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Abstract

Material cavitation under tensile loading is often studied by assuming the pre-existence of a
small void. In this case the void would initially grow but without significant change in its size,
and cavitation is said to take place if this slow growth is followed by rapid growth at higher
load values. In the limit when the original void radius δ tends to zero, there will be no growth
until a load or stretch measure, λ say, reaches a well-defined critical value λcr at which a cavity
appears suddenly. In this paper we study the near-critical asymptotic behavior of cavitation
in plane membranes when δ is not zero but small, and show that the near-critical behavior is
governed by a scaling law in the form λ − λcr = C(δ/L)m, where L is the undeformed outer
radius of the plane membrane, and C and m are non-dimensional constants. The positive power
m in general depends on the material model used, but for the three classes of material models
considered, it happens to be equal to 2(1 + ν)/(3 + ν) in each case, where ν is Poisson’s ratio
for infinitesimal deformations. If a pre-existing void is viewed as an imperfection, then this
scaling law describes the imperfection sensitivity of cavitation: it states that in the presence of
imperfections significant void growth would occur when λ were increased to within an order
(δ/L)m interval around λcr.
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1. Introduction

In some tension experiments on rubber materials [1-4], it is shown that internal micro-voids
could nucleate suddenly (known as cavitation) under certain critical loading conditions. With
continued loading a series of cavities may grow, coalesce, and eventually form large enclosed
cracks. Thus, cavitation may signal the onset of material failure.

Cavitation in rubber materials was first demonstrated experimentally by Gent and Lindley
[1] who also provided a theoretical explanation, but it was not until after Ball [5] had formulated
it as a rigorous bifurcation problem that an explosive growth of interest followed. In its simplest
form, namely an isotropic sphere with a small void at its center that is subjected to a hydrostatic
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tension on its outer surface, the cavitation problem consists of solving a two-point boundary
value problem involving a single nonlinear second-order ordinary differential equation. The
critical tension can be obtained by taking two limits one after the other: firstly the undeformed
cavity radius tending to zero, and then the deformed cavity radius tending to zero. This has
been demonstrated by Horgan and Abeyaratne [6], and is justified by the rigorous results of
Sivaloganathan et al. [7]. When the material is incompressible, the radially axisymmetric
deformation can be determined to within an arbitrary constant irrespective of the form of the
strain-energy function, and determination of the critical tension and post-buckling deformation
is then reduced to the evaluation of an integral. When the material is compressible, the two-point
boundary value problem can be solved by a shooting procedure in the most general case (see,
e.g., [8]), but many studies have focused on finding closed-form solutions for specific material
models (see, e.g., [9-12]). There also exists a large body of literature concerned with the effects
of anisotropy, material inhomogeneity, surface tension, and plastic behavior; see, e.g., [13-19].
We refer to [20] and [21] for a comprehensive review of the literature. An interesting result that
deserves special mentioning is that whereas cavitation in a homogeneous isotropic solid sphere
is a supercritical bifurcation, cavitation may change into a subcritical bifurcation when material
inhomogeneity or anisotropy is taken into account.

Because of its relevance in a wide range of applications, cavitation in solids is still a topic of
active research. Cristiano et al. [22] and Hamdi et al. [23] have recently conducted further ex-
periments in order to understand the connection between cavitation and material fracture. Dorf-
mann and Burtscher [24] and Kumar et al. [25] suggested that cavitation was the primary cause
of irreversible stress softening in seismic bearings; the same opinion was expressed for metal
materials [26-28]. Increased attention has also been paid to cavitation associated with general
geometries and loading conditions, and its numerical computations [29-33]. More closely re-
lated to the current study is the growing interest in cavitation in soft and biological materials.
For example, David and Humphrey [34] studied the stress and strain concentration due to the
introduction of a circular hole in an anisotropic bio-tissue, Merodio and Saccomandi [35] stud-
ied the effect of fibre-reinforcement in the radial direction, McMahon et al. [36] and Pence and
Tsai [37-38] investigated cavitation due to growth and swelling, respectively, and Volokh [39]
suggested that cavitation instability could be a rational indicator of aneurysm rupture.

This paper is concerned with the asymptotic properties of cavitation solutions, an aspect of
the cavitation problem that seems to have been under-studied. Horgan and Abeyaratne [6] con-
sidered cavitation associated with a Blatz-Ko material, and derived two asymptotic expressions
for the deformed void radius r(δ) valid for λ < λcr and λ > λcr, respectively, where δ is the un-
deformed void radius, λ is the azimuthal stretch imposed at the outer surface and λcr its critical
value. It was shown that when λ < λcr, the deformed radius r(δ) is of order δ, whereas when
λ > λcr, the leading order term in r(δ) is independent of δ, indicating that in this parameter
regime the azimuthal stretch r(δ)/δ would tend to infinity as δ → 0. We note, however, that
these expansions would break down in the limit λ → λcr, which is the parameter regime to be
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examined in the current paper. Some asymptotic results have been derived by Negrón-Marrero
and Sivaloganathan [40] to aid their numerical calculations. In particular, they showed that even
for a general strain-energy function the deformed cavity radius is given by r(0) = C(λ−λcr)1/n

to leading order as λ approaches λcr, where C is a positive constant and n is the dimension of
the cavitation problem.

It is well-known that although cavitation is a bifurcation phenomenon, it cannot be stud-
ied using the traditional methods of linear and weakly nonlinear bifurcation analysis – it is an
intrinsically nonlinear problem. Despite this difference, the bifurcation diagram, showing the
dependence of cavitation size on the applied tensile pressure, is nonetheless of the same shape
as that for more traditional buckling problems such as the pitch-fork bifurcation associated with
Euler buckling. A pre-existing void can be viewed as an imperfection, and the associated im-
perfect bifurcation diagram can be viewed as an “unfolding” of the perfect bifurcation diagram,
in exactly the same manner as in Euler buckling; see, e.g., Figure 1 in [6], or the three figures
in the current paper. In the case of Euler buckling, a simple near-critical analysis would yield
an amplitude equation of the form

(p− pcr)A+ c1A
3 + c2δ = 0, (1)

where A is a measure of the unscaled buckling amplitude (e.g. the maximum deflection), p
is the compressive load and pcr its critical value, c1 and c2 are constants, and δ denotes the
amplitude of the imperfection. According to this amplitude equation, when p is much smaller
than pcr so that p − pcr is finite, dominant balance is between the first and third terms in (1),
which yields A ∼ δ, where “∼” means “is of the same order as”. On the other hand, when
p− pcr is sufficiently small so that all the three terms in (1) are of the same order, we have

A ∼ δ1/3, and p− pcr ∼ δ2/3,

which are the scalings of most interest in the assessment of structural integrity. The final param-
eter regime of interest is when p− pcr is much larger than δ2/3, in which case dominant balance
is between the first two terms, the effect of imperfection is not felt to leading order, and so the
bifurcation curve tends to its counterpart in the absence of imperfections.

Thus, an amplitude equation such as (1) serves to capture the near-critical behavior, and it is
well-known that the solution given by (1) gives a very good approximation to the exact solution
around p = pcr even when δ is only moderately small. The main objective of the current study
is to demonstrate that a near-critical amplitude equation analogous to equation (1) can also
be derived for the cavitation problem. We shall consider three material models for which the
cavitation solution can be obtained in closed-form.

The rest of this paper is organized as follows. After formulating the cavitation problem
in the next section, we present the above-mentioned asymptotic analysis for three classes of
material models in the subsequent sections. In the final section we reflect on our main results
and conclude the paper with some additional comments.
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2. Problem description

We consider a uniform circular membrane containing a pre-existing circular hole with radius
δ at its center, and the membrane is subjected to radial tension. The undeformed configuration
occupies the region D0 = {(R,Θ)| δ ≤ R ≤ 1, 0 ≤ Θ ≤ 2π} in terms of plane polar
coordinates, where the outer radius of the membrane has been taken to be unity, corresponding
to the fact that we are using the actual radius as the unit of lengths. We assume that the resulting
axisymmetric deformation is given by

r = r(R), θ = Θ, (2)

where r and θ are the plane polar coordinates in the current configuration, and the function r(R)
is to be determined. The associated principal stretches of the deformation are then given by

λr =
dr

dR
, λθ =

r

R
. (3)

In the subsequent analysis, the subscripts r and θ are interchangeable with 1 and 2, respectively.
We shall denote the azimuthal stretch at the outer boundary R = 1 by λ, that is r(1) = λ, and
take λ as the control parameter in the subsequent bifurcation analysis. The deformed configu-
ration then occupies the region D = {(r, θ)| r(δ) ≤ r ≤ λ, 0 ≤ θ ≤ 2π}.

In the absence of body forces, the only equilibrium equation that is not satisfied automati-
cally can be written as

dσr
dR

+
dr

dR

σr − σθ
r

= 0, (4)

where σr and σθ are the principal Cauchy stress components (measured per unit length in the de-
formed configuration). When the membrane is viewed as a two-dimensional elastic continuum
with strain energy function W (λr, λθ) (measured per unit area in the undeformed configura-
tion), the Cauchy stresses are given by

σr =
1

λθ

∂W

∂λr
, σθ =

1

λr

∂W

∂λθ
. (5)

Equation (4) is to be solved subject to the displacement boundary condition

r(1) = λ, (6)

and the traction-free boundary condition

σr(δ) = 0. (7)

If the above boundary value problem in the limit δ → 0 has a non-trivial solution with r(0) > 0

for some λ, cavitation is said to occur. The above cavitation problem was solved in a series
of papers by Haughton [8, 41, 42]. His approach was to start with a 3D strain-energy function
and obtain the reduced 2D strain-energy function by using the membrane assumption σ3 = 0 to
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eliminate the principal stretch λ3 in the thickness direction. In particular, he showed that for the
class of strain-energy function given by

W =
n∑
r=1

µr(λ
αr
1 + λαr2 + λαr3 − 3)/αr,

where α1 < α2 < · · · < αn, sufficient conditions for non-existence of cavitation are α1 > 1 or

α1 < −1 and 2αn > 3− α1,

but the class of strain-energy function given by

W =
µ

α
(λ−α1 + λ−α2 + λ−α3 − 3 + α(λ1λ2λ3 − 1))

supports cavitation for all α > 0. In contrast, Steigmann [43] suggested the use of a direct
theory, in which the membrane is regarded as a two-dimensional elastic continuum endowed
with a strain energy W , measured per unit area of the reference surface. He found an explicit
cavitation solution for a class of such strain energy given by

W = 2G(λ1 + λ2 + f(λ1λ2)), (8)

where G denotes the ground-state shear modulus times the undeformed membrane thickness,
and λ1, λ2 are the two in-plane stretches. In this spirit, the explicit (plane-strain) cavitation
solution found by Horgan and Abeyaratne[6] for

W =
µ

2
(λ−21 + λ−22 + 2λ1λ2 − 4), (9)

is also valid for plane membranes if we replace µ by G. More recently, Shang and Cheng
[44] found an explicit cavitation solution for a plane membrane that is described by the Cauchy
elastic model

σr =
E

1− ν2

(
ln

dr

dR
+ ν ln

r

R

)
, σθ =

E

1− ν2

(
ν ln

dr

dR
+ ln

r

R

)
, (10)

where E is Young’s modulus and ν is Poisson’s ratio. In the next three sections, we shall
examine the near-critical structure of the cavitation solution corresponding to the three material
models (8)– (10).

3. Asymptotic results for the Cauchy elastic material model

We first consider the material model (10). The cavitation problem for this material model
has been solved explicitly by Shang and Cheng [44] for the case when δ = 0. We now adapt
their results to write down the solution when δ is non-zero.

An explicit solution is possible in this case because under the variable transformation

R = R(t), r = r̂(t), t =
λr
λθ

=
R

r

dr

dR
, (11)
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eqs.(3) and (4) can be transformed into the following system of first-order linear ordinary dif-
ferential equations for R(t) and r̂(t):

dR(t)

dt
=

R(t)

t(1− t)Ψ(t)
,

dr̂(t)

dt
=

r̂(t)

(1− t)Ψ(t)
, (12)

where Ψ(t) = (1 + ν)− (1− ν)t ln t/(1− t), and 1 + ν = Ψ(0) ≤ Ψ(t) ≤ Ψ(1) = 2.

Also, the boundary condition (6) can be rewritten as

R(t0) = 1, r̂(t0) = λ, (13)

where t = t0 corresponds to the outer boundary R = 1.
The solution can then be obtained by elementary integration as

R(t) =

(
t

t0

)1/(1+ν)
√

1− t0
1− t

exp

[
−
∫ t0

t

W (s) ds

]
, (14)

r̂(t) = λ

√
1− t0
1− t

exp

[
−
∫ t0

t

V (s) ds

]
, (0 ≤ t ≤ t0 ≤ 1), (15)

where the two known functions W and V are define by

W (t) = V (t) + F (t), V (t) =
1/Ψ(t)− 1/2

1− t
> 0, F (t) =

1/Ψ(t)− 1/(1 + ν)

t
< 0.

Substituting (14) and (15) into (10) yields the following expressions for the stresses:

σr(t) =
E

1− ν2

[
(1 + ν) lnλ+ ln t0 + (1 + ν)

∫ t0

t

F (s) ds

]
, (16)

σθ(t) = σr(t)−
E

1 + ν
ln t. (17)

The inner boundary condition (7) can be rewritten as

R(t1) = δ, σr(t1) = 0, (18)

which yield

δ =

(
t1
t0

)1/(1+ν)√
1− t0
1− t1

exp

[
−
∫ t0

t1

W (s) ds

]
, (19)

λ = t
− 1

1+ν

0 exp

[
−
∫ t0

t1

F (s) ds

]
, (0 ≤ t1 ≤ t0 ≤ 1). (20)

When the initial cavity radius δ and stretch λ are given, we can solve the simultaneous equations
(19) and (20) to obtain t1 and t0. Then the displacement and stress fields in the membrane are
fully determined parametrically.

Equation (19) shows that the limit δ → 0 corresponds to t1 → 0. In this limit, cavitation
occurs if r(0) is non-zero, and the critical load is determined by taking the further limit r(0)→
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0, i.e. t0 → 1, as mentioned in the Introduction. Thus from (20) the critical stretch λcr is given
by

λcr = exp

[
−
∫ 1

0

F (s) ds

]
. (21)

We now use the parametric solution obtained above to derive its asymptotic behavior when both
|λ− λcr| and δ are small. To this end, we assume that

λ = λcr + Cδm, t1 � 1, t0 = 1− t00δn, (22)

where the positive powers m and n, and the precise order of t1 are to be determined by the
principle of dominant balance.

On substituting (22) into (20) and taking the logarithms of both sides, we obtain

ln(λcr + Cδm) +
1

(1 + ν)
ln(1− t00δn) +

∫ 1−t00δn

t1

F (s) ds = 0. (23)

We observe that F (s) is regular as s→ 1 but is singular as s→ 0. More precisely, we have

F (s) =
1− ν

(1 + ν)2
ln(s) +

(1− ν)s ln s[1 + ν + (1− ν) ln s]
(1 + ν)3

+ · · · , as s→ 0,

and ∫ t1

0

sF ′(s)ds =
1− ν

(1 + ν)2
t1 +

1− ν
2(1 + ν)3

{
ν + 2 ln t1 + (1− ν)(ln t1)2

}
t21 +O(t31).

Thus, the integral in (23) may be evaluated with the aid of the asymptotic expansions∫ 1−t00δn

0

F (s) ds =

∫ 1

0

F (s)ds− F (1)t00δn +O(δ2n),

and ∫ t1

0

F (s) ds = t1F (t1)−
∫ t1

0

sF ′(s) ds = t1

[
F (t1)−

1− ν
(1 + ν)2

]
+O((t1 ln t1)

2).

As a result, equation (23) may be approximated by

C

λcr
δm − t1

[
F (t1)−

1− ν
(1 + ν)2

]
− t00

[
1

1 + ν
+ F (1)

]
δn = 0. (24)

It can be seen that dominant balance is achieved by taking n = m and

t1F (t1) ∼ t1 ln t1 ∼ δm.

It then follows that t1 must be of order δm/ ln δ. To simplify analysis, we may simply treat ln δ
as an O(1) quantity and expand t1 as

t1 = t10δ
m + · · · , (25)
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where t10 may be treated as an O(1) constant although strictly speaking it is of order 1/ ln δ.
Equation (24) then reduces to

C

λcr
− t10

[
F (t10δ

m)− 1− ν
(1 + ν)2

]
− t00

[
1

1 + ν
+ F (1)

]
= 0. (26)

Similarly, with the use of (22) and (25), equation (19) may be approximated to leading order by

(t10)
1/(1+ν) · (t00)

1
2 · exp

[
−
∫ 1

0

W (s) ds

]
· δ

(3+ν)m
2(1+ν) = δ. (27)

Dominant balance then requires that

m =
2(1 + ν)

3 + ν
,

and as a result (27) reduces to
t00 = K t

− 2
1+ν

10 , (28)

where

K = exp

[
2

∫ 1

0

W (s) ds

]
.

From (15) we obtain the leading-order expansion

r(δ) = r̂(t1) = δ
m
2 · t−

1
1+ν

10 + · · · . (29)

Finally, on eliminating t10 from (26) and (29), we then obtain the amplitude equation

λ− λcr
λcr

r(δ)1+ν − 1

2
Kr(δ)3+ν +

1− ν
(1 + ν)2

δ1+ν
[
1− (1 + ν) ln

δ

r(δ)

]
= 0, (30)

which can be used to compute the dependence of the deformed cavity radius r(δ) on λ. In
Figure 1 we have shown this leading-order asymptotic result together with the exact solution
computed numerically, for the three typical values of δ indicated in the figure. All our numerical
calculations are carried out with the aid of Mathematica [45]. It is seen that the leading-order
asymptotic results capture very well the near-critical behavior.

4. Asymptotic results for the Varga material model

We next consider the model (8) which has previously been considered by Steigmann [43]
by assuming δ = 0; see also Haughton [42]. The assumptions f(1) = −2, f ′(1) = −1 are
imposed to ensure that the undeformed state is energy-free and stress-free.

It can be shown that in this case the equilibrium equation may be reduced to the form

λ22
dλ1
dλ2

+ J = 0, (31)
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Figure 1: Variation of r(δ) with respect to λ for the three typical values of cavity size indicated when the Cauchy
elastic material model is used. Solid lines are exact results obtained by numerical calculations, and the dashed
lines represent the leading-order asymptotic results.

where J = λ1λ2. It then follows on integration that J must necessarily be a constant, which
we denote by J0. On the other hand, on substituting (3) into λ1λ2 = J0 and then integrating the
resulting equation subject to the boundary condition (6), we obtain

λ2 = (1− δ2)J0 + r2(δ). (32)

Finally, the traction-free boundary condition (7) yields the result

r(δ) = − δ

f ′(J0)
. (33)

In the limit δ → 0, r(δ) is bounded, and so we must have f ′(J0) = 0, the solution of which we
denote by J0 = Jcr (thus Jcr is where f(J0) attains its minimum). Equation (32) then gives the
amplitude equation r2(0) = λ2 − Jcr, which shows that the cavitation solution is only possible
for λ ≥

√
Jcr. Hence the critical stretch is given by λcr =

√
Jcr, which justifies the presence of

the subscript “cr”in Jcr. In our numerical example, we shall make the simplest choice

f(J) =
1

2
(J − 2)2 − 5

2
, (34)

which gives λcr =
√
2.

To determine the near-critical behavior for small δ, we assume that

λ2 = Jcr + λ3δ
m + · · · , J0 = Jcr + J3δ

n + · · · , (35)

where m,n, λ3, J3 are all constants. Substituting these expansions into (32) and noting that

r(δ) = − δ

f ′(J0)
≈ − δ

f ′′(Jcr)(J0 − Jcr)
, (36)
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we see that dominant balance is achieved with m = n = 2/3, and to leading order we have

λ3 = J3 +
1

(J3f ′′cr)
2
, where f ′′cr ≡ f ′′(Jcr). (37)

Solving (35)1,2 for λ3 and J3, respectively, and substituting the resulting expressions into (37)1,
we obtain the leading-order amplitude equation

(λ2 − Jcr)r(δ)− r(δ)3 + (f ′′cr)
−1δ = 0. (38)

It is interesting to observe that this equation has the same structure as equation (1)!

Figure 2: Variation of r(δ) with respect to λ for the two typical values of cavity size indicated when the Varga
material model is used. Solid lines are exact results obtained by numerical calculations, and the dashed lines are
the leading-order asymptotic results.

In Figure 2, we have shown this leading-order asymptotic result when δ = 0.2 together with
the corresponding exact result. It is noted that for the material model under consideration the
leading-order asymptotic result provides a much better approximation than in the previous case.
The asymptotic result seems to be uniformly valid for all values of λ, and it becomes graphically
indistinguishable from the exact result when δ is still as large as 0.1.

5. Asymptotic results for the Blatz-Ko material model

We finally consider the material model given by

W (λ1, λ2) =
G

2
(λ−21 + λ−22 + 2λ1λ2 − 4), (39)

where the constant G has the same meaning as in the previous section. Adapting the results
given by Horgan and Abeyaratne[6], we first note that in this case the equilibrium equation
takes the form

3Rr3r′′(R)− r3r′(R) +R3(r′(R))4 = 0, δ < R < 1, (40)
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and that in terms of the new dependent variable t(R) defined by

t(R) =
R

r

dr

dR
,

it can be linearized:
3Rt′ − t(1− t)(t2 + t+ 4) = 0.

As a result the solution can be obtained in closed-form. In terms of the function

h(t) = exp

{
6√
15

tan−1
(
2t+ 1√

15

)}
,

the critical stretch is given by

λcr =

(
27h(1)

8h(0)

)1/8

,

and the deformed inner radius r(δ) is given by

r(δ) = δt
−3/4
b , (41)

where the constant tb is related to the control parameter λ by the equations

λ8 =
(t2a + ta + 4)3h(ta)

t6b(t
2
b + tb + 4)3h(tb)

,
t6ah(ta)

(1− ta)4(t2a + ta + 4)
=

t6bh(tb)

δ8(1− tb)4(t2b + tb + 4)
. (42)

Equation (42)2 defines ta as a function of tb, and then (41) and (42)1 yield a parametric repre-
sentation for the cavitation amplitude r(δ) as a function of λ.

A simple argument of dominant balance shows that the near-critical behavior is governed
by the expansions

λ = λcr + Cδ4/5, ta = 1− k1δ4/5 +O(δ8/5), tb = k2δ
4/5 +O(δ8/5), (43)

where C, k1, k2 are constants. On substituting these expansions into (42) and equating the coef-
ficients of leading order terms, we obtain

k1 =
256λ7crh(0)

2C + k2[81h(0)h(1) + 108h(1)h′(0)]

54h(0)(9h(1)− 2h′(1))
, k2 = (

2h(1)

3h(0)
)1/6 · 1

k
2/3
1

. (44)

Finally, on combining the expressions (41)–(44), we obtain the amplitude equation

k3(λ− λcr)r(δ)
4
3 − k4r(δ)

10
3 + k5δ

4
3 = 0, (45)

where

k3 = 256λ7crh(0)
2, k4 = 54h(0)(9h(1)− 2h′(1))

(
2h(1)

3h(0)

) 1
4

,

k5 = 81h(0)h(1) + 108h(1)h′(0).

In Figure 3, we compare the leading-order result (45) with the corresponding exact result
for the two values of δ indicated. Again we see that the asymptotic results provide a very good
approximation for the near-critical behavior of the cavitation solutions.
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Figure 3: Variation of r(δ) with respect to λ for the three typical values of cavity size indicated when the
Blatz-Ko material model is used. Solid lines are exact results obtained by numerical calculations, and the dashed
lines are the leading-order asymptotic results.

6. Summary and discussion

In this paper we have determined the near-critical behavior of the deformation of a stretched
circular membrane with a small pre-existing void. The small void is viewed as an imperfection
as in standard (non-singular) bifurcation/buckling problems. In a qualitative fracture analysis,
it would be of interest to understand precisely how close the applied stretch λ should be to λcr
when rapid void growth occurs. This question is addressed for three classes of material models.
In each case the correct scalings are identified, and the leading-order asymptotic solution is
shown to provide a very good approximation to the exact solution. Our amplitude equations
(30), (38) and (45) have the same structure as the reference amplitude equation (1) for Euler
buckling (e.g. the third term always represents the effect of imperfection), but the terms have a
variety of forms (e.g. the third term in (30) is not even a power function). We note, however,
that in each case when δ = 0 the amplitude r(0) is proportional to

√
λ− λcr, which is consistent

with the general result given by Negrón-Marrero and Sivaloganathan [40].
Although we have focused our attention on plane membranes, the same methodology can

be applied to study the asymptotic near-critical structure in plane-strain or fully 3D cavitation
problems provided a closed-form solution exists – no matter how complicated it may be. In par-
ticular, when the bifurcation becomes sub-critical due to material inhomogeneity or anisotropy,
cavitation will become a limiting-point instability in the presence of imperfections, and the
stretch maximum can be estimated with the aid of an amplitude equation similar to the ones
derived in this paper. The associated stress and strain fields can also be computed if required
although we have not presented such expressions for the sake of brevity. Such near-critical
solutions are expected to be useful in any qualitative fracture analysis.
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In each of the three cases studied, the stretch λ is expanded in the form

λ = λcr + Cδm, (46)

where m is equal to
2(1 + ν)/(3 + ν), 2/3, 4/5, (47)

respectively for the three material models considered. Although in general we expect the power
m to depend on the material model used, we now show that the expression 2(1 + ν)/(3 + ν)

actually reproduces the second and third numbers above when the corresponding Poisson’s ratio
is used.

First for the Varga material model, the Cauchy stress components are given by

σr = 2G(λ−1θ + f ′(λrλθ)), σθ = 2G(λ−1r + f ′(λrλθ)).

Writing
λr = 1 + εr, λθ = 1 + εθ, (48)

where εr and εθ denote the strains, and linearizing the above stress-stretch equations, we obtain

σr = 2Gf ′′(1)

(
εr + (1− 1

f ′′(1)
)εθ

)
, σθ = 2Gf ′′(1)

(
εθ + (1− 1

f ′′(1)
)εr

)
,

where use has been made of the assumption f ′(1) = −1. It then follows that Poisson’s ratio for
this class of material model is given by

ν = 1− 1

f ′′(1)
.

When f(x) is given by (34), we obtain f ′′(1) = 1 and so ν = 0. The expression 2(1+ν)/(3+ν)

then reduces to 2/3.
For the Blatz-Ko material model, we have

σr = G(1− λ−3r λ−1θ ), σθ = G(1− λ−3θ λ−1r ).

On linearizing these expressions with the aid of (48), we obtain

σr = 3G(εr +
1

3
εθ), σθ = 3G(εθ +

1

3
εr),

and so Poisson’s ratio in this case is equal to 1/3. The number 2(1 + ν)/(3 + ν) then becomes
4/5, which is exactly the third number in (47).

On the other hand, the above computation for the Varga material model also suggests that
m = 2(1+ ν)/(3+ ν) is not universal since there is no reason why f ′′(1) can only take the unit
value in that class of material model.
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