
1 
 

Applications of physiologically based pharmacokinetic modelling 1 

for the optimisation of anti-infective therapies  2 

 3 

Darren Michael Moss1, Catia Marzolini 2, Rajith KR Rajoli1, Marco Siccardi1 4 

1- Molecular and Clinical Pharmacology, Institute of Translational Medicine, University 5 

of Liverpool, Liverpool, UK 6 

2- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, 7 

Switzerland. 8 

 9 

Author for correspondence and reprints: Dr M Siccardi, Molecular and Clinical 10 

Pharmacology, Institute of Translational Medicine, University of Liverpool, UK  11 

Tel No +44 (0) 151 794 8211 12 

Fax No + 44 (0) 151 794 5656 13 

E-mail: siccardi@liverpool.ac.uk 14 

  15 



2 
 

Abstract 16 

 17 

Introduction: The pharmacokinetic properties of anti-infective drugs are a determinant part of 18 

treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in 19 

target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-20 

infective distribution can be predicted by integrating in vitro drug properties and 21 

mathematical descriptions of human anatomy in physiologically based pharmacokinetic 22 

models. This method reduces the need for animal and human studies and is used increasingly 23 

in drug development and simulation of clinical scenario such as, for instance, drug-drug 24 

interactions, dose optimisation, novel formulations and pharmacokinetics in special 25 

populations.  26 

Areas covered: We have assessed the relevance of physiologically based pharmacokinetic 27 

modelling in the anti-infective research field, giving an overview of mechanisms involved in 28 

model design, and have suggested strategies for future applications of physiologically based 29 

pharmacokinetic models. 30 

Expert opinion: Physiologically based pharmacokinetic modelling provides a powerful tool in 31 

anti-infective optimisation, and there is now no doubt that both industry and regulatory 32 

bodies have recognised the importance of this technology. It should be acknowledged, 33 

however, that major challenges remain to be addressed and that information detailing disease 34 

group physiology and anti-infective pharmacodynamics is required if a personalised medicine 35 

approach is to be achieved. 36 

 37 

 38 
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1. Introduction  39 

 40 

1.1 The importance of anti-infective pharmacokinetics 41 

Favourable pharmacokinetic properties of anti-infective drugs are essential for treatment 42 

success, as these drugs require access to the pathogen to elicit an effect. In recent years, 43 

numerous studies have clarified the relevance of anti-infective pharmacokinetics (PK) for 44 

successful treatment and identified predictors of exposure in different populations of patients. 45 

In addition, anti-infective PK optimisation is an essential component for reducing the risk of 46 

drug-related toxicity for the host. However, in many cases a clear relationship has not been 47 

established between host toxicity and exposure. A complication in determining optimal 48 

exposure of anti-infectives is the often diverse pharmacokinetic-pharmacodynamic (PK-PD) 49 

relationship observed among drug classes. For example, β-lactams need to occupy the 50 

majority of binding sites in the bacteria before any real antibacterial effect is achieved and, 51 

subsequently, there is not a direct relationship between exposure and effect in patients in this 52 

case1. 53 

Physiologically based pharmacokinetic modelling is a bottom up technique which simulates 54 

the pharmacokinetics using in vitro drug data (i.e. physicochemical characteristics, intrinsic 55 

clearance, permeability) through a mathematical description of drug distribution. PBPK exists 56 

as a powerful tool in the development of future treatments and pharmacokinetic optimisation. 57 

This review investigates the strategy behind PBPK modelling, with particular emphasis on 58 

anti-infective pharmacokinetics. Specific clinical scenarios are also discussed, where patient 59 

demographics, genetics, drug-drug interactions (DDIs) and anti-infective exposure are 60 

considered in model development and treatment outcomes. 61 
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 62 

1.2 Physiologically based pharmacokinetic models  63 

The PK of anti-infective agents results from a complex interplay of molecular and 64 

physiological processes in tissues mediated by a large variety of proteins. The in vivo 65 

disposition of a drug can be divided in three main phases: absorption, distribution in tissues 66 

and organs, and metabolism/elimination (ADME). An increasing number of studies are 67 

focusing on the identification of proteins involved in these ADME processes and their 68 

quantitative description is currently available.2, 3. This broad base of knowledge is essential 69 

for a successful prediction of PK through mathematical modelling. Mathematical equations 70 

are being used to describe processes influencing PK, such as tablet dissolution rate following 71 

administration, renal clearance, actions of drug transporters, gastrointestinal pH, phase I and 72 

phase II metabolism, as well as numerous other biological processes. Interestingly, all these 73 

processes can be described in a dynamic way to reflect their evolution over time4-6. In PBPK 74 

models, the human body is divided into anatomically meaningful compartments which 75 

integrate specific properties of a given organ (i.e. blood flow, organ mass, permeation limits, 76 

percentage fat) with drug characteristics which creates a structural model reflecting the 77 

anatomical arrangement of the tissues connected by perfusing blood. An example of a typical 78 

PBPK model is represented in Figure 1. The in vitro intrinsic metabolism rate of a drug is 79 

usually quantified using tissue-derived microsomes or cell lines expressing relevant 80 

metabolic enzymes, and this information is subsequently scaled up to determine whole organ 81 

clearance by considering local enzyme expression and other tissue-specific factors. 82 

Additional variables, specifically the blood flow rate to the liver and the extent to which the 83 

drug binds to plasma protein, are also considered when deriving blood clearance. The 84 

prediction of renal elimination can present issues due to the presence of several distinct 85 

processes in renal drug elimination. Drug excretion in the kidney consists of glomerular 86 
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filtration (passive process), tubular reabsorption (both passive and transporter mediated 87 

process) and tubular secretion (transporter mediated process). Recently, in silico modelling 88 

approaches have been developed to generate a prediction of renal clearance based on 89 

physicochemical properties7. 90 

Importantly, all the aforementioned ADME processes are highly variable between 91 

individuals. PBPK modelling overcomes this, as virtual patients can be simulated considering 92 

specific anatomical and physiological factors in populations. Changes in organ size and other 93 

anatomical characteristics have indeed been correlated with demographic variables in 94 

anthropometric studies8-10, and multifactorial equations have been defined to generate 95 

anatomical and physiological parameters and their inter-individual variability. This set of 96 

equations constitutes an essential component of PBPK approaches in order to correctly 97 

capture the variability that is present in the population of interest. Through this approach it is 98 

possible to generate a virtual (but realistic) description of anatomical characteristics of 99 

patients and therefore obtain a representative evaluation of the variability in populations.  100 

This characteristic, as well as numerous others, makes PBPK modelling particularly suitable 101 

for the discovery and optimisation of anti-infective agents, which often require access to 102 

specific infected tissues or target cells to elicit an effect. As an example, antiretroviral drugs 103 

need access to immune cells, the primary target of the human immunodeficiency virus (HIV). 104 

Additionally, non-linear concentration-efficacy relationships have been reported for 105 

ciprofloxacin11 and voriconazole12, and the non-linear protein binding observed with 106 

molecules such as ceftriaxone13, cefazolin14, cefonicid15, ertapenem16 and tigecycline17 could 107 

be modelled by providing the mathematical expression of the change in protein binding with 108 

varying concentrations of the drug in plasma. 109 

 110 

 111 
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2. Clinical scenarios and therapy optimisation  112 

Patient demographics, genetics, anti-infective exposure, status of the immune system, 113 

pathogen characteristics, and adherence may each affect the efficacy of anti-infective therapy. 114 

PBPK modelling can simulate clinical scenarios to assess the impact of such factors on the 115 

PK of anti-infective drugs with the ultimate goal to optimize therapy. The use of PBPK 116 

modelling to simulate clinical scenarios in relation to special populations, genetics, drug 117 

interactions, formulations and penetration in tissues is discussed thereafter (Figure 2).  118 

 119 

2.1 Special populations  120 

Most pharmacokinetic clinical trials performed during the drug development processes are 121 

based on the inclusion of healthy volunteers and often exclude subjects with specific 122 

conditions and characteristics. Subpopulations of patients such as pregnant women, children 123 

and infants, cirrhotic and HIV/HCV co-infected patients, elderly, obese and malnourished 124 

individuals have been largely underrepresented in clinical trials. As a consequence, the 125 

optimization of therapies is particularly challenging in these special populations due to the 126 

paucity of relevant pharmacokinetic data. The pharmacokinetics of certain drugs is known to 127 

be substantially affected by anatomical and physiological characteristics of special 128 

populations, as summarised in Table 1. Alterations in pharmacokinetic characteristics of anti-129 

infectives are have been identified in special populations, such as the increased plasma 130 

concentrations observed in paediatric patients administered with cyclosporine, and the 131 

increased renal clearance of amoxicillin observed in pregnant women18-20. Through the 132 

incorporation of anatomical characteristics of special populations, PBPK modelling can 133 

predict anti-infective distribution in these subpopulations of interest and thus enables a better 134 

understanding of the relationship between anatomical factors and pharmacokinetics.  135 
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The aging process is characterised by progressive changes in several anthropometric 136 

variables and changes in the expression of key ADME enzymes and transporters21. Several 137 

classes of drugs, including anti-infectives, are more frequently prescribed to elderly 138 

compared to younger individuals. Consequently, the management of therapies in older 139 

patients is further complicated by a complex polypharmacy which increases the risk of 140 

potential DDIs, toxicity and loss of efficacy22. A comprehensive database describing the 141 

effect of age on relevant factors for drug distribution has been recently published and 142 

represents a valuable tool to define a realistic set of parameters for PBPK simulations in older 143 

patients23. A first example of PBPK modelling for dose finding and clinical trials in elderly 144 

populations has been recently presented24.  145 

The optimisation of dosing strategies in paediatric patients is complicated by several ethical 146 

and pharmacological factors but also by the absence of optimal formulations. Dose finding 147 

studies are rarely performed in this population; often the selection of therapeutic doses for 148 

children and infants is based on empirical scaling from adults where the dose is adjustment 149 

for body weight. However, the ontogeny of metabolic enzyme and transporter expression is 150 

not linearly correlated with age and, consequently, a direct dose scaling for children does not 151 

represent an optimal strategy in most cases. Moreover, physiological changes are more 152 

prominent for infants, further complicating the selection of doses in this frail special 153 

population25. The description of metabolic enzyme ontogeny in the different stages of 154 

childhood is available and has been included in PBPK approaches for simulation of 155 

pharmacokinetics in paediatric patients26. The optimisation of anti-infective therapies in 156 

infants and children could greatly benefit from a broader application of PBPK models, 157 

considering the clinical relevance of effective pharmacological tools to treat infections in 158 

paediatric patients. Although treatment of paediatric HIV patients results in several short and 159 

long term clinical benefits, available clinical options are limited. PBPK modelling has been 160 
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effectively applied in the simulation of antiretroviral pharmacokinetics in children, 161 

hypothesising dose optimisation based on genetic factors and weight27. 162 

Obesity is characterised by numerous anatomical changes that alter anti-infectives disposition 163 

with potential downstream effects on drug efficacy and toxicity. The risk of nosocomial 164 

infections is higher in this subpopulation of patients and can be associated with the 165 

development of resistances due to suboptimal anti-infective dosing28. The changes in organ 166 

composition, tissue volume, cytochrome P450 expression and blood flow have been 167 

mathematically described and successfully included in PBPK simulations suggesting dose 168 

adjustments and identifying patients with an higher risk of sub-therapeutic concentrations29, 169 

30. For instance, the antiretroviral efavirenz, when used at the standard 600 mg once daily 170 

dose, was shown not to achieve adequate plasma exposure in obese patients. 171 

An additional special population that require dose adjustment and optimization of therapeutic 172 

strategies is pregnant women. During pregnancy, several physiological changes are occurring 173 

and the correct dosing of anti-infectives acquires extreme relevance considering the potential 174 

exposure of the foetus to life-threatening infections and/or drug related toxicities. The first 175 

PBPK model simulating drug distribution in pregnant women and foetus was published in 176 

1994 and subsequent studies have followed31-33. This approach has the potential to define 177 

optimal therapeutic options for pregnant women infected by pathogens. 178 

In several ways, disease groups can themselves be treated as special populations. An 179 

important factor in the optimisation of anti-infectives is the understanding of how the 180 

progression of disease affects the physiological characteristics of the patient important for 181 

drug disposition. Due to the heavy nvolvement of the liver in drug metabolism and 182 

elimination, diseases which alter the physiological state of the liver, such as viral hepatitis, 183 

have been investigated for their effect on liver-based drug metabolism enzymes and 184 
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transporters. The expression levels of numerous cytochrome P450 (CYP) and phase II 185 

enzymes (CYP1A2, CYP2E1, CYP2D6, UGT1A) and transporters (ABCB1, ABCC2, 186 

ABCC3, SLC10A1, SLC22A1) in hepatitis C patients were shown to decrease as the severity 187 

of liver fibrosis, or fibrosis stage (F), increased34. Other studies have also concluded that 188 

hepatitis, particularly in cases with more severe liver damage, can alter the expression level 189 

of metabolism enzymes, and drug transporters35-39. Not all cases show reduced expression, 190 

with a recent study showing the up-regulation of transporter ABCC4 and enzyme CYP1B1 in 191 

patients with end-stage liver disease40. Additionally, nuclear receptors which are involved in 192 

the regulation of liver enzyme and transporter expression, such as the aryl hydrocarbon 193 

receptor (Ahr), the constitutive androstane receptor (CAR) and the pregnane X receptor 194 

(PXR), show reduced expression in hepatitis C patients with fibrosis development34. The 195 

pharmacokinetic parameters of ribavirin have been assessed in hepatitis C patients using 196 

population pharmacokinetic modelling. Although no PBPK models have been created which 197 

simulate the reduced abundance of enzymes and transporters in hepatitis C patients 198 

displaying various levels of liver damage, this would be achievable by adjusting the amount 199 

of enzyme/transporter expressed per mg of liver. The PBPK models created could then be 200 

used to predict the impact of the liver damage on drug clearance rate. An additional factor to 201 

consider adjusting would be hepatic blood flow, an important factor in the determination of 202 

drug clearance and which reduces in patients with chronic hepatitis C infection41. 203 

 204 

 205 

 206 

 207 
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2.2 Genetics  208 

The expression and activity of metabolic enzymes and transporters involved in ADME are 209 

influenced by genetic variants which can have a relevant downstream effect on PK. Phase I 210 

and Phase II metabolic enzymes have been investigated using in vitro and clinical 211 

pharmacogenetic studies and a broad knowledge describing the correlation between genetics 212 

and PK is currently available 3. Numerous anti-infectives are metabolised or eliminated by 213 

polymorphic enzymes and therefore pharmacogenetics may influence efficacy and toxicity in 214 

patients.  215 

The influence of genetic variables on anti-infective PK can be predicted through PBPK 216 

modelling. In vitro systems can be utilised to clarify how polymorphisms alter expression and 217 

activity of transporters and drug metabolizing enzymes, and these investigations can be 218 

included in PBPK models. This approach has been applied to clarify the impact of CYP2B6 219 

genetics on efavirenz pharmacokinetics and to help hypothesise potential pharmacogenetics-220 

driven dose adjustment strategies42, 43. For instance, it was demonstrated that the dose amount 221 

of efavirenz, which is normally administered at 600 mg once-daily, can be decreased to 400 222 

mg once-daily in HIV-infected individuals carrying the CYP2B6 516GT genotype 223 

(heterozygous mutation associated with a lower metabolizing activity of CYP2B6) and to 200 224 

mg once daily in carriers of 516TT genotype (homozygous mutation) without compromising 225 

HIV virological suppression. Another disease area that could benefit from an application of 226 

PBPK modelling is fungal infections. Voriconazole is an antifungal with a broad spectrum of 227 

activity and is the treatment of choice for invasive aspergillosis and oesophageal candidiasis. 228 

The pharmacokinetics of this drug is highly variable between patients and this can cause 229 

suboptimal exposure or concentration dependent toxicity44. Voriconazole is mainly 230 

metabolised by CYP2C19, which is characterised by different genetic variants that can 231 

influence the activity of the enzyme. The CYP2C19*2 and *3 alleles have been correlated 232 
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with a “poor metaboliser” phenotype and other genotypes, such as CYP2C19*17, have been 233 

associated with increased enzymatic activity45, 46. Dose adjustment strategies for voriconazole 234 

may constitute an effective intervention to limit sub-optimal pharmacokinetics and PBPK 235 

models could support the selection of potential pharmacogenetics-driven dose 236 

individualisation strategies. 237 

 238 

2.3 Drug-drug interactions 239 

Pharmacokinetic DDIs occur when the exposure of a drug (victim) is impaired by the co-240 

administration of a drug inhibiting or inducing (perpetrator) the metabolic pathway 241 

responsible for the elimination of the victim drug. DDIs are of major concern in the clinical 242 

practice as they may impair drug efficacy or precipitate toxicity and, in case of life-243 

threatening adverse events, may contribute to the withdrawal of a drug from the market47. 244 

Thus, the evaluation of a drug’s potential for DDIs has become essential during the process of 245 

preclinical drug development. Regulatory guidelines recommend that the initial risk 246 

assessment for metabolic DDIs is done using in vitro studies to investigate whether the 247 

investigational drug inhibits or induces the cytochrome P450 (CYP) enzymes48, 49. In vitro 248 

data are subsequently integrated in mathematical models to evaluate the in vivo risk of 249 

inhibition or induction and thereby the need for conducting clinical DDI studies50.  250 

In the recent years, approaches to DDI prediction have evolved from the use of single 251 

equations to the use of software tools which integrate physiological and drug parameters 252 

together with a dynamic model to describe pharmacokinetics in humans51. Such PBPK 253 

models incorporate the temporal changes in the concentration of the perpetrator and victim 254 

drugs and thus allow simulations of concentration-time profiles for the inhibition or 255 

induction52-55. Furthermore, the PBPK approach enables the user to assess the effect of 256 
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various parameters (i.e. dosing regimen, dose staggering, concurrent inhibition and induction 257 

of multiple CYPs) on the magnitude of DDIs. Thus, this approach provides a more 258 

comprehensive and precise report of DDIs56, 57. Finally, the inclusion of the inter-individual 259 

variability in CYP expression arising from genetic, demographic or pathophysiological 260 

differences assists in defining the extent of the interaction magnitude at the extremes of the 261 

population58. The regulatory guidelines were recently updated to include the use of PBPK 262 

modelling at different stages of drug development with the purpose of assessing the potential 263 

for DDIs (early stage), to update initial PBPK models once more when in vivo data are 264 

available (late stage) and to inform the design of in vivo DDI studies (at all stages)49. 265 

Given their well characterized effects on CYP3A, anti-infective agents have often been used 266 

in PBPK models. Such models aim to elucidate the mechanism and time course of DDIs 267 

observed in clinical studies59-61, to build mechanistic models54, 55 or to inform the design of 268 

clinical drug interaction studies (i.e. determination of the timing of administration of the 269 

perpetrator drug to achieve the maximal inhibitory or inductive effect)57, 62-64. For instance, 270 

ketoconazole, a reversible inhibitor of CYP3A and P-glycoprotein, has been used to assess 271 

the interaction with a tyrosine kinase inhibitor. The magnitude of the interaction was first 272 

determined in a clinical study in healthy volunteers who received the investigational drug 273 

alone and in presence of ketoconazole. The simulation of the DDIs using a PBPK model 274 

showed that the inhibition of P-glycoprotein by ketoconazole must be taken into 275 

consideration, in addition to CYP3A inhibition, to fully explain the magnitude of the 276 

observed DDI61. Time-dependent inhibitors such as clarithromycin and telithromycin have 277 

been used to build mechanistic models able to simulate their non-linear pharmacokinetics and 278 

the related effect on the clearance of the victim drug midazolam54, 55. The elaboration of such 279 

mechanistic models is of interest as they may provide a framework for the prediction of other 280 

time-dependent DDIs. Finally, ketoconazole and rifampicin, a potent inducer of CYP3A, 281 
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have been used in PBPK models to inform about the maximal inhibitory and inductive effect 282 

of CYP3A, respectively, and thereby inform the design of DDI studies57, 62. For instance, 283 

Zhao et al. showed that a single dose of ketoconazole resulted in maximal inhibition for 284 

CYP3A substrates with short half-life and low bioavailability. Conversely, multiple doses of 285 

ketoconazole were required to achieve maximal inhibition for CYP3A substrates with long 286 

half-life. Whereas, a more recent study seems to indicate that multiple doses of ketoconazole 287 

are needed to reach maximal inhibition independently of the victim drug half-life63. Baneyx 288 

et al. showed that the maximal inductive effect was achieved with rifampicin pretreatment for 289 

five days and the administration of the victim drug at least two hours after the last rifampicin 290 

dose. Collectively, such simulations are important as a suboptimal inhibition or induction can 291 

lead to the underestimation of the DDI magnitude with a given CYP3A substrate. Rifampicin 292 

has also been used to evaluate the interplay between CYP3A4 and the hepatic uptake 293 

transporter OATP1B1 and its impact on repaglinide exposure65. The PBPK modelling 294 

showed that the opposite effects of rifampicin on CYP3A4 (induction) and OATP1B1 295 

(inhibition) impacted repaglinide exposure differently depending on the timing of 296 

administration of the two drugs. CYP3A4 induction and OATP1B1 inhibition were apparent 297 

when both drugs were administered in temporal proximity, whereas CYP3A4 induction was 298 

more pronounced when the drugs were administered >12 h apart. Thus, mechanistic models 299 

should also take into account transporters in order to accurately predict DDIs, especially for 300 

drugs such as repaglinide whose systemic clearance is impacted by both the hepatic uptake 301 

and the metabolism.  302 

In the field of DDI prediction, PBPK models have been useful to simulate virtual clinical 303 

studies in order to characterize DDIs for drug combinations used in the clinical practice but 304 

for which limited clinical data are available. For instance, PBPK models simulating virtual 305 

clinical trials were applied to predict the magnitude of DDIs between efavirenz or boosted 306 
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protease inhibitors and commonly prescribed antidepressants56. These antiretroviral drugs are 307 

characterized by mixed inhibitory/inductive effects on CYPs. The approach consisted to 308 

initially build mechanistic models, and to subsequently validate their robustness by 309 

comparing the magnitude of simulated DDIs using classical probe drugs to that observed in 310 

clinical studies. These models were then applied to simulate the magnitude of DDI that would 311 

be observed if the investigated antiretroviral drugs were given in individuals during 14 days 312 

followed by 8 days of concomitant administration with a given antidepressant. By taking into 313 

account the concurrent inhibitory and inductive effect of antiretroviral drugs on CYPs, the 314 

PBPK simulation showed that the magnitude of DDIs with antidepressants was overall weak 315 

to moderate. The modest magnitude has been attributed to the fact that antidepressants are 316 

substrates of multiple isoforms and thus metabolism can still occur through CYP that are 317 

weakly impacted by efavirenz or boosted protease inhibitors.  318 

Simulations of virtual clinical trials have not only been used to quantify a DDI but also to 319 

determine the dose adjustment to overcome a given interaction66. For instance, antimalarial 320 

drugs are often used concomitantly with antiretroviral drugs in African countries to treat co-321 

infected patients. Such drug combinations are difficult to handle as antimalarial drugs are 322 

susceptible to DDIs whereas a suboptimal drug exposure can lead to treatment failure and 323 

drug resistance. A PBPK model was used to simulate the magnitude of the DDI between 324 

efavirenz (600 mg once daily) and artemether (80 mg twice daily) in virtual subjects. 325 

Efavirenz was shown to reduce artemether area under the curve (AUC) by 80%, tripling the 326 

dose of artemether enabled to compensate efavirenz inductive effect. Simulations in a virtual 327 

population were also performed to evaluate the magnitude of the DDI between rifampicin and 328 

efavirenz based on the body weight and CYP2B6 genotype. This study aimed to define the 329 

weight cut-off requiring an increase in efavirenz dose to counteract the interaction with 330 

rifampicin. The results showed that an increase in efavirenz dose to 800 mg was appropriate 331 
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only in individuals with a body weight over 50 kg67. Finally, simulations in virtual 332 

individuals were done to provide recommendations on how to switch antifungal drugs given 333 

the presence of residual CYP inhibition. The switch from fluconazole (CYP2C19 inhibitor) to 334 

voriconazole (substrate of CYP2C19) was simulated using various lag times during 335 

treatment. This study showed that fluconazole would continue to have an inhibitory effect on 336 

voriconazole for at least 24 hours after its discontinuation68. Collectively, these studies show 337 

that the use of PBPK modelling to simulate clinical scenarios has the potential to provide 338 

answers to specific clinical questions which may be difficult to study in patients or for which 339 

data are lacking. Some examples of clinically relevant scenarios involving anti-infective 340 

drugs for which PBPK modelling could potentially help optimizing therapy include:  341 

- The simulation of the magnitude of DDIs between antiretroviral agents and direct acting 342 

antiviral agents for hepatitis C virus infection considering different stage of liver disease 343 

and determination of the related dosage requirement.   344 

- The simulation of the magnitude of DDIs for first-line drugs used to treat simultaneously 345 

HIV and tuberculosis and/or malaria.  346 

- The simulation of the magnitude of DDIs between antiretroviral agents and anticancer 347 

agents, as such data are difficult to obtain from clinical studies.  348 

It is important to highlight that the accuracy of DDI prediction depends not only on the 349 

PBPK model but also on the data inserted in the model. Detailed investigations may be 350 

required to simulate physiological processes occurring both under normal and pathological 351 

conditions. For instance, it is well known that inflammatory conditions caused by infections 352 

can alter drug disposition processes and thereby impact the magnitude of DDIs69. While 353 

some processes are well characterized, others are poorly described, which may cause the 354 

model to erroneously predict the pharmacokinetics of some drugs. In addition, the inclusion 355 

of drug transporters may improve the prediction of the models to some extent, although 356 
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many challenges remain in this area. For instance, more data are needed to better define the 357 

interplay between CYPs and transporters. Other challenges include the species differences in 358 

the substrate specificity, tissue distribution and relative abundance of drug transporters. 359 

These differences complicate the extrapolation of animal data in humans to quantitatively 360 

predict the impact of transporters on DDIs70. Finally, another area that requires improvement 361 

is the integration of extra-hepatic or non-CYP-related metabolism in the PBPK model to 362 

predict DDIs. 363 

 364 

2.4 Formulations 365 

Many anti-infective drugs are administered orally and are therefore subject to several 366 

environmental factors dictating the extent and rate of oral absorption. These factors can 367 

include pH-dependent solubility, the formation of insoluble complexes with gastrointestinal 368 

contents, instability in the gastrointestinal environment and altered transit time71, 72. To limit 369 

the detrimental effects of these factors, drug formulations can be utilised to control the 370 

release rate of orally-administered drugs in the gastrointestinal lumen, allowing for optimal 371 

absorption. Specialised dosing strategies can include delayed-release formulations, such as 372 

the use of enteric-coated tablets which protect the drug from the acidic environment of the 373 

stomach by preventing dissolution at lower pH73, 74. Extended-release formulations also exist 374 

and are often used to reduce Cmax (decrease host toxicity) and increase the overall exposure 375 

time (improve drug effectiveness)75. Drug absorption into the blood circulatory system 376 

depends upon the delivery of drug particles or solution to the site of absorption. This applies 377 

not only to oral absorption but also to other non-intravenous routes of administration, such as 378 

sub-cutaneous, intra-peritoneal, transdermal, trans-ocular, intra-muscular and pulmonary. 379 

Release of drug from the formulation at these sites will depend on multiple factors, such as 380 



17 
 

local pH, tissue fat content and protein constitution. The optimum route of administration for 381 

a drug is often difficult to determine, and PBPK modelling combined with in vitro 382 

experimentation can help predict exposure levels76, 77.  383 

When optimising PBPK models it may be necessary to determine how a formulation interacts 384 

with its environment. Specifically, the drug release rate, the existence of delayed release and 385 

the ability of excipients to alter the properties of the drug or environment are all potential 386 

factors to be integrated. The Advanced Dissolution, Absorption and Metabolism (ADAM) 387 

model was created to take into account the release characteristics of free drug from orally-388 

administered formulations, as well as to include the intestinal metabolism and active transport 389 

of drug78. There are published PBPK models which specifically investigate formulation-390 

dissolution-related issues for anti-infectives. For example, the pH-dependent dissolution rate 391 

of 400 mg film-coated tablets of raltegravir, an anti-HIV integrase inhibitor, was determined 392 

in vitro by our group and subsequently included in a PBPK model to predict the effects of 393 

altered gastrointestinal pH on the rate and extent of drug absorption79. The model predictions 394 

fell within the range of clinical PK profiles and supported previous data showing increased 395 

raltegravir plasma concentrations when co-administered with acid-reducing agents80. 396 

Furthermore, the model in combination with in vitro studies successfully simulated the 397 

reduced oral absorption of raltegravir due to the binding of drug to divalent metals present in 398 

certain antacids81, which has also been observed clinically82. This has led to the design of a 399 

human trial investigating the use of raltegravir with an antacid containing only monovalent 400 

metals, which is unlikely to result in a significant interaction. 401 

 402 

 403 

 404 
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2.5 Penetration in tissues  405 

In many cases a microbial disease can reside in tissues other than the circulatory system, 406 

where sufficient penetration of an anti-infective drug into the target tissue(s) can be essential 407 

for treatment success. The life cycle of the malaria parasite occurs in erythrocytes and 408 

hepatocytes, therefore few potential physiological barriers should exist in achieving high drug 409 

concentrations at these sites83. However, several infections reside in tissues where drug 410 

penetration is more difficult to achieve. Mycobacterium tuberculosis infects macrophages, 411 

which can then migrate to tissues across the body, primarily infecting the lungs but also to 412 

other major organs such as spleen, liver and kidneys84. HIV primarily infects CD4+ T cells 413 

and macrophages which can reside in viral sanctuary sites (locations in the body where 414 

antiretrovirals cannot sufficiently penetrate to prevent viral replication). These sanctuary sites 415 

can include but are not limited to the brain, genital tract, gut-associated lymphoid tissue and 416 

peripheral lymph nodes85. The penetration of drugs in these sites is essential for the complete 417 

inhibition of viral replication in the body. Antifungal drugs are used to treat fungal infections 418 

throughout the body, although tissue distribution of these drugs can vary greatly. For 419 

example, in humans fluconazole showed higher cerebrospinal fluid (CSF) concentrations (52-420 

82% achieved in plasma) than itraconazole (<10% achieved in plasma) which can be 421 

understood by comparing the properties of fluconazole (10% plasma protein binding, log P of 422 

2.17) and itraconazole (98% plasma protein binding, log P of 6.99)86. The brain is often a 423 

target for anti-infectives, but achieving effective drug concentrations at this site may be 424 

impeded by the blood brain barrier (BBB). The BBB is a selective permeation barrier that 425 

separates the extracellular fluid of the brain from the blood circulation87. 426 

In these and other cases, direct measurement of drug concentrations in tissue, rather than in 427 

plasma, may give more meaningful information when linking drug exposure to efficacy88. 428 

However, measuring drug concentrations in human tissue can be impractical, and surrogate 429 
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animal models are generally regarded as poor predictors of drug tissue distribution in 430 

humans89. A further factor to consider is that some anti-infectives, such as the majority of 431 

antibiotics, require access to the interstitial space fluid (ISF) to elicit an effect, whereas other 432 

anti-infectives, such as all but a couple of anti-HIV drugs, require intracellular access. 433 

Methods using tissue homogenate to determine drug concentrations are therefore unable to 434 

differentiate between drug in ISF and cellular compartments, which may lead to erroneous 435 

predictions90. PBPK modelling provides a useful and flexible strategy to overcome the above 436 

issues. 437 

PBPK models, besides predicting drug plasma exposure, can also simulate the penetration of 438 

drug in individual tissues. Only the free drug in the systemic circulation is assumed to be able 439 

to move from blood into tissues. This process is influenced by the amount of unbound drug in 440 

the plasma (fup) and also by the blood-to-plasma ratio (B:P). Using this approach prior to in 441 

vivo studies, the steady state volume of distribution (Vss) and the affinity of drug for 442 

penetrating each tissue compartment can be estimated using a PBPK model which 443 

incorporates drug-parameters (Log PO:W (i.e. octanol: water), pKa, fup, B:P) with tissue volumes and 444 

composition (fraction of tissue consisting of water, neutral lipids and phospholipids)91. The 445 

general assumption is that a drug with moderately high log P, a lack of charge at 446 

physiological pH, a high fup and a low B:P has favourable characteristics for tissue 447 

penetration. The movement of drug into the tissue is calculated using either perfusion-limited 448 

mechanisms, which assumes an instant ratio is reached in drug concentrations between 449 

flowing blood and corresponding tissue, or permeability-limited mechanisms, where the cell 450 

membrane and interstitial fluid provide additional barriers to drug movement92. The majority 451 

of PBPK models utilise perfusion-limited mechanisms for determining drug distribution, 452 

whereas PBPK models of large hydrophilic drugs and protein often utilise permeation-limited 453 

mechanisms. Each tissue generally has its unique selection and expression levels of drug 454 
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metabolising enzymes (both perfusion-limited and permeation-limited) and drug transporting 455 

proteins (permeation-limited), and this information can be included in PBPK models 456 

provided that these proteins are believed to influence drug disposition. The expression level 457 

and functionality of drug metabolising enzymes and drug transporters can be influenced by 458 

drug-drug interactions, genetics, disease state and other factors discussed elsewhere in the 459 

review, adding further complexities to the accurate prediction of drug tissue penetration.  460 

When a tissue is of particular importance for the efficacy and/or toxicity of a drug, 461 

specialised PBPK models with detailed anatomical sub-compartments can be created. A 462 

PBPK model has been published to predict regional brain PK of acetaminophen in which the 463 

transfer of drug was determined between sub-compartments of CSF, brain extracellular fluid 464 

(ECF) and brain intracellular space (ICS)93. This allowed for the accurate matching of in vivo 465 

data where acetaminophen concentrations were around 4-fold higher in CSF compared to 466 

brain ECF. In specific cases, the interstitial space within tissues can be an important target 467 

site for anti-infective drugs which operate outside the cell, such as for the hydrophilic β-468 

lactam antibiotics and moxifloxacin94-96. As an example, a PBPK model of β-lactam 469 

antibiotics was produced which included both the interstitial and intracellular portions of 470 

tissues. This was shown to have a small but significant effect of drug distribution 471 

calculations94.  472 

 473 

 474 

 475 

 476 
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3. Integration of disease-treatment relationships into PBPK 477 

models: the phenomenon of PBPK/PD modelling 478 

When developing anti-infective drugs it can be crucially important that the pharmacodynamic 479 

characteristics of candidates are accurately assessed and compared, in order to select for lead 480 

candidates. This is usually performed in vitro, with the minimum inhibitory concentration 481 

(MIC) generally being used as a standard measurement for activity of antibiotics and 482 

antifungals. Although the exact definition of MIC can differ depending on disease, for most 483 

antibiotics the MIC is defined as the minimum concentration of drug required to prevent 484 

visible growth of a target organism following 24 hours incubation at 35˚C using standard 485 

inoculums (around 0.5 to 5 million CFU/mL). This method gives no information on the time 486 

course of antibacterial activity or if the activity is bactericidal (kills pathogen) or 487 

bacteriostatic (inhibits pathogen reproduction) in nature, therefore time-kill experiments are 488 

often performed following the determination of MIC. The most common in vitro model used 489 

to assess antibacterial action is the Hollow Fibre model, which uses tubular fibers in a 490 

cartridge through which drug-containing medium is pumped97. Other approaches include 491 

biofilm models and animal infection models98, 99. Once MIC has been established in vitro, the 492 

following PK/PD indices have been found to be useful in estimating in vivo efficacy: 493 

1) T>MIC: the time (T) of exposure of microbe to plasma concentrations exceeding the 494 

MIC. 495 

2) Cmax/MIC: the ratio of maximum plasma concentration (Cmax) to MIC. 496 

3) AUC/MIC: the ratio of area under the the plasma concentration curve (AUC) to MIC. 497 

Antibiotics are generally classed as having an activity which is time-dependent (T>MIC), 498 

concentration-dependent (Cmax/MIC) or dependent on both time of exposure and 499 

concentration (AUC/MIC)100. In contrast to this system, the assessment of antiviral PD is 500 
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often complicated by the fact that in many cases an in vitro screening method does not exist 501 

or is not fully representative of the in vivo situation. Viral replication relies on the 502 

sequestration of host cell machinery, and all viral infections have an intra-cellular component, 503 

which both make developing effective antiviral therapies more difficult. For assessment of 504 

anti-HIV drugs, the reduction in HIV RNA, DNA or protein can be measured in a system 505 

using HIV-infected immortalised or ex vivo CD4+ immunological cells and used to produce 506 

a concentration-efficacy relationship such as EC50 or EC95.  507 

As discussed above, standard PBPK modelling allows for an understanding of factors that 508 

affect the ADME properties of a drug. In addition, information can be included detailing the 509 

efficacy, toxicity and inhibitory/induction potential of a drug101. If a concentration-effect 510 

relationship can also be established, then this allows for the creation of an integrated 511 

PBPK/PD model. The lack of effective in vitro PD screening methods for many infectious 512 

diseases has impeded the widespread use of this system, although there are published 513 

examples which have integrated PD data into compartmental modelling. A simple 2-514 

compartmental PK/PD model was created for the anti-HIV drug bevirimat, where a dose-515 

dependent relationship between drug plasma concentrations and viral load could be used to 516 

predict necessary doses for viral suppression in humans102. A semi-mechanistic PK/PD model 517 

was published by Nielsen et al which assessed the activity of antibacterial agents on 518 

Streptococcus pyogenes103. Time-kill values were determined in vitro for benzylpenicillin, 519 

cefuroxime, erythromycin, moxifloxacin, and vancomycin, and used to create a maximum 520 

effect (Emax) PD model. The natural rate of bacterial growth and death was included, in 521 

addition to drug-induced death. The attached PK model only predicted the chemical 522 

degradation of otherwise static drug concentrations; therefore this model had limited use for 523 

optimisation of antibacterial treatments in patients. An improved PK/PD model was 524 

developed, where a multi-compartment (central and peripheral) system allowed for 525 
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distribution and elimination of the drug, and also allowed for delayed drug action and the 526 

development of drug resistance104, 105.  527 

Physiologically-based parameters were not included in the above mathematical PK models. 528 

As discussed previously, without this information it is not possible to simulate the 529 

distribution of anti-infectives into specific tissues, which are important targets for numerous 530 

diseases residing outside of the circulatory system. As can be seen, important steps have been 531 

made in PK/PD model design, but there are clear benefits to working towards “whole body” 532 

infection models, where the distribution and actions of both the infection and the treatment 533 

can be simulated for optimisation. 534 

 535 

4. Conclusion 536 

The PBPK approach gives the opportunity of integrating in vitro experimental data in a 537 

mathematical description of human anatomy and physiology for the simulation of drug 538 

pharmacokinetics. Overall, this predictive tool can have relevant use for the prediction of 539 

anti-infective pharmacology and efficacy, giving insight of their distribution during the 540 

development process as well as finding application in the simulation of relevant clinical 541 

scenarios (Figure 3). In this review we have described some of the most recent studies 542 

conducted using PBPK, and hypothesised future innovative applications for a more effective 543 

use of anti-infectives not only in the average patients but also for special subpopulations of 544 

infected individuals. There are useful PD models developed using in vitro and in vivo 545 

approaches which can inform PBPK models of “target” concentrations in specific tissues to 546 

achieve treatment success, although much work remains to be done on improving our 547 

knowledge of PK-PD relationships in most diseases. 548 
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 549 

5. Expert opinion 550 

There is an urgent requirement for novel treatment strategies of infectious diseases. The 551 

treatments of many infections remain ineffective and can often result in concentration-552 

dependent host toxicity. Anti-infective resistance development is not a minor concern and 553 

should be acknowledged as a global health crisis, as is emphasised by the current alarming 554 

spread of drug-resistant Mycobacterium tuberculosis and malaria106. Consequently, new 555 

drugs need to be developed which are effective against resistant strains of infection. 556 

Furthermore, in cases where special patient populations have sub-optimal drug exposure due 557 

to alterations in physiology, the pharmacokinetics of currently used anti-infectives should be 558 

improved to prevent drug resistance development. PBPK modelling provides a powerful tool 559 

in our attempts to tackle the above issues, and both industry and regulatory bodies have 560 

recognised the importance of this technology. Between 2008 and 2012, the FDA received 561 

submissions for 18 investigational new drugs (IND) and 16 new drug applications (NDA) 562 

which included PBPK modelling 107. Of these 33 IND/NDA cases, the majority of models 563 

(61%) were used to investigate drug-drug interactions, with the remaining models 564 

investigating paediatrics (18%), absorption (9%), hepatic impairment (6%), 565 

pharmacogenetics (3%) and a combination of pharmacogenetics and drug-drug interactions 566 

(3%). Additionally, the FDA increasingly use PBPK modelling in reviews of clinical 567 

scenarios, with 16 cases recorded between 2009 and 2012. Any definitive measure of model 568 

adequacy for PBPK in clinical pharmacology is yet to be defined and will necessarily vary 569 

from case to case, depending on factors such as the therapeutic window of the investigational 570 

drug. However, the FDA has outlined the essential information of a PBPK analysis needed in 571 

a regulatory submission, and these fundamental questions need to be addressed by the 572 
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applicant (17). Does the model use system- and drug-dependent parameters which are based 573 

on accepted physiology? Have input parameters been produced from reliable and 574 

reproducible data, or, when assumptions are made, can they be justified? Is the model able to 575 

effectively predict existing in vivo data? Does the model contain all necessary parameters to 576 

address known PK-influencing factors for a specific drug? Regarding PBPK modelling of 577 

anti-infectives specifically, many more questions would require to be addressed in specific 578 

cases, and this regulatory assessment of PBPK models is a constantly evolving process. 579 

It should be acknowledged that major challenges remain to be addressed if PBPK modelling 580 

is to be increasingly used in anti-infective research. Diseases can alter the physiological 581 

characteristics of patients, which can in turn change the disposition and effectiveness of anti-582 

infective drugs. To give examples, HIV-infected patients, particularly those with advanced 583 

disease progression, have higher gastric pH than uninfected individuals and this may explain 584 

why acid-reducing agents show reduced impact on the absorption of antiretrovirals with pH-585 

dependent solubility, such as raltegravir, in HIV-infected patients108. Numerous bacterial and 586 

viral infections have been found to alter expression levels of drug metabolising enzymes and 587 

transporters, although the majority of these studies have been performed in animals109. In 588 

reality, for the purposes of constructing PBPK models, an understanding of relevant systems 589 

parameters are lacking in many disease groups and it is essential that pharmacologists, 590 

physiologists and clinicians collaborate to address these knowledge gaps. An extra 591 

complication can arise in the development of fully comprehensive anti-infective PBPK/PD 592 

models in simulated disease groups: most infections would not act as a benign, static factor in 593 

the model. Infection replication and death rates may need to be accounted for, and an 594 

infection may display variability in genetics and phenotype within a “population” which is 595 

relevant for treatment success. Preferences of some infections for specific tissues and the 596 

ability of infectious agents to spread to new locations would complicate the production of 597 
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PK/PD relationships. Furthermore, infections can often exist in different forms during a 598 

lifecycle, some of which show varying sensitivity to treatment, for example in the case of 599 

anti-malarial drugs which are not effective against the life-cycle stage involving the liver. 600 

Investigations into these factors provide great challenges, due to the absence in most cases of 601 

models for determining infection dynamics. However, regarding the establishment of PK/PD 602 

relationships, it is important to aim for simplicity where it is available. In the case of certain 603 

antibiotics, a relatively simple correlation has been established linking PK and PD, as is 604 

detailed in section 3, and this information is easily included in current PBPK model design. 605 

Regarding the future of in silico based “personalised medicine” strategies, the ultimate goal is 606 

to achieve a complete picture incorporating the system of both the specific patient and the 607 

disease, and to combine this with the pharmacodynamics and toxicological characteristics of 608 

the anti-infective. Considering that there is a paucity of information available to construct 609 

these complete PBPK-PD models, a factor to consider is education: in order to attract 610 

researchers to the area of PBPK-PD model development, it is important that users are able to 611 

understand the underlining principals and the science behind modelling. The authors believe 612 

that this learning process should be initiated early in the development of future 613 

pharmacologists, and have included PBPK modelling theory and technique in educational 614 

programs. 615 

 616 

 617 

 618 

 619 

 620 
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Table 1. Main physiological and anatomical changes in special populations and their 621 

potential effect on PK 622 

Special populations Anatomical and physiological factors Potential effect on PK 

Elderly 110, 111 

Increased gastric pH Decreased absorption 

Delayed gastric emptying time 

Slower absorption Decreased splanchnic blood flow 

Decreased gastro-intestinal mobility 

Decreased absorption surface Decreased absorption 

Reduced expression of intestinal enzymes and 
transporters  

Increased absorption 

Increased adiposity 
Higher distribution 

Lower lean body mass and total body water 

Decreased albumin, increased α1-acid-glycoprotein Higher/lower distribution 

Reduced liver weight 
Lower clearance  

Decreased hepatic blood flow 

Changes in the expression of CYP450 isoforms 
Lower/higher clearance 

Changes in plasma protein binding 

Decreased glomerular filtration rate 

Lower clearance 
Decreased kidney mass 

Decreased glomerular surface area 

Decreased renal blood flow 

Obesity 112, 113 

Increase adipose tissue mass Higher distribution 

Increased cardiac output and altered hepatic blood 
flow 

Higher distribution and 
higher/lower clearance 

Increased glomerular filtration and tubular secretion Higher clearance 

Altered expression of metabolic enzymes  Higher/lower clearance 

Pregnancy  114 

Increased cardiac output Higher distribution and 
higher clearance 

Increase adipose tissue mass 

Higher distribution Increased total body water 

Increased plasma volume 
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Decreased plasma protein levels Altered protein binding 

Altered expression of metabolic enzymes Higher/lower clearance 

 623 

 624 

Article highlight box 625 

 626 

• The pharmacokinetic and pharmacodynamic properties of anti-infective drugs are 627 

often not fully understood but are usually found to relate to treatment success, and the 628 

development of new and improved anti-infective agents is essential if improvements 629 

in current disease treatment, including the treatment of drug-resistant infectious 630 

strains, are to be achieved. 631 

• The optimisation of anti-infective drugs in special populations, such as paediatrics, 632 

the elderly, pregnant patients and patients who have co-morbidities, is difficult due to 633 

small group sizes and the additional risks associated with experimental treatment.   634 

• Physiologically based pharmacokinetic modelling is a useful tool which allows for the 635 

creation of “virtual” populations with defined physiological characteristics and 636 

variability, which can then be combined with the physicochemical and biological 637 

properties of a drug to simulate drug pharmacokinetic pharmacodynamic 638 

characteristics. 639 

• Models can be designed which investigate how drug disposition in the human body is 640 

influenced by factors such as genetics, drug-drug interactions, formulation properties, 641 

and drug disposition when simulated in special population. 642 

• Physiologically based pharmacokinetic modelling can be combined with the 643 

pharmacodynamic properties of an anti-infective agent in order to fully predict the 644 
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interaction between the drug and infectious agent in an in vivo situation, allowing for 645 

the simulation of treatment effectiveness. 646 

• Many areas remain where further research is required to improve the predictive value 647 

of physiologically based pharmacokinetic modelling of anti-infectives, including 648 

establishing improved correlations between in vitro and in vivo anti-infective 649 

pharmacodynamic relationships, and increasing our understanding of physiological 650 

changes occurring in patients during disease progression. 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 
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 665 

 666 
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