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1 Introduction

Galois theory for purely inseparable field extensions was first considered by Jacobson [15]. More broadly,
Chase and Sweedler defined the notion of a Hopf algebra acting on a purely inseparable extension of fields to
obtain a weak analogue to the Fundamental Theorem of Galois theory [6]. The construction of these “Hopf-
Galois” structures however applies not only to purely inseparable field extensions but also to separable field
extensions, as well as extensions of commutative rings (which will not be considered here).

In the groundbreaking paper [13], Greither and Pareigis obtain a classification of Hopf-Galois structures
on separable field extensions L/K. The most remarkable aspect of their classification is that it is entirely
group-theoretic, depending on Gal(E/K) and Gal(E/L), where E is the normal closure of L/K: the structure
of L/K is irrelevant (aside from these Galois groups). Much of the work to date has focused on counting the
number of Hopf-Galois extensions, either directly (see, e.g., [4],[5],[8],[12],[18],[19],[20],[21]) or through
results which facilitate computations (e.g., [2]).

In the three decades since the publication of [13], what has been lacking is a thorough investigation into
the structure of the Hopf algebras which produce these Hopf-Galois structures. It is unclear how much the
structure of the Hopf algebras also depends on group theory. To this end, we introduce some questions for
study, including:

1. Can a single K-Hopf algebra determine more than one Hopf-Galois structure on L/K?
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2. Can two non-isomorphic K-Hopf algebras, each of which giving a Hopf-Galois structure on L/K, become
isomorphic upon base change to some intermediate field K ⊂ F ⊂ L?

3. Can a single K-algebra be endowed with multiple coalgebra structures, resulting in multiple (non-
isomorphic) Hopf algebras, giving different Hopf-Galois structures on L/K?

4. Can two non-isomorphic K-algebras, each of which giving a Hopf-Galois structure on L/K (after being
endowed a coalgebra structure), become isomorphic as algebras upon base change to some intermediate
field K ⊂ F ⊂ L?

It is not known whether the answers to these questions depend on knowledge of the fields, aside from their
automorphism groups. Some specific cases–most notably the cases where Gal(L/K) is cyclic or elementary
abelian–have been investigated by the authors in [17]. We note that L. Childs [10, Theorem 5] has shown
that abelian fixed-point free endomorphisms of Gal(L/K) determine Hopf Galois structures on L/K whose
Hopf algebras are isomorphic to Hλ (see Example 3 for the definition of Hλ ). Childs applies his result to the
cases where Gal(L/K) is the symmetric group Sn, n≥ 5, and the dihedral group of order 4n, n≥ 2. Thus in
these cases, Childs has obtained an affirmative answer to Question (1). In this paper, we will focus on the
case where L/K is Galois with Gal(L/K) = Dp, the dihedral group of order 2p for some prime p ≥ 3. In
this instance, the questions above do in fact have satisfying group theoretic answers.

We start by reviewing Hopf-Galois theory and the Greither-Pareigis theory that yields the classification of
Hopf-Galois structures in the separable case. We then apply Greither-Pareigis theory to describe the Hopf-
Galois structures in the case that L/K is Galois with group Dp; there are p+ 2 such structures, and while
this was known previously (see [4]) we provide a simpler description. We will show that there are three
Hopf algebra isomorphism classes, and that base changing to a proper intermediate field still results in three
distinct Hopf algebra classes. On the other hand, there are two K-algebra isomorphism classes, and base
changing to any intermediate field (even L itself) does not change these isomorphism classes. We then find
explicit bases for each of our Hopf algebras, and specializing to the case p = 3, we give an even more
detailed description of the algebra structure.

In contrast, we point out that the Hopf-Galois theory in the purely inseparable case differs greatly to what
is presented here. For example, if L = K(x), xp ∈ K, x 6∈ K, is a purely inseparable extension (p prime), then
H = K[t]/(t p), t primitive, can act in an infinite number of ways (see, e.g., [16]), allowing for an infinite
number of Hopf-Galois structures.

2 Hopf Galois Theory

In this section we recall the notion of a Hopf algebra, a Hopf-Galois extension, and the Greither-Pareigis
classification.

A bialgebra over a field K is a K-algebra B together with K-algebra maps ∆ : B→ B⊗K B (comultiplica-
tion) and ε : B→ K (counit) which satisfy the conditions

(I⊗∆)∆ = (∆ ⊗ I)∆ ,

mult(I⊗ ε)∆ = I = mult(ε⊗ I)∆ ,

where mult : B⊗K B→ B is the multiplication map of B and I is the identity map on B. A Hopf algebra over
K is a K-bialgebra H with a K-linear map σ : H→ H which satisfies

mult(I⊗σ)∆(h) = ε(h)1H = mult(σ ⊗ I)∆(h),
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for all h∈H. A K-Hopf algebra H is cocommutative if ∆ = τ ◦∆ , where τ : H⊗K H→H⊗K H, a⊗b 7→ b⊗a
is the twist map.

Let L be a finite extension of K and let m : L⊗K L→ L denote multiplication in L. Let H be a finite
dimensional, cocommutative K-Hopf algebra and suppose there is a K-linear action of H on L which satisfies

h · (xy) = (m◦∆)(h)(x⊗ y)

h ·1 = ε(h)1

for all h ∈H, x,y ∈ L, and that the K-linear map j : L⊗K H→ EndK(L), j(x⊗h)(y) = x(h ·y) is an isomor-
phism of vector spaces over K. Then we say H provides a Hopf-Galois structure on L/K.

Example 1. Suppose L/K is Galois with Galois group G. Let H = K[G] be the group algebra, which is a
Hopf algebra via ∆(g) = g⊗g, ε(g) = 1, σ(g) = g−1, for all g ∈ G. The action(

∑rgg
)
· x = ∑rg(g(x))

provides the “usual” Hopf-Galois structure on L/K which we call the classical Hopf-Galois structure.

In general, the process of finding a Hopf algebra and constructing an action may seem daunting, but in
the separable case Greither and Pareigis [13] have provided a complete classification of such structures. Let
L/K be separable with normal closure E. Let G = Gal(E/K), G′ = Gal(E/L), and X = G/G′. Denote by
Perm(X) the group of permutations of X . A subgroup N ≤ Perm(X) is regular if |N|= |X | and η [xG′] 6= xG′

for all η 6= 1N ,xG′ ∈X . Let λ : G→Perm(X), λ (g)(xG′)= gxG′, denote the left translation map. A subgroup
N ≤ Perm(X) is normalized by λ (G)≤ Perm(X) if λ (G) is contained in the normalizer of N in Perm(X).

Theorem 1 (Greither-Pareigis). Let L/K be a finite separable extension. There is a one-to-one correspon-
dence between Hopf Galois structures on L/K and regular subgroups of Perm(X) that are normalized by
λ (G).

One direction of this correspondence works by Galois descent: Let N be a regular subgroup normalized
by λ (G). Then G acts on the group algebra E[N] through the Galois action on E and conjugation by λ (G)
on N, i.e.,

g(xη) = g(x)(λ (g)ηλ (g−1)),g ∈ G, x ∈ E, η ∈ N.

For simplicity, we will denote the conjugation action of λ (g) ∈ λ (G) on η ∈ N by gη . We then define

H = (E[N])G = {x ∈ E[N] : g(x) = x,∀g ∈ G}.

The action of H on L/K is thus (
∑

η∈N
rη η

)
· x = ∑

η∈N
rη η

−1[1G](x),

see [9, Proposition 1].
The fixed ring H is an n-dimensional K-Hopf algebra, n = [L : K], and L/K has a Hopf Galois structure

via H [13, p. 248, proof of 3.1 (b)=⇒ (a)], [7, Theorem 6.8, pp. 52-54]. By [13, p. 249, proof of 3.1, (a) =⇒
(b)],

E⊗K H ∼= E⊗K K[N]∼= E[N],
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as E-Hopf algebras, that is, H is an E-form of K[N].
Theorem 1 can be applied to the case where L/K is Galois with group G (thus, E = L, G′= 1G, G/G′=G).

In this case the Hopf Galois structures on L/K correspond to regular subgroups of Perm(G) normalized by
λ (G), where λ : G→ Perm(G), λ (g)(h) = gh, is the left regular representation.

Example 2. Suppose L/K is a Galois extension, G = Gal(L/K). Let ρ : G→ Perm(G) be the right regular
representation defined as ρ(g)(h) = hg−1 for g,h ∈ G. Then N = ρ(G) is a regular subgroup normalized by
λ (G), since λ (g)ρ(h)λ (g−1) = ρ(h) for all g,h∈G; N corresponds to a Hopf-Galois structure with K-Hopf
algebra H = L[ρ(G)]G = K[G], the usual group ring Hopf algebra with its usual action on L. Consequently,
ρ(G) corresponds to the classical Hopf Galois structure.

Example 3. Again, suppose L/K is Galois with group G. Let N = λ (G). Then N is a regular subgroup of
Perm(G) which is normalized by λ (G), and N = ρ(G) if and only if N abelian. We denote the corresponding
Hopf algebra by Hλ . If G is non-abelian, then λ (G) corresponds to the canonical non-classical Hopf-Galois
structure.

Thus, for G non-abelian there are at least two Hopf-Galois structures on L/K. We remark that if L/K is
Galois with G simple and non-abelian, then these are the only Hopf Galois structures on L/K [3].

Note that with the classical and the canonical non-classical structures, the regular subgroup N ≤ Perm(G)
is isomorphic to G. The following example shows that this need not be the case in general.

Example 4. Let L =Q(
√

2,
√

3). Then L/Q is Galois with elementary abelian Galois group G = 〈r,s〉 with

r(
√

2+
√

3) =
√

2−
√

3, s(
√

2+
√

3) =−
√

2+
√

3.

Let η ∈ Perm(G) be defined by η(ris j) = ri−1si+ j−1, and let N = 〈η〉. It is routine to verify that N is a
regular subgroup of Perm(G) which is normalized by λ (G). Since N is cyclic of order 4, N 6∼= G.

3 The Group Dp

Throughout this section, we let Dp denote the dihedral group of order 2p for p an odd prime. Explicitly, we
write

Dp = 〈r,s : rp = s2 = rsrs = 1〉.

Let L/K be a Galois extension with group Dp. We shall describe all of the regular subgroups of Perm(Dp)
normalized by λ (Dp), and then address the isomorphism questions given in the Introduction. By Examples 2
and 3 we have regular subgroups ρ(Dp), λ (Dp) normalized by λ (Dp). We construct other regular subgroups
of Perm(Dp).

Lemma 1. Pick 0 ≤ c ≤ p− 1. Let ηc = λ (r)ρ(rcs) ∈ Perm(Dp), and let Nc = 〈ηc〉. Then Nc ∼= C2p, the
cyclic group of order 2p, and the Nc are distinct as sets. Moreover, Nc is a regular subgroup of Perm(Dp)
normalized by λ (Dp).

Proof. Suppose 0 ≤ c ≤ p− 1. Since left and right representations commute with each other, η i
c =

λ (ri)ρ((rcs)i). As |r|= p and |rcs|= 2 it follows that |Nc|= 2p, thus Nc ∼=C2p. Now suppose 0≤ d ≤ p−1,
c 6= d. Since Nc ∼=C2p, it contains a unique element of order 2, which is η

p
c = ρ(rcs). Similarly, the unique

element of order 2 in Nd is η
p
d = ρ(rds). Since c 6= d, this shows that Nc 6= Nd .
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It remains to show that the stabilizer in Nc of any element in Dp is trivial, and that Nc is normalized by
λ (Dp). For the remainder of the proof, we write η for ηc and N for Nc. Let x ∈ Dp and suppose η i[x] = x.
Then

x = η
i[x] = λ (ri)ρ((rcs)i)[x] = rix(rcs)−i,

and so,
1Dp = x−1rix(rcs)−i = r±i(rcs)−i.

which cannot happen unless i = 0. Hence η i = 1N and N ≤ Perm(Dp) is regular.
We now show that N is normalized by λ (Dp). Of course, it suffices to show that rη ∈ N and sη ∈ N. We

have, for x ∈ Dp,

r
η [x] = λ (r)

(
λ (r)ρ(rcs)

)
λ (r−1)[x] = rxrcs = η [x]

s
η [x] = λ (s)

(
λ (r)ρ(rcs)

)
λ (s)[x] = srsxrcs = r−1xrcs = r−1x(rcs)−1 = η

−1[x].

Thus rη = η , sη = η−1, and N is normalized by λ (Dp).

By [4, Corollary 6.5], the collection {ρ(Dp),λ (Dp),N0, . . . ,Np−1} is the complete set of all regular sub-
groups of Perm(Dp) normalized by λ (Dp), hence the corresponding Hopf algebras give all of the Hopf-
Galois structures on L/K. We will denote the Hopf algebra corresponding to Nc by Hc for all c.

4 The Hopf Algebra Isomorphism Questions

Let L/K be Galois with group Dp. We have seen that the Hopf algebras which give Hopf-Galois structures
on L/K are

{K[Dp],Hλ ,H0, . . . ,Hp−1.}

Here, we will investigate when two of these Hopf algebras are isomorphic. Note that throughout this sec-
tion, when working with Hopf algebras, “isomorphic” refers to isomorphic as Hopf algebras; considering
isomorphisms as algebras will be discussed in the next section.

Clearly, Hc cannot be isomorphic to either K[Dp] or Hλ since it is commutative. It remains to determine
whether K[Dp]∼= Hλ or whether Hc ∼= Hd for some 0≤ c < d ≤ p−1.

Generally, Hopf isomorphism questions reduce to group isomorphism questions.

Proposition 1. Let L/K be a finite separable extension, with Galois closure E, and let G = Gal(E/K),
G′ = Gal(E/L). Let X = G/G′. Let N,N′ be regular subgroups of Perm(X) which are normalized by λ (G),
and let H,H ′ be their corresponding Hopf algebras. If H ∼= H ′ then N ∼= N′.

Proof. If H ∼=H ′ then (E[N])G∼=(E[N′])G, hence E⊗K (E[N])G∼=E⊗K (E[N′])G. However E⊗K (E[N])G∼=
E[N] and similarly for N′, hence E[N]∼= E[N′]. Since group algebras (over the same field) are isomorphic as
Hopf algebras if and only if their groups are isomorphic, the result follows.

The converse to Proposition 1 is not true as we shall see below in Proposition 4. However, we have:

Proposition 2. Using the notation as in Proposition 1, H ∼= H ′ if and only if there exists an isomorphism
φ : N→ N′ which respects the actions of G.

Proof. See [17, Corollary 2.3].
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We can use this proposition to show that the Hc are all isomorphic.

Proposition 3. For 0≤ c,d ≤ p−1 we have Hc ∼= Hd .

Proof. Define φ : Nc→Nd by φ(ηc) = ηd . This is clearly an isomorphism; it remains to show that it respects
the Dp-actions. But since the Dp-actions are identical with respect to the generators of the groups this is
immediate:

φ( r
ηc) = φ(ηc) = ηd = rηd = rφ(ηc)

φ( s
ηc) = φ(η−1

c ) = η
−1
d = sηd = sφ(ηc).

On the other hand, we have:

Proposition 4. K[Dp] 6∼= Hλ .

Proof. Suppose K[Dp] ∼= Hλ . Then there exists an isomorphism φ : ρ(Dp)→ λ (Dp) which respects the
Dp-actions. Note that Dp acts trivially on ρ(Dp). Pick 1≤ i≤ p−1 such that φ(ρ(r)) = λ (ri). Then

φ( s
ρ(r)) = φ(ρ(r)) = λ (ri)

while
s
φ(ρ(r)) = s(λ (ri)) = λ (s)λ (ri)λ (s) = λ (sris) = λ (r−i),

which is a contradiction since ri = r−i if and only if i = 0. Thus, K[Dp] 6∼= Hλ .

Remark 1. One could also prove Proposition 4 as follows. Over L, K[Dp] and Hλ are isomorphic to L[Dp] as
Hopf algebras, thus their duals K[Dp]

∗ and H∗
λ

are finite dimensional as algebras over K and separable (as
defined in [23, 6.4, page 47]). Using the classification of such K-algebras [23, 6.4, Theorem], we conclude
that K[Dp]

∗ and H∗
λ

are not isomorphic as K-Hopf algebras, and so neither are K[Dp] and Hλ . In fact, by [23,
6.3, Theorem], K[Dp]

∗ and H∗
λ

are not isomorphic as K-algebras, and consequently, K[Dp] and Hλ are not
isomorphic as K-coalgebras. As we will show in Section 5, however, K[Dp]∼= Hλ as K-algebras.

Picking c = 0, we obtain the following.

Theorem 2. There are three K-Hopf algebras which provide Hopf-Galois structures on a dihedral extension
L/K of degree 2p, namely:

1. The group algebra K[Dp], which provides the classical structure
2. The Hopf algebra Hλ , which provides the canonical non-classical structure
3. A commutative K-Hopf algebra H0 which provides p different structures.

We now wish to consider whether any two of the Hopf algebras above become isomorphic after base
change to an intermediate field K ⊂ F ⊂ L. This question is relatively easy to answer in the dihedral case.
Since a K-Hopf algebra H is commutative if and only if F⊗K H is commutative the Hopf algebra H0 is not
isomorphic to either K[Dp] or Hλ after base change. What remains is to determine whether we can have
F⊗K K[Dp]∼= F⊗K Hλ . But this is also easy: Since the center Z(Dp) is trivial, the subgroup of Dp defined
as {g ∈ Dp : gλ (h) = λ (h),∀h ∈ Dp} is trivial. Hence by [13, Corollary 3.2], F = L is the smallest field
extension of L for which F⊗K Hλ

∼= F [Dp]. Thus F = L is minimal so that F⊗K K[Dp]∼= F⊗K Hλ .
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5 The Algebra Structure

Let L/K be Galois with group Dp, Q ⊆ K. In this section we investigate the question of when two Hopf
algebras providing Hopf-Galois structures on L/K are isomorphic as algebras. Throughout this section,
when working with Hopf algebras, “isomorphic” refers to isomorphic as algebras. Since char(K) does not
divide [L : K], Maschke’s theorem and a result of Amitsur [1, Theorem 1] shows that the Hopf algebras are
left semisimple.

Of course, Hc ∼= Hd for all 0≤ c,d ≤ p−1, and these (Hopf) algebras are not isomorphic to either K[Dp]
or Hλ since they are commutative; they remain non-isomorphic after base change for the same reason.

It remains to consider the classical and the canonical non-classical structures, K[Dp] and Hλ , respectively.
Our main tool will be the Wedderburn-Artin decomposition.

The decomposition of Q[Dp] is given in [11, Example (7.39)].

Theorem 3. Let Dp, p≥ 3 prime, be the dihedral group of order 2p. Then

Q[Dp]∼=Q×Q×Mat2(Q(ζp +ζ
−1
p )),

where ζp denotes a primitive pth root of unity.

Let E = K∩Q(ζp +ζ−1
p ) and l = [Q(ζp +ζ−1

p ) : E]. Then

K[Dp]∼=

K×K×
(

Mat2
(
K(ζp +ζ−1

p )
))(p−1)/(2l)

ζp +ζ−1
p 6∈ K

K×K×
(

Mat2(K)
)(p−1)/2

ζp +ζ−1
p ∈ K.

(1)

The former case follows by noting that E =Q(α) for α ∈ E satisfying an irreducible monic polynomial of
degree (p−1)/(2l) over Q. The latter case follows from observing that if ζp +ζ−1

p ∈ K, then the (p−1)/2
2-dimensional irreducible representations of Dp over C correspond to (p−1)/2 characters with values in K
[22, Chapter 5, 5.3].

What can be said about the decomposition of Hλ ? Since Hλ is left semisimple, the K-algebra Hλ decom-
poses into a product of matrix rings over division rings,

Hλ
∼= Matq1(R1)×Matq2(R2)×·· ·×Matqt (Rt).

The division rings Ri are finite dimensional K-algebras.
Now, there are exactly two 1-dimensional irreducible representations of Dp, with characters χ1 and χ2,

corresponding to mutually orthogonal idempotents

e1 =
1

2p ∑
g∈Dp

χ1(g−1)g, e2 =
1

2p ∑
g∈Dp

χ2(g−1)g

in L[Dp]. Both e1 and e2 are fixed by the action of Dp, hence e1,e2 ∈ Hλ . It follows that

Hλ
∼= K×K×

m

∏
j=1

Matq j(R j), (2)



8 Alan Koch, Timothy Kohl, Paul J. Truman, and Robert Underwood

where q j ≥ 1 are integers and R j are division rings. For later use, we set S j = Matq j(R j) for 1 ≤ j ≤ m.
Observe that

m

∑
j=1

dimK(R j) ·q2
j = 2(p−1).

For the moment we assume p = 3, so that ∑
m
j=1 dimK(R j) · q2

j = 4. Since the dimension of a division
algebra over its center is a perfect square, we conclude that

Hλ
∼= K×K×Matq(R), (3)

where 1≤ q≤ 2 and R is a division ring. If q= 1, then the corresponding division ring R is non-commutative.
If q = 2, then R = K.

Assume that the base field K = Q, and let L be the splitting field of x3− v over Q where v is not a 3rd
power in Q. Let ζ3 denote a primitive 3rd root of unity and let α = 3

√
v. Then L = Q(α,ζ3) is Galois with

group D3. The Galois action is given as r(α) = ζ3α , r(ζ3) = ζ3, s(α) = α , s(ζ3) = ζ 2
3 . Let

b = αs+αζ3sr+αζ
2
3 sr2.

Then b ∈ L[D3], and since b is fixed by all elements of D3, b ∈ Hλ . Moreover, direct computation yields
b2 = 0. Thus the only possibility is that q = 2 in (3), and so,

Hλ
∼=Q×Q×Mat2(Q).

Since Q[D3]∼=Q×Q×Mat2(Q) by Theorem 3, here we have an instance of Hλ
∼=Q[D3] as Q-algebras.

Surprisingly, this is true for any L/K Galois with group Dp, p≥ 3. In fact, it holds even more generally:

Theorem 4 (Greither). Let Q⊆ K, and let L/K be a Galois extension with group G. Then

Hλ
∼= K[G]

as K-algebras.

Proof. We prove the special case where G = Dp. We thank C. Greither for the method of proof.
From (1) we obtain

L⊗K Hλ
∼= L⊗K K[Dp]∼= L[Dp]∼=

L×L×
(

Mat2
(
L⊗K K(ζp +ζ−1

p )
))(p−1)/(2l)

ζp +ζ−1
p 6∈ K

L×L×
(

Mat2(L)
)(p−1)/2

ζp +ζ−1
p ∈ K,

with l = [Q(ζp + ζ−1
p ) : E] = [K(ζp + ζ−1

p ) : K], E = K ∩Q(ζp + ζ−1
p ). Thus the decomposition of L[Dp]

contains components of the form L and Mat2
(
L⊗K F

)
, with F = K(ζp +ζ−1

p ).
The Hopf algebra Hλ descends from L[Dp] via the action of Dp as usual: an element of Dp acts by

conjugation on Dp and by the Galois action on L. A character of Dp has the same value on conjugate
elements in Dp [22, Chapter 2, 2.1, Proposition 1(iii)], and so the central indecomposable idempotents of
C[Dp] as constructed in [22, Chapter 6, 6.3, Exercise 6.4] are fixed by conjugation by elements of Dp. Let
e be a central indecomposable idempotent in K[Dp]. Since e is in the center of C[Dp], e is a sum of central
indecomposable idempotents of C[Dp] [22, Chapter 6, 6.3, Exercise 6.4]. Thus, conjugation by elements of
Dp fixes e.
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Now, the central indecomposable idempotents of K[Dp] correspond to the components in the decompo-
sition (1); let M be the component of K[Dp] corresponding to e. For α ∈ M, g ∈ Dp, gαg−1 = gαeg−1 =
gαg−1geg−1 = gαg−1e ∈M, and so, congugation by g, which is an automorphism of K[Dp], restricts to an
automorphism of each component of K[Dp]. Hence the action of Dp preserves the components in the decom-
position of L⊗K K[Dp]∼= L[Dp]. So Dp can be thought of as acting on these components. The two copies of
L in the decomposition of L[Dp] descend to the two copies of K in the decomposition (2) of Hλ , and each
copy of Mat2

(
L⊗K F

)
descends to a component S = S j in the decomposition (2) of Hλ ; the K-algebra S is

an L-form of Mat2
(
F
)
. We want to show that S∼= Mat2

(
F
)

as K-algebras, and so Hλ
∼= K[Dp].

Let Aut(Mat2(F)) denote the automorphism group scheme of Mat2(F) in the sense of [23, §7.6]. By
[23, Theorem, p. 137] the isomorphism classes of L-forms of Mat2(F) correspond to the cohomology set
H1(Dp,Aut(Mat2(L⊗K F)). A 1-cocycle (crossed homomorphism) is a function f : Dp→ Aut(Mat2(L⊗K
F)) which satisfies f (gh) = f (g)◦ (g · f (h)), for g,h ∈ Dp. The action g · f (h) of the element g ∈ Dp on the
automorphism f (h) in Aut(Mat2(L⊗K F)) is induced by the Galois action on L: we have

g · f (h) = (g⊗ IF) f (h)(g−1⊗ IF),

where g,h ∈ Dp, and IF is the identity map on F . The trivial element in H1(Dp,Aut(Mat2(L⊗K F)) is
represented by the 1-cocycle

g 7→ (g⊗ IF)φ(g−1⊗ IF)φ
−1,

where φ is any element of Aut(Mat2(L⊗K F)). The L-form S comes from a particularly simple 1-cocycle
f̂ : Dp → Aut(Mat2(L⊗K F)). For g ∈ Dp, f̂ (g) is conjugation by g on Mat2(F) ⊆Mat2(L⊗K F). Let [ f̂ ]
denote the class of f̂ in H1(Dp,Aut(Mat2(L⊗K F)).

Let Inn(Mat2(L⊗K F)) denote the group of inner automorphisms. Since every element of Inn(Mat2(L⊗K
F)) is given as conjugation by some element of GL2(L⊗K F), there is a surjection of groups ψ : GL2(L⊗K
F)→ Inn(Mat2(L⊗K F)) with ker(ψ) = (L⊗K F)×. Thus, there is an induced map in cohomology

H1(Dp,GL2(L⊗K F))
ψ−→ H1(Dp, Inn(Mat2(L⊗K F))).

A 1-cocycle class [q] ∈H1(Dp,GL2(L⊗K F)) is represented by a function q : Dp→ GL2(L⊗K F) which
satisfies q(gh) = q(g)(g · q(h)). The action of g ∈ Dp on q(h) ∈ GL2(L⊗K F) is through the Galois action
on L as above.

There is a special cocycle class [q̂] ∈ H1(Dp,GL2(L⊗K F)) represented by the function q̂ in which each
g ∈ Dp is identified with its image in Mat2(F) ⊆Mat2(L⊗K F) under the map K[Dp]→Mat2(F). So con-
jugation by g in Mat2(F) is precisely the conjugation action of g on K[Dp] restricted to the component
Mat2(F). It follows that

ψ([q̂]) = [ f̂ ].

The class [ f̂ ] corresponds to the isomorphism class of the L-form S.
Now if ζp +ζ−1

p ∈ K, then F = K. Thus, L = L⊗K F and

H1(Dp,GL2(L⊗K F)) = H1(Dp,GL2(L)).

By Hilbert’s Theorem 90, H1(Dp,GL2(L)) is trivial, and so, [q̂] is trivial, and consequently, [ f̂ ] is trivial. It
follows that S∼= Mat2(K) as K-algebras, and so Hλ

∼= K[Dp].
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If ζp + ζ−1
p 6∈ K, then C. Greither has provided a generalization of Hilbert’s Theorem 90 to yield

H1(Dp,GL2(L⊗K F) trivial. As above, [ f̂ ] is trivial, and so S ∼= Mat2(F) as K-algebras. It follows that
Hλ
∼= K[Dp].

We summarize our findings in this section. The Hopf algebras that provide Hopf-Galois structures in the
case that L/K is Galois with group Dp fall into two K-algebra isomorphism classes represented by K[Dp] and
H0. So a single K-algebra (e.g., K[Dp]) can be be endowed with multiple coalgebra structures, resulting in
multiple (non-isomorphic) Hopf algebras (e.g., K[Dp], Hλ ) giving different Hopf-Galois structures on L/K
(e.g., classical and canonical non-classical).

6 Explicit Structure Computations

Let L/K be Galois with group Dp, Q ⊆ K. We find generators over K for the Hopf algebras K[Dp], Hλ ,
H0,H1, . . . ,Hp−1 constructed above. Let L〈r〉 be the unique quadratic extension of K contained in L. Pick
d ∈ L such that L〈r〉 = K(

√
d). Note that s(

√
d) =−

√
d. Additionally, let y ∈ L be so that K(y) = L〈s〉.

The simplest case, of course, is K[Dp]: it has a K-basis Dp, and {r,s} generates K[Dp] as a K-algebra.
We next turn to Hλ . Suppose h ∈ Hλ . Identifying Dp with λ (Dp), we have h ∈ L[Dp] with h fixed by Dp.

Let

h =
p−1

∑
i=0

airi +
p−1

∑
i=0

biris, ai,bi ∈ L.

Then
rh =

p−1

∑
i=0

r(ai)ri +
p−1

∑
i=0

r(bi)ri+1sr−1 =
p−1

∑
i=0

r(ai)ri +
p−1

∑
i=0

r(bi)ri+2s,

and since rh = h we have ai ∈ L〈r〉 and r(bi) = bi+2 for all i (where i + 2 is considered mod p). Thus,
bi = ri(p+1)/2(b0) for all i.

Furthermore,

sh =
p−1

∑
i=0

s(ai)sris+
p−1

∑
i=0

s(bi)sris2 =
p−1

∑
i=0

s(ai)r−i +
p−1

∑
i=0

s(bi)r−is,

which after interchanging i with p− i for all i 6= 0 gives

sh = s(a0)+ s(b0)s+
p−1

∑
i=1

s(ap−i)ri +
p−1

∑
i=1

s(bp−i)ris

and so a0 ∈ K, s(ai) = ap−i,s(b0) = b0. Note that s(bi) = bp−i as well, but this followed previously since

s(bi) = sri(p+1)/2(b0) = r−i(p+1)/2s(b0) = r−i(p+1)/2(b0) = r(p−i)(p+1)/2(b0) = bp−i.

Since r(p−i)(p+1)/2 = ri(p−1)/2 it follows that

Hλ =

{
a0 +

(p−1)/2

∑
i=1

(airi + s(ai)r−i)+b0s+
p−1

∑
i=1

ri(p−1)/2(b0)r−is : a0 ∈ K,ai ∈ L〈r〉,b0 ∈ L〈s〉
}
.
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Example 5. Suppose p = 3. Then

Hλ =
{

a0 +a1r+ s(a1)r2 +b0s+ r(b0)sr+ r2(b0)sr2 : a0 ∈ K,a1 ∈ L〈r〉,b0 ∈ L〈s〉
}
.

A K-basis for Hλ is

{1,r+ r2,
√

d(r− r2),s+ rs+ r2s,ys+ r(y)rs+ r2(y)r2s,y2s+ r(y2)rs+ r2(y2)r2s}.

We next consider the structure of Hc, 0≤ c≤ p−1. If we write

h =
2p−1

∑
i=0

aiη
i, η = ηc,

where ai ∈ L for all i then, since r acts trivially on η ,

rh =
2p−1

∑
i=0

r(ai)η
i =

2p−1

∑
i=0

aiη
i.

Thus r(ai) = ai for all i, hence ai ∈ L〈r〉. Also, since sη = η−1,

sh =
2p−1

∑
i=0

s(ai)η
−i =

2p−1

∑
i=0

aiη
i,

from which it follows that s(a0) = a0 and s(ai) = a2p−i for all i > 0. In particular, s(ap) = ap, so a0,ap ∈ K.
Thus,

Hc =

{
a0 +apη

p +
p−1

∑
i=1

(
aiη

i + s(ai)η
−i) : a0,ap ∈ K,ai ∈ L〈r〉,1≤ i≤ p−1

}
,

and Hc has K-basis

{1,η p,η +η
−1,η2 +η

−2, . . . ,η p−1 +η
−(p−1),

√
d(η−η

−1),
√

d(η2−η
−2), . . . ,

√
d(η p−1−η

−(p−1))}.

Example 6. Suppose p = 3. Then

Hc =
{

a0 +a3η
3 +a1η + s(a1)η

5 +a2η
2 + s(a2)η

4 : a0,a3 ∈ K,a1,a2 ∈ L〈r〉
}
,

and Hc has K-basis
{1,η3,η +η

5,η2 +η
4,
√

d(η−η
5),
√

d(η2−η
4)}.

7 Example: Hopf Galois Structures in the Case D3

We close with an analysis of the Hopf Galois structures in the case p = 3. Let L/K be any Galois extension
with group D3, Q⊆ K. As we have seen, there are two regular subgroups normalized by λ (D3) and isomor-
phic to D3, namely, ρ(D3) and λ (D3), and three regular subgroups normalized by λ (D3) and isomorphic to
C6, the cyclic group of order 6, namely, N0, N1 and N2.
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By Proposition 4 K[D3] 6∼= Hλ , as K-Hopf algebras, and by Theorem 4 K[D3] ∼= Hλ , as K-algebras, with
Wedderburn-Artin decomposition

K[D3]∼= Hλ
∼= K×K×Mat2(K).

By Proposition 3, H0 ∼= H1 ∼= H2 as Hopf algebras, and hence as K-algebras.
We seek the Wedderburn-Artin decomposition and the Hopf algebra structure of H0 (hence of H1 and H2).

In contrast to the situation with Hλ , the structure of H0 seems to depend on the extension L/K, specifically
on the fixed field L〈r〉.

Here is how we can compute the structure of H0. By [20, Corollary 3.6],

{g ∈ λ (D3) : g
η = η ,∀η ∈ N0}

is precisely the 3-Sylow subgroup λ (〈r〉)≤ λ (D3), which we identify with 〈r〉. There is an induced action of
D3/〈r〉 on L[N0]. Note that D3/〈r〉 ∼=C2, the cyclic group of order 2. By the Fundamental Theorem of Galois
theory, D3/〈r〉 ∼=C2 is the group of the Galois extension F/K, where F = L〈r〉; F is a quadratic extension of
K. We write F = K[z]/(z2−b) for b ∈ K, z indeterminate.

Now, D3/〈r〉 ∼=C2 can be viewed as the group of automorphisms of N0 ∼=C6. We have

H0 = (L[N0])
D3 = (F [C6])

C2 ,

where the action of C2 on F [C6] is by the Galois group on F and as automorphisms on C6.
Now, F is a C2-Galois extension of K, [14, page 130]. So by [14, Theorem 5], F corresponds to an F-Hopf

algebra form of K[C6], namely, (F [C6])
C2 , which must of course be H0.

And so, H0 is the fixed ring of F [C6] under the action of C2, and H0 is an F-form of K[C6]. Under these
conditions, H0 can be characterized. Let x,y be indeterminates and recall F = K[z]/(z2−b). The method of
Haggenmüller and Pareigis in [14, Theorem 6, p. 134] applies to yield H0 ∼= K[x,y]/I,

I = (y2−bx2 +u,(x−2)(x−1)(x+1)(x+2),(x−1)(x+1)(xy)),

with u ∈ K×, u = 4b. The Hopf algebra structure of H0 is defined by

∆(x̄) =
1
2

x̄⊗ x̄+
1

2b
ȳ⊗ ȳ,

∆(ȳ) =
1
2

x̄⊗ ȳ+
1
2

ȳ⊗ x̄,

ε(x̄) = 2, ε(ȳ) = 0, σ(x̄) = x̄, σ(ȳ) =−ȳ.

where x̄ = x mod I, ȳ = y mod I.

Remark 2. The Hopf algebra structure of H0 does not depend on the choice of generator for the quadratic
extension F . Indeed, suppose that F = F ′ where F ′ = K[z]/((z2−a′z−b′). Then the induced isomorphism
φ : F [C6]→ F ′[C6] respects the action of C2, hence the fixed rings H0, H ′0 are isomorphic as K-Hopf algebras.

Example 7. We assume that the base field K = Q and compute the structure of H0 in the case that L is the
splitting field of x3−v, irreducible over Q. In this case, F = L〈r〉 =Q(ζ3), hence F =Q[z]/(z2 +3), and so,
b =−3, u =−12. We then have H0 =Q[x,y]/I, with

I = (y2 +3x2−12,(x−2)(x−1)(x+1)(x+2),(x−1)(x+1)(xy)).
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The Hopf algebra structure of H0 is given as

∆(x̄) =
1
2

x̄⊗ x̄− 1
6

ȳ⊗ ȳ,

∆(ȳ) =
1
2

x̄⊗ ȳ+
1
2

ȳ⊗ x̄,

ε(x̄) = 2, ε(ȳ) = 0, σ(x̄) = x̄, σ(ȳ) =−ȳ.

We can also obtain the Wedderburn-Artin decomposition of H0 in Example 7.

Proposition 5. Assume the conditions of Example 7. Then

H0 ∼=Q×Q×Q×Q×Q×Q,

as Q-algebras.

Proof. The ideal I determines an affine variety in X ⊆Q2 consisting of exactly six points:

P1 = (−2,0),P2 = (−1,3),P3 = (1,3),P4 = (2,0),P5 = (1,−3),P6 = (−1,−3),

This is the set of common zeros of the polynomials in I, see Fig. 1.
As a commutative Q-algebra, H0 ∼= Q[x,y]/I is a product of fields with dimQ(H0) = 6. For 1 ≤ j ≤ 6,

let (x j,y j) be the coordinates of the point Pj and let Ψj : H0 → Q denote the ring homomorphism defined
as x̄ 7→ x j, ȳ 7→ y j. Then Ψj is surjective and ker(Ψj) is an ideal I j of H0 of dimension 5 over Q. Now,
ȳ− y j− 6x̄+ 6x j ∈ I j, yet ȳ− y j− 6x̄+ 6x j 6∈ Ik whenever j 6= k. Thus the ideals I j, 1 ≤ j ≤ 6, are distinct

Fig. 1 Graph of variety deter-
mined by I.



14 Alan Koch, Timothy Kohl, Paul J. Truman, and Robert Underwood

and therefore must arise by omitting one factor isomorphic to Q from the Wedderburn-Artin decomposition
of H0. It follows that the decomposition of H0 must contain at least 6 factors isomorphic to Q, hence H0∼=Q6.

Acknowledgements The authors would like to thank the referee for comments and suggestions which improved the exposition
and content of this paper.
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