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Summary 

The delivery of therapeutic agents is characterised by numerous challenges 

including poor absorption, low penetration in target tissues and unspecific 

dissemination in organs, leading to toxicity or poor drug exposure. Several 

nanomedicine strategies have emerged as an advanced approach to enhance drug 

delivery and improve the treatment of several diseases. Numerous processes 

mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, 

metabolism and elimination (ADME) being poorly understood and often differing 

substantially from traditional formulations..Understanding how nanoformulation 

composition and physicochemistry influences drug distribution in the human body is 

of central importance when developing future treatment strategies. A helpful 

pharmacological tool to simulate the distribution of nanoformulations is represented 

by physiologically based pharmacokinetics (PBPK) modelling, which integrates 

system data describing a population of interest with in vitro nanoformulation data 

through a mathematical description of ADME. The integration of property–distribution 

relationships in PBPK models may benefit nanomedicine research, giving 

opportunities for innovative development of nanotechnologies. This approach will not 

only improve our understanding of the mechanisms underpinning nanoformulation 

disposition and allow for more rapid and accurate determination of their kinetics, but 

will also help clarify interactions between different nanoformulation properties, 

identifying antagonistic or synergistic effects. Consequently, the design and 

development of nanoformulations can be informed by this modelling approach to 

generate novel nanoformulations with desirable pharmacokinetics. 

 

Key words: nanoformulation, pharmacokinetics, PBPK, in silico, optimization, 

ADME, nanoparticle 

  



Perspectives and opportunities in nanotechnology for drug delivery  

Acceptable pharmacokinetics of drugs can be impeded by several factors, including 

poor absorption, low penetration into target tissues and high clearance. Insolubility of 

drugs, with the resulting low bioavailability, remains a serious concern for drug 

development programs in the pharmaceutical industry. It is estimated that >60% of 

new drug candidates are poorly soluble in water, inhibiting development programmes 

and ultimately the success of new treatments (Sareen et al., 2012; Sikarra et al., 

2012 ). Moreover, the lack of drug penetration in tissues where exposure is most 

needed can have a detrimental influence on therapy efficacy and toxicity. 

Numerous nanomedicine strategies are currently being assessed to improve drug 

delivery. Nanomedicines include nanoparticles (defined as solid submicron particles 

consisting of polymers or inorganic material) and liquid based drug nanocarriers 

such as nanoemulsions. Nanoformulations can be produced to contain a drug (or 

drugs) which may be associated with the particle in various ways (Kreuter, 1994). 

Many nanoformulations can effectively be absorbed and subsequently concentrated 

in tissues through passive targeting, exploiting both the physicochemical 

characteristics of the nanocarriers and the specific properties of the tissues of 

interest. Different strategies can also be applied for active targeting of tissues, 

pathogens and cancer cells.  

The wide variety of nanocarrier designs means that a large, almost overwhelming, 

range of delivery strategies are available for research and application. Polymers can 

be used as containers for drug molecules, either by forming solid polymer matrix 

nanoparticles to encapsulate drugs, or through the construction of vehicles such as 

block copolymer liposomes/vesicles, micelles and nanoemulsions (Wischke and 

Schwendeman, 2008). Direct non-covalent or covalent conjugation of drugs to 

polymers have been successfully used to enhance circulatory times and deliver 

drugs through triggered/controlled release (Joralemon et al., 2010). A wide variety of 

inorganic oxides have been used to create nanoparticles, such as gold (Thakor et 

al., 2011), silver (Ong et al., 2013; Zhang et al., 2013), silica (Wu et al., 2013) and 

iron (Ittrich et al., 2013). However, the influence that these formulations can have on 

drug pharmacokinetics is only partly understood. In this review we describe what is 

known of the main processes regulating nanoformulation ADME. We also discuss 



strategies to optimise the design of nanoformulations, focussing on the use of 

mechanistically-based ADME modelling to obtain optimal pharmacokinetics. 

  



Importance of nanoformulation pharmacokinetics 

The use of nanoformulation delivery systems has the potential to radically improve 

drug pharmacokinetics. However, efficacy and toxicity of drugs can also be 

negatively influenced by nanoformulation distribution: insufficient absorption and 

diffusion into tissues may compromise drug activity, while excessive nanoformulation 

accumulation could lead to tissue-specific toxicity (related to the drug, the 

nanoformulation, or potentially both). Consequently, understanding the interactions 

between nanoformulations and the human body is of central relevance for the 

engineering of future treatment strategies, and a thorough investigation of the 

processes regulating nanoformulation disposition is essential to optimise effective 

and safe nanoformulations for drug delivery. Several processes mediate the 

distribution of nanoformulations in the human body and the absorption, distribution, 

metabolism and elimination of nanoformulations can differ substantially from 

traditional formulations. In most cases nanoformulation ADME is not fully 

characterised and can vary based on the characteristics of the nanoformulations 

(Figure 1). The preferred routes of administration for nanoformulations are oral, 

transdermal, ocular, pulmonary, nasal and intravenous, which we discuss in this 

section. 

 

Oral administration 

Certain nanoformulations can enhance the absorption of drugs by releasing drug into 

the lumen in a controlled manner, thus reducing solubility issues. The intestinal wall 

is designed to absorb nutrients and to act as a barrier to pathogens and 

macromolecules. Small amphipathic and lypholic molecules can be absorbed by 

partitioning into the lipid bilayers and crossing the intestinal epithelial cells by passive 

diffusion, while nanoformulation absorption may be more complicated due to the 

intrinsic nature of the intestinal wall. The first physical obstacle to nanoparticle oral 

absorption is the mucous barrier which covers the luminal surface of the intestine 

and colon (Corazziari, 2009; Johansson et al., 2011). The mucus barrier contains 

distinct layers and is composed mainly of heavily glycosylated proteins called 

mucins, which have the potential to block the absorption of certain nanoformulations. 



Modifications can be made to produce nanoformulations with increased mucous-

penetrating properties (Ensign et al., 2012). Once the mucous coating has been 

traversed, the transport of nanoformulations across intestinal epithelial cells can be 

regulated by several steps, including cell surface binding, endocytosis, intracellular 

trafficking and exocytosis, resulting in transcytosis (transport across the interior of a 

cell) with the potential involvement of multiple subcellular structures. Moreover, 

nanoformulations may also travel between cells through opened tight junctions, 

defined as paracytosis (Tuma and Hubbard, 2003). Non-phagocytic pathways, which 

involve clathrin and caveolae mediated endocytosis and macropinocytosis, are the 

most common mechanisms of nanoformulation absorption by the oral route, although 

heterogeneity in the efficiency of these processes has been described for different 

types of nanoformulations. Consequently, it is difficult to identify a predominant 

process determining transcytosis of nanoformulations (He et al., 2013; Hillaireau and 

Couvreur, 2009; Smith et al., 2012). 

 

Alternative administration routes 

The inability of certain nanoformulations to undergo efficient oral absorption 

necessitates alternative administration routes. Also, the use of non-oral 

administrations can provide additional benefits, such as direct targeting to the 

desired site of action (Patel et al., 2012) and an extended period of drug action (van 

't Klooster et al., 2010). 

The skin provides a desirable route of nanoformulation administration, as it avoids 

the risks associated with intravenous therapy and the inconveniences associated 

with varying gastric pH, emptying time, and first-pass hepatic metabolism. However, 

administration of drugs is not easy because of the impermeable nature of the skin 

(Menon et al., 2012; Rehman and Zulfakar, 2013). Transdermal administration has 

been optimised for nanoformulations such as SLNs and NEs, which are 

characterised by good biocompatibility, lower cytotoxicity and desirable drug release 

modulation (Cappel and Kreuter, 1991; Gide et al., 2013; Khurana et al., 2013). 

Topical ocular drug delivery provides a useful administration route for nanomedicines 

treating ocular pathologies, but utilisation is disadvantaged by the multiple defensive 



barriers of the eye (de Salamanca et al., 2006). Corneal and conjunctival epithelial 

cells are connected by intercellular tight junction complexes that limit the entrance of 

exogenous substances. In addition, the tear film can trap drugs and 

nanoformulations, removing them via the lacrimal drainage system. Consequently an 

efficient ocular drug delivery system has to interact with the ocular mucosa, protect 

the drug from chemical or enzymatic degradation and allow drug delivery to the 

ocular tissue. Different nanotechnologies have been utilised to overcome these 

barriers, helping the drug reach and target conjunctival epithelial cells (Alonso and 

Sánchez, 2004). Successful administration of nanoformulated intra-ocular-pressure-

lowering drugs (Chen et al., 2010; Hathout et al., 2007) and anti-apoptotic drugs 

(Nkansah et al., 2008) has been achieved in vivo. In addition, intravitreal 

administration of nanoformulations has been used to overcome absorption issues 

(Jiang et al., 2007). 

Nasal administration of certain nanoformulations has been assessed, hypothesising 

that nanoformulations may penetrate the nasal mucosal membrane. 

Nanoformulations can cross the membrane using a transmucosal route by 

endocytosis or via a carrier- or receptor-mediated transport process (Illum, 2007). 

Proof-of-concept has been achieved in vivo, for example by nasal administration of 

chitosan nanoparticles of tizanidine to increase brain penetration and drug efficacy in 

mice (Patel et al., 2012). 

The lungs are a promising route of administration for drug delivery due to the large 

surface area, ease of access and the thinness of the air-blood barrier. The lumen of 

the bronchial airways is lined with a thin layer of serous fluid, upon which floats a 

layer of mucus which helps to entrap aerosolized particles. The action of the cilia, 

present on the ciliated columnar epithelium, mediates the movement of the mucous 

layer towards the proximal airways, where it can be eliminated. The mucus barrier, 

metabolic enzymes in the tracheobroncial region and macrophages in the alveoli are 

the main barriers for penetration of drugs. Particle size is a major factor determining 

the diffusion of nanoformulation in the bronchial tree, with particles in the nano-sized 

region more likely to reach the alveolar region and particles with diameters between 

1 and 5 µm expected to deposit in the bronchioles (Musante et al., 2002; Patton and 

Byron, 2007). A limit to absorption has been shown for larger particles, presumably 

due to an inability to cross the air-blood barrier (Ryan et al., 2013b). Particles can 



gradually release the drug which can consequently penetrate into the blood stream, 

or alternatively particles can be phagocyted by alveolar macrophages (Bailey and 

Berkland, 2009).  

Certain nanoformulations have a minimal penetration through biological membranes 

in sites of absorption, therefore to obtain an efficient distribution in tissue an 

intravenous administration can be the preferred route (Wacker, 2013). Although 

long-term drug exposure has been demonstrated in certain cases (van 't Klooster et 

al., 2010), the use of intravenous injection for multiple short-acting treatments is 

limited due to inconvenience and safety issues. 

 

Distribution in tissues and organs 

Once a drug-containing nanoformulation has entered the systemic circulation, the 

subsequent distribution into tissues can begin. The distribution of nanoformulations 

can vary widely depending on the delivery system used, the characteristics of the 

nanoformulation, and potentially the variability between individuals (organ size, body-

fat index, etc). Another important factor to understand is the rate of drug loss from 

the nanoformulations, as the distribution characteristics of both the free drug and 

nanoformulated drug will most likely differ greatly. The main function of certain types 

of nanoparticles, for example SDNs, is the improvement of drug absorption, which 

does not require them to arrive intact in the systemic circulation. Consequently, the 

distribution and the clearance of these drugs would not be altered. Other 

nanotechnologies, however, are capable of surviving the absorption process, 

therefore altering the distribution and clearance of the contained drug. 

On reaching the systemic circulation, nanoformulations come into contact with 

numerous proteins which can give rise to the formation of dynamic nanoformulation-

protein coronas (Tenzer et al., 2013b). The protein corona influences 

nanoformulation size and physicochemical characteristics, consequently affecting 

processes such as nanoformulation degredation, cellular uptake (Paula et al., 2013), 

accumulation and clearance (Peng et al., 2013). Nanoformulation-protein coronas 

can also influence the body, potentially causing pathologies such as inflammation 

(Saptarshi et al., 2013) and haemolysis (Tenzer et al., 2013a). Proteins can adhere 



to nanoformulations through forces such as Van der Waals interactions, hydrogen 

bonding and solvation, thus generating protein coronas with environment-specific 

stability and characteristics. In human blood, a protein corona normally consists of 

serum albumin, immunoglobulins, fibrinogen and apolipoproteins (Ge et al., 2011; 

Hellstrand et al., 2009; Jansch et al., 2012). For some nanoformulations, more 

abundant proteins such as albumin and fibrinogen may initially aspecifically bind to 

nanoformulations and subsequently can be replaced by other proteins having higher 

binding affinity (Saptarshi et al., 2013). Therefore, the distribution of these 

nanoformulations is less simple to determine theoretically and further research is 

needed in this area. 

Nanoformulations of a certain size and composition are able to diffuse in tissues 

through well characterised processes, such as the enhanced permeability and 

retention (EPR) effect, while some nanoformulations might accumulate in specific 

cell populations, allowing the targeting of specific organs. The EPR effect is the 

mechanism by which high-molecular-weight drugs, pro-drugs and nanoparticles tend 

to accumulate in sites of inflammation or cancer, which are tissues with increased 

vascular permeability (Matsumura and Maeda, 1986). Tumour vasculatures have 

large pores, ranging from 100 nm to several hundred nanometers in diameter, as 

compared to normal vessel junctions of 5–10 nm (Hobbs et al., 1998). Consequently, 

nanoformulations can be designed to preferentially penetrate with higher efficiency in 

tumour tissue. As an additional factor, the lymphatic system in tumours might be 

impaired, increasing the retention of macromolecules and nanoformulations (Maeda 

et al., 2000). In some cases this targeting method is not very effective, and the size-

dependency, slow time frame, and variability from tumour to tumour limit treatment 

effectiveness (Iyer et al., 2006; Maeda et al., 2000) 

Complex biological barriers can protect organs from exogenous compounds and the 

blood brain barrier (BBB) represents an obstacle for many therapeutic agents 

(Varatharajan and Thomas, 2009). Multiple cell populations comprising of endothelial 

cells, microglial cells, pericytes and astrocytes are present in the BBB which contain 

extremely restrictive tight junctions and efflux mechanisms, limiting the permeation of 

most drugs (Begley, 2004). Transport through the BBB is restricted to small lipophilic 

molecules and nutrients that are carried by specific transporters. One of the most 

important mechanisms regulating diffusion of nanoformulations into the brain is 



endocytosis by brain capillary endothelial cells. Recent studies have correlated 

particle properties with nanoformulation entry pathways and processing in the human 

BBB endothelial barrier, indicating that uncoated nano-particles have limited 

penetration through the BBB and that surface modification can influence the 

efficiency and mechanisms of endocytosis (Georgieva et al., 2011; Lee et al., 2000). 

In many cases low penetration of nanoformulations into tissues can be a major 

barrier for the treatment of diseases. The use of ligands to enhance this process of 

uptake into tissue represents a promising solution (Ruoslahti, 2012). Tumour-

penetrating peptides have been utilized which can activate bulk tissue-specific 

transport pathways, targeting receptors present in the tumour vasculature such as 

annexin1 (Hatakeyama et al., 2011; Oh et al., 2004), plectin-1, (Kelly et al., 2008) 

and neuropilin-1 (Teesalu et al., 2009). 

The migration of monocytes in numerous tissues and sites of inflammation, infection, 

and tissue degeneration provides a unique mechanism to improve drug delivery 

(Lameijer et al., 2013; Murphy et al., 1975). Indeed, monocytes and macrophages 

have a central role in the pathogenesis of several diseases such as HIV (Crowe et 

al., 2003), tuberculosis (Philips and Ernst, 2012), leishmaniasis (Farah et al., 1975), 

cancer (Biswas and Mantovani, 2010), diabetes (Cnop et al., 2005), inflammatory 

bowel disease (Heinsbroek and Gordon, 2009), rheumatoid arthritis (Szekanecz and 

Koch, 2007) and chronic obstructive pulmonary disease (Barnes, 2004), making 

these cells desirable drug targets in themselves. Nanoformulations can be 

engineered, controlling size and surface charge, to allow for their active uptake by 

monocytes and macrophages through phagocytosis. Monocytes and macrophages 

are characterised by a broad variety of receptors, which can be actively targeted 

using nanoformulations combined with specific ligands (Kelly et al., 2011).  

 

Elimination and Clearance 

A multitude of processes can regulate the clearance of nanoformulations, from 

chemical and enzymatic degradation to renal and biliary elimination. 

Nanoformulations may undergo degradation in penetrated tissues or circulating 

blood, gradually releasing their content. Degradation kinetics is an important variable 



that controls drug release and complicates the design of optimal drug delivery 

systems with predictable drug release properties (Mohammad and Reineke, 2013). 

The immune system is responsible for removing foreign objects from the body, 

including not only pathogens but also any material it may be in contact with, 

including nanoformulations. It is of fundamental importance to achieve a thorough 

understanding of the way nanoformulations interact with immune cells and all related 

consequences. Macrophages in the liver are a major pool of the total number of 

macrophages in the body. Around 8.6 ± 1.4 x 105 Kupffer cells are present in one 

gram of human liver tissue (Friedman et al., 1992) and this cell population possesses 

numerous receptors for selective phagocytosis of opsonized particles (receptors for 

complement proteins and for the Fc part of IgG). Small inorganic nanoparticles are 

effectively phagocytosed by Kupffer cells which can have a central role in the 

generation of active oxygen species, tumor necrosis factor-α and nitric oxide, 

resulting in liver injury (Chen et al., 2013; Sadauskas et al., 2007). Cells with 

phagocytic activity are also present in the spleen which is another major site for 

nanoformulation elimination (Vyas and Malaiya, 1989). Nanoformulations containing 

polyethylene glycol (PEG) are characterised by prolonged presence in the systemic 

circulation by inhibiting receptor interactions and thus preventing phagocytosis by the 

mononuclear phagocytic system (Bazile et al., 1995). Renal clearance is one of the 

most important mechanisms mediating nanoformulation excretion. The glomerular 

endothelium is characterised by fenestrations of 50-100 nm, with capillaries having a 

basement membrane (300nm thickness) as well as podocytes with phagocytic 

functionality.  

 

Using PBPK modelling 

 

 

  



Types of nanoformulations and pharmacokinetic challenges 

The distribution of nanoformulations is influenced by multiple factors, including the 

nanoformulation physicochemical properties and composition, route of administration 

and characteristics of the individual to which the nanoformulations are administered. 

The most promising types of nanoformulations used for drug delivery are: inorganic 

nanoparticles, solid drug nanoparticles (SDN), solid lipid nanoparticles (SLNs), 

nanoemulsion (NEs), liposomes, polymeric nanoparticles and dendrimers (Figure 2). 

Hybrid nanoformulations, which contain elements of more than one nanoformulation 

class, are also possible, thus complicating classification. 

A common goal of nanomedicine research is to increase the bioavailability of drugs 

and to manipulate movement of drug to target sites in the body. Table 1 gives 

examples of improvements in drug PK seen in selected nanoformulation studies. In 

this section we will review some interesting applications used for the different 

nanodelivery systems and the physiological and molecular processes regulating their 

absorption, distribution, metabolism and elimination. 

 

Inorganic nanoparticles 

A wide variety of inorganic oxides have been used to create nanoparticles, such as 

gold (Thakor et al., 2011), silver (Ong et al., 2013; Zhang et al., 2013), silica (Wu et 

al., 2013) and iron (Ittrich et al., 2013). The potential uses of inorganic nanoparticles 

vary greatly and can include molecular diagnostics (Radwan and Azzazy, 2009), 

photoacoustic imaging (Lu et al., 2011), targeted drug delivery (Assifaoui et al., 

2013; Chamundeeswari et al., 2013), photothermal therapy (Huang et al., 2006) and 

nonviral gene-delivery vectors (Sitharaman et al., 2008). A particularly fascinating 

use of iron oxide nanoparticles has been to actively target specific tissues using an 

external magnetic influence (Dilnawaz et al., 2010). The biodistribution, elimination 

and potential toxicity of inorganic nanoparticles vary wildly depending on materials 

used, and have been reviewed previously (Almeida et al., 2011; Bachler et al., 2013; 

Choi et al., 2007; Pelley et al., 2009; Waalkes, 2000). As a paradigm example we 

have focussed here on silver nanoparticles. 



Following i.v. injection, silver nanoparticles are rapidly removed from the blood and 

widely distributed to organs, in particular the liver, lungs and spleen (Lankveld et al., 

2010). The size of the silver nanoparticles can influence distribution, with particles 

larger than 20 nm being more readily accumulated in tissue. The ionic silver in the 

body is changed to silver sulphide via mercaptan interaction, and is also metabolised 

to silver-glutathione for biliary secretion (Ballatori and Clarkson, 1985). The major 

elimination route of intact 33 nm silver nanoparticles was found to be the kidneys via 

tubular secretion (Malfatti et al., 2012). A PBPK model has been created which 

predicts the exposure of silver nanoparticles in both rats and humans (Bachler et al., 

2013). 

 

Solid drug nanoparticles (SDNs) 

SDNs are lipid-free nanoparticles which are used to improve the oral bioavailability 

and exposure of poorly water-soluble drugs (Chan, 2011; Tanaka et al., 2012). 

Constituents include drug and stabiliser, and SDNs are produced using a “top-down” 

(high pressure homogenisation and wet milling) or bottom-up (solvent evaporation 

and precipitation) approach (Zhang et al., 2011). Our group has developed efavirenz 

SDNs which exhibit around four-fold higher pharmacokinetic exposure after oral 

administration to rodents, compared to free drug (Kreuter, 1994; McDonald et al., 

2013) (Siccardi et al., 2013a). In a separate study, a single s.c. injection of rilpivirine 

SDN resulted in a constant release of around 25 ng/mL for 20 days, providing 

evidence that s.c. injections of antiretroviral SDNs could be used for long-acting 

therapy (Baert et al., 2009). 

It is not fully known whether SDNs remain intact following oral absorption, and 

therefore the relevance of SDN distribution and elimination in vivo is poorly 

understood.  

 

Solid lipid nanoparticles (SLNs) 

SLNs consist of a lipid (or lipids) which is solid at room temperature, an emulsifier 

and water. Lipids utilised include, but are not limited to, triglycerides, partial 



glycerides, fatty acids, steroids and waxes (Mehnert and Mader, 2001). Different 

combinations of lipid and emulsifier can be used to create unique SLN properties, 

such as drug release rate and pH sensitivity, although the effects this has on the 

SLNs in vivo is poorly understood. Due to their lipid core, SLN’s are most suited for 

delivery of highly lipophilic drugs, although enhanced delivery of hydrophilic drugs, 

such as the anti-tubercular drug isoniazid, has been achieved in vivo (Bhandari and 

Kaur, 2013a). The use of SLNs to deliver siRNA and siRNA-drug combinations has 

also been demonstrated (Lobovkina et al., 2011; Yu et al., 2012). 

SLNs have successfully been used to increase the absorption of drugs. Olanzapine-

loaded cationic SLNs showed a 4.3-fold increase in olanzapine exposure (Sood et 

al., 2013) and 2.6-fold increase in tamoxifen exposure (Hashem et al., 2013) 

compared to free drug.  

The in vivo fate of SLNs are determined by several factors, including the inherent 

stability and physicochemical properties of the SLNs, the biological and enzymatic 

surroundings of the administration site, and the distribution process from the 

administration site. Using pulmonary (Videira et al., 2012), subcutaneous 

(Harivardhan Reddy et al., 2005), and oral (Cavalli et al., 2000; Paliwal et al., 2009; 

Zara et al., 2002) dosing strategies, SLNs have been shown to target the lymphatic 

system in vivo.  

An advantage of using SLNs is that formulations are believed to be safe and easily 

cleared from the body. Organic solvent is not required for SLN production, and the 

lipids which are used are usually biodegradable, thus reducing the risk of SLN -

accumulation-associated toxicities. This degradation provides further benefits, as the 

size and choice of lipid influences the elimination rate of SLNs, with longer lipids 

generally outlasting smaller lipids and waxes lasting longer than triglycerides, 

allowing for controlled release of drug. Due to the solid status of SLNs, elimination is 

generally slower than with liquid-lipid-based nanoformulations. 

Interestingly, PEGylated solid lipid particles have an increased clearance rate 

following repeat i.v. or s.c. administration (Zhao et al., 2012a; Zhao et al., 2012b). 

This phenomenon is caused by immune response to PEG and subsequent removal 

of SLNs from the circulation, referred to as the “accelerated blood clearance” (ABC) 



phenomenon, although the exact immunological process is not known (Abu Lila et 

al., 2013). 

 

Nanoemulsion (NEs) 

Liquid droplets of less than a 1000 nm dispersed in an immiscible liquid are 

classified as NEs. NEs represent excellent carriers for transport of hydrophobic and 

hydrophilic substances and can find application in intravenous (Ichikawa et al., 

2007), oral (Sun et al., 2012), transdermal (Khurana et al., 2013), nasal (Bahadur 

and Pathak, 2012) and ocular (Badawi et al., 2008) drug delivery. The rate of 

lipolysis and the organ-specific elimination of nanoemulsions are influenced by the 

choice of constituents and route of administration, which allows for a more controlled 

release of drug. Oral administration is the route of choice for chronic therapy and 

NEs can effectively enhance oral bioavailability of small molecules, peptides and 

proteins. The mechanisms through which NEs mediate higher oral absorption are 

improved drug solubilisation, protection from enzymatic and chemical hydrolysis and 

increased permeability due to surfactant-induced membrane fluidity. The 

hydrophobic core of the NEs is an ideal environment for drugs with poor solubility in 

water and the surfactants present in the formulation favour the solubilised state in 

the GI tract. BCS class II compounds (high permeability, low solubility) are ideal 

candidates for NEs and their pharmacokinetics can be greatly enhanced through this 

nanotechnology. Paradigmatic examples of this are represented by drugs such as 

Ramipril, Ezetimibe (Bali et al., 2010) and Anethol trithione (Han et al., 2009) which 

the bioavalability has been increased 2.3, 3 to 4 and 2 to 3 fold, respectively, 

compared to traditional formulations. In a study using Balb/c mice, orally-dosed 

saquinavir in flax-seed oil nanoemulsion was found to have more than two-fold 

increased exposure in brain, compared to free drug (Vyas et al., 2008). 

 

Polymeric nanoparticles 

Polymeric nanoparticles are solid particles typically around 200-800 nm in size which 

can be created using both synthetic and natural polymers. The natural polymers 



used are generally biodegradable and can include as examples gelatine, cellulose, 

chitosan and gluten (Zhang et al., 2007). Synthetic polymers such as polyactides, 

poly(d,l-lactic-co-glycolide) (PLGA) and PEG allow for a high level of degredation 

control. Different polymers are often used in combination, forming copolymers with 

potentially beneficial properties, such as pectin-PLGA (Liu et al., 2004) and alginate–

chitosan-PLGA (Zheng et al., 2004). Polymers can also be blended with or attached 

to other nanoformulation types, such as polymer-liposome complexes used for 

targeted co-delivery of drug and gene to cancer cells (Wang et al., 2010). These 

properties make polymer nanoparticles an extremely versatile tool for improving drug 

delivery.  

Polymeric nanoparticles can be used to increase the bioavailability of drugs and 

other substances, compared to traditional formulations (Morgen et al., 2012). The 

size of polymeric nanoparticle has been shown to influence oral absorption. The 

absorption potential of chitosan nanoparticles of sizes 300 nm to 1000 nm were 

assessed, with 300 nm showing greater permeation in both Caco-2 cells and rat oral 

dose studies (He et al., 2012). Polymer-coated nanoparticles are capable of actively 

targeting tissues such as hepatocytes, lymph nodes and tumours (Muthiah et al., 

2013), therefore allowing for targeted therapy and avoidance of organ-specific 

toxicity. Clearance of polymeric nanoparticles is dependent on several factors, such 

as choice of polymer and co-polymers, polymer size, polymer charge and the 

existence of active tissue targeting. Trends in clearance have been observed, with 

positively charged nanoparticles larger than 100 nm being eliminated predominantly 

via the liver (Alexis et al., 2008). 

Polymeric nanoparticles are capable, both purposefully and inadvertently, of 

affecting the host immunological response. As an example, PEG has been utilised to 

reduce the immune response to nanoformulations by shielding the particle surface 

from recognition (Moghimi, 2002). This technique has only been partly successful, as 

a long term PEG-specific immune response has been observed in subsequent 

studies (Ishida et al., 2007; Wang et al., 2007). Time-dependent immune system 

stimulation by nanoformulations may influence pharmacokinetics, as phagocytosis-

driven increases in nanoformulation clearance would potentially occur. 

 



Dendrimers 

Dendrimers are tree-like, nanostructured polymers that have received significant 

attention as drug delivery systems, due to their well-defined size, tailorable structure, 

and potentially favourable biodistribution (Biricova and Laznickova, 2009). 

Dendrimer-based drug delivery systems can be manufactured to provide theoretically 

almost any size, but are commonly 10–20 nm in diameter and show promise as 

agents for imaging (Kobayashi and Brechbiel, 2004), gene therapy (Dufes et al., 

2005), drug delivery (Svenson, 2009) and biological adhesive (Joshi and Grinstaff, 

2008). 

Due to the near-infinite variety of possible dendrimer structures, an understanding of 

how these structures will relate to ADME/PK is a problematic task. Properties 

specific to each dendrimer, such as size, shape, charge, hydrophobicity and 

hydrodynamic weight, may all potentially alter disposition in vivo, as could 

attachments to the dendrimer structure such as PEG, drugs, RNA or antibodies 

(Kaminskas et al., 2011). Further research is needed to understand these 

relationships to ensure optimum disposition and to avoid toxicity issues. 

 

Liposomes 

Liposomes are spherical vesicles consisting of a phospholipid bilayer. A variety of 

lipids can be utilised, allowing for a degree of control in degredation level. In addition 

to oral dosing, liposomes can be administered in many ways, including intravenously 

(McCaskill et al., 2013), transdermally (Pierre and Dos Santos Miranda Costa, 2011), 

intravitreally (Honda et al., 2013), pulmonary (Chattopadhyay, 2013) 

Encasing drug in liposomes can dramatically increase drug exposure. In a PK study 

using Kunming mice, danorubicin liposomes had a 13-fold higher AUC0-48h compared 

with free drug (Ying et al., 2011). Drug in liposomes often show greater PK variability 

than free drug, which is exacerbated when the clearance rate of the liposomes is low 

(Schell et al., 2013). This could potentially prevent the use of liposomes to deliver 

drugs with a small therapeutic window. 



Liposomes have the potential to radically alter tissue distribution of encapsulated 

drugs, which allows for targeting of tissues, such as the lymphatic system and brain 

(Cai et al., 2011; Lai et al., 2013), but this can also lead to increased toxicity. As an 

example, in a tumour-expressing CD1 mouse study, liposome encapsulation 

increased zoledronic acid 20 to 100-fold in liver, 7-10-fold in tumour and 2-fold in 

bone, which resulted in more than 50-fold increase in drug-associated toxicity in 

animals but no additional inhibition of tumour growth (Shmeeda et al., 2013). 

Liposomes can be combined with synthetic polymers to form lipid-polymer hybrid 

nanoparticles (LPNs), extending their ability to target specific sites in the body 

(Hadinoto et al., 2013). 

The clearance rate of liposome-encased drugs is determined by both drug release 

and destruction of liposomes (uptake of liposomes by phagocyte immune cells, 

aggregration, pH-sensitive breakdown, etc) (Ishida et al., 2002). In a PK study using 

Kunming mice, docetaxel clearance was reduced from 19.9 to 7.5 L/h*kg when 

liposome-encased, resulting in a 81% increase in t1/2 (Zhang et al., 2012). Similarly 

to solid lipid particles, liposomes attached to PEG also show ABC following repeat 

doses (Suzuki et al., 2012). 

 

PBPK and nanotechnology: challenges and limitations 

PBPK requires large amounts of information. 

 

Commonly used blood-to-tissue partition coefficients may not apply to 

nanoformulations. 

The lymphatic system is not routinely included in PBPK models (REF). Considering 

that the lymphatic system has been shown to be integral to the absortion (REF) and 

distribution (REF) of certain nanoformulations, a full inclusion of this system 

 



Unusual “metabolism” of nanoformulations (pH-triggered, phagocytisede etc) and in 

different parts of body to standard drugs (also internal distruibution in cells?). Would 

need integration into PBPK models for comprehensive prediction. 

 

  

The huge number of potential nanoformulation to select for a particular drug/vaccine 
etc. There is perhaps traits within nanoformulation classes (eg SDNs unlikely to 
accumulate in body after absorption etc).  

 

 

A minor alteration in nanoformulation size, shape, charge can potentially have large 
influence of the exposure and effectiveness of an encapsulated or attached drug.  



Optimization of nanoformulation design 

Numerous polymers and materials have been developed for the preparation of 

nanoformulations and the ideal components should be non-toxic, non-immunogenic, 

and should allow for the transport and release of sufficient amount of drug. 

Nanoformulation composition has been correlated with tissue distribution patterns, 

highlighting how the inclusion of specific polymers can have a critical effect on 

nanoformulation distribution. A paradigm example is Poly-ethylene glycol (PEG), 

which can be adsorbed or covalently attached to the surface of nanoformulations. 

PEG has been shown to reduce the interaction between nanoformulations and 

proteins due to its hydrophilicity and repulsion effect, reducing opsonisation, 

complement activation, phagocytosis and clearance mechanisms (Bazile et al., 

1995). Moreover it appears evident that the chain length, shape, and density of PEG 

on the particle surface are important parameters affecting nanoformulation PEG 

stealth activity (Gref et al., 2000). In the study by Gref et al, the ideal molecular 

weight, density and content of PEG were optimised to minimise the amount of 

plasma protein absorbed, thus reducing uptake by polymorphonuclear leukocyte 

(PMN) and human monocyte (THP-1).  

The physiological processes regulating nanoformulation ADME, such as hepatic 

filtration, tissue extravasation, tissue diffusion and kidney excretion, indicate that 

nanoformulation size is a key determining pharmacokinetic factor. A clear example of 

the importance of size is given by a study investigating polystyrene nanoparticles, 

where particle sizes of 50 and 500 nm showed higher levels of agglomeration of the 

larger nanoparticles in the liver (Nagayama et al., 2007). Size and polydispersity can 

substantially affect the distribution of micelles which have a half-life of around 8 

hours with a low hepatic and spleen uptake (Rijcken et al., 2007). Considering 

dendrimers, size has been the best characterised property and it is thought to be a 

determinant predictor of in vivo distribution. Rapid clearance mediated by the kidney 

has been observed for smaller dendrimers (Generation 5 (G5) or smaller, with a 

radius of less than 3.5 nm), with minimal or no renal clearance observed for larger 

dendrimers. Dendrimers of generation G7, characterised by radius above 5nm, 

readily accumulate in the liver and spleen tissue and, consequently, are cleared by 



the RES system and by biliary excretion. (Kobayashi et al., 2001a; Kobayashi et al., 

2001b).  

Characteristics of the nanoformulation surface, such as charge or functional groups, 

can influence the uptake of different cell populations. The effect of surface 

roughness and charge on the cellular uptake of polymeric/silica nanoparticles in 

HeLa cells has been recently investigated, and rough nanoparticles are internalized 

by the cells more slowly and by an unidentified uptake route compared to smooth 

nanoparticles. Moreover, nanoparticles with negative charges are internalised with 

higher efficiency compared to positively charged ones, independent of the surface 

roughness (Schrade et al., 2012). In another study, silica-based fluorescent 

nanoparticles were tested in murine pre-osteoblast cell line, MC3T3-E1 and the 

effect of three surface modified nanoparticles were analysed: positively charged 

(PTMA), negatively charged (OH), and neutrally charged polyethylene glycol (PEG). 

Positively charged PTMA-modified nanoparticles demonstrated the most rapid 

uptake, within 2 hours, while PEG modified and negatively charged OH 

nanoparticles demonstrated slower uptake (Ha et al., 2013). Preferential uptake of 

polystyrene nanoparticles by phagocytic cells has been recently investigated and 

carboxylated nanoparticles were highly phagocyted in macrophages while amino-

functionalized particles had higher uptake in monocytes (Lunov et al., 2011). The 

interaction between gold nanoparticles (with different hydrophobicity, charge density 

and ligand length) and lipid bilayers has been clarified investigating physicochemical 

properties favouring penetration through the bilayer. Hydrophobic and anionic 

nanoparticles did not have any significant interactions with the bilayer and different 

charge densities may induce pore formation or nanoparticle wrapping, resembling 

first stages of endocytosis. Consequently trough the tuning of charge density it can 

be possible to favour the internalization of nanoparticles into cells through different 

mechanisms such as passive translocation, (low charge density) or endocytosis 

(higher charge densities) (McCaskill et al., 2013).  

All the above mentioned factors can interact together, defining a multifactorial 

scenario where multiple nanoformulation properties determine pharmacokinetic 

processes. Consequently, choosing which nanotechnology is the best tool to 

improve the distribution of a defined drug, by the usage of ideal nanoformulation 

characteristics, is a complex problem that unquestionably ought to take into account 



our current knowledge on nanoformulation ADME. This would be possible by 

integrating an exhaustive description of the physicochemical, physiological and 

molecular processes underpinning nanoformulation pharmacokinetics with the 

correlation between nanoformulation characteristics and their distribution.  

A helpful pharmacological tool to inform the design of nanoformulations and thus 

optimise their pharmacokinetics is represented by physiologically based 

pharmacokinetics (PBPK) modelling. This modelling technique has been 

successfully used for traditional formulation in drug developing programs as well as 

simulation of relevant clinical scenarios (Karlsson et al., 2013; Siccardi et al., 2012; 

Siccardi et al., 2013b). PBPK modelling is a bottom up technique which aims to 

simulate drug distribution by combining system data describing a population of 

interest (e.g. demographics, physiology, anatomy and genetics) with in vitro drug 

data (e.g. Caco-2 permeability, protein binding, intrinsic clearance, lipophilicity) 

through a mathematical description of absorption, distribution, metabolism and 

elimination (ADME). This modelling technique gives a complete overview of all the 

physiological and anatomical processes involved in drug distribution, offering the 

opportunity to identify important determinants of pharmacokinetics. For traditional 

formulations, absorption can be simulated considering the dynamic interplay 

between dissolution, passive permeability and the affinity/activity of metabolic 

enzymes and transporters. Drug distribution is simulated by evaluating tissue 

volumes and the diffusion of drugs into tissues, which is influenced by 

physicochemical properties (Poulin and Theil, 2002). Moreover, tissues and organs 

are connected by virtual blood and lymphatic flows. To simulate clearance, in vitro 

stability data can be used and integrated into the model using scaling factors. Inter-

patient variability is observed in all of the above processes, and virtual populations 

can be simulated capturing inter-individual variability by considering anatomical and 

physiological characteristics, and their covariance. The application of PBPK models 

for nanomedicines is in its infancy and characterised by several challenges. 

The first study describing a PBPK model for nanoformulations was published in 

2008, predicting the pharmacokinetics of quantum dots in mouse using whole-body 

PBPK. The authors included a distribution coefficient to simulate the diffusion of 

nanoparticle in tissues based on in vitro data, and could predict animal 

pharmacokinetics with good accuracy (Lin et al., 2008). Subsequently, a PBPK 



model for the simulation of carbon nanoparticles was developed, integrating imaging 

data collected in humans using radioactive nanoparticles (Pery et al., 2009). Silver 

nanoparticle PK has been successfully simulated which considered how the effect of 

size and size-dependent tissue distribution influenced toxicity and health risks. 

Unfortunately experimental data could not be match completely, possibly due to the 

effect of other nanoparticle characteristics, such as surface charge and coating, 

which were not included in the PBPK model (Lankveld et al., 2010). PBPK modelling 

for five poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulations prepared with 

different versions of monomethoxypoly (ethyleneglycol) (mPEG) (PLGA, PLGA-

mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34) has been 

generated, investigating the relationship between nanoparticle properties (size, zeta 

potential, and number of PEG molecules per unit surface area) and distribution 

parameters. The multivariate regression in the study generated significant linear 

relationships between nanoparticle properties and distribution parameters. 

Subsequently, this in silico model was successfully utilized to predict the distribution 

of a sixth nanoformulation (PLGA-mPEG 495) in mice (Li et al., 2012).  

Temporal exposure and elimination of 5 gold/dendrimer composite nanodevices 

(CNDs) in mice bearing melanoma was evaluated using a PBPK model (Mager et 

al., 2012). The authors concluded that, since specific binding ligands ware lacking, 

size and charge of nanodevices governed most of their in vivo interactions. A PBPK 

model for ionic silver and nano-encaspulated silver was developed on the basis of 

toxicokinetic data from intravenous studies. The authors validated the model 

structure for both silver forms by reproducing exposure conditions (dermal, oral, and 

inhalation) of in vivo experiments and comparing simulated with real pharmacokinetic 

data for plasma and tissues. Interestingly, in all of the cases examined the model 

could successfully predict the distribution of both ionic silver and 15-150 nm silver 

nanoparticles not coated with PEG. The in silico model was also used to asses 

relevant scenarios of exposure to silver nanoparticles such as dietary intake, use of 

three separate consumer products, and occupational exposure (Bachler et al., 2013). 

The effect of chemical components and nanoformulation properties on the 

distribution of nanoformulations is surely significant, but only partially characterised 

and necessitates future research. Moreover, universal property–distribution 

relationships for all materials are unlikely, unless the effect of specific a 



physicochemical property is extremely predominant. PBPK models can be applied to 

simulate drug and nanoformulation pharmacokinetics not only in humans but in 

different animals, therefore PBPK modelling may be applied in preclinical screening 

of nanoformulation, reducing the number of animals used for experimentations 

(Geenen et al., 2013; Willmann et al., 2010; Wong et al., 2010; Yang et al., 2013). 

Besides describing nanoformulation distribution and pharmacokinetic parameters, 

PBPK modelling can provide quantitative evaluation of the influence of 

nanoformulation properties on their absorption, diffusion and clearance. The 

integration of these property–distribution relationships in PBPK models may have 

extensive benefits in nanomedicine research, giving opportunities for innovative 

development of nanotechnologies. This approach will not only improve our 

understanding of the mechanisms underpinning nanoformulation disposition and 

allow for more rapid and accurate determination of their kinetics, but will also help 

clarify interactions between different nanoformulation properties, identifying 

antagonistic or synergistic effects.  Consequently, the design and development of 

nanoformulations can be informed by this modelling approach to generate novel 

nanoformulations with desirable pharmacokinetics (Figure 3). 

 

IDEAS FOR FUTURE PERSPECTIVES 

Use PBPK models with nanoformulations with well described characteristics, perform 

sensitivity analysis to determine the key physiological and physicochemical 

characteristics controlling 

 

Reduce the reliance on in vivo animal data, which is possibly unreliable for nano. 

 

If animal use unavoidable, then PBPK can be used to bridge extrapolate animal data 

to inform human tox/PK studies. Since standard blood-to-tissue parameters do not 

apply to nanoformulations, non PBPK may not be sufficient. 

 



Create catalogue of nanoformulations with well described characteristics in PBPK 

models, for “selection” when a particular trait is required for a future drug. 

 

PBPK can be combined with PD or tox. 

 

PBPK model of the nanoparticle can be combined with a PBPK model of the 

released drug, by including a degredation rate etc. 

 

 

  



Figure 1. A selection of issues relating to the administration (green boxes), 

distribution (pink boxes) and elimination (orange boxes) of nanomedicines. 

  



Figure 2. Examples of nanodelivery systems. 

 

  



Figure 3. Flow chart representing an optimization process based on PBPK modelling 

and interactions between the different stages. 

  



Drug Formulations Dose Outcome Reference 
Tamoxifen SLN p.o. ↑156% plasma exposure (Hashem et al., 2013) 
Olanzapine SLN p.o. ↑330% plasma exposure (Sood et al., 2013) 

Isoniazid SLN p.o. ↑516% plasma exposure 
(Bhandari and Kaur, 

2013b) 
Lopinavir SLN p.o. ↑95% plasma exposure (Negi et al., 2013) 

Vincristine Liposome i.v. 
↑66% plasma exposure, no 
increased patient toxicity (Yan et al., 2012) 

Indinavir Liposome p.o. 

200-fold higher exposure in 
lymph, no increased toxicity in 

vivo (Gagne et al., 2002) 
Doxorubicin Liposome p.o. Reduced patient toxicity (O'Brien et al., 2004) 

Efavirenz SDN p.o. ↑301% plasma exposure 
(McDonald et al., 

2013) 
Probucol SDN p.o. ↑127% plasma exposure (Nishino et al., 2012) 

Rosuvastatin Nanoemulsion p.o. ↑145% plasma exposure 
(Balakumar et al., 

2013) 

Chloambucil Nanoemulsion p.o. 

↑91% plasma exposure and >2-
fold increase in tumour growth 

suppression (Ganta et al., 2010) 

Primaquine Nanoemulsion p.o. 
↑28% plasma exposure and 

↑40% liver exposure 
(Singh and Vingkar, 

2008) 

Doxorubicin Dendrimer s.c. 

682-fold and 2.7-fold higher 
lymph exposure than standard 

and liposome formulation, 
respectively (Ryan et al., 2013a) 

Zidovudine Dendrimer i.v. 
↑1320% lymph concentration 

3hrs post-dose (Gajbhiye et al., 2013) 
 

Table 1. Examples of improved drug exposure and tissue distribution achieved in 

nanoformulation studies in vivo. 
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