A Game Theoretic Optimization Framework for
Home Demand Management Incorporating Local
Energy Resources

Abstract—Facilitated by advanced ICT infrastructure and in place for many decades [6]. However, centralised control
optimization techniques, smart grid has the potential to bing and scheduling of large scale of appliances, for example,
significant benefits to the energy consumption management. o\/OFF switching or change of operational parameters by the
This paper presents a game theoretic consumption schedutin fid o t - tical due t tabld |
framework based on the use of mixed integer programming g perators appear Imprac Ica ue. 0 unhaccepta eve
to schedule consumption plan for residential consumers. In Of delays and data traffic for exchanging control messages.
particular, the optimization framework incorporates inte gration  Instead, utility operators can perform indirect demand man
of locally generated renewable energy in order to minimise & agement according to various demand and supply conditions
pendency on conventional energy and the consumption costh@ by encouraging proactive participation of consumers.reudi

game theoretic model is designed to coordinatively managehé . .
scheduling of appliances of consumers. The Nash equilibrm of demand management operates through incentives, such as

the game exists and the scheduling optimization converges an  Pricing, energy trading/brokering and even social intéoac
equilibrium where all consumers can benefit from participatng [7], [8]. Attractive price plans containing changeableegtfor
in. Simulation results are presented to demonstrate the prposed example block based time-of-use (ToU) pricing, criticabke
approach and the benefits of home demand management. pricing (CPP) [9] and dynamic/real-time pricing scheme3j[1
Index Terms—Smart grids, home demand management, con- [11], provide consumers economic incentives to manage thei
sumption scheduling optimization, game theory. energy consumption efficiently and to reap financial benefits
Various candidate electricity market models have beeniesud
in [12]-[14]. Considering that households are directlyps
sible for actual energy consumption and management of local
Demand management is the key to operational efficienepergy generation, consumer oriented proactive and aliséd
and reliability of electric grids [1]. The future power grid consumption scheduling is very attractive. A number of lesus
expected to bring significant improvements to energy genetmlds in a neighbourhood could participate locally to reduc
tion and dispatch. The direction of power flow will no longethe peak load based on very minimum level of instruction from
be just downhill from the bulk power plants to consumersitility operators. Hence the indirect demand management ca
Power flow can originate from any energy generation sourdesnefit from low delay and low data traffic for controlling the
and could end up anywhere on the grid. As micro level locappliances.
renewable energy generation such as rooftop solar cells andh order to facilitate consumption scheduling, it is esggnt
the use of hybrid electric vehicles become popular, elgttri to develop appropriate mathematical optimization algoni
can be generated and stored by consumers and can be releftseshergy consumption. There are emerging works on optimal
to the grid when necessary [2]. In the future, consumers wéhergy consumption based on both centralised and disdbut
have the flexibility to consume energy from various sourcegptimization algorithms. For example, a centralised phase
and make the best use of locally generated energy. Demananagement scheme has been developed in [15] that provided
management for smart grids needs to be efficient in termsaptimal time shifts for periodic loads in order to provide
optimizing energy demand and supply [3]. Recent advancespeak power reduction over a limited time horizon. A heueisti
information and communication technologies (ICT) have elvased evolutionary algorithm (EA) was proposed in [16]
abled real time monitoring and control of the grid's opevatl for solving day-ahead load shifting problemBhe work in
conditions. In particular, the utility operators and camsms [17] proposed an integrated solution to predict and scleedul
can communicate and coordinate bi-directional load céntrelectricity demand in the locality based on user preference
and consumption optimizations [4]. and social/environmental factors. The work in [18] develdp
Consumption scheduling is one of the important fundatochastic optimization method for residential, comnarand
mental approaches for demand management. It is achievwedustrial energy consumers and distributed energy géorsra
by changing the normal electricity consumption patterns @f a microgrid scenario. Apart from optimizations with real
end consumers over time and reducing the energy demandaltied variables, integer and mixed integer programming
peak times when whole sale market price is high or wh€MIP) techniques have also been used for demand management
system reliability is jeopardized [5Techniques such as peakin smart grids. The work in [19] studied the implementatién o
clipping and flexible load shaping and shifting have bedvlP in scheduling optimization of a mircogrid system in arde

I. INTRODUCTION



to reduce both the operational cost and carbon emission. 1
authors of [20] further proposed a stochastic MIP framewol
incorporating fuzzy decision making in order to obtain sdgi
optimal solutions.

Game theory is a powerful mechanism for understandit jime ime
and modelling mathematically the interaction of various re
tional decision makers (known as players). Game theore L

methods have been widely applied in resource competi

and social welfare optimization scenarios [21]. It is ver
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suitable for analysing the interaction of consumers anlityuti
operators in energy demand management, when considel .
the distributed nature of the operation of the smart grid$ ai 8 pr—
the need for low complexity algorithms [22]. Mathematica & operaon

optimization techniques and game theoretic framework ha. _

. . . . . _Fig. 1: lllustrative examples of different types of opewatiof appliances.
the potential to provide very efficient consumer incentive 9 P wp P PP

based distributed consumption scheduling [23]. For exampl,yqng individual consumers based on the optimization frame
an energy scheduling game based on convex optimization ey, s formulated. The existence of Nash equilibrium, vihic

nique was proposed in [24] to schedule power consumptigfymises the game a stable solution, and the participating
of various appliances. Constraints such as minimum standbyhaiour of consumers are analysed. Numerical simulation

power and maximum operating power of the appliancesg, ;s are presented in Section IV and conclusions arerdraw
were formulated using a convex optimization framework. The gection V.

framework has been extended to multiple households seenari
and a consumption scheduling game was proposed to enable;;
consumers to respond to energy price information. In [25], a OPTIMIZATION
two-layer game theoretic framework was established. At the . N . . .

lower level, appliances are scheduled for energy consompti A mqthemgtlcal optimization te_chnlque 'S described for
for each household. At the upper level, a dynamic dif“feEéntiSChecm''ng daily energy consumption of appliances at house

game was used to capture the scheduling interaction am d I(_evel with the aim of reducing peak accumulgted con-
‘51 ption and the cost of energy for consuménsparticular,

onsumption

power consumption

MIP BASED HOME CONSUMPTION SCHEDULING

different households. The authors of [26] proposed a lead H h hold bl q ¢ both th i arid
follower Stackelberg game with utility companies as leade e households are aple to draw power from bo € main gri
der a given price plan as well as from locally generated

and end consumers as followers to maximise the revent/ P
of each utility company and the payoff of consumers. Aeneyva}ble energy sources. The optimization is e.xpected_ o
distributed convergence algorithm was developed thatiregju maximise the usage_of Io_cally g_enerated energy wh|Ie_ drgwin
only local information. energy from the main grids optimally whenever required.
Many appliances have their own fixed energy consump- )
tion patterns. It means once such an appliance is schéd-Classification of appliances
uled for operation, changing the power consumption during The household appliances are classified into two groups
the operational period may not be possible or unattractiveamely non-shiftable and shiftable appliances [27].
Considering this requirement, a game theoretic consumptio Non-shiftable appliances are those appliances for which
scheduling optimization framework based on mixed integecheduling is not possible. For example, a fridge is exjgetcie
programming is proposed in this paper. The proposed framaperate continuously throughout the day, and a centraifteat
work incorporates integration of local energy resources gystem needs to be in operation whenever it is required by
order to reduce dependency on conventional energy and the consumer. The operations of these appliances ardystrict
cost of energy consumption. One of the advantages of tieminated by user comfort and convenience. Shifting opera-
proposed approach is that the computational complexitypeantions of these appliances can bring considerable discdritfor
distributed among the individual home demand managemeonsumers, hence not allowed. The reader is referred to [28]
units by decomposing the large scale centralised optiinizat for alternative approaches for managing user preferenugs a
using a decentralised game theoretic method. In partidojar benefits. The second class of appliances is defined as séiftab
formulating the scheduling optimization as a potential gamappliances whose operations can be scheduled duringrcertai
it is possible to achieve a Pareto optimal Nash equilibriupredefined periods. Appliances such as washing machines and
where all consumers can benefit from participating in. I8 thstorage heating systems belong to this class. The consumers
paper, we will focus on consumption scheduling of resiggntican tolerate the shift (postponing) of the operations of¢he
consumers. However, the proposed framework can be extendegliances as long as the required operations will be fidishe
to electric vehicle (EV) charging applications, as well awithin a preferred time period and will yield financial ben&fi
distributed generation and dispatch systems. It is necessary to distinguish elastic and inelastic dermand
The rest of the paper is organised as follows. The detailadgthin the class of shiftable appliances. Elastic demand re
formulation of the MIP scheduling framework is proposed ifer to appliances whose operation can be performed non-
Section Il. In Section 1ll, the consumption scheduling gameontinuously and the whole operation time can be divided



into several non-continuous tasks. Preemptive consumptidemand periods. The consumers will be motivated to shift
scheduling is possible. For example, the operation of arwatbeir consumption as much as possible from the peak ToU
tank boiler can be broken into several heating tasks throuigh periods. In particular, it can be observed in (2) that thet cos
the day and certain energy consumption is required for eashnot only proportional to the ToU rate; but also increases
task. Mathematically, the scheduling mechanism will treauadratically with the accumulated consumption The price
every task as an individual appliance that can be schedaleder unit of consumption (assumegd = 0) at time¢ has the
operate at different times. Inelastic demand means theygnevalue of C; /L, = w;L; + w;. For consumen, the cost of
consumption pattern of the appliances cannot be changstergy at time is

during operation. This means once the appliance starts its

operation, it will need to consume energy according to ita ow Cnt = (wiLe +we) Lo )
consumption pattern until the operation is finished. A waghi This relationship implies that individual's cost of energy
machine can be considered within this class and the scimedultonsumption depends on the demand of all consumers. Hence,
for these appliances are non-preemptive [29]. For appdsncGonsumers have incentive to reduce the accumulated con-
which have pre-programmed non-preemptive operations, #@nption at every time slot over the day as this will in turn
total operation should be scheduled as a whole with the gnergduce their energy costs. As all consumers are assumed to
supply according to the appliance’s consumption patteiq. Fbe rational, coordination among consumers is automaticall

1 illustrates typical operations and energy consumption @thieved in order to avoid overlapping consumption at verio

various classes of appliances. times. These activities are modeled as a constrained game in
Section IlI. )
B. The optimization objective For a given accumulated consumption profig,, =

Let us consider a daily pricing scenario where the co;i@’#" Li .Of. all consumers other than, the consumer
n_aims to optimise the following,

of energy is determined as a function of time and energy
consumption generated by all subscribing users in thengilli ¢, (L) = Z(wt(Ln,t+En,t)2+wt(Ln,t+zn,t)+¢t)- (4)
area. The total cost of the energy consumption of all users n

is represented by a vect® = [C1,Cs,....Cy,...,C1]", |t s highlighted again that by reducing the total c@&tin

wheret is the time-of-use parameter which is also the time sl?z), each consumer aims to reduce the cost of his/her energy
indicator for the scheduling optimizatioff: accounts for the e as in (3). Subscriptn) is used to explicitly indicate

time resolution, for examplél = 24 andT" = 1440 represent consuymeny’s contribution of the optimization of cost.
respectively the hour_ly and_ min_ute based schgdulings. Thep the proposed mechanism, it is assumed that the energy
cost of energyC’; at timet, is written as a function of the ¢onsumption from local energy sources results into zero cos
accumulated consumption of all consuméssas follows, to the consumer’s electricity bill. Therefore the consusneill

Cy = w L2 + w Ly + ¢y, (1) attempt to make full use of local energy supply tq minimise

dependency on conventional energy and to optimise the con-

wherew; is the basic TOU unit rate which can take various vakumption cost charged by the utility operator. Consumelis wi
ues for different time slotand ¢, is an independent standardreserve any unused/surplus local energy for future use gr ma
charge at time;, e.g., additional fees for critical peak eventge able to release it to the main grid and generate reveniie [34

[30]. Denote the scheduled daily consumption result foi-indHowever this is not considered in the proposed optimization
vidual consumem € N asL,, = [L,1,Ln2,..., Lot € framework.

RT*! where L,,; is the energy consumption of consumer
n at timet¢, and N denotes the set oV consumers. Hence C. Constraints Formulation

L; = L, DenoteL = Y _ L, € RT*! as the _ _ _ .
‘ Lnen L.t Lnen Ln The consumption requirements of various appliances and

consumption scheduling profile of the area considered in trhe £ local ¢ lated . :
optimization. The cost of energy consumption of the day ca_‘ e use of local energy are formulated as various conssraint

be calculated as in the optimi;ation problem. Qonsider consumehas a s_et
of home appliance4,,. An appliancex € A,, has a total daily
C(L) = Z Ci = Z(Wt(z Lnt)® + Wt(z Lnt)+¢). energy consumption requirement bf,. The vectorx,, , =
t t neN neN [Tn.a1,Tna2s -, Tnar)! IS used to denote the scheduled
. _ ) @) energy consumption over the day for the appliamceThe
_ The pricing plan can be viewed as a continuous fung,ameter:,, , , denotes the intended energy consumption of
tion approximating the existing stepwise (multi-step)cjry the applianc’ea’ of usern at imet, and hencd., = 3, Xy,.a.

models adopted in the current electricity markets [3_1]]'[3%uppose the applianeeis required to operate between time
and [24]. I-_|o_wever, most of these_models were deS|gr_1ed dRts tnas and t,.q . its total energy requirement can be
charge individual consumers at different rates accordmg &.q req by the constraint

their monthly/yearly accumulated energy consumption in a

bid to encourage them to save energy. These models have brars
limited leverage on customers to reduce the accumulated Z Tnat = lna, V0 € An. ®)
consumption of the area at various times. By issuing ToU t=tn.as

pricing, utility operators can enforce high rates duringthi A shiftable appliancea € A, C A, can



have a predefined energy consumption pattgrn, = switches are used to schedule each consumptionstask
[PraisPna2s - Pnar|’. In this case only the optimal and formulate them into the following set of constraints as
starting time can be scheduled. The scheduling resylf similar to (9),

can be viewed as one of the cyclic shifts of the pattesn,

[35]. All possible shifts for the vectap,, , can be put together Sn.as + S o S 1 (10)
in a matrix form as Xnar = PrarSnar + PriayShaps (11)
> sna, <1,) sh o, <1VE €K, Va€ Ay (12)
Pn,a,1 Pn,a, T - Pn,a,3 Pn,a,2 keKq keKq
Pna2 Pnal - Pnad Pna3 The constraint (12) ensures that the divided tasks are oper-

s

Pra= : : : : ) Va € Ans. ating in different time slots. Actually, an appliance witbm

breakable operation can be viewed as a particular appliance
(6) With only one scheduleable task.
Finally, the scheduled energy consumption from local en-

Pn,a, T Pn,a,T—1--- Pn,a,2 Pn,a,l

A binary integer Vector - sp.q = ergy supply for all appliances must not exceed the conssmer’
[Sna1s Sna2s «vy Snar]’y Snae € {0,1} s defined as local generation and storage capaajty i.e.,
the switch control of the energy consumption from the main
supply for the shiftable applianeec A, ;. There is only one Z Z PaSnan < Yn- (13)
non-zero element in the vectay, , which is equal to one. a€h, keK,

Hence the vectos,, , is an optimization parameter which _ o
chooses appropriate column frdy, , to optimise the energy D. The Local scheduling optimization problem

consumption, i.e., Based on the above formulations, the optimization problem
for the individual consumen as minimization of utility cost
na:Pna n,as n,a :17 Ans~ 7 . . . .
*n, ,aSn, ZS ot va € An, (7) as defined in (4) through optimum scheduling of energy
consumption, subject to the consumption requirements of

For a non-shiftable appliance with a strictly inflexible ope g appliances and the capacity of local energy resource, is
ation requirement, the consumption scheduling should el fiX;, mulated as follows:

as required by the consumer. Suppose there is a non-shiftabl
appliancen € A,, ¢, A, ¢ C A, with the energy consumption min . Cny(L)

patternp,, ,. Since both the value and the position of the o 7k tEGH;’TXI
elements inp,, , cannot be changed, the scheduling constraint *x*m
can be written as Z Z Tn,ap,t = Lint,
ach,, kek,
Xn,a = Pn,a, V0 € Ay 5. (8) byt
The scheduler is able to draw energy optimally from either Z Z Tp,ap,t = lna, Va € Ay,

the main grid or local energy sources for every appliances. k€Ka t=tn a5
Considering that local energy resources, such as wind and Xn,a = Pn,a; V0 € Ay 7,

solar, could be intermittent, local energy should be sclestiu

. ’ a= > . b'¢ =P, +Ppast |
only when its available capacity is sufficient for supplying o T TR TR | kT

power during the appliance’s operation period. A separate Sn,aj T s), ap =1 an apt = 1 an ap,t =
vectors!, , is introduced to indicate the switching parameter
for the local energy consumption for applianee Now the Z Sna, <1, Z Snoa. <1,
appliance has two switching parameters to determine its-ope k€K k€K
ation time and the source of energy. The scheduling constrai Z Z ParSha, < Yni Yk € Koy Va € Ay
can be formulated as follows, achy heKa
Sna—I—SnaSl (14)
Xn.a = PraSna+ Py asnm Va € A, ., 9) 'I_'he optimization in (_14) is a mixed integer programming
which can be solved using branch and bound method [36]. The
wherel = [1,...,1]7. method obtains the global solution by dividing the original

As discussed before, the proposed mechanism treats evdi? problem into a number of smaller subproblems. It uses
part of a breakable operation as an individual appliantieear programming relaxation and determines how good a
operating in different time slots. Suppose the operatioarof solution at each subproblem by splitting the subproblem
appliance can be decomposed ifitg scheduling tasks (appli- further, until the optimal solution is reached. Branch and
ances)K, = {a1,...,ar}. The total consumption schedulingbound algorithms have been applied in a wide variety of
can be denoted as the sum of all individual tasks, xg,, = integer optimization problems and are widely accepted as
Xn,a1 + Xn,as + - + Xnq,. Each task has its consumptiorefficient for solving small-medium size problems with tens
requirement ofl,, ,, and a consumption profilp,, ,, which of variables. However, in the worst case the complexity of
can be decomposed from those of the original appliance. TwWwoanch and bound method can increase exponentially with



the problem size. In addition, in order to obtain optimurpayoff values should therefore liefeasible solutions of the
scheduling using (14)L,, ; is required, i.e., the optimization optimization problem.
requires coordination among consumers. In this paper, the

scheduling of consumers are analysed as a strategic game. o )
B. Equilibrium solution

11l. GAME THEORETIC SCHEDULING APPROACH The Nash equilibrium can be defined as ajoint strategy pro-
file L* = {Li,Lj,....Li}, L* € S, wherew, (L, L* ) >
u,(L,,L* ), VL, € S,,Vn € N, i.e., given the equilibrium

In this section, a game theoretic model for the consumpti@frategy choices of other playei* ,, player n has no
scheduling of various consumers under a pricing plan as dgcentive to change his/her own strategy frém unilaterally
scribed in (2) is presented. In game theory, a non-cooperatj37]. Nash equilibrium is critical to the non-cooperativange
game is defined as a strategic interaction of rational plagreoretic modeling because, if it exists, it guaranteesahlet
ers consisting of three main components, namely playegslution where every player plays the best response to the
strategies and payoffs [37]. The constrained consumptigftategic choices of all other players and the players have n
scheduling optimization game components are as follows: incentive to deviate from this equilibrium.

Players: The set of N distributed energy consumelsin  As for the particular constrained scheduling optimization
the same billing area. game, the Nash equilibrium will be the strategy profile which
Strategies: The daily consumption scheduling plan thahas the above property and afSefeasible. Its existence will
each player chooses to play the game, i.d,,, € S, iS ensure that the scheduling process will be able to provide
used to represent the strategy chosen by playewhereS, every consumer an optimal consumption scheduling. Differe
denotes the strategy space of playerThe strategy space offrom the constrained games as discussed in [39] which will
all players is defined as = [ [,y S always guarantee a Nash equilibrium in pure strategies, the

Payoffs: The payoff of each player is the negative of theonstrained solution is no longer in a continuous space alue t
cost of energy consumption charged by the utility compange integer nature of the optimization of the payoff funatio
The functionu,,(L,,,L_,),u, : S = R is used to represent|t is useful to adopt potential game approach to establisshNa
the payoff for a chosen strategy of player given the equilibrium solution for the scheduling game.
strategy choiced._,, € S_,, of all other players (i.e., the
energy consumption profiles of all other consumers), where .
S_, = HieN,i;ﬁn S;. C. Potential game

Every consumer will want to minimise only his/her energy For a game with a set of playel§ feasible strategy space
cost and will be tempted to select a consumption schedute tiiaand payoff functionst, (L., L_,), a functiont( : S — R is

maximises his/her payoff, as the best strategy in responsgajled anexact potential functionif the following holds:
to the price plan and other players’ chosen strategiesnibea

claimed that consumers may not be able to achieve the lowdst(Ln, L—n) — un(L;,, L) = #(Ly, L) — U(Ly, L),
possible cost (i.e., maximal payoff) unless they partigpa vn € N,VL,,L!, €S,,VL_,, € S_,,,L,, # L. (15)

the game. Suppose all players schedule operation of appkan
g PP piay P PP If a game admits an exact potential function which reflects

in isolation to respond to the price, then it will lead all ydas )
scheduling their consumption of energy when the ToU rate_q%e changes in the strategy chosen by any of the players,

low. This will increase the chances of all consumers operaﬂefa"S into a specific class of strategic games calisact

the appliances at the same time and will result into hig[F]Otem'aI games[40]. It is observed that in the proposed

accumulated consumption. This will in turn increase thet Cogcrhgggmgir?;rgr?y atlrgr;?ru(g)\?vr:ng:)\ggﬁﬂprz:izgrihteggi\?%zll

of energy to every consumer. Hence, consumerswillattempt? _ AR .
schedule their consumption to minimise the total group (’:bstpl"iyerS IS the m|n|r_n|zat|on_of the total .COSt' Any chang_es n
using the optimization framework in (14). Individual's ap&l the schedulind.,, will result in a change in the total cost, i.e.,
scheduling is achieved when the cost of all consumers haSun(Ln,L,n) —u, (L, L_,) = —(C(L) — C(L")),
reached its _m|n|mal. However, ea_ch_ consumer will need to Vi € N,VLn, L. € Sp,¥L_p € S_n, Ly # L
pay only their share of the cost. This is an analogy to network "
utility maximization situation where individuals beneftiet Thereforetl = —C(L) is used as the exact potential function
most when the whole network is optimised [38]. In this casaend the scheduling game is an exact potential game.
the payoff function for all players can be represented by (4) The theorem proposed in [40], which is very important for
i.e.,u,(Ln, L_,,) = —C(,,Vn € N. The game is expected toestablishing Nash equilibrium for potential games, stétes
provide a more balanced scheduling result and reduced cdlsg potential game admits a pure strategy Nash equilibrium
as demonstrated in the simulation section. L* if and only if L* is a maximiser of the potential func-
Note that in the scheduling game defined above, playéamsn. In other words, establishing Nash equilibrium of the
must solve constrained optimizations to obtain their optimscheduling game is equivalent to determining the solution
payoffs and strategies. Therefore, it is necessary to dé&fine of the constrained maximization of the potential function.
as the set of constraints in the optimization (14) for playdthe maximum is derived through an iterative best response
n, and T = {T,,Vn}. Players’ optimal strategies and theconvergence process.

A. Game components

(16)

!/
n’



D. Game procedure and iterative convergence

A best response iterative process is a dynamic process that "€ scheduling game is expected to start every time a new
players update their actions by choosing the strategies tR4CING Planis issued. In order to play the best stratbgyand

maximise their payoffs, given other players’ current tgigs to obtain maximal payoff, a player needs information which
remain fixed [41]. The best respong&” (L™, ) of playern informs the player the current game status and the chosen

to the strategie&.™, , wherem is the game iteration indicator STat€gies of other playeis_.. A home energy management
unit (EMU) is responsible for collecting and scheduling the

starting from 0, is given by s X )
consumption requirements. It serves as a data access point

B(L™)) = argmax u,(L,,L™). (17) for scheduling information exchange during the game pices

Ln€Sn ICT infrastructure as in neighborhood area networks (NAN)

Playern will update its strategy to a new strateff'** € and local area networks (LAN) can be used in smart grids to

B™ if and only if the new strategy gains an improvement tenable efficient and reliable communications among players
the payoff, i.e., Candidate solutions include wireless 3G/LTE cellular amal t

emerging IEEE 802.22 which uses cognitive radio technolo-

(18) gies in the white spaces of the television spectrum [1]. At

For the scheduling potential game, players will be abf8e beginning of the game, every player should initialize a
to carry out this process in a round robin manner. At ea@9nsumption schedule according to his/her own preferende a
play, the player will have the opportunity to revise his/hegnnounce it through the communication network. Acknowl-
scheduling with the aim of reducing the cost of energ§dgding this information, the players will start to adjuseith
consumption, which is equivalent to increasing the pognti€nNe€rgy consumption plan using the best response process. Th
payoff. If the revised payoff is higher than the payoff ohd 9ame theoretic algorithm for scheduling has been sumnuhrise
from the previous play, the player will play the revised ned? Algorithm 1.
strategy, otherwise, the old strategy will be retained.edlisg
this move, the pla}yer at the pext tum will optimige his/heg Efficiency,
strategy with the aim of further increasing the potentialqia

At every game iteration, the value of the potential function The efficiency of the equilibrium solution of the game
satisfies theoretic algorithm is often measured by Pareto optimality

L™ > (L), (19) Particularly_ for fchis_game, _aweaker version called coirstic
Pareto optimality is considered because all outcomes must
As the players keep optimising their strategies, the besé T-feasible [42]. By definition, a strategy profile is Pareto
response dynamics will result into a non-decreasing sexmueptimal if there is no other profile that makes every player at
of changes in the potential paydff(L?), U(L'),£(L?),...}. least as well off while making at least one player strictlytér
This is called ‘improvement path’ which will finish at a pointoff [43]. It can be claimed that the outcome of Algorithm 1
where no player will see any improvement in the payoff. Ak automatically constrained Pareto optimal since it maseéms
this point, the potential functiodl will have converged to the potential payoff which reflects the payoff for every @ay
the maximum, which is the Nash equilibrium of the game. One of the important benefits of the proposed distributed
Since the cost is bounded above zero, i.e., it is non-neyatigpproaches is that the computational complexity can be dis-
and its value will be changing non-increasingly withinributed among various home energy management units by
the game process, the convergence of the sequential gaf@€omposing the large scale centralised optimizationguain
is guaranteed. In conclusion, the consumption schedulifigcentralised game theoretic method. In terms of exchange
game admits &-feasible Nash equilibrium in pure strategiesof information, the distributed algorithms can also be ef-
ficient as compared to centralised algorithms. For example

w, (L L™ ) > g (L, L™)).

n —n

Complexity and Privacy

Algorithm 1: Game procedure the distributed design approach in wireless networks esabl
Initialization: Each player generates its intended coordinated beamforming without the need of explicit inter
consumption schedule according to its preferences as  base-station information exchange as in [44], and the game
initial strategy and broadcasts it to other players. theoretic approach as in [45]. For the demand management
On detection of a new pricing signal, execute: to be performed centrally, each household needs to inform
Forn=1:N the centralised scheduling processor the type of each-appli
Playern solves optimization in (14) and obtains ance, its energy consumption pattern, consumer’s preferre
the costC,,) (L) and schedulind.,,. time of use, the use of electric vehicle and the availability
If the optimised scheduling,, is different from the of local energy, etc. This may require extensive amount of
previous scheduling strategy explicit data exchange between households and the ceetlali
Broadcast the new stratedy, to other players. processor. For the proposed game theoretic approachlsdetai
else on individual appliances are not required to be exchanged.
Remain silent, i.e., no need for broadcasting As can be observed in Algorithm 1, the optimizations of
End If detailed appliance consumption are done locally at every
End For iteration, only the overall consumption profilg, is required

Repeatror until no further improvement to all players. to be exchanged among players. This significantly reduees th




amount of information exchange. In addition, the distrdalt
approach has the benefit of enhanced privacy because
exact details of appliances and the information of indiaidu 6400
household’s locally generated energy are not exchangdg. O o000k
the aggregated use of energy is exchanged which has réfati
lower private information. However, such information ngec
to be communicated among all players repeatedly during t
iterative updating process. This may turn out to increa
the communications overhead, especially for large number
consumers. Moreover, a centralised processor may possi
have more computational capacity to perform complex op 4000
mizations, hence centralised processer may be advantageo 3600}
there is any limitations on the computation and commurocati 2200 ‘ ‘ ‘ ‘ ) ) )
capability of the distributed EMUs. These tradeoffs need 0 5 10 Rame ploy terations” % B

be conS|d_ered Ca_ref_u”y_ in the choice between centralised E'Fig. 2: Convergence of the scheduling game (played segilignby each
decentralised optimization approaches. player), e.g., iteration 20 means each player played twice.
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. : C non-shiftable operations, washing machine with one dhiéta
F. Behaviour of players and their participation in the game . . .
viou ] players P I P ) I ! g operation program (daily requirement of 1.2kWh) and a water

~ The capacity of local energy supply is critical to the pl&yekany poiler (daily consumption of 1.6kWh) with multiple
in order to decide whether to participate in the schedulingifiaple tasks over the day. The consumption requirements
game or not. Consider a particular consumer whose 10Gg} hese appliances have been obtained from [46] and [47].
capacity exceeds his daily consumption requirement. TR me that the size of each household is different. The
consumer has the ability to self-supply his own energy demag, s mption requirements of the appliances and the tolgl da
and will achieve zero energy cost charged by the utility cOfgemands could vary. The daily demand of the 10 households
pany even without any scheduling. In this case, as there is @0set at 256kWh. User preferences for particular applisnce
impact in terms of pricing, this consumer has no incentive s yary individually. In order to study the performance of
participate in the st_:hed_ullng game until there is a needdwdr y, proposed consumption scheduling, the capacity of the
power from the main grid again. These players n_eed not to pI@ém energy supply is assumed to be a small fraction chosen
the game because scheduling does not provide any bengfifqomly between 15 percent and 25 percent of the daily
to them. By observing the capacity of local energy supplyequirement of each consumer so that every one will have
consumers should be able to decide whether to participatedfentive to participate in the game.
the game immediately. _ - _ The pricing plan used in the simulation is based on a basic

In non-cooperative games, there is a possibility that Bertg,orly Tou rate, hence the scheduling time resolution is one
players may be untruthful during the game process by prayr (' = 24). The unit rate, is assumed to have the lowest
viding false |_nf(_)rm_at|on_ to t_he scheduling results. Thidl Wiyalue of one pence during the night period while the daytime
make the optimizations invalid and unable to reach the @tim 4t js two pence and the peak rate of five pence appears in the
result. Since the consumption optimization promises amwemorning between 9am and 10am and in the evening between

group cost and an optimal scheduling at the Nash equilibriugﬁm and 8pm. Assume there was zero standard admission
for every player in the game, there should be no incentive foR41ges,.

players to cheat. However cheating could still occur wheneh
are malicious players who always cheat intentionally tothug  performance evaluation

others. Considering that the demand management activitiesl_he convergence of the cost function against iteration of

will be carried out repeatedly on a daily basis, cheatingeia . A .
can be punished in future plays using various mechanismsﬂé% game process is shown in Fig. 2. It is observed that

proposed for repeated games as in [37]. Developing workalglée cost has dropped considerably fast during the first 10

mecharisms o detecing andpreventng umul paser o %101 5, P TE S T BT
an open research topic. : g y

became steady at 3374 pence after 20 plays. As the game went
on for another two rounds, no player was able to reduce the
cost further (improve the payoff). Therefore, after 30atemns
A. System set up of individual scheduling, the game process is considered as
This section presents an illustrative simulation for thinished and reached the Nash equilibrium point. Compared to
consumption scheduling optimization over one day using tihather high initial cost of 6586 pence, the proposed meshani
proposed game theoretic approaconsider a small resi- offered a significant reduction of nearly 50 percent of the
dential area consisting oV = 10 individual households. total cost. As seen, the convergence of the scheduling game i
Each household has a set of appliances such as a 24 heasonably fast. As for this simulation scenario, it is roked
operational fridge & freezer (hourly consumption of 0.12kW that only three rounds of play per player is adequate for the
and electric heating (daily requirement of 4kWh) with mpii game to reach stable NE point.

IV. SIMULATIONS AND PERFORMANCE EVALUATION



In order to evaluate the benefits for individual consumers,
the cost of energy consumption for each consumer has been
provided in Table I. Compared to the cost without scheduling
every consumer gains a cost reduction of around 50 percent
by participating in the optimization game, which is fairly
identical to the overall cost reduction. In other words, the

25

[ Local energy consumption
[ Main grid consumption

overall benefits have been fairly distributed to all playeto
participated in the game.

Without Game Isolated
scheduling | result | scheduling

Consumer 1 433.80 227.83 258.03
Consumer 2 595.57 258.01 294.83
Consumer 3 609.21 307.26 323.70
Consumer 4 689.55 342.26 375.44
Consumer 5 515.02 283.71 305.93
Consumer 6 694.08 412.96 444.00
Consumer 7 839.80 389.16 445.40
Consumer 8 780.08 400.42 461.41
Consumer 9 879.62 499.94 502.80
Consumer 10 548.25 253.05 292.32
Total 6584.96 | 3374.60| 3703.85

TABLE I: Comparison of the cost of consumption (pence)

Table | compares the cost with the result of an isolate
scheduling scheme where players are assumed to have
same appliances and user preferences as in the game at
however they schedule their consumption independently ¢
cording to the price plan, without knowing others’ schedgli
information. As seen, an average cost reduction of 35 per

has been achieved for each game participant. Therefore, u.c Fig

proposed game theoretic framework has the ability to redu
the cost by encouraging consumers to participate. Therdiffi
ence in performance is expected to become considerably h
when a large number of subscribers are involved.

Fig. 3 depicts the scheduled optimal consumption for all tf
participating households after the game has converged. It
observed that the consumptions remain reasonably low glur
the day time and the majority of the demand has been shif
to the night time corresponding to lower price. Most of th
local energies were drawn to further reduce the potentg hi
demand, in particular at peak times in the morning and in tl
evening. The consumption optimization performed effexjiv
in both integrating local energy resource optimally andals
scheduling possible consumption away from the peak Tc

periods. It should be noted that even though the terminOIO?f 5: Scheduled consumption from local and main supplyfif@ players
of balanced scheduling is used, it is not expected to achieve > P PP PIayers.

Power consumption (kWh)
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Fig. 3: Scheduled accumulated energy consumption overdhe d
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equal consumption distribution throughout the day. This ifhe majority of local capacity has been scheduled to be used.
because the aim is not to distribute the demand equally, Ryd\ever, it appears that there is still a small portion ofrgge

to fit it to the expectation of the utility operator accorditt  that was not utilised. This is because this energy was nagbei
the price profile, i.e., to move most of energy consumptionge to be served to any of the appliance on the current date of
to off peak period as seen in Fig. 3. The reason for this &heduling. This unused energy can be stored for future use.

that the demand might be high, for example due to industrial
use of electricity in the day time, and the aim of utility

operator is to balance the overall demand consisting of both
the industrial and residential demands, by issuing apatgpr

pricing plans. The game theoretic method proposed helps to
ensure the consumers do not operate all the appliances at the
same time, but distribute over the time as much as possible,
as seen in the results.

Usage Usage
Consumer 1| 87% Consumer 6 96%
Consumer 2| 96% Consumer 7 85%
Consumer 3| 87% Consumer 8 90%
Consumer 4| 93% Consumer 9 86%
Consumer 5| 90% | Consumer 10| 95%

TABLE II: local energy usage of consumers

Fig. 4 compares the consumption schedules of five indi-
Table II lists the usage of local energy for each playevidual consumers. As seen, the peak energy consumption of



consumers occurs at different time slots. This implies theil] R. Yu, W. Yang, and S. Rahardja, “A statistical demanitep model
shiftable operations have been well distributed with madim

overlapping with each other. However, considerable operlahz]
ping still appeares, e.g., in the hours between 7pm and 8pm.
This is caused due to the non-shiftable requirements during
the peak hours in the evening. As depicted in Fig. 5, {HE’
local energy supplies were mainly scheduled at these periggy
in order to reduce the dependency on the main grid to prevent

high accumulated consumption and cost. The chargeable B

with its application in optimal real-time pricelEEE Transactions on
Smart Grid vol. 3, pp. 1734-1742, Dec 2012.

M. Albadi and F. EI-Saadany, “Demand Response in BlgttrMarkets:
An Overview,” in IEEE Power Engineering Society General Meeting
2007.

R. Weron,Modeling and Forecasting Electricity Loads and Prices: A
Statistical ApproachNew York: Wiley, 2006.

T. Lui, W. Stirling, and H. Marcy, “Get smartJEEE Power and Energy
Magazine vol. 8, pp. 66-78, May-June 2010.

ﬁ]_ G. Koutitas and L. Tassiulas, “A delay based optimzatscheme for

peak load reduction in the smart grid,” future Energy Systems: Where

sumption has decreased by approximately 70 percent between gnergy, Computing and Communication Meet (e-Energy), 2DHid
the hours of 7pm and 8pm, i.e., the effect of overlapping was
signigicantly reduced. In summary, through the scheduliftf!
game, consumers are able to optimally manage their daily
consumption and integrate local generated/stored energy. [17]

This paper presented a non-cooperative game theoretic con-

V. CONCLUSIONS [18]

sumption scheduling framework based on MIP optimization

technique to schedule the energy consumption at househ%?éi

level. The scheme has the ability to reduce energy cost and th
accumulated consumption. Consumption requirements of the

appliances were classified into different groups and foateal

into the optimization. In addition, locally generated remable

energy has been integrated into the consumption schedulj
optimization to further reduce the demand on conventio

energy. The proposed game admits a Nash equilibrium where
the scheduling optimization process finds a stable solutton[22]
which every consumer benefits from minimised cost of energy
consumption. The simulations demonstrated the conveegeng;
of the algorithm and the benefits to the consumers and the
grid operators.
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