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ABSTRACT 

 
We present a novel method to extract the sensor pattern noise 

(SPN) of digital images and associate them with their respective 

source camera phones. The method first estimates the photo 

response non-uniformity (PRNU) of each image by means of its 

energy level and then converts it to an additive noise to facilitate 

extraction using Singular Value Decomposition (SVD). The latter 

is a spectral decomposition technique that separates the PRNU 

from the signal subspace. The camera reference signatures of the 

individual cameras are computed from a sample of their respective 

images and compared with a mixture of image signatures from a set 

of known camera devices. Our studies show that it is possible to 

determine the source device of digital images from camera phones 

using such method of signature extraction, with encouraging 

results. 

 

Index Terms— Source Identification, Singular Value 

Decomposition, Digital Image Forensics, Sensor pattern noise, 

PRNU 

 

1. INTRODUCTION 

 

Digital images that are created by digital cameras found in bespoke 

cameras, mobile phones, tablets or video camcorders can be used 

for illicit purposes and for the commission of crime. When a 

forensic investigator recovers images from a suspect source, for 

example a mobile phone or any secondary storage, s/he may want 

to identify the source device that created the image to be able to 

link the images to a suspect or find out if the content of the images 

has been tampered with. When an image is created in the camera 

pipeline, described in [1], traces or artefacts of the camera 

processing are left in the image. The artefacts can be used as digital 

fingerprints or signatures to identify the source device that created 

the image. Several techniques exist to use these artefacts for 

identifying and linking source devices, such as lens aberration, 

colour filter array (CFA) interpolation and demosaicing, camera 

response function (CRF), JPEG compression, higher order wavelet 

statistics and relevantly sensor pattern noise (SPN) or photo 

response non-uniformity (PRNU). The first and last methods are 

often used to identify the specific source device that generated the 

image. 

Until recently, the most prominent method to extract the 

PRNU has been to use a wavelet extraction filter that extracts in 

the wavelet domain the medium to high frequency subbands in 

which the PRNU lies [2]. As such, the extracted signature contains 

a mixture of different types of noises including the desired SPN or 

PRNU, random noise, fixed pattern noise (FPN) and any high 

frequency scene details. The SPN consists mainly of the FPN and 

PRNU noise, and the latter is unique to the individual sensor of a 

camera. The FPN is caused by dark currents when the sensor is not 

exposed to light and is usually removed by some cameras. Further 

work has been done to reduce the FPN and other random noises to 

obtain a cleaner sensor pattern noise. The signature can be 

enhanced by reducing the high frequency scene details which 

pollute the signature [3]. 

The PRNU is a multiplicative noise whose magnitude depends 

on the intensity of light falling on the sensor; thus the PRNU has a 

relatively low energy in general. If the PRNU can be converted to 

an additive noise, it will therefore be much easier to extract the 

signature from the image. Furthermore, if the range of the energy 

of the PRNU can be estimated, it will be easier to separate the 

PRNU from other polluting noises and get a cleaner signature. This 

paper presents a novel method of extracting the PRNU of digital 

images produced by mobile phone cameras. The images are 

decomposed by using Singular Value Decomposition (SVD), 

which separates the images into ranks of descending order of 

energies. The extraction of the PRNU is performed in the 

logarithmic domain, using the homomorphic filtering technique, 

where the inherently nonlinear PRNU is converted to an additive 

noise [4]. The ranks are chosen based on the relative range of 

energy of the PRNU compared to the image. Experiments were 

performed on five models of mobile phones. Two handsets of each 

model, ten cameras, were used to demonstrate that the signature 

obtained by our method is both unique and consistent; thus 

enabling the differentiation between individual devices of the same 

camera model. Gul & Avcibas have investigated the use of SVD to 

identify the model of a mobile phone. Their method uses the 

singular values from SVD decomposition to estimate the relative 

linear dependency of image rows/columns, which identifies the 

CFA interpolation algorithm of the camera [5]. 

The rest of the paper is organised as follows. The background 

on digital image forensics and device identification is reviewed in 

section 2 followed by a brief description of the current PRNU 

extraction methods in section 3. The SVD technique is described 

in section 4, which leads to an elaboration of our signature 

extraction model in section 5. The experimental procedures are 

described and the results are explained in section 6 followed by a 

discussion of the results in section 7 and finally the conclusions in 

section 8. 

 

2. DIGITAL IMAGE FORENSICS & DEVICE 

IDENTIFICATION 

 

Digital image forensics can help an investigator obtain the 

information and knowledge about a source device that created 
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some suspect images. The artefacts left behind in the digital image 

by the camera can be from the characteristics of the imaging device 

itself or the processing inside the device [6]. In general, forensic 

investigators do not have any previous knowledge about the source 

of the images they recover and digital image forensics usually 

works as a ‘blind’ approach without needing à priori knowledge 

about the images. 

The identification of the CFA interpolation and demosaicing 

algorithms present in digital images can be performed by 

calculating the correlation between the different colour channels in 

a colour image and estimating the demosaicing algorithm used to 

produce the image [7]. Lens radial distortion occurs when straight 

lines from the object are rendered as curved lines on the sensor of 

the camera and the difference between the distorted line and the 

straight line can be measured and used to identify the camera [8]. 

Quantization tables vary between camera manufacturers and 

different camera models from the same manufacturer [9]. Digital 

images are usually recompressed for storage or transmission and in 

these cases the original source device can be identified [10]. The 

CRF can be estimated by finding the mapping algorithm using a 

single image, and the imaging device can be identified as the 

source of that image [11]. Also, higher-order wavelet statistics 

have been applied for camera model and make identification, 

together with binary similarity measures and image quality 

measures as well as a SVM classifier [12].  

The CFA, CRF, JPEG compression and statistical techniques 

can be used to identify a particular model or make of a camera 

whereas the lens aberration and SPN can be used to ascertain 

distinct devices of the same model. Camera lenses can be changed 

readily whereas the camera sensor is much harder to change as well 

as being more expensive and hence it is uncommon for a sensor to 

be changed. This makes the SPN a better camera signature than 

lens aberration. 

 

3. SIGNATURE EXTRACTION OF SPN/PRNU 

 

The SPN consists mainly of the PRNU noise that is unique to the 

individual sensor of a camera [2]. It can be used to identify source 

devices as well as to determine whether an image has been 

tampered with [13]. The PRNU is due to imperfections arising 

from the manufacturing process of the sensor and due to slight 

variations in conversion of light to electrical energy by individual 

pixel sensors [14]. A combination of the uniqueness of the 

imperfections in the silicon material and the different sensitivity of 

the pixels makes the PRNU ideal for differentiating between 

sensors, even if they are made from the same silicon wafer, and 

hence the respective cameras into which they are embedded.  

Two most commonly used denoising filters for signature 

extraction are the Gaussian filter in the spatial domain and the 

wavelet domain based approach. The Gaussian filter is two 

dimensional where the variance of the filter can be varied to 

choose the cut-off frequency that will determine the level of scene 

content and sensor noise [15]. The second approach applies 

wavelet decomposition to represent the image in different levels of 

details. A noise filter, such as a Wiener filter, is applied to the 

details from which an image reconstruction is performed to obtain 

the noise free image. The denoising filter is described in details in 

[2]. The PRNU, n, which appears as a high frequency signal, can 

be extracted from an image, I, based on the model proposed in [2] 

as a high pass filter: 

 

  n = I – f (I)         (1) 

 

where f is a denoising function, which acts as a low pass filter to 

aid the extraction of the desired spectrum of noise from the image.  

The multiplicative nature of the PRNU has made it particularly 

susceptible to scene details. For mobile phones, in addition, it can 

also be contaminated by the blockiness (row/column noise) created 

by the JPEG compression and other processing operations 

performed in the camera pipeline. Consequently, further processing 

is often applied to facilitate the estimation of the SPN, including 

the attenuation of non-unique artefacts (NUA) such as the FPN, 

blockiness and colour interpolation [13]. The accuracy of SPN can 

also be improved by attenuating the interference of scene details 

with the enhancer described in [3], where the enhanced SPN was 

shown to increase the identification rate and allows the use of 

smaller image crop size. However, these methods did tend to 

decrease the overall quality and strength of the SPN, which is 

already a weak signal. 

In general, the identification of source devices is performed by 

extracting the digital signatures from a number of images, say, 50 

pictures from each camera. The average of these signatures is 

calculated to form the camera reference signature. The signatures 

of recovered suspect images are extracted and compared against 

the camera reference signature for possible matches. Two 

comparison methods are commonly used; namely, Peak to 

Correlation Energy (PCE) measure and cross-correlation 

coefficient (CCC). Broadly speaking, the PCE is a more stable test 

than correlation method, particularly when the image has 

undergone geometrical manipulations [14]. 

 

4. SINGULAR VALUE DECOMPOSITION 

 

Signal decomposition is an important practical problem as the 

energy in most real-world signals has unevenly distributed 

frequency spectra [16]. Using signal compaction techniques, the 

energy of a signal can often be redistributed into a significantly 

smaller number of frequency sub-bands, allowing them to be 

divided into sub-spectra in order that those with more energy 

content will be given a significantly higher priority for further 

processing. By analysing and discarding signal subspaces with 

lower priority, a signal can be reconstructed or approximated by a 

decomposition-synthesis procedure that is widely adopted in such 

practical applications as signal compression/coding.  Additionally, 

such a procedure also forms the mathematical basis of modern 

time-frequency based techniques for analysing signal subspace, 

providing relevantly an expansive means of spectral analysis that 

naturally leads to the transform coding methods representative of 

the eigen-decomposition approach of spectral estimations. 

Most eigenvector approaches work by separating a 

multidimensional signal into two subspaces, which are commonly 

referred to the signal and noise subspaces. By convention, the 

ensuing transform generates eigenvalues in decreasing order and 

eigenvectors that are orthonormal, allowing eigenvectors that are 

part of the noise to be identified and eliminated. In practice, the 

most challenging part of eigenvector spectral analysis is to 

compute the appropriate dimension of the signal or noise subspace, 

which often resorts to a trial and error procedure. Mathematically, 

a matrix A with m rows and n columns with rank r, r ≤ n ≤ m, can 

be expanded or decomposed into: 

 

  A = USVT          (2) 
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where U and VT are two orthogonal matrices of size mxm and nxn 

respectively [17]. S is the diagonal matrix, of size mxn, containing 

r non-zero singular values. The decomposition of matrix A is 

known as Singular Value Decomposition (SVD). When an image 

is decomposed using SVD, the ranks of the image can be 

represented as component matrices with decreasing energy 

contents [18]. SVD can be used to separate the spectra of the 

image and the ranks can be selected in accord with the aggregated 

total image energy of the individual ranks; that is, sum of λi
2, where 

λi represents the eigenvalue associated with that eigenvector (ei). 

 

5. SIGNATURE EXTRACTION MODEL 

 

The wavelet based signature extraction method described in 

section 3 is most widely used, as it provides better identification 

results than the Gaussian filtering approach [3]. The method 

selects a wavelet filter/family to extract the PRNU by high-pass 

filtering in the frequency domain, resulting in scene details being 

included in the extracted signature. In particular, PRNU is a 

multiplicative noise and consists of additive low frequency defects 

(e.g. dust particles on lens) and the pixel non-uniformity (PNU) 

[2]. In practice, the noise used for identifying the individual source 

camera is the PNU, since the low frequency defects are removed by 

averaging several images or high-pass filtering as part of the 

denoising process. PRNU is not a temporal noise which means it is 

a spatial noise only with a multiplicative spatial variance. A 

simplified model for a noisy image I can be represented as 

 

  I = I0 + I0.K + η         (3) 

 

where Io is the clean image (perfect absorption of light energy by 

pixels), K is the PRNU and η is the remaining noise, such as shot 

noise, dark noise and read-out noise, associated with the image. 

The noisy image is comprised of the clean image to which is added 

the product of the clean image and PRNU.  

If the image model is converted from the spatial domain to the 

logarithmic domain, the multiplicative noise model is transformed 

to an additive noise model in the logarithmic domain [19]. The 

homomorphic filtering technique is used, where the inherently 

nonlinear PRNU is transformed into an additive noise. Thus, the 

result is an additive model consisting of the image and PRNU 

noise, as follows: 

 

Í = Í0 + Ḱ         (4) 

 

where Í = log(I), Í0= log(I0), Ḱ= log(1+K) and the noise η is 

cancelled by averaging many images created by the sensor.  

The energy of the PRNU in an image depends on the type of 

device that produced the image and is a fraction of the total energy 

of the image. There are two types of sensors that are primarily used 

in digital cameras, the CCD (Charge-Coupled Device) and the 

CMOS (Complementary metal–oxide–semiconductor). The CCD 

produces less noise but requires more power when compared to the 

CMOS, hence the reason CMOS is used most often in camera 

phones where space and battery life are crucial. The energy of the 

PRNU in a CMOS will be affected by other sources of noises and 

the average power (variance) of the PRNU can be reduced [20]. 

The PRNU in CCD was measured by calculating the variance (σ2) 

of the noise in 100 image sets [21].  The energy of the PRNU can 

be estimated to be in the range of 0.01% to 1.5%, depending on the 

type of image and sensor. 

Table 1. Mobile Phone names and aliases with maximum 

image resolution 

Mobile Phone Alias Max Image resolution 

nokia_C2_01_A cam_1 1536x2048 

nokia_C2_01_B cam_2 1536x2048 

nokia_E72_A cam_3 2592x1944 

nokia_E72_B cam_4 2592x1944 

nokia_N95_A cam_5 2592x1944 

nokia_N95_B cam_6 2592x1944 

samsung_galaxy_S2_A cam_7 3264x2448 

samsung_galaxy_S2_B cam_8 3264x2448 

zte_orange_sanfrancisco_A cam_9 1536x2048 

zte_orange_sanfrancisco_B cam_10 1536x2048 

 

The logarithmic image model is then decomposed into ranks 

using SVD. The ranks are in descending order of relative energy of 

the image. The partial logarithmic image is reconstructed using a 

selected range of ranks in accordance with their associated energy. 

The latter should be chosen to contain the PRNU of the camera 

that created the image. If the digital signature is converted from the 

logarithmic domain back to the spatial domain the original image 

cannot be recovered, which signifies that the signature can be 

stored or transferred securely. The signatures extracted by this 

method can be used to create the camera reference signatures of the 

source device for identification purposes or compared against the 

reference signatures of other cameras for linkage purposes. 

 

6. EXPERIMENTS AND RESULTS 

 

For the purpose of our experiments, a total of 1000 images were 

chosen evenly from 10 mobile phones; i.e., each device contributed 

100 images. Most of these phones were older models of the 

respective make and, as such, offer a significantly lower image 

quality, particularly when compared with images taken from digital 

cameras. To demonstrate that our method can differentiate between 

devices of the same make and model as previously explained in 

section 2, there were five different makes/models, each of which 

has two phones.  

Table 1 shows that, for each model, the two phones share the 

same prefix but are distinguished by different labels ‘A’ and ‘B’. 

Most of the phones are products from Nokia, since it is one of the 

most popular makes in the low-to-medium end of the camera 

phone market. In addition, the inclusion of different phone models 

from the same make was also expected to better demonstrate the 

identification performance of our method. In all cases, the pictures 

were taken at the highest native resolution of the cameras and 

stored in the JPEG format, which is the de facto compression 

format for still images from camera phones. To ensure generality, 

the pictures were natural images consisting of a mixture of outdoor 

and indoor scenes, captured during the day and at night. Further, 

given the expectedly different sizes of the captured images, due to 

the different quality of the camera phones, they were all cropped to 

the same size of 512x512 pixels, consisting of the lower left corner 

of the image as described in [1].  

The SVD-based signature extraction procedure was applied to 

these cropped images, allowing the creation of reference signatures 

for the individual cameras. This was achieved by selecting 50 

images randomly out of the 100 sample and then averaging the 

extracted signatures as per the commonly adopted procedure 
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Figure 1. Plot of log-scaled singular values of a natural image 

with 512 ranks after SVD decomposition. 

 

(described in section 3). The remaining 50 signatures from each 

camera dataset were then compared against the ten camera 

reference signature computed for the ten cameras. Peak to 

Correlation Energy (PCE) was used to match the signatures of the 

test images against the ten camera reference signatures.  

The required energy range for the extraction of the PRNU was 

found to vary greatly depending on the amount of scene detail in 

the image. Images with high scene detail content will have their 

energy spread out more widely across the top ranks after 

performing SVD, whereas less ‘busy’ images had most of their 

energy concentrated among the first couple of high energy ranks. 

Fig. 1 shows the plot of the log-scaled singular values of a natural 

image with 512 ranks. There is a sharp drop after the first rank 

(from 7.6 to 4.4). For a blue sky image, the drop is from about 7.8 

to 0.4. The first rank holds most of the scene detail energy. 

The graph in Fig. 2 shows the result of comparing the camera 

signature of the Nokia_E72_A (cam_3) with the test signatures of 

ten images from each camera. The graph in Fig. 3 shows the result 

of comparing the camera signature of the Nokia_E72_B (cam_4) 

with the same test signatures as before.  

 

7. DISCUSSION 

 

The empirically selected range of ranks for extracting the signature 

was found to be between 50 and 150 inclusive, with the test images 

cropped at a size of 512x512 pixels [22]. It can be seen in Fig. 2 

that the PCE values for the images from cam_3 is significantly 

higher than the PCE values for the other cameras. The latter values 

are close to zero confirming the expectedly uncorrelated 

relationship. Furthermore, the identification results between 

images from cam_4 and the reference signature of cam_3 is similar 

to the results of other cameras, clearly demonstrating that our 

method can differentiate between two cameras of the same model. 

 The results in Fig. 3 corroborates the results from cam_3 when 

using the camera reference signature of cam_4, although the PCE 

values for test signatures from cam_4 are higher as shown in the 

figure. Preliminary studies suggest that this was largely due to the 

quality of the images that was selected (at random) to create the 

reference signature of cam_3; in particular, there were more 

saturated pixels present in these pictures, which impacts negatively 

on the PRNU. The results from the other cameras used in the 

experiment showed that it is possible to differentiate between 

cameras of the same model; except for cam_5 and cam_6 where 

the error rates were higher due to the quality of the images 

recovered from the cameras. 

 
Figure 2. Nokia_E72_A camera reference signature and 

correlated with 100 images. Images 21 to 30 come from this 

camera, images 31 to 40 from cam_4 and rest of images from the 

other 9 cameras. 

 

 
Figure 3. Nokia_E72_B camera reference signature and 

correlated with 100 images. Images 31 to 40 come from this 

camera, images 21 to 30 from cam_3 and rest of images from the 

other 9 cameras. 

 

8. CONCLUSION 

 

A novel PRNU extraction method using SVD was introduced and 

demonstrated to be able to distinguish between camera phones of 

the same model. The extraction model described how SVD can be 

used as an image decomposition method for which signatures can 

be extracted from the individual images that can be associated with 

their respective source devices. The identification results of the test 

performed on 10 cameras showed that our method can differentiate 

between two cameras of the same make and model, suggesting that 

the signature is highly related to the SPN of the camera. 

We also showed that the PRNU signature could be extracted 

relatively straightforwardly with most real-world/natural images. 

Further work, particularly on testing of automated algorithms for 

rank selection given the image characteristics, and classification 

performance including images of differing resolution and size, is 

underway. 
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