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A new asymptotic approximation of the dynamic
equations in the 2D classical theory of thin elastic
shells is established for a circular cylindrical shell. It
governs long wave vibrations in the vicinity of the
lowest cut-off frequency. At a fixed circumferential
wave number the latter corresponds to the eigen
frequency of in-plane vibrations of a thin almost
inextensible ring. It is stressed that the well-known
semi-membrane theory of cylindrical shells is not
suitable for tackling a near-cut-off behaviour. The
dispersion relation within the framework of the
developed formulation coincides with the asymptotic
expansion of the dispersion relation originating from
full 2D shell equations. Asymptotic analysis also
enables refining the geometric hypotheses underlying
various adhoc setups, including the assumption
on vanishing of shear and circumferential mid-
surface deformations used in the semi-membrane
theory. The obtained results may be of interest for
dynamic modelling of elongated cylindrical thin
walled structures, such as carbon nanotubes.
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1. Introduction
The theory of thin elastic shells, as an important branch of theoretical solid mechanics, widely
exploits various approximate formulations. These are based on appropriate physical assumptions
or originate from asymptotic expansions, e.g. see [1–5] and references therein. Each of the
approaches has its own advantages. Sensible adhoc assumptions are often attractive due to
the possibility of an immediate insight. At the same time their ranges of applicability are
not always well defined. The asymptotic methodology is better mathematically justified but
its implementation relies on a substantial preliminary analysis aimed to determine a correct
scaling and often can’t be completely formalized. Both of these approaches were extensively
used within the framework of shell theory and it might be an impression that there is a little
or no room for new developments in this area. In particular, it might be expected that all possible
shortened forms of the classical 2D dynamic equations have been already derived [6]. However,
recent achievements in nanotechnology [7–11] inspire revisiting of this problem. In contrast to
macroscopic shells used in aerospace, mechanical and civil engineering, carbon nanotubes may
have a large aspect ratio characterizing the relationship between the length and radius. The
macroscopic shells with such aspect ratio are usually treated as 1D beams because of considerable
overall (beam-type) flexibility. Design of modern nanodevices can require modelling of 1D beam-
type vibrations with rigid cross-sections as well as 2D shell-type vibrations over a broad frequency
band [12, 13].

Thorough analysis of the state of art in this area indicates that dynamic asymptotic theory for
elongated cylindrical shells is not yet established. In the limiting setup of an infinite shell the most
pronounced long wave vibrations at a fixed circumferential wave number occur near the lowest
cut-off frequency coinciding with the eigen-frequency of a thin almost inextensible ring. In this
case the dispersion relation associated with a consistent approximate long wave theory has to
coincide with the appropriate near-cut-off expansion of the exact dispersion relation in the full
classical shell theory. The well-known semi-membrane shell theory, e.g. see [1, 2, 14], originally
attributed to statics, violates this condition. The aim of the paper is to derive an asymptotic theory
governing dynamic behaviour of a circular cylindrical shell in the vicinity of the lowest cut-off
frequency.

It is interesting that near-cut-off asymptotic expansions were previously studied only for
various setups of high frequency thickness shell vibrations, e.g. see [4, 5, 15–17]. The developed
long wave approximations have been applied to trapped mode analysis [18–20].

The paper is organised as follows. The problem is formulated in Sect. 2 starting from the
Sanders-Koiter version of the classical shell theory, e.g. see [21]. In Sect. 3 the associated dispersion
relation is derived along with its asymptotic expansion valid in the vicinity of the lowest cut-
off frequency. The latter has two limiting forms depending on the ratio of the longitudinal
wavelength and the relative thickness of the shell. In the next section a straightforward asymptotic
procedure is adapted for the Sanders-Koiter equations of motion. The established fourth-order
ordinary differential equation for the transverse displacement has two shortened forms. The first
of them is nothing than the semi-membrane theory, whereas the second one is given by a second-
order equation typical of near-cut-off approximations, e.g. see [4]. The dispersion relations for
these two shortened equations coincide with the expansions of the exact dispersion relations in
Sect. 3. It is shown in Sect. 5 that the asymptotic considerations of the previous section suggest
rather sophisticated geometric hypotheses underlying the obtained equation. They refine the
assumption of zero shear and circumferential mid-surface deformations underlying the semi-
membrane theory. It is also demonstrated in this section that the earlier proposed adhoc equation
[22], based on the hypotheses in the semi-membrane theory but also taking into account some
extra terms in the related energy functional, is virtually identical to its asymptotic counterpart to
within the values of constant coefficients.

Page 2 of 12

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

2. Equations of motion
Consider linear vibrations of a circular cylindrical shell (see Fig.1) starting from the Sanders-
Koiter version of the 2D classical theory, e.g. [21]. This version allows elegant variational
formulation along with natural generalization for nonlinear problems, see also [23] for more
detail. Let us introduce the dimensionless coordinates ξ and ϕ, where ξ = x/L is the longitudinal
co-ordinate related to typical wavelength (or length) L and ϕ is the azimuthal angle. Denote
by u, v and w longitudinal, circumferential and radial mid-surface displacements related to the
mid-surface radius R. Also define dimensionless time using the scaling t0 = 1/

√

E/ρR2(1− ν2),
where E is the Young modulus, ρ is mass density, ν is the Poisson ratio and h is the thickness of
the shell.

The inverse aspect ratio α=R/L and the relative thickness β = h/R are two major geometric
parameters governing shell vibrations. The parameter β is small in all 2D thin shell theories. The
parameter α is also small for elongated shells. Below we always assume that

α≪ 1, β ≪ 1. (2.1)

The Hamilton function within the framework of the Sanders-Koiter shell theory can be written
as

H =
1

2

1∫

0

2π∫

0

(

u̇2 + v̇2 + ẇ2
)

dϕdξ+

+
1

2

1∫

0

2π∫

0

(

ε2ξ + ε2ϕ + 2νεξεϕ +
ε2ξϕ(1− ν)

2

)

dϕdξ+

+
β2

24

1∫

0

2π∫

0

(

κ2ξ + κ2ϕ + 2νκξκϕ +
κ2ξϕ(1− ν)

2

)

dϕdξ,

(2.2)

where εξ , εϕ and εξϕ are longitudinal, circumferential and shear deformations of the mid-surface;
κξ and κϕ are curvatures of the mid-surface in the longitudinal and circumferential directions;
κξϕ is torsion of the mid-surface. Here dot denotes a partial derivative with respect to the
dimensionless time τ = t/t0.

Kinematic relations expressing the deformations, curvatures and torsion in terms of the
displacements are

εξ =α
∂u

∂ξ
, εϕ =

∂v

∂ϕ
+ w, εξϕ =

∂u

∂ϕ
+ α

∂v

∂ξ
, (2.3)

and

κξ =−α2 ∂
2w

∂ξ2
, κϕ =

∂v

∂ϕ
−

∂2w

∂ϕ2
,

κξϕ =−2α
∂2w

∂ξ∂ϕ
+

3α

2

∂v

∂ξ
−

1

2

∂u

∂ϕ
.
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Variation of the functional H with respect to the displacements u, v and w after substitution of
(2.3) into (2.2) leads to three partial differential equations

∂2u

∂τ2
− α2 ∂

2u

∂ξ2
−

(48 + β2)(1− ν)

96

∂2u

∂ϕ2
− αν

∂w

∂ξ
−

−
α
(

16(1 + ν)− β2(1− ν)
)

32

∂2v

∂ξ∂ϕ
−

αβ2(1− ν)

24

∂3w

∂ξ∂ϕ2 = 0,

∂2v

∂τ2
−

α2(16 + 3β2)(1− ν)

32

∂2v

∂ξ2
−

12 + β2

12

∂2v

∂ϕ2
−

∂w

∂ϕ
−

−
α
(

16(1 + ν)− β2(1− ν)
)

32

∂2u

∂ξ∂ϕ
+

α2β2(3− ν)

24

∂3w

∂ξ2∂ϕ
+

β2

12

∂3w

∂ϕ3
= 0,

∂2w

∂τ2
+ w +

α2β2

6

∂4w

∂ξ2∂ϕ2
+

α4β2

12

∂4w

∂ξ4
+

β2

12

∂4w

∂ϕ4
+ αν

∂u

∂ξ
+

∂v

∂ϕ
+

+
αβ2(1− ν)

24

∂3u

∂ξ∂ϕ2 −
α2β2(3− ν)

24

∂3v

∂ξ2∂ϕ
−

β2

12

∂3v

∂ϕ3 = 0.

(2.4)

On separating the azimuthal and time variables in (2.4) by the formulae

u=U cosnϕ cosωτ, v= V sin nϕ cosωτ, w=W cosnϕ cosωτ, (2.5)

where n is circumferential wave number, ω is vibration frequency, and U(ξ), V (ξ) and W (ξ) are
vibration amplitudes, we arrive at ordinary differential equations

−ω2U +
n2(48 + β2)(1− ν)

96
U − α2 d

2U

dξ2
−

αn
(

16(1 + ν)− β2(1− ν)
)

32

dV

dξ
−

−
α
(

24ν − n2β2(1− ν)
)

24

dW

dξ
= 0,

−ω2V +
n2(12 + β2)

12
V +

n(12 + β2n2)

12
W −

α2(16 + 3β2)(1− ν)

32

d2V

dξ2
+

+
αn
(

16(1 + ν)− β2(1− ν)
)

32

dU

dξ
−

α2β2n(3− ν)

24

d2W

dξ2
= 0,

−ω2W +
12 + n4β2

12
W +

n(12 + n2β2)

12
V −

α2β2n2

6

d2W

dξ2
+

α4β2

12

d4W

dξ4
+

+
α
(

24ν − n2β2(1− ν)
)

24

dU

dξ
−

α2β2n(3− ν)

24

d2V

dξ2
= 0.

(2.6)

3. Dispersion relation
For an infinite shell or in case of periodic boundary conditions V (0) = V (2π) =W (0) =W (2π) =

Uξ(0) =Uξ(2π) = 0 we may set (k is normalized longitudinal wave number)

U(ξ) =U0 cos kξ, V (ξ) = V0 sin kξ, W (ξ)=W0 sin kξ, (3.1)
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having three linear algebraic equations which are compatible provided that

ω6 − ω4

96

(

α2k2
(

β2(8α2k2 − 9ν + 9)− 48(ν − 3)
)

+

+n2(β2(16α2k2 − ν + 9)− 48(ν − 3)
)

+ 8β2n4 + 96
)

−

− ω2

1152

(

n4

(

β2
(

β2(ν − 1) + α2k2
(

β2(ν − 1)(2ν + 1) + 144(ν − 3)
)

+ 60ν + 132
)

+

+576(ν − 1)

)

+ 3α2k2
(

12(ν − 1)(3β2 + 32ν + 48) + α4β2k4
(

3β2(ν − 1) + 16(ν − 3)
)

+

+12α2k2(ν − 1)(3β2 + 16)
)

+ n2
(

12
(

β2(ν − 9) + 48(ν − 1)
)

+ α4β2k4
(

β2(ν − 1)(2ν + 9)+

+144(ν − 3)
)

+ 24α2β2k2(3ν2 + 45ν − 44)
)

+ β2n6(β2(ν − 1) + 48(ν − 3)
)

)

+

+ 1−ν
13824

(

− 36α8β2k8(3β2 + 16) − 192α6β2k6n2(β2 + 12)+

+α4k4
(

6912(ν2 − 1) + β6n4(ν2 − 1) + 72β4n2(ν2 − n2)− 432β2(−3ν2 + 8n4 − 8n2 + 3)
)

−

−2304α2k2β2n2(n2 − 1)2 − 12β2n4(β2 + 48)(n2 − 1)2
)

=0.

(3.2)
This shows that the frequency spectrum of the shell consists of three branches, e.g. see [4, 5] for

greater detail. The lowest of them is associated with bending of the mid-surface strongly effected
by shell curvature, see also [6]. These low-frequency bending vibrations are the main focus of the
paper. Two other branches correspond to extension and shear motions along the mid-surface and
are less affected by curvature. As an illustration three dispersion curves are shown in Fig. 2 for
n= 2 and ν =0.2; in this figure kα = αk. The curve of interest is plotted with a bold line.

The equations for the cut-off frequency of the aforementioned lowest branch follow from (2.6)

at U =
dV

dξ
=

dW

dξ
= 0. They are

(

n2(12+β2)
12 − ω2

)

V +
n(12+β2n2)

12 W =0,

n(12+β2n2)
12 V +

(

12+β2n4

12 − ω2
)

W = 0.

(3.3)

The latter govern free in-plane vibrations of an almost inextensible thin ring (see Fig. 3) with
the eigen frequency ω= ω∗ given by

ω2
∗ =

(1 + n2)(12 + β2n2)

24



1 +

√

1− 48

(

βn(1− n2)

(1 + n2)(12 + β2n2)

)2


 . (3.4)

Obviously, this frequency satisfies the dispersion relation (3.2) at k=0.
Exact analysis of (3.2) is a rather sophisticated problem. At the same time for the lowest

branch of interest the asymptotic behaviour of the related root of (3.2) under assumptions (2.1)
is expressed by the relatively simple formula (k∼ 1 and n∼ 1)

ω2 = β2Ω2
0 + β4Ω2

1 + α2β2δk2 + α4γk4 + . . . , (3.5)

where

Ω2
0 =

n2(1− n2)2

12(1 + n2)
, Ω2

1 =−
n6(1− n2)2

36(1 + n2)3
, (3.6)

and

δ=
(1− n2)2(2n2 + 1− 2ν)

12(1 + n2)2
, γ =

1− ν2

n2(1 + n2)
. (3.7)

The formula (3.6) may be also presented as a near-cut-off expansion, i.e.
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ω2 − ω2
∗ = α2β2δk2 + α4γk4 + . . . (3.8)

Here the cut-off frequency (3.4) can be approximated by a two-term asymptotic formula as β ≪ 1.
It is

ω2
∗ = β2Ω2

0 + β4Ω2
1 + . . . . (3.9)

Two terms are retained in the right hand side of (3.8) due to a two-parametric nature of the
problem noted above. At α≪ β we get the leading order near-cut-off expansion

ω2 − ω2
∗ =α2β2δk2 + . . . . (3.10)

In case α≫ β (3.9) may be simplified to

ω2 − ω2
∗ = α4γk4 + . . . , (3.11)

with ω2
∗ = β2Ω2

0 + . . ..
It is worth noting that at α∼ β

1

2 all the terms in (3.11) are of the same asymptotic order as it is
usually assumed in the dynamic semi-membrane theory [24].

Numerical results are presented in Fig. 4 for n= 2 and n= 3. The logarithmic deviation
from the cut-off frequency ∆= lg β−4(ω2 − ω2

∗) is plotted versus the ratio α/β =R2/Lh at
k= 1 and ν = 0.2. The values ∆ for the full dispersion relation at β = 0.01 (3.2) and its
asymptotic expansions (3.8), given by solid line, are not distinguishable in this figures. The
curves corresponding to formulae (3.10) and (3.11) are plotted with dotted and dash-dotted
lines, respectively. As might be expected, the semi-membrane theory (see formula (3.11)) is valid
outside a narrow vicinity of the cut-off frequency, in which formula (3.10) demonstrates a better
accuracy. At the same time the two-term formula (3.8) picks up uniform near-cut-off behaviour.

4. Asymptotic derivation
For the sake of simplicity, we set in (2.6) α= β ≪ 1. In this case both terms in the right hand side
of the asymptotic expansion (12) are of the same order. Let us specify asymptotic series

V = v0 + β2v1 + β4v2 + . . . ,

W =w0 + β2w1 + β4w2 + . . . ,

U = β(u0 + β2u1 + β4u2 + . . . ) (4.1)

and

ω2 = β2(ω0 + β2ω1 + β4ω2 + . . . ).

At leading order, we get from second and third equations in (2.6)

nv0 + w0 = 0. (4.2)

At the same time first equation in (2.6) becomes

(ν − 1)n2u0 + (ν + 1)nv
′

0 + 2νw
′

0 =0. (4.3)

Here and below prime denotes differentiation in ξ. From (4.2) and (4.3) we immediately obtain

v0 =−
w0

n
, u0 =−

w
′

0

n2
, (4.4)

meaning that circumferential and shear deformations can be neglected at leading order. Such
assumption is typical of the semi-membrane shell theory, e.g. see [1, 2, 14].
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At first order, we have from second and third equations in (2.6)

nv1 + w1 =
νw

′′

0

n2 +
(

1−n2

12 − ω2

0

n2

)

w0,

ν
n2w

′′

+
(

ω2
0 +

n2(1−n2)
12

)

w0 − nv1 −w1 =0.
(4.5)

We get from the compatibility of these equations ω0 =Ω0, where Ω0 is given by (3.6). As a result,
each of them takes the form

v1 =−
w1

n
+ L(w0), (4.6)

where the operator

L(w0) =
νw

′′

0

n3
+

n(1− n2)

6(1 + n2)
w0 (4.7)

corresponds to the deviation of the sought for displacement field from the behaviour predicted
by the semi-membrane theory.

Now, we consider the first equation in (2.6), which at first order is given by

(ν − 1)n2u1 + (ν + 1)nv
′

1 + 2νw
′

1 =
2

n2
w

′′′

0 +
(1− n2)(−3n2 + 1 + ν(n2 + 1))

12(n2 + 1)
w

′

0. (4.8)

By making use of (4.6) we transform the last equation to

u1 =−
w

′

1

n2 +M(w0), (4.9)

where the opeator M(w0) is expressed as

M(w0) =
1

(1− ν)n2

(

ν(ν + 1)− 2

n2
w

′′′

0 −
(1− n2)(−5n2 + 1 + ν(1− n2))

12(n2 + 1)
w

′

0

)

. (4.10)

At second order, we obtain from second and third equations in (2.6), respectively

nv2 + w2 =

(

(1− ν)(n2 − 1)

8n2
+

ν

12

)

w
′′

0 −
ω2
1

n2
w0 +

1− ν

2n
L

′′

(w0)+

+
n3(n2 − 3)

12(1 + n2)
L(w0)−

1 + ν

2
M

′

(w0) +
ν

n2
w

′′

1 −
n2(n2 − 1)

6(1 + n2)
w1,

(4.11)

and
(

1− n2

6
−

ν

12

)

w
′′

0 − ω2
1w0 +

n3

12
L(w0) + νM

′

(w0)−

−
ν

n2
w

′′

1 +
n2(n2 − 1)

6(1 + n2)
w1 + nv2 + w2 = 0.

(4.12)

Then, on substituting (4.11) into (4.12), we arrive at

n2 − 1

2

(

1− ν

4n2
−

1

3

)

w
′′

0 −
n2 + 1

n2
ω2
1w0+

+
1− ν

2n
L

′′

(w0) +
n3(n2 − 1)

6(n2 + 1)
L(w0)−

1− ν

2
M

′

(w0) = 0,

(4.13)

and finally,

γw
′′′′

0 − δw
′′

0 + β−4(ω2
∗ − ω2)w0 = 0, (4.14)

where the constant coefficients δ, γ and ω∗ are given by (3.6) and (3.9). In the original variables x
and t the last equation becomes

γR2 ∂
2W

∂x4
−

δh2

R2

∂2W

∂x2
+

ω2
∗

R2
W +

1

c2
∂2W

∂t2
= 0, (4.15)
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where

c=

√

E

ρ(1− ν2)
.

Its range of validity is α∼ β ≪ 1 (R∼
√
Lh). At α≪ β (R≪

√
Lh) the derived equation may

be reduced to a typical near-cut-off second order equation, e.g. see [4]. It is

δh2

R2

∂2W

∂x2
−

ω2
∗

R2
W −

1

c2
∂2W

∂t2
=0, (4.16)

corresponding to the shortened dispersion relation (3.10).
The semi-membrane shell dynamic equation [24]

γR2 ∂
2W

∂x4
+

ω2
∗

R2
W +

1

c2
∂2W

∂t2
= 0 (4.17)

is valid at α≫ β (R≫
√
Lh). As we have already mentioned in the Section 2 (see also the

dispersion relation (3.11)), all the terms in the last equation are of the same order at α∼ β
1

2 (R∼

L
2

3 h
1

3 ).

5. Geometric hypotheses
The derivation in the previous section, see (4.6), (4.7) and (4.9), (4.10), suggests that the equation
(4.15) should also follow from the geometric hypotheses

V +
1

n
W = α2 ν

n3

d2W

dξ2
+ β2 n(1− n2)

6(1 + n2)
W (5.1)

and

U +
α

n2

dW

dξ
=

1

(1− ν)n2

(

α3 ν(ν + 1) − 2

n2

d3W

dξ3
− αβ2 (1− n2)(−5n2 + 1 + ν(1− n2))

12(n2 + 1)

dW

dξ

)

.

These refine the above mentioned famous formula

U +
α

n2

dW

dξ
= 0, V +

1

n
W = 0 (5.2)

for vanishing circumferential and shear mid-surface deformations in the semi-membrane theory
of shells, e.g. see [1, 24].

On introducing (5.1) into the Hamiltonian (2.2) taking into account formula (2.3) and
integrating over the angle ϕ, we get by varying it in W an equation identical to (4.15) to within
asymptotically secondary terms in α and β. It is interesting that a similar manipulation with the
simplified relations (5.2) results at leading order in the equation

R2

n2(n2 + 1)

∂4W

∂x4
−

h2(n2 − 1)(2n4 − n2 − 1 + 2ν(n2 + 1))

12R2(1 + n2)2
∂2W

∂x2
+

+
n2(n2 − 1)2

12R2(n2 + 1)
W +

1

c2
∂2W

∂t2
= 0,

(5.3)

which is also not far away from the asymptotically justified equation (4.15), cf the coefficients in
(5.3) and those in (4.15) given by (3.6). Indeed, almost all of them, except Ω1, coincide at ν = 0.
The last equation is asymptotically identical to that in [22].

6. Concluding remarks
An asymptotic theory valid in the vicinity of the lowest cut-off frequency is derived for a circular
cylindrical shell. For a fixed circumferential wave number its shortened forms are given by the
conventional fourth order equation in the semi-membrane theory and a second-order equation
typical for near-cut-off approximations.
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Consistency of the proposed theory is illustrated by comparison with the dispersion relation
in the Sanders-Koiter theory. The asymptotic behaviour of shell displacements established in the
paper enables refining the traditional assumption on zero shear and circumferential mid-surface
deformations underlying both the semi-membrane theory and the more general adhoc theory in
[22].

The developed approach allows various extensions and generalisations. In particular,
asymptotic derivation of the long wave theory in question from the 3D dynamic equations in
linear elasticity seems to be of obvious interest. The effect of geometric non-linearity also can
be incorporated in order to justify the analogues adhoc non-linear equation in [22]. Finally,
we mention applications dealing with localised vibrations, including those caused by shape
imperfections as well as shell edge waves, see review article [25] and references therein.

The proposed theory appears to be of interest for predicting the vibration spectra of nanotubes
over a broad range of geometric parameters for various boundary conditions specified at the
edges. The small parameter α expressing the inverse aspect ratio of a nanotube may approach
the values of order 0.01, here and below see [26]. Another small parameter β is evaluated as the
ratio of extensional and bending nanotube stiffness rather than relative thickness of a macro shell.
Its values are usually within the interval 0.05 ÷ 0.1. Typical for nanotubes boundary conditions
include, in particular, a free edge as well as an edge cupped with a fullerene hemisphere. In
this case the forth-order differential equation (4.15) is subject to two conditions at each edge. For
example, conditions on longitudinal and shear stress resultants are imposed at a free edge [1, 2].
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Figure 1. Circular cylindrical shell.
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Figure 3. Thin almost inextensible ring.
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Figure 4. Dispersion curves for the Sanders-Koiter theory and two-term expansion (3.8) (solid line), traditional one-term

expansion (3.10) (dotted line) and the semi-membrane theory (3.11) (dashed-dotted line).
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