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Résumé. French abstract.

Abstract. In [14] we studied the nonclassical Hopf-Galois mod-
ule structure of rings of algebraic integers in some tamely ramified
extensions of local and global fields, and proved a partial gener-
alisation of Noether’s theorem to this setting. In this paper we
consider tame Galois extensions of number fields L/K with group
G ∼= C2 × C2 and study in detail the local and global structure
of the ring of integers OL as a module over its associated order
AH in each of the Hopf algebras H giving a nonclassical Hopf-
Galois structure on the extension. The results of [14] imply that
OL is locally free over each AH , and we derive necessary and suffi-
cient conditions for OL to be free over each AH . In particular, we
consider the case K = Q, and construct extensions exhibiting a
variety of global behaviour, which implies that the direct analogue
of the Hilbert-Speiser theorem does not hold.

1. Introduction

Let L/K be a finite Galois extension of number fields with group G and
rings of algebraic integers OL,OK respectively. Classical Galois module
theory seeks to describe the structure of OL as a module over the integral
group ring OK [G] or, more generally, over the associated order

AK[G] = {α ∈ K[G] | α · x ∈ OL for all x ∈ OL}.
Noether’s theorem asserts that if L/K is at most tamely ramified then
AK[G] = OK [G] and conversely, and in this case OL is locally free over
AK[G] [10, Theorem 3]. That is, for each prime p of OK , the completed
ring of integers OL,p = OK,p ⊗OK

OL is a free module (of rank 1) over the
completed associated order AK[G],p = OK,p⊗OK

AK[G]. For wildly ramified
extensions, we seek conditions for OL to be free or locally free over AK[G].
The group algebra K[G] is a Hopf algebra, and we can exploit this fact to
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yield information about the local structure of OL over AK[G]. Childs [6]
showed that if F/E is a finite Galois extension of p-adic fields with group G
and the associated order AK[G] is a Hopf order in K[G] then OF is free over
K[G]. A consequence of this for Galois extensions of number fields L/K is
that if p is a prime of OK and the completed associated order AK[G],p is a
Hopf order in Kp[G] then the completed ring of integers OL,p is free over
AK[G],p.

Hopf-Galois theory generalises the situation described above. The notion
of a Hopf-Galois structure is defined for certain extensions of commutative
rings, but we shall be interested mainly in studying Hopf-Galois struc-
tures on finite extensions L/K of number fields. Let H be a finite di-
mensional K-Hopf algebra, with counit ε : H → K and comultiplication
∆ : H → H ⊗K H. We use Sweedler notation to represent the image under
∆ of an element h ∈ H:

∆(h) =
∑
(h)

h(1) ⊗ h(2).

If L is an H-module then we say that L is an H-module algebra if for h ∈ H
and s, t ∈ L we have:

h · (st) =
∑
(h)

(h(1) · s)(h(2) · t)

h · 1 = ε(h)1.

We say that H gives a Hopf-Galois structure on L/K (or that L/K is
an H-Galois extension) if L is an H-module algebra and additionally the
K-linear map

j : L⊗K H → EndK(L)
defined by

j(s⊗ h)(t) = s(h · t) for s, t ∈ L, h ∈ H
is an isomorphism of K-vector spaces.

We shall be concerned with finite Galois extensions L/K of number fields.
Such extensions admit at least one Hopf-Galois structure, with Hopf alge-
bra K[G], and we call this the classical structure. The extension may also
admit a number of other Hopf-Galois structures, which we call nonclassi-
cal. A theorem of Greither and Pareigis allows for the enumeration of all
Hopf-Galois structures admitted by a finite separable extension of fields,
and a gives a characterisation of the associated Hopf algebras. We state it
here in a weakened form applicable to finite Galois extensions. For a finite
set X we write Perm(X) for the group of permutations of X. A subgroup
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N of Perm(X) is called regular if |N | = |X| and N acts transitively on X.
We define an embedding λ : G→ Perm(G) by left translation:

λ(g)(x) = gx for g, x ∈ G.
Then we have:

Theorem 1.1 (Greither and Pareigis). There is a bijection between reg-
ular subgroups N of Perm(G) normalised by λ(G) and Hopf-Galois struc-
tures on L/K. If N is such a subgroup, then G acts on the group algebra
L[N ] by acting simultaneously on the coefficients as the Galois group and
on the group elements by conjugation via the embedding λ. The Hopf al-
gebra giving the Hopf-Galois structure corresponding to the subgroup N
is

H = L[N ]G = {z ∈ L[N ] | gz = z for all g ∈ G} .
Such a Hopf algebra then acts on the extension L/K as follows:

(1)

(∑
n∈N

cnn

)
· x =

∑
n∈N

cn(n−1(1G))x.

Proof. See [7, Theorem 6.8]. �

If L/K is an H-Galois extension of fields then L is a free H-module of
rank 1 (see [7, (2.16)]) - this is a Hopf-Galois analogue of the normal basis
theorem. In the case of local or global fields it is natural to investigate
analogous results at integral level, and so we define within H an associated
order:

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL},
and study the structure of OL as an AH -module. We are particularly inter-
ested in establishing whether OL is a free or locally free AH -module. The
consequence of Childs’ theorem described above generalises to this setting:
if L/K is an H-Galois extension of number fields and p is a prime of OK

then OL,p is free over AH,p if the latter is a Hopf order in the Hopf algebra
Hp. If the extension L/K admits a number of Hopf-Galois structures, we
can compare the structure of OL as a module over the associated orders
in the various Hopf algebras. The use of nonclassical Hopf-Galois struc-
tures has interesting consequences for wildly ramified extensions - OL may
not be free or locally free over AK[G], but may be free or locally free over
its associated order AH within some Hopf algebra H giving a nonclassical
Hopf-Galois structure on the extension (see for example [4]). However, this
approach also raises questions about tamely ramified extensions. If L/K
is an extension of number fields which is at most tamely ramified then
Noether’s theorem asserts that AK[G] = OK [G] and that OL is locally free
over OK [G], and results such as the Hilbert-Speiser theorem [12] describe
the global structure of OL over OK [G] in certain cases. It is not known
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whether analogous results hold in general for any nonclassical Hopf-Galois
structures admitted by the extension. In [14] we studied some problems
of this type, and proved some local results for certain classes of extensions
which are at most tamely ramified. In particular we obtained the following
results for completions of extensions of number fields:

Theorem 1.2. Let L/K be a finite abelian extension of number fields
with group G, and suppose that L/K is H-Galois for the Hopf algebra
H = L[N ]G. Let p be a prime of OK which is unramified in OL. Then
AH,p = OL,p[N ]G, this is a Hopf order inHp, and OL,p is a free AH,p-module.

Proof. See [14, Theorem 5.4]. �

Theorem 1.3. Let L/K be a finite Galois extension of number fields,
and suppose that L/K is H-Galois for some commutative Hopf algebra H.
Suppose that p is a prime of OK lying above a prime number p - [L : K].
Then AH,p = OL,p[N ]G, this is the unique maximal order in Hp, and OL,p

is a free AH,p-module.

Proof. See [14, Theorem 5.8]. �

Combining these, we obtained the following result concerning domestic ex-
tensions. (We call a Galois extension of number fields L/K domestic if no
prime p of OK lying above a prime number p | [L : K] is ramified in OL.)

Theorem 1.4. Let L/K be a finite domestic abelian extension of number
fields which is H-Galois for some commutative Hopf algebra H = L[N ]G.
Then AH = OL[N ]G and OL is a locally free AH -module.

Proof. See [14, Theorem 5.9]. �

As a particular case of this, we have:

Corollary 1.5. Let L/K be an abelian Galois extension of number fields
of prime power degree which is at most tamely ramified. Suppose that L/K
is H-Galois for some commutative Hopf algebra H. Then OL is a locally
free AH -module.

The purpose of this paper is to study in detail the local and global Hopf-
Galois module structure of a class of tamely ramified extensions L/K of
number fields to which this theorem applies. Specifically, we study tamely
ramified Galois extensions of number fields with group G ∼= C2 × C2. We
begin by characterising these extensions and determining explicit integral
bases of OL,p for each prime p of OK . In addition to the classical struc-
ture with Hopf algebra K[G], biquadratic extensions admit 3 nonclassical
Hopf-Galois structures, as detailed in [5]. The results of [14] imply that OL

is locally free over its associated order AH in each Hopf-Galois structure
admitted by the extension. We calculate an explicit OK,p-basis of AH,p for
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each prime p of OK and also give explicit generators of OL,p over AH,p.
Using this detailed local information, we use Fröhlich’s Hom Description
[10] of the locally free class group Cl (AH) to derive necessary and sufficient
conditions for OL to be free over AH . Finally, we consider the case where
K = Q, where these results have a very explicit form. We show that in this
case freeness of OL over AH is connected to representability questions for
certain quadratic forms. In the classical structure Q[G], the Hilbert-Speiser
theorem [12] asserts that OL is free over OK [G]. In contrast to this, we
give examples of extensions exhibiting a variety of global behaviours with
respect to the associated orders in nonclassical Hopf-Galois structures.

We shall study analogous problems for tamely ramified Galois extensions
of number fields with group Cp × Cp, where p is an odd prime number, in
a forthcoming paper.

2. Tame Biquadratic Extensions

Let K be a number field. The Galois extensions of K with group
G ∼= C2 × C2 are of the form L = K(α, β), where α2 = a and β2 = b

are elements of K whose images in the F2-vector space K×/K×2 are lin-
early independent. We shall establish congruence conditions on a and b
which are equivalent to the extension L/K being tamely ramified.

We shall frequently employ completion. If p is a prime of OK lying above a
prime number p then we write Kp for the completion of the number fields
K with respect to the discrete absolute value arising from p. The field Kp is
a p-adic field with ring of integers (valuation ring) OK,p and maximal ideal
pOK,p = πpOK,p. We write Lp for the Kp-algebra Kp ⊗K L; in general this
is not a p-adic field but a product of p-adic fields. We have the isomorphism

Lp =
∏

P|pOL

LP,

where the product is taken over those primes P of OL lying above p and each
factor on the right hand side is a p-adic field [11, (1.8)]. We have a similar
decomposition of the completed ring of integers OL,p = OK,p ⊗OK

OL into
a product of valuation rings. In particular, if more than one prime of OL

lies above p then we must regard the image in Lp of an element of L as a
tuple. We shall often tacitly make use of this in what follows. The rings
Lp and OL,p are examples of Galois algebras.

Proposition 2.1. The extension K(α, β)/K is tamely ramified if and only
if a and b can be chosen to satisfy a ≡ b ≡ 1 (mod 4OK).

Proof. Since [K(α, β) : K] = 4, the extension is tamely ramified if and
only if no prime p of OK lying above 2 is ramified in OL. Since L is the
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compositum of K(α) and K(β), L/K is tamely ramified if and only if both
the subextensions K(α)/K and K(β)/K are tamely ramified. Consider
the subextension K(α)/K; the argument for the subextension K(β)/K is
similar. Let p be a prime of OK lying above 2. Using [7, (24.2)] and the
discussion of Galois algebras above, the extension K(α)/K is tamely rami-
fied if and only if for each prime P of OK(α) lying above p, the completion
K(α)P/Kp is generated over Kp by an element z satisfying z2 = 1 + 4up,
where up ∈ OK,p. So the extension K(α)/K is tamely ramified if and
only if we can choose a = α2 such that for each p | 2OK we have a ≡ 1
(mod 4OK,p). If we can choose a in this way for each prime p lying above
2 then by the Chinese Remainder Theorem we can choose a such that the
condition is satisfied for all such p simultaneously, i.e. a ≡ 1 (mod∗ 4OK).
Finally, we can adjust a by a square of an integral element (without affect-
ing the congruence conditions above 2) to ensure that a ∈ OK , i.e. a ≡ 1
(mod 4OK). �

Next we calculate explicit integral bases of OL,p over OK,p for each prime p
of OK . For primes not lying above 2 the following function will be useful:

Definition 2.2. For x ∈ K× and p a prime of OK , define rp(x) by

rp(x) =
⌊
vp (x)

2

⌋
= max

{
n ∈ Z | n ≤ vp (x)

2

}
.

Proposition 2.3. Let p be a prime of OK which does not lie above 2, and
let πp be a uniformiser of OK,p. Then the following is an OK,p basis of
OL,p. {

1,
α

π
rp(a)
p

,
β

π
rp(b)
p

,
αβ

π
rp(ab)
p

}
Proof. Let z be one of α, β, αβ and consider the subextension K(z)/K.
Let ω denote the set

{
1, z/πrp(z2)

p

}
. Note that z/πrp(z2)

p ∈ OK(z),p since

2rp(z2) ≤ vp

(
z2
)
. If vp

(
z2
)
≡ 0 (mod 2) then we may calculate ex-

plicitly d (ω) ∈ O×K,p, so ω is an integral basis of OK(z),p over OK,p. If
vp

(
z2
)
≡ 1 (mod 2) then we calculate d (ω) = pOK,p, so K(z)p/Kp is ram-

ified and therefore there exists a unique prime ideal P of OK(z) such that

pOK(z) = P2. We may then calculate that vP

(
z/π

rp(z2)
p

)
= 1, so ω com-

prises an element of P-valuation 0 and an element of P-valuation 1, whence
ω is an integral basis for OK(z),p over OK,p. To complete the proof of the
proposition we apply the above to two different subextensions K(z),K(y)
of L/K. We may assume that at least one of vp

(
z2
)
, vp

(
y2
)

is congruent
to 0 modulo 2. We then have that the extensions are arithmetically disjoint
at p, and so OL,p = OK(y),pOK(z),p. �
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Proposition 2.4. Let p be a prime of OK which lies above 2. Then the
following is an OK,p-basis of OL,p.{

1,
(
α− 1

2

)
,

(
β − 1

2

)
,

(
(α− 1)(β − 1)

4

)}
.

Proof. Consider first the subextension K(α)/K. By [7, (24.4)] and the
discussion of Galois algebras above we have that an OK,p basis of OK(α),p

is {
1,
(
α− 1

2

)}
,

and the local extension K(α)p/Kp is unramified, so d (K(α)p/Kp) = OK,p.
Analogous results hold for the subextensionK(β)/K. Since both the subex-
tensions K(α)/K and K(β)/K are unramified at p, they are arithmetically
disjoint at p, and so we obtain

OL,p = OK(α),pOK(β),p,

which yields the description of OL,p in the proposition. �

From these propositions we can identify those primes of OK which are
ramified in OL. Recall that a prime p is ramified in OL if and only if it
divides the discriminant d (L/K), and that for each prime p of OK we have
d (L/K)p = d (Lp/Kp). Since L/K is tamely ramified and [L : K] = 4, any
prime p lying above 2 is unramified in OL. For primes not lying above 2,
we refer to the discriminant calculations in the proof of Proposition 2.3,
and conclude that p is ramified in the subextension K(α)/K if and only if
vp (a) ≡ 1 (mod 2), and similarly for the subextension K(β)/K. Therefore
p is ramified in the extension L/K if and only if vp (a) ≡ 1 (mod 2) or
vp (b) ≡ 1 (mod 2).

3. Hopf-Galois Structures On Tame Biquadratic Extensions

In this section we quote results of Byott, who enumerated all Hopf-Galois
structures admitted by a biquadratic extension [3] and described the cor-
responding Hopf algebras [5]. These are all commutative K-Hopf algebras
and so, since they are also separable K-algebras (see [15, (11.4)]), each has a
unique maximal order. We determine the Wedderburn components of the
Hopf algebras giving nonclassical structures, which allows us to identify
easily the unique maximal order in each Hopf algebra. Finally, we derive
formulae for the action of each Hopf algebra on the extension.

Theorem 3.1 (Byott). Let T ≤ G have order 2, let d ∈ {0, 1}, and fix
σ, τ ∈ G satisfying:

T = 〈τ〉, σ2 = 1, G = 〈σ, τ〉.
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There are well defined permutations η, ρ ∈ Perm(G) determined by:

ρ(σkτ l) = σkτ l−1

η(σkτ l) = σk−1τ l+(k−1)d for k, l ∈ Z.
We have ρη = ηρ and ρ2 = 1. Set N = NT = 〈ρ, η〉. If d = 0 then η2 = 1
and so N ∼= C2 × C2. If d = 1 then η2 = ρ and so N ∼= C4. In both
cases N is regular on G and is normalised by λ(G). Thus N gives rise to
a Hopf-Galois structure on L/K, with Hopf algebra H = HT = L[NT ]G.
If d = 0 then HT = K[G] regardless of the choice of T . If d = 1 then
the 3 possible choices of T yield 3 distinct groups N , each giving rise to
a nonclassical structure on L/K. These are all the Hopf-Galois structures
admitted by L/K.

Proof. For the enumeration of Hopf-Galois structures, see [3, Corollary to
Theorem 1, part (iii) (corrected)]. For the determination of the permtations
η and ρ, see [5, Theorem 2.5] �

We shall henceforth assume that d = 1, and therefore consider only non-
classical Hopf-Galois structures admitted by the extension L/K. The Hopf
algebras we will consider are therefore of the form H = L[N ]G where
N = 〈η〉 ∼= C4 is a regular subgroup of Perm(G) which is normalised by
λ(G), corresponding to a choice of subgroup T of G having order 2. We
note in particular that each such Hopf algebra is commutative. We will
not specify a choice of T , and will therefore work with an arbitrary Hopf
algebra giving a nonclassical Hopf-Galois structure on the extension.

Next we seek a more explicit description of the Hopf algebra H = L[N ]G.
The group N has a unique subgroup of order 2, generated by η2. The group
algebra K[η2] has a basis of mutually orthogonal idempotents:

e0 =
1
2
(
1 + η2

)
, e1 =

1
2
(
1− η2

)
satisfying

η2es = (−1)ses.
We write LT for the subfield of L fixed by T = 〈τ〉. Thus LT /K is cyclic
of degree 2. Fix v ∈ OT

L satisfying

σ(v) = −v.
Write v2 = V ∈ OK , and set

av = e0 + ve1 ∈ OT
L[η2].

Then we have

Proposition 3.2 (Byott). With the above notation we haveH = K[η2, avη].

Proof. See [5, Lemma 2.10]. �
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Proposition 3.3. With the above notation we have the following isomor-
phism of K-algebras:

H ∼= K2 ×K(w),
where w is defined by w2 = −v2 = −V .

Proof. We make the following change of generators of H = K[η2, avη]:

{1, η2, avη, η
2(avη)} 7→ {e0, e1, e0(avη), e1(avη)} = ω

This is easily shown to be a change of basis. We shall examine properties
of the basis ω. Clearly

(e0(avη)t)(e1(avη)t
′
) = 0

for any t, t′ ∈ Z, and so we have a decomposition H = e0H×e1H. We note
that e0(avη) = e0η and form orthogonal idempotents within the K-algebra
e0H as follows:

{e0, e0η} 7→
{

1
2

(e0 + e0η) ,
1
2

(e0 − e0η)
}
.

This implies that e0H ∼= K2. Now we examine elements of the form
e1(avη)t. We calculate

(e1(avη))2 = (e1vη)2

= e1(vη)2

= e1V η
2

= −e1V (by definition of e1)

Recall the definition of w from the statement of the proposition. If we make
the identifications

e1 7→ 1
e1(avη) 7→ w,

we see that e1H ∼= K(w). This gives

H ∼= K2 ×K(w).

�

Corollary 3.4. We have the following description of the unique maximal
OK-order MH in H:

MH
∼= O2

K ×OK(w).

Definition 3.5. For r = 0, 1, we shall adopt the following notation for the
idempotents defined in the proof of 3.3:

Er =
1
2

(e0 + (−1)re0η) .
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It is possible to choose the element v such that we have v = αiβj for some
nonnegative integers i, j, and we shall always assume that we have done so.
We then have v2 = V ≡ 1 (mod 4OK), and so we may use the propositions
of section 2 to calculate an explicit OK,p-basis of MH,p for each prime p of
OK .

Corollary 3.6. If p is a prime of OK which does not lie above 2, then we
may use Proposition 2.3 to obtain an explicit OK,p basis of MH,p:{

E0, E1, e1,
e1(avη)

π
rp(V )
p

}
.

Proposition 3.7. Let p be a prime of OK which lies above 2, and write
2 = uπep with u ∈ O×K,p, so that e = vp (2). Then there exists e/2 ≤ qp ≤ e

and cp ∈ O×K,p such that the following is an OK,p-basis of OK(w),p.{
1,
(
cpw − 1
π
qp
p

)}
Proof. We omit the subscript p and write simply c and q. We calculate
that

w2 = −V = 1 + u1π
e
p

for some u1 ∈ O×K,p, and follow the proof of [7, (24.2) Case (ii)]. There

exist some c, uc ∈ O×K,p such that (cw)2 = 1 + ucπ
Q
p with either Q < 2e

and Q ≡ 1 (mod 2) or Q ≥ 2e. In the first case K(w)p/Kp is totally wildly
ramified. Writing Q = 2q + 1 (so in particular q < e) the following is an
OK,p-basis of OK(w),p: {

1,
(
cw − 1
πqp

)}
.

In the second case K(w)p/Kp is either unramified (Q = 2e) or not a proper
extension (Q > 2e). Using Proposition 2.4, we have that the following is
an OK,p basis of OK(w),p: {

1,
(
cw − 1
πep

)}
.

�

Corollary 3.8. Let p be a prime of OK lying above 2. Then for c = cp
and q = qp as defined above, the following is an OK,p-basis of MH,p:{

E0, E1, e1,
ce1(avη)− e1

πqp

}
.
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In addition to the notation established in the previous sections, we now
fix an element x ∈ O

〈σ〉
L satisfying τ(x) = −x. It is possible to choose the

element x such that we have x = αiβj for some nonnegative integers i, j,
and we shall always assume that we have done so. Then, writing x2 = X,
we have X ≡ 1 (mod 4OK), and

L = K(x, v),

so to determine the action of the Hopf algebra H on L/K, we need only
consider the action of each K-basis element of H on an arbitrary product
xivj . Recall that H has K-basis

{E0, E1, e1, e1(avη)} ,

and that the action of H on x ∈ L is given by equation (1). We calculate:

ηt(σkτ l) = σk−tτ l+tk−t(t+1)/2,

and so

ηt(σkτ l) = 1G if and only if k = t and l = − t(t− 1)
2

.

Therefore we have

(2) (ηt)−1(1G) = σtτ−(t(t−1))/2.

Proposition 3.9. For s = 0, 1 we have

es(xivj) =
{
xivj if s = i

0 otherwise

Proof. Each es ∈ H, so we use equation (2) to calculate es(xivj).

es(xivj) =
1
2
(
1 + (−1)sη2

)
(xivj)

=
1
2

(1 + (−1)sτ) (xivj)

=
xivj

2
(
1 + (−1)i+s

)
=

{
xivj if s = i

0 otherwise

�

Proposition 3.10. We have

(avη)(xivj) = (−1)jxivj+i.
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Proof. The element (avη) ∈ H, so we use equation (2) to calculate (avη)(xivj).

(avη)(xivj) = (e0 + ve1) (xivj)

= viη(xivj)

= σ(xivj+i)

= (−1)jxivj+i

�

Combining Proposition 3.9 and Proposition 3.10, we have:

Corollary 3.11. For s = 0, 1 and t = 0, 1 we have

es(avη)t(xivj) =
{

(−1)jtxivj+it if i = s
0 otherwise.

Corollary 3.12. For r = 0, 1, we have

Er(xivj) =
{
vr if i = 0, j = r
0 otherwise

4. Local Freeness

We begin this section by applying the results of [14] to establish that OL

is locally free over its associated order AH in each of the nonclassical Hopf-
Galois structures admitted by the extension. We then collect the detailed
local information which we shall require in order to use Fröhlich’s Hom
Description in section 5. For each prime p of OK we calculate an explicit
OK,p-basis of the completed associated order AH,p and an explicit generator
of OL,p as a free AH,p-module.

Proposition 4.1. Let p be a prime of OK . Then AH,p = OL,p[N ]G and
OL,p is a free AH,p-module.

Proof. We may simply apply Corollary 1.5. More explicitly, since L/K
is at most tamely ramified and has degree 4, if p is a prime of OK lying
above 2 then p is unramified in OL and we may apply Theorem 1.2. This
yields that AH,p = OL,p[N ]G is a Hopf order in Hp and that OL,p is a free
AH,p-module. On the other hand, if p is a prime of OK which is ramified in
OL then p cannot lie above 2, and we may apply Theorem 1.3. This yields
that OL,p[N ]G is the unique maximal OK,p-order in Hp, which implies that
AH,p = OL,p[N ]G and that OL,p is a free OL,p[N ]G-module. �

Proposition 4.2. Let p be a prime of OK . An OK,p-basis of AH,p =
OL,p[N ]G is given by:

{
1, η2, 2e0(avη), (e1(avη)− e0(avη))

}
if p | 2OK{

E0, E1, e1,
e1(avη)

π
rp(V )
p

}
otherwise
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Proof. If p does not lie above 2 then AH,p = OL,p[N ]G = MH,p and so we
may use the OK,p-basis of MH,p given in Proposition 3.6. If p lies above 2
then we use [1, Lemma (2.1)] to calculate an OK,p-basis of OL,p[N ]G. We
must first find the orbits of G in N . The action of G on N is by conjugation
via the embedding λ. We calculate τη = η and ση = η3, so the orbits of G
in N are

{1}, {η2}, {η, η3}.
The orbits {1} and {η2} both have stabiliser G, so [1, Lemma (2.1)] implies
that 1, η2 are two of the OK,p-basis elements of OL,p[N ]G. The orbit {η, η3}
has stabiliser T = 〈τ〉. Following [1, Lemma (2.1)], we consider the qua-
dratic extension LT /K. Using Proposition 2.4, an integral basis of LTp /Kp

is given by {
1,
v − 1

2

}
,

and so the remaining two OK,p-basis elements of OL,p[N ]G are given by

η + η3 = 2e0

and
v − 1

2
η +
−v − 1

2
η3 =

v

2
(
η − η3

)
− 1

2
(
η + η3

)
= e1(avη)− e0(avη),

giving the description of OL,p[N ]G in proposition. �

In the next section we will be particularly interested in the group of units
A×H,p =

(
OL,p[N ]G

)× for each prime p of OK . If p does not lie above 2 then
by Proposition 4.2 we have(

OL,p[N ]G
)×

= M×H,p
∼= (O×K,p)2 ×O×K(w),p.

To determine
(
OL,p[N ]G

)× when p lies above 2 we use the following propo-
sition:

Proposition 4.3. Let p be a prime of OK lying above 2. Then the asso-
ciated order AH,p = OL,p[N ]G is a local ring. Let I = pOL,p[N ] + ker ε /
OL,p[N ]. Then IG is the unique maximal ideal of AH,p.

Proof. Note first that OL,p[N ]G is a finitely generated module over the com-
plete discrete valuation ring OK,p, so it is sufficient to show that OL,p[N ]G

contains no nontrivial idempotents. We have an isomorphism

OL,p[N ] ∼=
∏
P|p

OL,P[N ],
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and the G-action on each side yields

OL,p[N ]G ∼=

∏
P|p

OL,P[N ]

G

.

Now each OL,P is a discrete valuation ring with residue field of character-
istic 2, and |N | = 4, so each OL,P[N ] is a local ring, and therefore has no
nontrivial idempotents by ([8, (5.25)]). The first part of the result follows
since by ([13, Chapter I, §9]) G permutes transitively the primes P which
lie above p and so the components of the product above. For the second
part, we consider the injection

OL,p[N ]G

IG
↪→

OL,p[N ]
I

defined by
[z] = z + IG 7→ z + I,

and the isomorphisms

OL,p[N ]
I

∼=
∏
P|p

OL,P

P
∼=

OL,p

p
.

We have that [z] corresponds to an element of OL,p/p, but is also fixed by
all g ∈ G, so in fact [z] corresponds to an element of OK,p/p, and we have

OL,p[N ]G

IG
∼= OK,p/p.

Therefore IG is a maximal ideal since OK,p/p is a field, and is unique since
OL,p[N ]G is a local ring. �

Corollary 4.4. Let p be a prime of OK lying above 2, and let z ∈
OL,p[N ]G. Then z ∈ (OL,p[N ]G)× if and only if ε(z) ∈ O×K,p.

Finally, we calculate explicit generators of OL,p over AH,p = OL,p[N ]G for
each prime p of OK :

Proposition 4.5. Let p be a prime of OK which lies above 2. Then a
generator for OL,p as an AH,p-module is:

γp =
1
4

(1 + v + x+ xv) .

Proof. By [14, Proposition 5.3] we have that AH,p = OL,p[N ]G is a Hopf
order and by Proposition 4.3 above it is a local ring. We observe that the
trace element

θ =
∑
n∈N

n
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is a left integral of AH,p (see [7, §3]). Therefore by [7, (14.7)] sufficient
conditions for γp to be a generator of OL,p over AH,p are that γp ∈ OL,p

and θ(γp) = 1. For the first, we recall the OK,p-basis of OL,p given in
Proposition 2.4 and calculate:

γp =
(x− 1)(v − 1)

4
+
x− 1

2
+
v − 1

2
+ 1,

so γp ∈ OL,p. It is straightforward to verify that θ(γp) = TrLp/Kp
(γp) =

1. �

Proposition 4.6. Let p be a prime of OK which does not lie above 2.
Define jp ∈ {0, 1} by

jp =
{

1 if vp (X) ≡ vp (V ) ≡ 1 (mod 2)
0 otherwise

Then a generator for OL,p as an AH,p-module is:

γp = 1 +
v

π
rp(V )
p

+
xvjp

π
rp(XV jp )
p

.

Proof. Since OL,p and AH,p are both free OK,p-modules of rank 4, it suffices
to show that the images of γp under the OK,p-basis elements of AH,p form
an OK,p-basis of OL,p. We note that we have OL,p = e0OL,p

⊕
e1OL,p.

Using Proposition 2.3 we have that an OK,p-basis of OL,p is given by{
1,

v

π
rp(V )
p

,
x

π
rp(X)
p

,
xv

π
rp(XV )
p

}

We also have from Proposition 4.1 that OL,p admits the maximal order
MH,p, which by Proposition 3.6 has OK,p-basis{

E0, E1, e1,
e1(avη)

π
rp(V )
p

}
.

Now for r = 0, 1, we have by Corollary 3.12 that

Erγp =
vr

π
rp(V r)
p

,
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so {E0γp, E1γp} is an OK,p-basis of e0OL,p. We now consider e1OL,p. For
t = 0, 1 we have by Corollary 3.11 that

e1(avη)t

π
rp(V t)
p

γp =
e1(avη)t

π
rp(V t)
p

xvjp

π
rp(XV jp )
p

=
(−1)jptxvjp+t

π
rp(V t)
p π

rp(XV jp )
p

=
(−1)jptxvjp+t

π
rp(XV jp+t)
p

the final equality holding since by the choice of jp we have

rp(XV jp) + rp(V t) = rp(XV jp+t).

So {e1γp, e1(avη)γp} is an OK,p-basis of e1OL,p. Together with the basis of
e0OL,p, we have an OK,p-basis of OL,p. �

5. Conditions for Global Freeness

Having established that OL is locally free over AH in all of the nonclas-
sical Hopf-Galois structures admitted by the extension L/K, we now seek
conditions for global freeness. For each Hopf algebra H giving a nonclassical
Hopf-Galois structure on the extension, OL determines a class in the locally
free class group Cl (AH), and since the Hopf algebras giving Hopf-Galois
structures on L/K are all commutative, OL is free over an associated order
AH if and only if this class is trivial (see [9, §51]). We shall use Fröhlich’s
Hom Description [10] to describe Cl (AH) in terms of idèles. We recall the
definitions of the idèle group of H:

J(H) =
∏

p/OK

′
H×p =

{
(hp)p | hp ∈ H×p , hp ∈ A×H,p for almost all p

}
,

and the group of unit idèles:

U(AH) =
∏

p/OK

A×H,p =
{

(hp)p ∈ J(H) | hp ∈ A×H,p for all p
}
.

In each case, the product is taken over all primes p of OK . Since H is
commutative, the Hom Description reduces to the following isomorphism
([9, Theorem (49.22)]):

Cl (AH) ∼=
J(H)

H×U(AH)
.
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By Proposition 3.3 we have J(H) ∼= J(K)2 × J(K(w)) and H× ∼= (K×)2 ×
K(w)×. It remains to describe the group

U(AH) =
∏

p/OK

A×H,p.

If p - 2OK then from Proposition 4.2 we have that A×H,p = M×H,p
∼= (O×K,p)2×

O×K(w),p. If p | 2OK then we have that A×H,p =
(
OL,p[N ]G

)×. In the
following proposition we express z in terms of the OK,p-basis elements of the
maximal order MH,p and derive congruence conditions on the coefficients
which are equivalent to z ∈

(
OL,p[N ]G

)×.

Proposition 5.1. Let p be a prime of OK which lies above 2, and write
2 = uπep ∈ OK,p, with u ∈ O×K,p. Let z ∈MH,p and write

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p and c, q as in Proposition 3.7. Then z ∈ A×H,p
if and only if

i) a1,1 ≡ 0 (mod πqp)
ii) a0 − a1 + 2π−qp ca1,1 ≡ 0 (mod 4)
iii) a0 + a1 − 2a1,0 + 2π−qp a1,1 ≡ 0 (mod 4)
iv) a0 + a1 + 2a1,0 − 2π−qp a1,1 ≡ 0 (mod 4)
v) a0 ∈ O×K,p

Proof. We rewrite z in terms of the basis elements of OL,p[N ]G given in
Proposition 4.2. By Corollary 4.4, we then have that z ∈

(
OL,p[N ]G

)× if
and only if the coefficients of these basis elements lie in OK,p and ε(z) ∈
O×K,p. The details of the proof are routine. �

Our next aim is to “sandwich” the locally free class group Cl (AH) between
products of ray class groups whose conductors are ideals divisible only by
primes lying above 2. For these primes we therefore seek necessary and
sufficient conditions for z ∈

(
OL,p[N ]G

)× in terms of higher unit groups of
OK,p and OK(w),p.

Definition 5.2. Define an isomorphism

Θ : (K×)2 ×K(w)× ∼= H×

by composing the automorphism of (K×)2 ×K(w)× defined by

(z0, z1, y0) 7→ (z0, z0z1, z0y0)

with the isomorphism K2×K(w) ∼= H defined in Proposition 3.3. We shall
also write Θ for the induced isomorphism (K×p )2× (K(w)p)× ∼= H×p , where
p is a prime of OK , and the isomorphism J(K)2 × J(K(w)) ∼= J(H).
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Proposition 5.3. Let p be a prime of OK lying above 2. Then

Θ
(
O×K,p × (1 + 4OK,p)× (1 + 4OK(w),p)

)
⊆ A×H,p,

Proof. The image under Θ of an element of

O×K,p × (1 + 4OK,p)× (1 + 4OK(w),p)

has the form

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p and

a) a0 ∈ O×K,p
b) a1 ≡ a0 (mod 4OK,p)
c) a1,0 ≡ a0 (mod 4OK,p)
d) a1,1 ≡ 0 (mod 4OK,p)

It is easily verified that these congruences imply those in Proposition 5.1.
�

Proposition 5.4. Let p be a prime of OK lying above 2, and let ep = vp (2).
Then

Θ−1
(
A×H,p

)
⊆ O×K,p × (1 + 2OK,p)× (1 + π

d ep
2 e

p OK(w),p),

where ⌈ep
2

⌉
= min

{
n ∈ Z | n ≥ ep

2

}
.

Proof. Let

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p, and suppose that z ∈ A×H,p. In particular,
a0, a1, a1,0 and a1,1 satisfy conditions (i)-(v) of Proposition 5.1. We shall
show that this implies

Θ−1(z) ∈ O×K,p × (1 + 2OK,p)× (1 + π
d ep

2 e
p OK(w),p).

Adding (iii) and (iv) yields 2a0 + 2a1 ≡ 0 (mod 4), which implies that
a0 ≡ a1 (mod 2). Adding (ii) and (iii) yields

2a0 − 2a1,0 + 2(c+ 1)π−qp a1,1 ≡ 0 (mod 4),

which implies that

a0 − a1,0 + (c+ 1)π−qp a1,1 ≡ 0 (mod 2).
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Now π−qp a1,1 ∈ OK,p by (i), and by examining the proof of Proposition 3.7

we see that vp (c+ 1) ≥
⌈ ep

2

⌉
, so we obtain a1,0 ≡ a0 (mod π

d ep
2 e

p ). Since
we also have from (i) that a1,1 ≡ 0 (mod πqp) and from (v) that a0 ∈ O×K,p,
the result follows. �

Combining Proposition 5.3 and Proposition 5.4, we can now “sandwich”
the locally free class group Cl (AH):

Corollary 5.5. Define an ideal e of OK by

e =
∏

p|2OK

pd
ep
2 e,

where ep = vp (2). Then there are injections:

U(OK) × U4(OK)

��

× U4(OK(w))

U(AH)

��
U(OK) × U2(OK) × Ue(OK(w))

and therefore surjections:

Cl (OK) × Cl4(OK)

��

× Cl4(OK(w))

Cl (AH)

��
Cl (OK) × Cl2(OK) × Cle(OK(w))

Next we turn to the idèle whose class in J(H)/H×U(AH) corresponds under
the Hom Description to the class of OL in Cl (AH). We construct this idèle
as follows: Let Γ be a generator of L over H - such a generator exists by the
Hopf-Galois analogue of the normal basis theorem (see [7, (2.16)]). Then
for each prime p of OK let γp be a generator of OL,p over AH,p, and define
hp ∈ Hp by hpΓ = γp. Then the class of OL in Cl (AH) corresponds to the
class of the idèle (hp)p in the quotient above. We also interpret this class as
a triple of fractional ideals so that we can use Proposition 5.5 to determine
whether OL is free over AH .
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Proposition 5.6. The class of OL in the locally free class group

Cl (AH) ∼=
J(H)

H×U(AH)

corresponds to the class of the idèle (hp)p, where hp is defined by

hp =


E0 + E1 + e1 + e1(avη) if p | 2OK

E0 + π
−rp(V )
p E1 + π

−rp(XV jp )
p e1(avη)jp if p | XVOK

1 otherwise

and where (see Proposition 4.6):

jp =
{

1 if vp (X) ≡ vp (V ) ≡ 1 (mod 2)
0 otherwise.

Proof. Define

Γ =
1
4

(1 + v + x) .

Using the formulae for the action of the K-basis elements of H on those of
L in Corollary 3.11 and Corollary 3.12, we see that Γ is a generator of L
over H. To show that the class of OL in Cl (AH) corresponds to the class
of the idèle (hp)p in J(H)/H×U(AH) we must show that for each prime p
of OK , the element hpΓ is a generator of OL,p over AH,p. We recall the
local generators γp given in Proposition 4.5 and Proposition 4.6:

γp =


1
4

(1 + x+ v + xv) if p | 2OK

1 + π
−rp(V )
p v + π

−rp(XV jp )
p xvjp otherwise

Suppose first that p - 2XVOK . Then hp = 1 and so

hpΓ =
1
4

(1 + v + x) ,

whereas by Proposition 4.5

γp = 1 + v + x.

We note that p - 2OK and so 4 ∈ O×K,p. Therefore we have that hpΓ and γp

differ only by an element of O×K,p, and so hpΓ is a generator of OL,p over
AH,p. Next suppose that p | XVOK . Then

hpΓ = E0Γ + π
−rp(V )
p E1Γ + π

−rp(XV jp )
p e1(avη)jpΓ

=
1
4

(
1 + π

−rp(V )
p v + π

−rp(XV jp )
p xvjp

)
whereas by Proposition 4.5

γp = 1 + π
−rp(V )
p v + π

−rp(XV jp )
p xvjp .
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Again, since p - 2OK we have that 4 ∈ O×K,p. Therefore hpΓ and γp differ
only by an element of O×K,p, and so hpΓ is a generator of OL,p over AH,p.
Finally suppose that p | 2OK . Then

hpΓ = E0Γ + E1Γ + e1Γ + e1(avη)Γ

=
1
4

(1 + v + x+ xv)
= γp

So in this case hpΓ coincides with the generator of OL,p over AH,p given in
Proposition 4.5. This completes the proof. �

Definition 5.7. For y ∈ K, define the fractional ideal

Iy =
∏

p|yOK

prp(y).

Proposition 5.8. Under the composition of maps

J(H)→ J(K)2 × J(K(w))→ Cl (OK)× Cl4(OK)× Cl4(OK(w)),

the idèle (hp)p is mapped to the triple of classes of fractional idealsOK , I
−1
V ,

I−1
X

∏
P|(1+w)

P-2OK(w)

P−vP(1+w)
∏

vp(V )≡1 (mod 2)
vp(X)≡1 (mod 2)

P−1


 .

Proof. Under the isomorphism

θ−1 : J(H) ∼= J(K)2 × J(K(w))

the idèle (hp)p is mapped to the triple of idèles(
(1)p ,

(
π
−rp(V )
p

)
p
, (yp)p

)
,

where

yp =


1 + w p | 2OK

π
−rp(XV )
p w vp (X) ≡ vp (V ) ≡ 1 (mod 2)
π
−rp(X)
p otherwise.

since by definition we have jp = 1 if vp (X) ≡ vp (V ) ≡ 1 (mod 2) and
jp = 0 otherwise. If p is a prime of OK then for each prime P of OK(w)

lying above p we obtain from yp elements yP ∈ K(w)P as follows: If P
is the only prime of OK(w) lying above p then yP = yp. If two primes of
OK(w) lie above p then we label one of them P; the other is then δP, where
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δ is a generator for the Galois group of K(w)/K. We then set yP = yp and
yδP = δyp. Thus the idèle (hp)p corresponds to the triple of idèles(

(1)p ,
(
π
−rp(V )
p

)
p
,
(
(1 + w)y′P

)
P

)
,

where

y′P =


1 P | 2OK(w)

(1 + w)−1π
−rp(X)
p P | (1 + w)OK(w),P - 2OK(w)

π
−rp(XV )
p w vp (X) ≡ vp (V ) ≡ 1 (mod 2) and P | p
π
−rp(X)
p otherwise

Since (1+w) ∈ K(w)×, this triple of idèles has the same class in the product
Cl (OK)× Cl4(OK)× Cl4(OK(w)) as the triple of idèles(

(1)p ,
(
π
−rp(V )
p

)
p
,
(
y′P
)
P

)
.

We now map this triple of idèles to a triple of fractional ideals. We see
immediately that the first component corresponds to the trivial ideal, and
that the second component corresponds to the fractional ideal I−1

V . In the
third component we calculate:

vP

(
y′P
)

=



0 P | 2OK(w)

−vP (1 + w)− vP

(
π
rp(X)
p

)
P | (1 + w)OK(w),P - 2OK(w)

−vP

(
π
rp(X)
p

)
− 1 vp (X) ≡ vp (V ) ≡ 1 (mod 2) and P | p

−vP

(
π
rp(X)
p

)
otherwise

since if p is a prime of OK which does not lie above 2 and P is a prime
of OK(w) lying above p then vP (w) = vp (V ). Therefore this component
corresponds to the fractional idealI−1

X

∏
P|(1+w)OK(w)

P-2OK(w)

P−vP(1+w)
∏

vp(V )≡1 (mod 2)
vp(X)≡1 (mod 2)

P−1

 .

�

Proposition 5.9. A sufficient condition for OL to be free over AH is that
the triple of fractional ideals given in Proposition 5.8 has trival class in the
product of ray class groups

Cl (OK)× Cl4(OK)× Cl4(OK(w)).
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A necessary condition is that the same triple has trivial class in the product
of ray class groups

Cl (OK)× Cl2(OK)× Cle(OK(w)).

Proof. By Proposition 5.6, the class of OL in Cl (AH) corresponds to the
class of the idèle (hp)p in J(H)/H×U(AH). Recalling the surjections of
Corollary 5.5, the result follows. �

If we make additional assumptions about the ray class numbers h4(K) and
h4(K(v)) then we can obtain a more precise result:

Proposition 5.10. Let K be a number field such that h4(K) is odd. Define
an ideal t of OK by

t =
∏

p|2OK

p.

Then
Cl4(OK) ∼= Clt(OK).

Proof. This proposition differs only slightly from [2, Lemma 4.1]. �

Corollary 5.11. Suppose that h4(K) and h4(K(w)) are both odd. Then

Cl (AH) ∼= Cl (OK)× Cl2(OK)× Cle(OK(w)),

and so OL is free over AH if and only if the triple of fractional ideals given
in Proposition 5.8 has trival class in this product of ray class groups.

6. Extensions of Q

In this section we take K = Q. A tame biquadratic extension L of Q has
the form L = Q(α, β), where α2 = a, β2 = b and a, b are squarefree integers
both congruent to 1 modulo 4 whose images in the F2-vector space Q×/Q×2

are linearly independent. We recall the results of section 2 describing the
3 nonclassical Hopf-Galois structures admitted by the extension, and re-
tain the notation of that section. We note in particular that we are free
to replace the element x by xv/ gcd (X,V ) (corresponding to replacing the
element σ ∈ G by στ); this does not affect the class of OL in Cl (AH).
We may assume without loss of generality that x2 = X and v2 = V are
squarefree integers.

Let H be a Hopf algebra giving a nonclassical Hopf-Galois structure on
L/Q. By Proposition 3.3 we have the following isomorphism of Q-algebras:

H ∼= Q2 ×Q(w),

where w2 = −V . We shall write F = Q(w). Since V ≡ 1 (mod 4), we have
−V ≡ −1 (mod 4). Thus d (F ) = −4V , and so F/Q is wildly ramified at
2. Also OF = Z[w].
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Proposition 6.1. The ring of integers OL is free over AH if and only if
there exist integers m0,m1 satisfying

(3) m2
0 + V m2

1 = ±2 gcd(X,V )

Proof. Recall from Definition 5.7 that for y ∈ Q we define the fractional
ideal Iy by

Iy =
∏
p|y

prp(y).

Since X,V are squarefree integers we have vp(X) ≡ vp(V ) ≡ 1 (mod 2) if
and only if p | gcd (X,V ), and so by Proposition 5.9, a sufficient condition
for OL to be free over AH is that the triple of fractional idealsZ, I−1

V ,

I−1
X

∏
P|(1+w)OF

P-2OF

P−vP(1+w)
∏

p|gcd(X,V )
P|pOF

P−1




has trivial class in the product of ray class groups

Cl (Z)× Cl4(Z)× Cl4(OF ).

We note that since X and V are squarefree, we have rp (V ) = rp (X) = 0 for
all prime numbers p. So IV = IX = Z, and therefore the first two terms of
the triple of ideals above automatically have trivial class in Cl (Z)×Cl4(Z),
and the third term has trivial class in Cl4(OF ) if and only if the ideal

J =
∏

P|(1+w)OF

P-2OF

P−vP(1+w)
∏

p|gcd(X,V )
P|pOF

P−1

has trivial class in Cl4(OF ). Next we show that J is a principal fractional
ideal if and only if equation (3) has a solution in integers. We recall from
above that 2 is ramified in F , and write 2OF = P2

2. Then P2 || (1 +w)OF ,
since 2 || NF/Q(1 + w) in Z. Also we have

gcd(X,V )OF =

 ∏
p|gcd(X,V )

P|pOF

P


2

,

and so we have

(1 + w) gcd(X,V )JOF = P2

∏
p|gcd(X,V )

P|pOF

P.
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Therefore J is a principal fractional ideal if and only if there exists some
element µ = (1 + w) gcd(X,V )λ ∈ OF such that

2 gcd(X,V )OF = (µOF )2 .

Taking norms, this is equivalent to the existence of an element µ = m0 +
m1w ∈ OF satisfying

NF/Q(µ)2 = (2 gcd(X,V ))2

i.e.
m2

0 + V m2
1 = ±2 gcd(X,V )

Finally we show that if J is a principal fractional ideal, then it has trivial
class in Cl4(OF ), i.e. it has a generator congruent to 1 (mod∗ 4OF ).
Suppose J is principal and let λ, µ be as above. Then certainly m0,m1 are
odd integers, and replacing mi by −mi if necessary we may assume that
mi ≡ 1 (mod 4) for i = 0, 1. So µ ≡ (1 + w) (mod 4OF ). Recall that P2

is the unique prime of OF lying above 2 and that vP2 (2) = 2. Then

µ = (1 + w) gcd(X,V )λ ⇒ vP2 ((1 + w) gcd(X,V )λ− (1 + w)) ≥ 4
⇒ vP2 (1 + w) + vP2 (gcd(X,V )λ− 1) ≥ 4
⇒ vP2 (gcd(X,V )λ− 1) ≥ 3
⇒ gcd(X,V )λ ≡ 1 (mod∗ 2OF )
⇒ ±λ ≡ 1 (mod∗ 4OF )

So, since λ is a generator for J , there exists a generator of J congruent to
1 (mod∗ 4OF ). �

7. Examples

If L/Q is a tame biquadratic extension, then by the Hilber-Speiser theo-
rem ([12]) OL is free over the associated order AQ[G] = Z[G] in the classical
Hopf-Galois structure Q[G]. In this section we show that the analogous
result does not hold for the 3 nonclassical Hopf-Galois structure admitted
by the extension. Each of the three nonclassical structures admitted by
L/Q corresponds to a choice of element v ∈ OL, which appears in equation
(3). We have some freedom in each case to make a convenient choice of the
element x ∈ OL without affecting the class of OL in Cl (AH).

Example 7.1. Let p, q be prime numbers satisfying p ≡ q ≡ 1 (mod 4).
Let L = Q(

√
p,
√
q). Then OL is not free over AH in any of the three

nonclassical Hopf-Galois structures admitted by the extension.

Proof. We consider the following 3 cases, each corresponding to the freeness
of OL over AH in one of the nonclassical Hopf-Galois structures admitted
by L/Q:
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i) The choices v =
√
p, x =

√
q lead us to consider the equation m2

0 +
pm2

1 = ±2. This has no solutions in integers since a solution (m0,m1)
would satisfy |m2

0 + pm2
1| = 2, which is impossible.

ii) The choices v =
√
q, x =

√
p lead us to consider the equation m2

0 +
qm2

1 = ±2. This has no solutions in integers for similar reasons as
equation (i).

iii) The choices v =
√
pq, x =

√
p lead us to consider the equation m2

0 +
pqm2

1 = ±2p. Suppose that (m0,m1) is an integer solution of this
equation. Then m2

0 = ±2p− pqm2
1, which implies that p | m2

0, and so
p | m0. Write m0 = pm2. Then (m1,m2) is an integer solution of the
equation pm2

2 + qm2
1 = ±2. This implies that |pm2

2 + qm2
1| = 2 which

is impossible.

Thus OL is not free over AH in any of the Hopf-Galois structures admitted
by the extension. �

Example 7.2. Let p, q be prime numbers satisfying p ≡ q ≡ −1 (mod 4).
Let L = Q(

√
−p,
√
−q). Then OL is free over AH in precisely two of the

three nonclassical Hopf-Galois structures admitted by the extension.

Proof. We show first that OL is not free over AH in the Hopf-Galois struc-
ture corresponding to the choices v =

√
pq, x =

√
−p. For this would imply

that there exist integers m0,m1 satisfying

m2
0 + pqm2

1 = ±2p,

which would imply that there exist integers m1,m2 satisfying

|pm2
2 + qm2

1| = 2,

which is impossible. We now show that OL is free over AH in the Hopf-
Galois structure corresponding to the choices v =

√
−p, x =

√
−q. The

argument for the choices v =
√
−q, x =

√
−p is analogous. Let F = Q(

√
p).

By (Proposition 6.1) freeness is equivalent to the existence of a principal
ideal of OF of norm ±2. Since d (F ) = 4p we have that 2 is ramified, and
in fact 2OF = P2

2, where P2 = 2OF +(1+
√
p)OF . So I is an ideal of norm

2, and it will suffice to show that P2 is principal. To do this, it suffices to
show that |Cl (OF ) | is odd. We use [11, Theorem 39, Corollary 1]. Since
F is real, we need to determine whether the fundamental unit η has norm
1 or −1. We write η = x+ y

√
p and consider

NF/Q(η) = x2 − py2.

Since p ≡ −1 (mod 4) we have that −1 is not a quadratic residue mod p,
so NF/Q(η) = −1 is impossible, and so the fundamental unit must have
norm 1. Now by [11, Theorem 39, Corollary 1] the 2-part of Cl (OF ) has
order 2g−2, where g is the number of distinct prime divisors of d (F ). Since
d (F ) = 4p, we have g = 2 and so conclude that |Cl (OF ) | is odd. Therefore
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P2 is a principal ideal of norm ±2 and OL is free over AH in the Hopf-
Galois structure corresponding to the choice v =

√
−p. Thus OL is free

over AH in precisely two of the three nonclassical Hopf-Galois structures
admitted by the extension. �

Example 7.3. Let p, q be prime numbers satisfying p ≡ q ≡ −1 (mod 4)
and let r be a prime number satisfying r ≡ 1 (mod 8). Let L = Q(

√
−p,
√
−qr).

Then OL is free over AH in precisely one of the three nonclassical Hopf-
Galois structures admitted by the extension.

Proof. By the argument presented above, OL is free over AH in the Hopf-
Galois structure corresponding to the choices v =

√
−p, x =

√
−qr. If OL

were free over AH in the Hopf-Galois structure corresponding to the choices
v =
√
pqr, x =

√
−p then there would exist integers m0,m1 satisfying

m2
0 + pqrm2

1 = ±2p,

which would imply that there exist integers m1,m2 satisfying

pm2
2 + qrm2

1 = ±2,

which is impossible. Finally we show that OL is not free over AH in the
Hopf-Galois structure corresponding to the choices v =

√
−qr, x =

√
−p.

This would imply that there exist integers m0,m1 satisfying

m2
0 − qrm2

1 = ±2.

If we reduce this equation modulo r then we have a solution to

m2
0 ≡ ±2 (mod r).

But r ≡ 1 (mod 8), so neither of ±2 is a quadratic residue modulo r, and
so this is impossible. Thus OL is free over AH in precisely one of the three
nonclassical Hopf-Galois structures admitted by the extension. �

Theorem 7.4. Let L/Q be a tame biquadratic extension. Then OL is
not simultaneously free over AH in all three of the nonclassical Hopf-Galois
structures admitted by the extension.

Proof. Write L = Q(
√
a,
√
b) with a, b ∈ Z/Z2 and a ≡ b ≡ 1 (mod 4). If

a > 0 then OL is not free over AH in the Hopf-Galois structure correspond-
ing to the choices v =

√
a, x =

√
b, and if b > 0 then OL is not free over AH

in the Hopf-Galois structure corresponding to the choices v =
√
b, x =

√
a.

But if a < 0 and b < 0 then ab > 0 and OL is not free over AH in the
Hopf-Galois structure corresponding to the choices v =

√
ab, x =

√
a. �
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