi ∈ Aλ.

If we can establish these three claims, then it will follow that {hi | i =

1, . . . , n} is an OK-basis of Aλ and that B is a free Aλ-module.
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To prove (a), let τ ∈ G. Then

τhi = τ

(∑
g∈G

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
λ(g)

)

=
∑
g∈G

τ

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
τλ(g)

=
∑
g∈G

(∑
θ∈G

τθ(xi)τg
−1θ(x̂)

)
λ(τgτ−1)

=
∑
g′∈G

(∑
θ∈G

τθ(xi)(g
′)−1τθ(x̂)

)
λ(g′)

(writing g′ = τgτ−1, so that τg−1 = (g′)−1τ)

=
∑
g∈G

(∑
θ∈G

τθ(xi)g
−1τθ(x̂)

)
λ(g)

(replacing g′ by g)

=
∑
g∈G

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
λ(g)

(replacing τθ by θ)

= hi,

so hi ∈ L[λ(G)]G = Hλ.

Now we know that it makes sense to let hi act on x ∈ L according
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to equation (2), and so we can prove (b):

hi · x =

(∑
g∈G

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
λ(g)

)
· x

=
∑
g∈G

(∑
θ∈G

θ(xi)g
−1θ(x̂)

)
g−1(x)

=
∑
θ∈G

θ(xi)

(∑
g∈G

g−1θ(x̂)g−1(x)

)
=

∑
θ∈G

θ(xi)TrL/K(θ(x̂)x)

=
∑
θ∈G

θ(xi)δθ,1 (using Lemma 3.1)

= xi.

Finally, we prove (c). It is sufficient to prove that hi · xj ∈ B for

each j = 1, . . . , n. Recall that xj = aj(x) for some aj ∈ AK[G]. Using

Lemma 3.3 we have:

hi · xj = hi · aj(x)

= aj(hi · x)

= aj(xi),

and this lies in B since xi ∈ B and aj ∈ AK[G].

We have verified all three claims, and so the proof is complete. �

The next proposition is the converse of the previous one:

Proposition 4.2. Suppose that x ∈ B generates B as an Aλ-module.

Then x generates B as an AK[G]-module.

Proof. Since x generates B as an Aλ-module, it generates L as an

Hλ-module, and so by Theorem 2.1 it generates L as a K[G]-module.

Therefore {σ(x) | σ ∈ G} is a K-basis of L and by Lemma 3.1 there

exists x̂ ∈ L such that {σ(x̂) | σ ∈ G} is the dual basis to {σ(x) |
σ ∈ G} with respect to the trace form. Analogously to the proof of

Proposition 4.1, there exist h1, . . . , hn ∈ Aλ such that {h1 ·x, . . . , hn ·x}
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is an OK-basis of B. For each i = 1, . . . , n, write xi = hi · x and define

an element ai ∈ K[G] by

ai =
∑
g∈G

TrL/K(xig(x̂))g.

In this case it is clear that ai ∈ K[G], so ai acts on elements of L, and

we make two claims about each ai:

(a) ai(x) = xi.

(b) ai ∈ AK[G].

Analogously to the proof of Proposition 4.1, if we can establish these

claims then it will follow that {ai | i = 1, . . . , n} is an OK-basis of

AK[G] and that B is a free AK[G]-module.

First we prove (a). We have:

ai(x) =
∑
g∈G

TrL/K(xig(x̂))g(x)

=
∑
g∈G

∑
σ∈G

σ(xi)σg(x̂)g(x)

=
∑
σ∈G

σ(xi)
∑
g∈G

σg(x̂)g(x)

=
∑
σ∈G

σ(xi)δσ,1 (using Lemma 3.2)

= xi.

To prove (b), it is sufficient to prove that ai(xj) ∈ B for each j =

1, . . . , n. Recall that xj = hj · x for some hj ∈ Aλ. Using Lemma 3.3

we have:

ai(xj) = ai(hj · x)

= hj · (ai(x))

= hj · xi,

and this lies in B since xi ∈ B and hj ∈ Aλ.

We have verified both the claims, and so the proof is complete. �
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By combining Propositions 4.1 and 4.2, we obtain Theorem 1.1.

5. Possible Generalizations and Further Questions

In the course of proving Theorem 1.1, we showed that if B is free

over one (and therefore both) of AK[G] and Aλ then we can write down

an OK-basis for one of these orders in terms of an OK-basis for the

other. We might wonder what properties these orders share in this

case. For example: if one is a maximal order or a Hopf order, must the

other also have this property? This might be particularly interesting

in the case of tame extensions, since in this case AK[G] = OK [G], which

is certainly a Hopf order in K[G].

It is possible that L/K may admit a number of Hopf-Galois struc-

tures whose Hopf algebras are isomorphic to Hλ and which act on L

via Equation (2). From a different point of view, we may consider each

of these as a different action of the Hopf algebra Hλ on L. In particu-

lar, Childs [4] has shown that certain fixed point free endomorphisms

of G yield different actions of Hλ on L. It would be natural to inves-

tigate whether Theorem 1.1 generalizes to these Hopf-Galois structures.

The focus of this paper has been on ambiguous ideals B of L, since

in this case the associated orders of B in K[G] and in Hλ are both

defined. If L/K is a Galois extension of local fields then every frac-

tional ideal of L is ambiguous, but in the case of global fields we might

ask whether it is possible for a fractional ideal B of L which is not

ambiguous to have an associated order in Hλ. We are grateful to the

referee for raising this question, as it suggests the potential broader

applicability of nonclassical Hopf-Galois structures in this context.
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