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Abstract1

In order to avoid the numerical difficulties in locally enforcing the incompress-2

ibility constraint using the displacement formulation of the Finite Element Method,3

slight compressibility is typically assumed when simulating the mechanical response4

of nonlinearly elastic materials. The current standard method of accounting for5

slight compressibility of hyperelastic materials assumes an additive decomposition6

of the strain-energy function into a volumetric and an isochoric part. A new proof7

is given to show that this is equivalent to assuming that the hydrostatic stress is8

a function of the the volume change only and that uniform dilatation is a possi-9

ble solution to the hydrostatic stress boundary value problem, with therefore no10

anisotropic contribution to the mechanical response. An alternative formulation of11

slight compressibility is proposed, one that does not suffer from this defect. This12

new model generalises the standard model by including a mixed term in the volume13

change and isochoric response. Specific models of slight compressibility are given14

for isotropic, transversely isotropic and orthotropic materials.15

Keywords: nonlinearly elastic materials; slightly compressible; volumetric-isochoric16

split.17
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1 Introduction18

The Finite Element Method (FEM) is the preeminent numerical method when simulat-19

ing the mechanical response of non-linearly elastic materials. The use of the FEM when20

modelling soft tissue has focussed attention on the accounting for the slight compressibil-21

ity of such tissue, especially as to how it is incorporated in commercial and open-source22

Finite Element codes, which are used in the vast majority of simulations. Without excep-23

tion, slight compressibility is modelled in these codes by assuming that the strain energy24

function per unit undeformed volume W can be additively decomposed into separate25

volumetric and isochoric components as follows:26

W (J,C∗) = f(J) +W (C∗) , (1.1)

where J is the determinant of the deformation gradient tensor F and C∗ is the isochoric27

right Cauchy-Green strain tensor defined by C∗ = J−2/3C, C ≡ F TF , noting that28

detC∗ = 1 (see, for example, Flory [1]). Typically the incompressibility constraint is to29

be relaxed for a known incompressible strain energy Wi (C), with therefore30

W (1,C) = Wi (C) , (1.2)

and so here W (C∗) = Wi (C∗), assuming that f(1) = 0. Ideally Wi (C) should be31

compatible with the corresponding linear theory, as it seems that a well-posed non-linear32

model should fully recover the linear on restriction to infinitesimal values of the indepen-33

dent variable. Although not necessary for what follows, it will be assumed here that this34

compatibility is satisfied.35

The assumption (1.1) is typically given without motivation; the primary reasons for36

its widespread use seem to be an intuitive appeal and mathematical convenience. Another37

reason for its widespread use when modelling anisotropic soft tissue could be its success in38

modelling isotropic elastomers, for which the decomposition (1.1) was originally proposed;39
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it seems that the isotropic formulation of (1.1) was generalised in a natural way for40

anisotropic materials, without much consideration being paid as to how appropriate this41

is. This is the main focus here.42

It is shown that the following are consequences of assuming (1.1) for all anisotropic43

materials:44

• The corresponding linear theory cannot be fully recovered from the non-linear the-45

ory on restriction to infinitesimal strains (Federico [2]). It is axiomatic that any46

non-linear theory should recover the linear on restriction to infinitesimal values of47

the independent variable(s) (Quintanilla and Saccomandi [3]).48

• Uniform dilatation is a solution to the boundary value problem of hydrostatic ten-49

sion. This is the solution that is simulated in FEM codes (Nı́ Annaidh et al. [4])50

and thus the fibres play no role in the mechanical response in this problem, which51

is surely physically unrealistic.52

• The volumetric-isochoric split is equivalent to assuming that the trace of the Cauchy53

stress is a function only of the volume change (Charrier et al. [5]). Although the54

intuitive appeal of (1.1) is obvious, its equivalent formulation in terms of the stress55

lacks this appeal. Is it reasonable to postulate a theory of slight compressibility for56

anisotropic materials based on the assumption of isotropic response under hydro-57

static tension?58

Attention has already been drawn to these deficiencies for specific forms of anisotropy by,59

for example, Nı́ Annaidh et al. [4], Vergori et al. [6], Gilchrist et al. [7] and Nolan et al.60

[8]. The novelty here is that all results are obtained in complete generality, irrespective61

of material symmetry. Somewhat surprisingly, it is shown that proof of the above listed62

results for a general elastic material is trivial in comparison to the existing proofs for63

specific anisotropic models, such as those obtained by Sansour [9] and Horgan and Murphy64

[10] for example.65

3



The inability of models incorporating the volumetric-isochoric split (1.1) to capture66

physically realistic effects in hydrostatic tension and compression is the core element of67

the difficulties listed above. It might be argued that this inability is not important when68

simulating the mechanical response of slightly compressible materials in typical applica-69

tions. However, when dealing with both complex geometries and boundary conditions, it70

is impossible to rule out at least local states of hydrostatic tension and compression and71

therefore accurate accounting for the behaviour of slightly compressible materials in these72

experiments is essential. An alternative approach to resolving these difficulties in com-73

pressible elasticity could be the simulation of perfect incompressibility instead. However,74

this is not an option, even if the numerical difficulties that this poses can be overcome75

in an efficient and accurate manner, as no real material is perfectly incompressible and76

slight compressibility is a fundamental aspect of the physical response of materials that77

have classically been modelled as being perfectly incompressible, such as soft tissue.78

An alternative formulation of slight compressibility is suggested here in order to over-79

come the difficulties associated with (1.1). It seems sensible to generalise this formulation80

of slight compressibility in order to utilise the vast computational infrastructure already81

developed that is based on the volumetric-isochoric split. The approach proposed here82

is based on truncating a Taylor series in the volume change after the second order, as83

initially suggested by Spencer [11]. The zero order term is a perfectly incompressible ma-84

terial, assumed known from standard material characterisation tests. The first and second85

order coefficients need to be specified. Motivated by mathematical convenience, it will be86

assumed that the first order term is linear in the appropriate invariants of C∗ and that87

the second order term is a positive constant. This has the intuitive appeal of a deceasing88

complexity in the C∗ terms as the order of the Taylor series in J increases. The current89

standard formulation of slight compressibility is a special case of this new approach, with90

(1.1) recovered if the linear term in the volume change is identically zero. Explicit models91

are proposed for modelling slightly compressible for isotropic, transversely isotropic and92

orthotropic materials.93
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2 Preliminaries94

The constitutive law for compressible, homogeneous, non-linearly elastic materials is given95

by96

σ =
2

J
F
∂Ŵ

∂C
F T , (2.1)

where σ is the Cauchy stress. In anticipation of formulating a theory of slightly com-97

pressible materials, but without loss of generality, let the strain energy be alternatively98

considered as a function of J and C∗ = J−2/3C , i.e.,99

Ŵ (C) = W (J,C∗) , (2.2)

assuming that

Ŵ (I) = W (1, I) = 0,

to ensure zero strain energy in the reference configuration, where here, and in what

follows, I denotes the appropriate second-order identity tensor. Noting that

∂J

∂C
=

1

2
JC−1,

∂C∗

∂C
= −1

3
J−2/3C ⊗C−1 + J−2/3

∂C

∂C
,

the constitutive law (2.1) can therefore be rewritten in the form100

σ =
2

J
F

(
∂W

∂J

∂J

∂C
+
∂W

∂C∗
∂C∗

∂C

)
F T

=
∂W

∂J
I − 2

3J

(
∂W

∂C∗
: C∗

)
I +

2

J
F ∗

∂W

∂C∗
F ∗

T

, (2.3)

where : denotes the inner product and F ∗ = J−1/3F . To ensure zero stress in the101

undeformed state it will be assumed that102

∂W

∂J
(1, I) = 0,

∂W

∂C∗
(1, I) =

1

3
tr

[
∂W

∂C∗
(1, I)

]
I. (2.4)
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Given that tr
(
F ∗ ∂W

∂C∗F
∗T
)

= ∂W
∂C∗ : C∗, it follows immediately that103

trσ = 3
∂W

∂J
. (2.5)

It is worthwhile emphasising that this results holds for all elastic materials and for all104

deformations. The Cauchy stress can now be additively decomposed into hydrostatic and105

deviatoric stress components as follows:106

σ = πI + devσ (2.6)

where107

π (J,C∗) =
trσ

3
=
∂W

∂J
,

devσ (J,F ∗) = σ − 1

3
trσI =

2

J

(
F ∗

∂W

∂C∗
F ∗

T − 1

3

(
∂W

∂C∗
: C∗

)
I

)
. (2.7)

3 The volumetric-isochoric split and hydrostatic ten-108

sion109

Consider now the volumetric-isochoric split110

W (J,C∗) = f(J) +W (C∗) , (3.1)

an assumption widely made when modelling slightly compressible materials, where the111

separate functionals are assumed infinitely differentiable and the initial conditions112

f(1) = 0, W (I) = 0, (3.2)

are imposed to ensure zero strain energy in the reference configuration. An immediate113

consequence of this decomposition is that the hydrostatic Cauchy stress is now only a114
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function of the volume change and that the deviatoric Cauchy stress is decomposed into115

separate functions of the volume change and the isochoric deformation gradient tensor116

F ∗ as follows:117

π (J,C∗) = f ′(J),

devσ (J,F ∗) =
2

J
σd (F ∗) , σd (F ∗) ≡ F ∗dW (C∗)

dC∗
F ∗

T − 1

3

dW (C∗)

dC∗
: C∗I, (3.3)

where the prime notation denotes differentiation with respect to the appropriate argument118

and, to ensure that the reference configuration is stress–free, it will be assumed that119

f ′(1) = 0, devσd (I) = 0. (3.4)

This decoupling of the hydrostatic stress from the isochoric strainC∗ and the factorisation120

of the deviatoric stress seem overly prescriptive for anisotropic materials.121

Assume now a state of hydrostatic tension, with σ = ωI, for which, by definition,

π (J,C∗) = ω, devσ (J,F ∗) = 0.

Substitution into (3.3) yields122

ω = f ′(J), 0 =
2

J
σd (F ∗) . (3.5)

The first of these determines the volume change in terms of the amount of hydrostatic123

tension. It follows from the initial condition (3.4)2 that a solution of the second equation124

is given by F ∗ = I, which is a uniform dilatation. Therefore a material with a separable125

strain energy can behave as if it were an isotropic material under hydrostatic tension, ir-126

respective of the assumed material symmetry. For infinitesimal strains, uniform dilatation127

is the unique solution to the problem of hydrostatic tension for all such elastic materials128

and it seems that the commercial Finite Element codes understandably step this uniform129
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dilation behaviour for infinitesimal strains into the non-linear regime. This explains the130

deficiencies of the assumption (3.1) that have been highlighted elsewhere. The main ar-131

gument advanced by Nı́ Annaidh et al. [4], Vergori et al. [6], Gilchrist et al. [7] and Nolan132

et al. [8], for example, is that Finite Element simulations of the mechanical response to133

hydrostatic tension using specific forms of anisotropy that assume (3.1) yield a purely134

isotropic strain response, with therefore no contribution from, for example, fibres, which135

are the components typically inducing anisotropy in non-linear materials. This seems136

unacceptable physically, since fibres, for example, are much stiffer than the matrix in137

which they are embedded. In light of the analysis presented here, this behaviour is not138

now unexpected. All slightly compressible elastic materials modelled using the additive139

spilt (1.1) behave isotropically under hydrostatic tension and compression.140

The mechanical response of bodies for which the hydrostatic stress depends only on141

the volume change can be summarised in the following equivalence theorem, a trivial142

consequence of the identity (2.5), which generalises previous results of, for example,143

Richter [12], Sansour [9] and Horgan and Murphy [10] for specific material symmetries:144

Theorem. A strain-energy function has the additive decomposition

W (J,C∗) = f(J) +W (C∗) ,

iff145

trσ = F (J), arbitrary F (.). (3.6)

Proof. Assume that (1.1) holds. Then it follows from (2.5) that

trσ = 3f ′(J).

Setting F (J) = 3f ′(J) recovers (3.6).146
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Now assume that (3.6) holds. The identity (2.5) now yields

3
∂W

∂J
(J,C∗) = F (J).

A simple integration yields (1.1), with f(J) =
∫

(1/3)F (J)dJ .147

This equivalence result was first obtained by Charrier et al. [5] using a different148

method. It is worthwhile emphasising that this equivalence holds for all deformations of149

all (hyper)elastic materials. The seemingly intuitive appeal of (3.1), and this is surely150

another reason for its widespread adoption, is undermined by this equivalence relation:151

if one wanted to model the slight compressibility of elastic materials, one would surely152

not assume ab initio that trσ = F (J), especially when considering anisotropic materials.153

Thus one is lead by consideration of hydrostatic tension to require that either ∂ trσ
∂C∗ 6= 0,154

or, equivalently,155

∂2W

∂ J∂C∗
6= 0, (3.7)

when modelling the slight compressibility of anisotropic materials.156

Many of the results obtained here were previously obtained by Federico [2] but the157

approach and emphases here are different.158

4 Generalising the strain energy function159

There are two approaches that can be adopted to improve the standard model (1.1). One160

could generalise the assumption on the hydrostatic stress (3.6) to include a contribution161

from the isochoric strain tensor or, more immediately, one could generalise the form of the162

strain energy function. Because of the theorem of the last section, these two approaches163

are essentially equivalent and therefore only the second approach will be considered here.164

The method of Spencer [11] is adopted, one that explicitly utilises the fact that the165

volume changes are assumed infinitesimal for slightly compressible materials. Specifically,166

the strain energy function W (J,C∗) is expanded in a Taylor series about J = 1 to the167
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second power in J − 1 as follows:168

W (J,C∗) = W (1,C∗) + (J − 1)
∂ W

∂ J
(1,C∗) +

1

2
(J − 1)2WJJ (1,C∗) . (4.1)

Truncation after the second order term seems reasonable, assuming that the WJJ term169

is of the order of the bulk modulus κ, with all other coefficients of the volumetric terms170

assumed to be of an order less than or equal to this term. Indeed the W (1,C∗) and the171

∂W
∂J

(1,C∗) terms here are assumed to be of the order of a typical shear modulus of the172

material, µ, with the volume change assumed to be of O (µ/κ). Thus, if the strain-energy173

function is non-dimensionalised with respect to the shear modulus, the first term in the174

Taylor series expansion can be considered as the zero-order term and the remaining terms175

the first-order terms in a perturbation series in the parameter µ/κ.176

Applying (1.2) to (4.1) yields W (1,C∗) = Wi (C∗), noting that Wi (C) is a known in-177

compressible strain-energy function. For convenience, let F (C∗) ≡ ∂W
∂J

(1,C∗) , G (C∗) ≡178

WJJ (1,C∗) and the proposed model therefore has the form179

W (J,C∗) = Wi (C∗) + (J − 1)F (C∗) +
1

2
(J − 1)2G (C∗) . (4.2)

Some rationale for the choice of F ,G is needed if (4.2) is to be a workable model of slight

compressibility. Some preliminary guidance is given by the restrictions that should be

imposed on every candidate strain energy. First note that if Wi (I) = 0, then the strain

energy is zero in the reference configuration. Substituting (4.2) into the initial conditions

(2.4) for zero stress in the reference configuration yields

F (I) = 0, W ′
i (I) =

1

3
tr [W ′

i (I)] I.

The compressibility condition (3.7) requires that

F ′ (I) 6= 0.
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Therefore F (C∗) cannot be constant and, in particular, cannot be identically zero, as180

is assumed in the separable model of slight compressibility, (3.1). Motivated by a desire181

to keep mathematical models as simple as possible, it is therefore proposed that F (C∗)182

be a linear function of the appropriate invariants of C∗. Comparing the first two terms183

in (4.2) shows that the complexity of the model in C∗ is reduced when we include the184

linear term in the volume change. Keeping this structure in mind, it will be additionally185

assumed that G (C∗) is a positive constant (= c) and therefore the proposed model of186

slight compressibilty has the form187

W (J,C∗) = Wi (C∗) + (J − 1)F (C∗) +
c

2
(J − 1)2, (4.3)

with, from (2.5),

trσ = F (C∗) + c(J − 1).

Some additional simplicity in the linear form of F (C∗) is assumed here. Recalling188

the centrality of the problem of hydrostatic tension in the argument for a new account-189

ing for slight compressibility, it is proposed that F (C∗) is linear in the smallest subset190

of invariants in C∗ that ensure that the hydrostatic stress for slight compressibility is191

compatible with the hydrostatic stress for the linear theory, on restriction to infinites-192

imal strains. Examples of the application of this procedure will be given in the next193

section for isotropic, transversely isotropic and orthotropic materials. The reasons for194

this are twofold: (1) every well-posed non-linear theory should recover its linear form on195

restriction to infinitesimal inputs (Quintanilla and Saccomandi [3]) and (2) if a slightly196

compressible material is locally subjected to hydrostatic tension in simulations of practi-197

cal problems, for which the applied stresses will be of the order of a typical shear modulus198

of the material, the linear theory becomes applicable as the volume change is assumed199

infinitesimal.200

To determine the material constants in (4.3), it is proposed that experiments where201

the principal Cauchy stresses are known, such as uniaxial and biaxial tension, be per-202
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formed with the volume change, the strains and all other geometrical and kinematical203

variables necessary to determine the appropriate functions of C∗ measured simultane-204

ously. Simple regression analysis then determines the material constants. To the best of205

the authors’ knowledge such a comprehensive, simultaneous collection of data has never206

been performed for anisotropic, soft tissue but is essential if reliable models of its mechan-207

ical response are to obtained. Some of these variables have been measured in isolation208

from the others. For example, there is a vast literature on the biaxial testing of soft tissue209

for which the strains alone have been measured. An indication of the state of the art is the210

collection of data of Holzapfel [15], who, in addition to measuring the orientation of the211

collagen fibres inducing anisotropy in arterial tissue, also obtained uniaxial stress-strain212

data in both the axial and circumferential directions for the human aorta. The essential213

missing component is, of course, measurement of the volume change. The analysis here214

suggests that simultaneous measurement of the volume change together with all the other215

necessary variables is an essential first step in the development of accurate and reliable216

models of slight compressibility.217

5 Some examples of material symmetries218

To illustrate the ideas of the last section for the new model of slight compressibility pro-

posed here, appropriate forms of slight compressibility for isotropic, transversely isotropic

and orthotropic materials will now be considered. A key feature of the proposed model is

that the linear theory in each case is recovered on restriction to infinitesimal deformations.

To consider infinitesimal strains, assume that

F = I +H , h ≡
√
H : H � 1,

where H is the displacement gradient tensor. Then, neglecting here and hereafter higher

order terms,

J = 1 + tr ε,
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where ε = 1/2
(
H +HT

)
is the infinitesimal strain tensor. It follows that, to the first-219

order term in H ,220

F ∗ = J−1/3F = I +H∗, H∗ ≡H − 1

3
tr ε I,

C∗ = J−2/3C = I + 2ε∗, ε∗ ≡ ε− 1

3
tr ε I. (5.1)

5.1 Isotropic materials221

The strain energy function for isotropic materials can be written in the form W =222

W (J, I∗1 , I
∗
2 ), where223

I∗1 = trC∗, I∗2 =
1

2

(
(trC∗)2 − tr (C∗)2

)
. (5.2)

Since F (C∗) is assumed linear in the invariants of C∗ the hydrostatic stress becomes224

trσ = c1(I
∗
1 − 3) + c2(I

∗
2 − 3) + c(J − 1). (5.3)

On restriction to infinitesimal deformations and truncating after first order terms in h,

trσ = c tr ε.

The linear theory for isotropic material yields

trσ = (3λ+ 2µ)tr ε,

where λ, µ are the Lamé constants. A comparison of these two linear forms for the

hydrostatic stress shows that the simplest form of the non-linear hydrostatic stress (5.3)

that is compatible with the linear is the choice

c1 = c2 = 0, c = 3λ+ 2µ,
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and therefore for isotropic materials the proposed slightly compressible strain energy that225

is of the prototypical, general form (4.2) is given by setting F (C∗) ≡ 0 and G (C∗) =226

c = 3λ+ 2µ, i.e.,227

W (J,C∗) = Wi (C∗) +
3λ+ 2µ

2
(J − 1)2, (5.4)

which has the separable form (1.1) and therefore the volumetric-isochoric split seems228

acceptable for isotropic materials.229

5.2 Transversely isotropic materials230

For these materials the general strain energy has the from W = W (J, I∗1 , I
∗
2 , I

∗
4 , I

∗
5 ), where231

I∗1 , I
∗
2 are given in (5.2) and232

I∗4 = M.C∗M , I∗5 = M. (C∗)2M , (5.5)

where M is the preferred direction of the materials. The initial assumption for F (C∗)233

is therefore that234

F (C∗) = c1(I
∗
4 − 1) + c2(I

∗
5 − 1), (5.6)

noting that the there are no terms linear in the isotropic invariants following the analysis235

of the last subsection and therefore now236

trσ = c1(I
∗
4 − 1) + c2(I

∗
5 − 1) + c(J − 1). (5.7)

On restriction to infinitesimal deformations, the hydrostatic stress is therefore

trσ =

(
c− 2

3
c1 −

4

3
c2

)
tr ε+ 2(c1 + 2c2)M.εM

The linear theory for transversely isotropic materials (see, for example, Spencer [16]) that

trσ = (3λ+ 2µT + α) tr ε+ (3α + β + 4 [µL − µT ])M.εM ,
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using Spencer’s notation for the five material constants. A comparison of the two forms237

of the hydrostatic stress shows that one of the constants c1, c2 in the provisional linear238

expansion (5.6) can be set equal to zero. Thus there are two slightly compressible forms239

consistent with the linear theory, i.e.,240

W (J,C∗) = Wi (C∗) + c1(J − 1) (I∗4 − 1) +
c

2
(J − 1)2,

W (J,C∗) = Wi (C∗) + c1(J − 1) (I∗5 − 1) +
c

2
(J − 1)2, (5.8)

where the constants c1, c are to determined from volume change measurements during241

characterisation tests.242

5.3 Materials with two families of mechanically equivalent fi-243

bres244

Denote the two preferred directions byM ,M ′, with nowW = W (J, I∗1 , I
∗
2 , I

∗
4 , I

∗
5 , I

∗
6 , I

∗
7 , I

∗
8 ),

where I∗1 , I
∗
2 , I

∗
4 , I

∗
5 have been defined previously and

I∗6 = M ′.C∗M ′, I∗7 = M ′. (C∗)2M ′, I∗8 = M.M ′M.C∗M ′.

Bearing in mind that the fibres are mechanically equivalent, assume initially therefore245

that246

F (C∗) = c1(I
∗
4 + I∗6 − 2) + c2(I

∗
5 + I∗7 − 2) + c3(I

∗
8 − (M.M ′)

2
), (5.9)

with now247

trσ = c1(I
∗
4 + I∗6 − 2) + c2(I

∗
5 + I∗7 − 2) + c3(I

∗
8 − (M.M ′)

2
) + c(J − 1). (5.10)
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On restriction to infinitesimal deformations therefore248

trσ = 2(c1 + 2c2)(M.εM +M ′.εM ′ − 2

3
tr ε) + 2c3M.M ′(M.εM ′ − 1

3
M.M ′tr ε) + c tr ε

= tr ε

(
c− 4

3
(c1 + 2c2)−

2

3
c5 (M.M ′)

2

)
+ 2(c1 + 2c2) (M.εM +M ′.εM ′)

+2c3M.M ′M.εM ′. (5.11)

In the corresponding linear theory (see, for example, Equation (45) of Spencer [16] and249

using his notation)250

trσ =
(

3λ+ 2µT + 2γ3 + γ4 (M.M ′)
2
)

tr ε+

(M.εM +M ′.εM ′)
(

2γ1 + 3γ3 + γ5 (M.M ′)
2

+ γ6 + 2γ7

)
+

(γ2M.M ′ + 2γ5 + 3γ6)M.M ′M.εM ′. (5.12)

Comparing (5.11)2 and (5.12) shows that to fully recover the linear theory, it is required

that

c3 6= 0,

and that one of c1, c2 can be set equal to zero, in order to simplify the complexity of the251

model. Thus, adopting an obvious change of notation for the material constants, either252

of253

W (J,C∗) = Wi (C∗) + c1(J − 1) (I∗4 + I∗6 − 2) + c3(J − 1)
(
I∗8 − (M.M ′)

2
)

+
c

2
(J − 1)2,

W (J,C∗) = Wi (C∗) + c1(J − 1) (I∗5 + I∗7 − 2) + c3(J − 1)
(
I∗8 − (M.M ′)

2
)

+
c

2
(J − 1)2,

(5.13)

seems a reasonable model of slight compressibility for orthotropic materials, adopting the254

motivation proposed earlier. Note the necessity of including an I∗8 term in the proposed255

model for slight compressibility, a term which is absent in the model of Nolan et al. [8],256

for example.257
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