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Abstract—Facilitated by advanced ICT infrastructure and
optimization techniques, smart grid has the potential to bring
significant benefits to the energy consumption management.
This paper presents a game theoretic consumption scheduling
framework based on the use of mixed integer programming
to schedule consumption plan for residential consumers. In
particular, the optimization framework incorporates inte gration
of locally generated renewable energy in order to minimise de-
pendency on conventional energy and the consumption cost. The
game theoretic model is designed to coordinatively manage the
scheduling of appliances of consumers. The Nash equilibrium of
the game exists and the scheduling optimization converges to an
equilibrium where all consumers can benefit from participating
in. Simulation results are presented to demonstrate the proposed
approach and the benefits of home demand management.

Index Terms—Smart grids, home demand management, con-
sumption scheduling optimization, game theory.

I. I NTRODUCTION

Demand management is the key to operational efficiency
and reliability of electric grids [1]. The future power gridis
expected to bring significant improvements to energy genera-
tion and dispatch. The direction of power flow will no longer
be just downhill from the bulk power plants to consumers.
Power flow can originate from any energy generation sources
and could end up anywhere on the grid. As micro level local
renewable energy generation such as rooftop solar cells and
the use of hybrid electric vehicles become popular, electricity
can be generated and stored by consumers and can be released
to the grid when necessary [2]. In the future, consumers will
have the flexibility to consume energy from various sources
and make the best use of locally generated energy. Demand
management for smart grids needs to be efficient in terms of
optimizing energy demand and supply [3]. Recent advances in
information and communication technologies (ICT) have en-
abled real time monitoring and control of the grid’s operational
conditions. In particular, the utility operators and consumers
can communicate and coordinate bi-directional load control
and consumption optimizations [4].

Consumption scheduling is one of the important funda-
mental approaches for demand management. It is achieved
by changing the normal electricity consumption patterns of
end consumers over time and reducing the energy demand at
peak times when whole sale market price is high or when
system reliability is jeopardized [5].Techniques such as peak
clipping and flexible load shaping and shifting have been

in place for many decades [6]. However, centralised control
and scheduling of large scale of appliances, for example,
ON/OFF switching or change of operational parameters by the
grid operators appear impractical due to unacceptable level
of delays and data traffic for exchanging control messages.
Instead, utility operators can perform indirect demand man-
agement according to various demand and supply conditions
by encouraging proactive participation of consumers. Indirect
demand management operates through incentives, such as
pricing, energy trading/brokering and even social interaction
[7], [8]. Attractive price plans containing changeable rates, for
example block based time-of-use (ToU) pricing, critical peak
pricing (CPP) [9] and dynamic/real-time pricing schemes [10],
[11], provide consumers economic incentives to manage their
energy consumption efficiently and to reap financial benefits.
Various candidate electricity market models have been studied
in [12]–[14]. Considering that households are directly respon-
sible for actual energy consumption and management of local
energy generation, consumer oriented proactive and distributed
consumption scheduling is very attractive. A number of house-
holds in a neighbourhood could participate locally to reduce
the peak load based on very minimum level of instruction from
utility operators. Hence the indirect demand management can
benefit from low delay and low data traffic for controlling the
appliances.

In order to facilitate consumption scheduling, it is essential
to develop appropriate mathematical optimization algorithms
for energy consumption. There are emerging works on optimal
energy consumption based on both centralised and distributed
optimization algorithms. For example, a centralised phase
management scheme has been developed in [15] that provided
optimal time shifts for periodic loads in order to provide
peak power reduction over a limited time horizon. A heuristic
based evolutionary algorithm (EA) was proposed in [16]
for solving day-ahead load shifting problems.The work in
[17] proposed an integrated solution to predict and schedule
electricity demand in the locality based on user preferences
and social/environmental factors. The work in [18] developed a
stochastic optimization method for residential, commercial and
industrial energy consumers and distributed energy generators
in a microgrid scenario. Apart from optimizations with real-
valued variables, integer and mixed integer programming
(MIP) techniques have also been used for demand management
in smart grids. The work in [19] studied the implementation of
MIP in scheduling optimization of a mircogrid system in order



to reduce both the operational cost and carbon emission. The
authors of [20] further proposed a stochastic MIP framework
incorporating fuzzy decision making in order to obtain socially
optimal solutions.

Game theory is a powerful mechanism for understanding
and modelling mathematically the interaction of various ra-
tional decision makers (known as players). Game theoretic
methods have been widely applied in resource competing
and social welfare optimization scenarios [21]. It is very
suitable for analysing the interaction of consumers and utility
operators in energy demand management, when considering
the distributed nature of the operation of the smart grids and
the need for low complexity algorithms [22]. Mathematical
optimization techniques and game theoretic framework have
the potential to provide very efficient consumer incentive
based distributed consumption scheduling [23]. For example,
an energy scheduling game based on convex optimization tech-
nique was proposed in [24] to schedule power consumption
of various appliances. Constraints such as minimum standby
power and maximum operating power of the appliances
were formulated using a convex optimization framework. The
framework has been extended to multiple households scenario
and a consumption scheduling game was proposed to enable
consumers to respond to energy price information. In [25], a
two-layer game theoretic framework was established. At the
lower level, appliances are scheduled for energy consumption
for each household. At the upper level, a dynamic differential
game was used to capture the scheduling interaction among
different households. The authors of [26] proposed a leader-
follower Stackelberg game with utility companies as leaders
and end consumers as followers to maximise the revenue
of each utility company and the payoff of consumers. A
distributed convergence algorithm was developed that requires
only local information.

Many appliances have their own fixed energy consump-
tion patterns. It means once such an appliance is sched-
uled for operation, changing the power consumption during
the operational period may not be possible or unattractive.
Considering this requirement, a game theoretic consumption
scheduling optimization framework based on mixed integer
programming is proposed in this paper. The proposed frame-
work incorporates integration of local energy resources in
order to reduce dependency on conventional energy and the
cost of energy consumption. One of the advantages of the
proposed approach is that the computational complexity canbe
distributed among the individual home demand management
units by decomposing the large scale centralised optimization
using a decentralised game theoretic method. In particular, by
formulating the scheduling optimization as a potential game,
it is possible to achieve a Pareto optimal Nash equilibrium
where all consumers can benefit from participating in. In this
paper, we will focus on consumption scheduling of residential
consumers. However, the proposed framework can be extended
to electric vehicle (EV) charging applications, as well as
distributed generation and dispatch systems.

The rest of the paper is organised as follows. The detailed
formulation of the MIP scheduling framework is proposed in
Section II. In Section III, the consumption scheduling game

Fig. 1: Illustrative examples of different types of operation of appliances.

among individual consumers based on the optimization frame-
work is formulated. The existence of Nash equilibrium, which
promises the game a stable solution, and the participating
behaviour of consumers are analysed. Numerical simulation
results are presented in Section IV and conclusions are drawn
in Section V.

II. MIP BASED HOME CONSUMPTION SCHEDULING

OPTIMIZATION

A mathematical optimization technique is described for
scheduling daily energy consumption of appliances at house-
hold level with the aim of reducing peak accumulated con-
sumption and the cost of energy for consumers.In particular,
the households are able to draw power from both the main grid
under a given price plan as well as from locally generated
renewable energy sources. The optimization is expected to
maximise the usage of locally generated energy while drawing
energy from the main grids optimally whenever required.

A. Classification of appliances

The household appliances are classified into two groups
namely non-shiftable and shiftable appliances [27].

Non-shiftable appliances are those appliances for which
scheduling is not possible. For example, a fridge is expected to
operate continuously throughout the day, and a central heating
system needs to be in operation whenever it is required by
the consumer. The operations of these appliances are strictly
dominated by user comfort and convenience. Shifting opera-
tions of these appliances can bring considerable discomfort to
consumers, hence not allowed. The reader is referred to [28]
for alternative approaches for managing user preferences and
benefits. The second class of appliances is defined as shiftable
appliances whose operations can be scheduled during certain
predefined periods. Appliances such as washing machines and
storage heating systems belong to this class. The consumers
can tolerate the shift (postponing) of the operations of these
appliances as long as the required operations will be finished
within a preferred time period and will yield financial benefits.

It is necessary to distinguish elastic and inelastic demands
within the class of shiftable appliances. Elastic demand re-
fer to appliances whose operation can be performed non-
continuously and the whole operation time can be divided



into several non-continuous tasks. Preemptive consumption
scheduling is possible. For example, the operation of a water
tank boiler can be broken into several heating tasks throughout
the day and certain energy consumption is required for each
task. Mathematically, the scheduling mechanism will treat
every task as an individual appliance that can be scheduled to
operate at different times. Inelastic demand means the energy
consumption pattern of the appliances cannot be changed
during operation. This means once the appliance starts its
operation, it will need to consume energy according to its own
consumption pattern until the operation is finished. A washing
machine can be considered within this class and the scheduling
for these appliances are non-preemptive [29]. For appliances
which have pre-programmed non-preemptive operations, the
total operation should be scheduled as a whole with the energy
supply according to the appliance’s consumption pattern. Fig.
1 illustrates typical operations and energy consumption of
various classes of appliances.

B. The optimization objective

Let us consider a daily pricing scenario where the cost
of energy is determined as a function of time and energy
consumption generated by all subscribing users in the billing
area. The total cost of the energy consumption of all users
is represented by a vectorC = [C1, C2, . . . , Ct, . . . , CT ]

T ,
wheret is the time-of-use parameter which is also the time slot
indicator for the scheduling optimization.T accounts for the
time resolution, for example,T = 24 andT = 1440 represent
respectively the hourly and minute based schedulings. The
cost of energyCt at time t, is written as a function of the
accumulated consumption of all consumersLt as follows,

Ct = ωtL
2
t + ωtLt + φt, (1)

whereωt is the basic TOU unit rate which can take various val-
ues for different time slotsandφt is an independent standard
charge at timet, e.g., additional fees for critical peak events
[30]. Denote the scheduled daily consumption result for indi-
vidual consumern ∈ N as Ln = [Ln,1, Ln,2, . . . , Ln,T ]

T ∈
RT×1, whereLn,t is the energy consumption of consumer
n at time t, andN denotes the set ofN consumers. Hence
Lt =

∑

n∈N
Ln,t. DenoteL =

∑

n∈N
Ln ∈ RT×1 as the

consumption scheduling profile of the area considered in the
optimization. The cost of energy consumption of the day can
be calculated as

C(L) =
∑

t

Ct =
∑

t

(ωt(
∑

n∈N

Ln,t)
2 + ωt(

∑

n∈N

Ln,t) + φt).

(2)
The pricing plan can be viewed as a continuous func-

tion approximating the existing stepwise (multi-step) pricing
models adopted in the current electricity markets [31]–[33]
and [24]. However, most of these models were designed to
charge individual consumers at different rates according to
their monthly/yearly accumulated energy consumption in a
bid to encourage them to save energy. These models have
limited leverage on customers to reduce the accumulated
consumption of the area at various times. By issuing ToU
pricing, utility operators can enforce high rates during high

demand periods. The consumers will be motivated to shift
their consumption as much as possible from the peak ToU
periods. In particular, it can be observed in (2) that the cost
is not only proportional to the ToU rateωt but also increases
quadratically with the accumulated consumptionLt. The price
per unit of consumption (assumedφt = 0) at time t has the
value of Ct/Lt = ωtLt + ωt. For consumern, the cost of
energy at timet is

Cn,t = (ωtLt + ωt)Ln,t. (3)

This relationship implies that individual’s cost of energy
consumption depends on the demand of all consumers. Hence,
consumers have incentive to reduce the accumulated con-
sumption at every time slot over the day as this will in turn
reduce their energy costs. As all consumers are assumed to
be rational, coordination among consumers is automatically
achieved in order to avoid overlapping consumption at various
times. These activities are modeled as a constrained game in
Section III.

For a given accumulated consumption profilẽLn,t =
∑

i∈N,i6=n Li,t of all consumers other thann, the consumer
n aims to optimise the following,

C(n)(L) =
∑

t

(ωt(Ln,t+ L̃n,t)
2+ωt(Ln,t+ L̃n,t)+φt). (4)

It is highlighted again that by reducing the total costC in
(2), each consumer aims to reduce the cost of his/her energy
use as in (3). Subscript(n) is used to explicitly indicate
consumern’s contribution of the optimization of cost.

In the proposed mechanism, it is assumed that the energy
consumption from local energy sources results into zero cost
to the consumer’s electricity bill. Therefore the consumers will
attempt to make full use of local energy supply to minimise
dependency on conventional energy and to optimise the con-
sumption cost charged by the utility operator. Consumers will
reserve any unused/surplus local energy for future use or may
be able to release it to the main grid and generate revenue [34].
However this is not considered in the proposed optimization
framework.

C. Constraints Formulation

The consumption requirements of various appliances and
the use of local energy are formulated as various constraints
in the optimization problem. Consider consumern has a set
of home appliancesAn. An appliancea ∈ An has a total daily
energy consumption requirement ofln,a. The vectorxn,a =
[xn,a,1, xn,a,2, . . . , xn,a,T ]

T is used to denote the scheduled
energy consumption over the day for the appliancea. The
parameterxn,a,t denotes the intended energy consumption of
the appliancea of usern at timet, and henceLn =

∑

a xn,a.
Suppose the appliancea is required to operate between time
slots tn,a,s and tn,a,f , its total energy requirement can be
ensured by the constraint

tn,a,f
∑

t=tn,a,s

xn,a,t = ln,a, ∀a ∈ An. (5)

A shiftable appliance a ∈ An,s ⊂ An can



have a predefined energy consumption patternpn,a =
[pn,a,1, pn,a,2, . . . , pn,a,T ]

T . In this case only the optimal
starting time can be scheduled. The scheduling resultxn,a

can be viewed as one of the cyclic shifts of the patternpn,a

[35]. All possible shifts for the vectorpn,a can be put together
in a matrix form as

Pn,a =











pn,a,1 pn,a,T ... pn,a,3 pn,a,2
pn,a,2 pn,a,1 ... pn,a,4 pn,a,3

...
...

. . .
...

...
pn,a,T pn,a,T−1... pn,a,2 pn,a,1











, ∀a ∈ An,s.

(6)

A binary integer vector sn,a =
[sn,a,1, sn,a,2, . . . , sn,a,T ]

T , sn,a,t ∈ {0, 1} is defined as
the switch control of the energy consumption from the main
supply for the shiftable appliancea ∈ An,s. There is only one
non-zero element in the vectorsn,a which is equal to one.
Hence the vectorsn,a is an optimization parameter which
chooses appropriate column fromPn,a to optimise the energy
consumption, i.e.,

xn,a = Pn,asn,a,
∑

t

sn,a,t = 1, ∀a ∈ An,s. (7)

For a non-shiftable appliance with a strictly inflexible oper-
ation requirement, the consumption scheduling should be fixed
as required by the consumer. Suppose there is a non-shiftable
appliancea ∈ An,f , An,f ⊂ An, with the energy consumption
patternpn,a. Since both the value and the position of the
elements inpn,a cannot be changed, the scheduling constraint
can be written as

xn,a = pn,a, ∀a ∈ An,f . (8)

The scheduler is able to draw energy optimally from either
the main grid or local energy sources for every appliances.
Considering that local energy resources, such as wind and
solar, could be intermittent, local energy should be scheduled
only when its available capacity is sufficient for supplying
power during the appliance’s operation period. A separate
vector sln,a is introduced to indicate the switching parameter
for the local energy consumption for appliancea. Now the
appliance has two switching parameters to determine its oper-
ation time and the source of energy. The scheduling constraint
can be formulated as follows,

sn,a + sln,a ≤ 1,

xn,a = Pn,asn,a +Pn,as
l
n,a, ∀a ∈ An,s, (9)

where1 = [1, ..., 1]T .
As discussed before, the proposed mechanism treats every

part of a breakable operation as an individual appliance
operating in different time slots. Suppose the operation ofan
appliance can be decomposed intoKa scheduling tasks (appli-
ances),Ka = {a1, ..., ak}. The total consumption scheduling
can be denoted as the sum of all individual tasks, i.e.,xn,a =
xn,a1

+ xn,a2
+ · · · + xn,ak

. Each task has its consumption
requirement ofln,ak

and a consumption profilepn,ak
which

can be decomposed from those of the original appliance. Two

switches are used to schedule each consumption taskxn,ak

and formulate them into the following set of constraints as
similar to (9),

sn,ak
+ sln,ak

≤ 1, (10)

xn,ak
= Pn,ak

sn,ak
+Pn,ak

sln,ak
, (11)

∑

k∈Ka

sn,ak
≤ 1,

∑

k∈Ka

sln,ak
≤ 1, ∀k ∈ Ka, ∀a ∈ An,s. (12)

The constraint (12) ensures that the divided tasks are oper-
ating in different time slots. Actually, an appliance with non-
breakable operation can be viewed as a particular appliance
with only one scheduleable task.

Finally, the scheduled energy consumption from local en-
ergy supply for all appliances must not exceed the consumer’s
local generation and storage capacityyn, i.e.,

∑

a∈An

∑

k∈Ka

Pn,ak
sln,ak

≤ yn. (13)

D. The Local scheduling optimization problem

Based on the above formulations, the optimization problem
for the individual consumern as minimization of utility cost
as defined in (4) through optimum scheduling of energy
consumption, subject to the consumption requirements of
all appliances and the capacity of local energy resource, is
formulated as follows:

min
xn,ak,t∈R

+,

sn,ak
,sln,ak

∈Z
+T×1

C(n)(L)

s.t.
∑

a∈An

∑

k∈Ka

xn,ak,t = Ln,t,

∑

k∈Ka

tn,ak,f
∑

t=tn,ak,s

xn,ak,t = ln,a, ∀a ∈ An,

xn,a = pn,a, ∀a ∈ An,f ,

xn,ak
= Pn,ak

sn,ak
+Pn,ak

sln,ak
,

sn,ak
+ sln,ak

≤ 1,
∑

t

sn,ak,t = 1,
∑

t

sln,ak,t
= 1,

∑

k∈Ka

sn,ak
≤ 1,

∑

k∈Ka

sln,ak
≤ 1,

∑

a∈An

∑

k∈Ka

Pn,ak
sln,ak

≤ yn, ∀k ∈ Ka, ∀a ∈ An,s.

(14)

The optimization in (14) is a mixed integer programming
which can be solved using branch and bound method [36]. The
method obtains the global solution by dividing the original
MIP problem into a number of smaller subproblems. It uses
linear programming relaxation and determines how good a
solution at each subproblem by splitting the subproblem
further, until the optimal solution is reached. Branch and
bound algorithms have been applied in a wide variety of
integer optimization problems and are widely accepted as
efficient for solving small-medium size problems with tens
of variables. However, in the worst case the complexity of
branch and bound method can increase exponentially with



the problem size. In addition, in order to obtain optimum
scheduling using (14),̃Ln,t is required, i.e., the optimization
requires coordination among consumers. In this paper, the
scheduling of consumers are analysed as a strategic game.

III. GAME THEORETIC SCHEDULING APPROACH

A. Game components

In this section, a game theoretic model for the consumption
scheduling of various consumers under a pricing plan as de-
scribed in (2) is presented. In game theory, a non-cooperative
game is defined as a strategic interaction of rational play-
ers consisting of three main components, namely players,
strategies and payoffs [37]. The constrained consumption
scheduling optimization game components are as follows:

Players: The set ofN distributed energy consumersN in
the same billing area.

Strategies: The daily consumption scheduling plan that
each playern chooses to play the game, i.e.,Ln ∈ Sn is
used to represent the strategy chosen by playern, whereSn
denotes the strategy space of playern. The strategy space of
all players is defined asS =

∏

n∈N
Sn.

Payoffs: The payoff of each player is the negative of the
cost of energy consumption charged by the utility company.
The functionun(Ln,L−n), un : S 7→ R is used to represent
the payoff for a chosen strategy of playern, given the
strategy choicesL−n ∈ S−n of all other players (i.e., the
energy consumption profiles of all other consumers), where
S−n =

∏

i∈N,i6=n Si.
Every consumer will want to minimise only his/her energy

cost and will be tempted to select a consumption schedule that
maximises his/her payoffun as the best strategy in response
to the price plan and other players’ chosen strategies. it can be
claimed that consumers may not be able to achieve the lowest
possible cost (i.e., maximal payoff) unless they participate in
the game. Suppose all players schedule operation of appliances
in isolation to respond to the price, then it will lead all players
scheduling their consumption of energy when the ToU rate is
low. This will increase the chances of all consumers operate
the appliances at the same time and will result into high
accumulated consumption. This will in turn increase the cost
of energy to every consumer. Hence, consumers will attempt to
schedule their consumption to minimise the total group costC
using the optimization framework in (14). Individual’s optimal
scheduling is achieved when the cost of all consumers has
reached its minimal. However, each consumer will need to
pay only their share of the cost. This is an analogy to network
utility maximization situation where individuals benefit the
most when the whole network is optimised [38]. In this case,
the payoff function for all players can be represented by (4),
i.e., un(Ln,L−n) = −C(n), ∀n ∈ N. The game is expected to
provide a more balanced scheduling result and reduced cost,
as demonstrated in the simulation section.

Note that in the scheduling game defined above, players
must solve constrained optimizations to obtain their optimal
payoffs and strategies. Therefore, it is necessary to defineTn

as the set of constraints in the optimization (14) for player
n, and T = {Tn, ∀n}. Players’ optimal strategies and the

payoff values should therefore beT-feasible solutions of the
optimization problem.

B. Equilibrium solution

The Nash equilibrium can be defined as a joint strategy pro-
file L∗ = {L∗

1,L
∗
2, ...,L

∗
N}, L∗ ∈ S, whereun(L∗

n,L
∗
−n) ≥

un(Ln,L
∗
−n), ∀Ln ∈ Sn, ∀n ∈ N, i.e., given the equilibrium

strategy choices of other playersL∗
−n, player n has no

incentive to change his/her own strategy fromL∗
n unilaterally

[37]. Nash equilibrium is critical to the non-cooperative game
theoretic modeling because, if it exists, it guarantees a stable
solution where every player plays the best response to the
strategic choices of all other players and the players have no
incentive to deviate from this equilibrium.

As for the particular constrained scheduling optimization
game, the Nash equilibrium will be the strategy profile which
has the above property and alsoT-feasible. Its existence will
ensure that the scheduling process will be able to provide
every consumer an optimal consumption scheduling. Different
from the constrained games as discussed in [39] which will
always guarantee a Nash equilibrium in pure strategies, the
constrained solution is no longer in a continuous space due to
the integer nature of the optimization of the payoff function.
It is useful to adopt potential game approach to establish Nash
equilibrium solution for the scheduling game.

C. Potential game

For a game with a set of playersN, feasible strategy space
S and payoff functionsun(Ln,L−n), a functionU : S → R is
called anexact potential function, if the following holds:

un(Ln,L−n)− un(L
′
n,L−n) = U(Ln,L−n)− U(L′

n,L−n),

∀n ∈ N, ∀Ln,L
′
n ∈ Sn, ∀L−n ∈ S−n,Ln 6= L′

n. (15)

If a game admits an exact potential function which reflects
the changes in the strategy chosen by any of the players,
it falls into a specific class of strategic games calledexact
potential games[40]. It is observed that in the proposed
scheduling game, although individual players are responsible
for optimising only their own consumptions, the goal for all
players is the minimization of the total cost. Any changes in
the schedulingLn will result in a change in the total cost, i.e.,

un(Ln,L−n)− un(L
′
n,L−n) = −(C(L) − C(L′)),

∀n ∈ N, ∀Ln,L
′
n ∈ Sn, ∀L−n ∈ S−n,Ln 6= L′

n, (16)

ThereforeU = −C(L) is used as the exact potential function
and the scheduling game is an exact potential game.

The theorem proposed in [40], which is very important for
establishing Nash equilibrium for potential games, statesthat
the potential game admits a pure strategy Nash equilibrium
L∗ if and only if L∗ is a maximiser of the potential func-
tion. In other words, establishing Nash equilibrium of the
scheduling game is equivalent to determining the solution
of the constrained maximization of the potential function.
The maximum is derived through an iterative best response
convergence process.



D. Game procedure and iterative convergence

A best response iterative process is a dynamic process that
players update their actions by choosing the strategies that
maximise their payoffs, given other players’ current strategies
remain fixed [41]. The best responseBm

n (Lm
−n) of playern

to the strategiesLm
−n, wherem is the game iteration indicator

starting from 0, is given by

B
m
n (Lm

−n) = argmax
Ln∈Sn

un(Ln,L
m
−n). (17)

Playern will update its strategy to a new strategyLm+1
n ∈

Bm
n if and only if the new strategy gains an improvement to

the payoff, i.e.,

un(L
m+1
n ,Lm

−n) > un(L
m
n ,Lm

−n). (18)

For the scheduling potential game, players will be able
to carry out this process in a round robin manner. At each
play, the player will have the opportunity to revise his/her
scheduling with the aim of reducing the cost of energy
consumption, which is equivalent to increasing the potential
payoff. If the revised payoff is higher than the payoff obtained
from the previous play, the player will play the revised new
strategy, otherwise, the old strategy will be retained. Observing
this move, the player at the next turn will optimise his/her
strategy with the aim of further increasing the potential payoff.
At every game iteration, the value of the potential function
satisfies

U(Lm+1) ≥ U(Lm). (19)

As the players keep optimising their strategies, the best
response dynamics will result into a non-decreasing sequence
of changes in the potential payoff{U(L0),U(L1),U(L2), ...}.
This is called ‘improvement path’ which will finish at a point
where no player will see any improvement in the payoff. At
this point, the potential functionU will have converged to
the maximum, which is the Nash equilibrium of the game.
Since the cost is bounded above zero, i.e., it is non-negative,
and its value will be changing non-increasingly within
the game process, the convergence of the sequential game
is guaranteed. In conclusion, the consumption scheduling
game admits aT-feasible Nash equilibrium in pure strategies.

Algorithm 1: Game procedure

Initialization: Each player generates its intended
consumption schedule according to its preferences as
initial strategy and broadcasts it to other players.
On detection of a new pricing signal, execute:
For n = 1 : N

Playern solves optimization in (14) and obtains
the costC(n)(L) and schedulingLn.
If the optimised schedulingLn is different from the

previous scheduling strategy
Broadcast the new strategyLn to other players.

else
Remain silent, i.e., no need for broadcastingLn.

End If
End For
RepeatFor until no further improvement to all players.

The scheduling game is expected to start every time a new
pricing plan is issued. In order to play the best strategyLn and
to obtain maximal payoff, a player needs information which
informs the player the current game status and the chosen
strategies of other playersL−n. A home energy management
unit (EMU) is responsible for collecting and scheduling the
consumption requirements. It serves as a data access point
for scheduling information exchange during the game process.
ICT infrastructure as in neighborhood area networks (NAN)
and local area networks (LAN) can be used in smart grids to
enable efficient and reliable communications among players.
Candidate solutions include wireless 3G/LTE cellular and the
emerging IEEE 802.22 which uses cognitive radio technolo-
gies in the white spaces of the television spectrum [1]. At
the beginning of the game, every player should initialize a
consumption schedule according to his/her own preference and
announce it through the communication network. Acknowl-
edging this information, the players will start to adjust their
energy consumption plan using the best response process. The
game theoretic algorithm for scheduling has been summarised
in Algorithm 1.

E. Efficiency, Complexity and Privacy

The efficiency of the equilibrium solution of the game
theoretic algorithm is often measured by Pareto optimality.
Particularly for this game, a weaker version called constrained
Pareto optimality is considered because all outcomes must
be T-feasible [42]. By definition, a strategy profile is Pareto
optimal if there is no other profile that makes every player at
least as well off while making at least one player strictly better
off [43]. It can be claimed that the outcome of Algorithm 1
is automatically constrained Pareto optimal since it maximises
the potential payoff which reflects the payoff for every player.

One of the important benefits of the proposed distributed
approaches is that the computational complexity can be dis-
tributed among various home energy management units by
decomposing the large scale centralised optimization using a
decentralised game theoretic method. In terms of exchange
of information, the distributed algorithms can also be ef-
ficient as compared to centralised algorithms. For example
the distributed design approach in wireless networks enables
coordinated beamforming without the need of explicit inter-
base-station information exchange as in [44], and the game
theoretic approach as in [45]. For the demand management
to be performed centrally, each household needs to inform
the centralised scheduling processor the type of each appli-
ance, its energy consumption pattern, consumer’s preferred
time of use, the use of electric vehicle and the availability
of local energy, etc. This may require extensive amount of
explicit data exchange between households and the centralised
processor. For the proposed game theoretic approach, details
on individual appliances are not required to be exchanged.
As can be observed in Algorithm 1, the optimizations of
detailed appliance consumption are done locally at every
iteration, only the overall consumption profileLn is required
to be exchanged among players. This significantly reduces the



amount of information exchange. In addition, the distributed
approach has the benefit of enhanced privacy because the
exact details of appliances and the information of individual
household’s locally generated energy are not exchanged. Only
the aggregated use of energy is exchanged which has relatively
lower private information. However, such information needs
to be communicated among all players repeatedly during the
iterative updating process. This may turn out to increase
the communications overhead, especially for large number of
consumers. Moreover, a centralised processor may possibly
have more computational capacity to perform complex opti-
mizations, hence centralised processer may be advantageous if
there is any limitations on the computation and communication
capability of the distributed EMUs. These tradeoffs need to
be considered carefully in the choice between centralised and
decentralised optimization approaches.

F. Behaviour of players and their participation in the game

The capacity of local energy supply is critical to the players
in order to decide whether to participate in the scheduling
game or not. Consider a particular consumer whose local
capacity exceeds his daily consumption requirement. The
consumer has the ability to self-supply his own energy demand
and will achieve zero energy cost charged by the utility com-
pany even without any scheduling. In this case, as there is no
impact in terms of pricing, this consumer has no incentive to
participate in the scheduling game until there is a need to draw
power from the main grid again. These players need not to play
the game because scheduling does not provide any benefit
to them. By observing the capacity of local energy supply,
consumers should be able to decide whether to participate in
the game immediately.

In non-cooperative games, there is a possibility that certain
players may be untruthful during the game process by pro-
viding false information to the scheduling results. This will
make the optimizations invalid and unable to reach the optimal
result. Since the consumption optimization promises a lowest
group cost and an optimal scheduling at the Nash equilibrium
for every player in the game, there should be no incentive for
players to cheat. However cheating could still occur when there
are malicious players who always cheat intentionally to hurt
others. Considering that the demand management activities
will be carried out repeatedly on a daily basis, cheating players
can be punished in future plays using various mechanisms as
proposed for repeated games as in [37]. Developing workable
mechanisms for detecting and preventing untruthful players is
an open research topic.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

A. System set up

This section presents an illustrative simulation for the
consumption scheduling optimization over one day using the
proposed game theoretic approach.Consider a small resi-
dential area consisting ofN = 10 individual households.
Each household has a set of appliances such as a 24 hour
operational fridge & freezer (hourly consumption of 0.12kWh)
and electric heating (daily requirement of 4kWh) with multiple
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Fig. 2: Convergence of the scheduling game (played sequentially by each
player), e.g., iteration 20 means each player played twice.

non-shiftable operations, washing machine with one shiftable
operation program (daily requirement of 1.2kWh) and a water
tank boiler (daily consumption of 1.6kWh) with multiple
shiftable tasks over the day. The consumption requirements
for these appliances have been obtained from [46] and [47].
Assume that the size of each household is different. The
consumption requirements of the appliances and the total daily
demands could vary. The daily demand of the 10 households
is set at 256kWh. User preferences for particular appliances
also vary individually. In order to study the performance of
the proposed consumption scheduling, the capacity of the
local energy supply is assumed to be a small fraction chosen
randomly between 15 percent and 25 percent of the daily
requirement of each consumer so that every one will have
incentive to participate in the game.

The pricing plan used in the simulation is based on a basic
hourly ToU rate, hence the scheduling time resolution is one
hour (T = 24). The unit rateωt is assumed to have the lowest
value of one pence during the night period while the daytime
rate is two pence and the peak rate of five pence appears in the
morning between 9am and 10am and in the evening between
6pm and 8pm. Assume there was zero standard admission
chargeφt.

B. Performance evaluation

The convergence of the cost function against iteration of
the game process is shown in Fig. 2. It is observed that
the cost has dropped considerably fast during the first 10
iterations, i.e., when all the players finished their moves in the
first round. The cost continued to reduce gradually and then
became steady at 3374 pence after 20 plays. As the game went
on for another two rounds, no player was able to reduce the
cost further (improve the payoff). Therefore, after 30 iterations
of individual scheduling, the game process is considered as
finished and reached the Nash equilibrium point. Compared to
rather high initial cost of 6586 pence, the proposed mechanism
offered a significant reduction of nearly 50 percent of the
total cost. As seen, the convergence of the scheduling game is
reasonably fast. As for this simulation scenario, it is claimed
that only three rounds of play per player is adequate for the
game to reach stable NE point.



In order to evaluate the benefits for individual consumers,
the cost of energy consumption for each consumer has been
provided in Table I. Compared to the cost without scheduling,
every consumer gains a cost reduction of around 50 percent
by participating in the optimization game, which is fairly
identical to the overall cost reduction. In other words, the
overall benefits have been fairly distributed to all playerswho
participated in the game.

Without Game Isolated
scheduling result scheduling

Consumer 1 433.80 227.83 258.03
Consumer 2 595.57 258.01 294.83
Consumer 3 609.21 307.26 323.70
Consumer 4 689.55 342.26 375.44
Consumer 5 515.02 283.71 305.93
Consumer 6 694.08 412.96 444.00
Consumer 7 839.80 389.16 445.40
Consumer 8 780.08 400.42 461.41
Consumer 9 879.62 499.94 502.80
Consumer 10 548.25 253.05 292.32

Total 6584.96 3374.60 3703.85
TABLE I: Comparison of the cost of consumption (pence)

Table I compares the cost with the result of an isolated
scheduling scheme where players are assumed to have the
same appliances and user preferences as in the game above,
however they schedule their consumption independently ac-
cording to the price plan, without knowing others’ scheduling
information. As seen, an average cost reduction of 35 pence
has been achieved for each game participant. Therefore, the
proposed game theoretic framework has the ability to reduce
the cost by encouraging consumers to participate. The differ-
ence in performance is expected to become considerably high
when a large number of subscribers are involved.

Fig. 3 depicts the scheduled optimal consumption for all the
participating households after the game has converged. It is
observed that the consumptions remain reasonably low during
the day time and the majority of the demand has been shifted
to the night time corresponding to lower price. Most of the
local energies were drawn to further reduce the potential high
demand, in particular at peak times in the morning and in the
evening. The consumption optimization performed effectively
in both integrating local energy resource optimally and also
scheduling possible consumption away from the peak ToU
periods. It should be noted that even though the terminology
of balanced scheduling is used, it is not expected to achieve
equal consumption distribution throughout the day. This is
because the aim is not to distribute the demand equally, but
to fit it to the expectation of the utility operator accordingto
the price profile, i.e., to move most of energy consumptions
to off peak period as seen in Fig. 3. The reason for this is
that the demand might be high, for example due to industrial
use of electricity in the day time, and the aim of utility
operator is to balance the overall demand consisting of both
the industrial and residential demands, by issuing appropriate
pricing plans. The game theoretic method proposed helps to
ensure the consumers do not operate all the appliances at the
same time, but distribute over the time as much as possible,
as seen in the results.

Table II lists the usage of local energy for each player.

Fig. 3: Scheduled accumulated energy consumption over the day.
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Fig. 4: Comparison of scheduled consumption for five players.
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Fig. 5: Scheduled consumption from local and main supply forfive players.

The majority of local capacity has been scheduled to be used.
However, it appears that there is still a small portion of energy
that was not utilised. This is because this energy was not being
able to be served to any of the appliance on the current date of
scheduling. This unused energy can be stored for future use.

Usage Usage
Consumer 1 87% Consumer 6 96%
Consumer 2 96% Consumer 7 85%
Consumer 3 87% Consumer 8 90%
Consumer 4 93% Consumer 9 86%
Consumer 5 90% Consumer 10 95%

TABLE II: local energy usage of consumers

Fig. 4 compares the consumption schedules of five indi-
vidual consumers. As seen, the peak energy consumption of



consumers occurs at different time slots. This implies the
shiftable operations have been well distributed with minimal
overlapping with each other. However, considerable overlap-
ping still appeares, e.g., in the hours between 7pm and 8pm.
This is caused due to the non-shiftable requirements during
the peak hours in the evening. As depicted in Fig. 5, the
local energy supplies were mainly scheduled at these periods
in order to reduce the dependency on the main grid to prevent
high accumulated consumption and cost. The chargeable con-
sumption has decreased by approximately 70 percent between
the hours of 7pm and 8pm, i.e., the effect of overlapping was
signigicantly reduced. In summary, through the scheduling
game, consumers are able to optimally manage their daily
consumption and integrate local generated/stored energy.

V. CONCLUSIONS

This paper presented a non-cooperative game theoretic con-
sumption scheduling framework based on MIP optimization
technique to schedule the energy consumption at household
level. The scheme has the ability to reduce energy cost and the
accumulated consumption. Consumption requirements of the
appliances were classified into different groups and formulated
into the optimization. In addition, locally generated renewable
energy has been integrated into the consumption scheduling
optimization to further reduce the demand on conventional
energy. The proposed game admits a Nash equilibrium where
the scheduling optimization process finds a stable solutionat
which every consumer benefits from minimised cost of energy
consumption. The simulations demonstrated the convergence
of the algorithm and the benefits to the consumers and the
grid operators.
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